WO2015119016A1 - 光学製品並びに眼鏡レンズ及び眼鏡 - Google Patents

光学製品並びに眼鏡レンズ及び眼鏡 Download PDF

Info

Publication number
WO2015119016A1
WO2015119016A1 PCT/JP2015/052346 JP2015052346W WO2015119016A1 WO 2015119016 A1 WO2015119016 A1 WO 2015119016A1 JP 2015052346 W JP2015052346 W JP 2015052346W WO 2015119016 A1 WO2015119016 A1 WO 2015119016A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
light
optical
examples
Prior art date
Application number
PCT/JP2015/052346
Other languages
English (en)
French (fr)
Inventor
宏寿 高橋
Original Assignee
東海光学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海光学株式会社 filed Critical 東海光学株式会社
Priority to KR1020167021224A priority Critical patent/KR102232170B1/ko
Priority to EP15746576.6A priority patent/EP3088921B1/en
Priority to ES15746576T priority patent/ES2791198T3/es
Priority to CN201580005203.2A priority patent/CN106415330B/zh
Publication of WO2015119016A1 publication Critical patent/WO2015119016A1/ja
Priority to US15/194,936 priority patent/US10031349B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/104Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having spectral characteristics for purposes other than sun-protection
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/107Interference colour filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses

Definitions

  • the present invention relates to an optical product including a spectacle lens (including a sunglasses lens) having a near-infrared reflection function, and spectacles (including sunglasses) using the spectacle lens.
  • This filter can be used for a filter for an image sensor, a display in a camera or a music player, glass for automobiles, and the like.
  • Silica (SiO 2 , silicon dioxide) and titania (TiO 2 , dioxide dioxide) are formed on both sides of the substrate.
  • a dielectric multilayer film is formed by alternately stacking 40 layers of 20 layers on each side.
  • Patent Documents 1 and 2 although near-infrared rays can be cut, the number of layers of the dielectric multilayer film is 40, resulting in high cost. On the other hand, when the number of layers is 20 or more, the thickness of the dielectric multilayer film increases, and cracks may occur due to the effects of film stress and radiant heat during film formation, and the adhesion to the substrate is relatively lowered. There is a possibility that the substrate may be deformed, and the durability may be relatively inferior. Further, in Patent Documents 1 and 2, there is room for further improving the transmittance (antireflection property) in the visible region (for example, 400 to 780 nm (nanometers) or 400 to 800 nm).
  • the transmittance antireflection property
  • spectacle lenses are required to have antireflection performance in the visible region.
  • the near-infrared cut has not been discussed as compared with the cut of ultraviolet light or blue light.
  • cataract which is one of eye diseases, may progress when ultraviolet rays or blue rays pass through a lens that has become hot due to near infrared rays.
  • Near-infrared light is, for example, light in the wavelength range of 800 to 2000 nm, is radiated from the sun like the ultraviolet rays and visible light, and falls on the ground. Near-infrared light has a relatively longer wavelength than ultraviolet light and blue light, and the amount of light reaching the ground is relatively small. However, near-infrared light that is close to the visible region is slightly less than ultraviolet light (with an equivalent amount). The amount has reached the ground. If the multilayer film of Patent Documents 1 and 2 is applied to the lens substrate in order to give a near-infrared protection effect to the spectacle lens, the cost is not met, the durability is not satisfactory, and the visible region is not visible.
  • the inventions according to claims 1, 4 and 5 are optical products and glasses that have higher antireflection performance in the visible region, lower transmittance of near-infrared light, lower cost, and higher durability.
  • the purpose is to provide lenses and glasses.
  • the invention according to claim 2 is the above invention, wherein the optical multilayer film further has (6) an average reflectance of 35% or more with respect to one side of light having a wavelength range of 800 nm to 1500 nm. ) The reflectance with respect to one side of light having a wavelength of 1000 nm is 50% or more.
  • the invention according to claim 3 is characterized in that, in the above-mentioned invention, the optical multilayer film further satisfies the condition that (8) the visibility reflectance is 2% or less.
  • the invention according to claim 4 is an eyeglass lens, wherein the optical product of the invention is used. According to a fifth aspect of the present invention, in the spectacles, the spectacle lens of the above invention is used.
  • an optical product, spectacle lens, and spectacles are provided that have sufficient near-infrared protection performance, yet have sufficiently high anti-reflection performance in the visible region, low cost, and sufficient durability. There is an effect that it becomes possible.
  • 6 is a graph showing spectral reflectance distributions in the visible region or near infrared region according to Examples 1 to 3.
  • 6 is a graph showing spectral reflectance distributions in the visible region according to Examples 1 to 3.
  • 7 is a graph showing spectral reflectance distributions in the visible region or near infrared region according to Examples 4 to 6.
  • 7 is a graph showing spectral reflectance distributions in the visible region according to Examples 4 to 6.
  • 10 is a graph showing spectral reflectance distributions in the visible region or near infrared region according to Examples 7 to 9.
  • 10 is a graph showing spectral reflectance distributions in the visible region according to Examples 7 to 9.
  • 12 is a graph showing spectral reflectance distributions in the visible region or near infrared region according to Examples 10 to 12.
  • 12 is a graph showing spectral reflectance distributions in the visible region according to Examples 10 to 12.
  • 6 is a graph showing spectral reflectance distributions in the visible region or near infrared region according to Comparative Examples 1 and 2.
  • 6 is a graph showing spectral reflectance distributions in the visible region according to Comparative Examples 1 and 2.
  • 6 is a graph showing spectral reflectance distributions in a visible region or a near infrared region according to Comparative Examples 3 and 4.
  • 10 is a graph showing spectral reflectance distributions in the visible region according to Comparative Examples 3 and 4.
  • an optical multilayer film is formed on one side or both sides of the substrate.
  • the substrate may be made of any material, and preferably has translucency.
  • the base material include polyurethane resin, thiourethane resin, episulfide resin, polycarbonate resin, polyester resin, acrylic resin, polyethersulfone resin, poly-4-methylpentene-1 resin, and diethylene glycol bisallyl carbonate resin.
  • base material include polyurethane resin, thiourethane resin, episulfide resin, polycarbonate resin, polyester resin, acrylic resin, polyethersulfone resin, poly-4-methylpentene-1 resin, and diethylene glycol bisallyl carbonate resin.
  • an episulfide resin obtained by addition polymerization of an episulfide group and a polythiol and / or a sulfur-containing polyol.
  • the optical multilayer film satisfies the following conditions.
  • the optical multilayer film When the optical multilayer film is formed on both sides, preferably all the films satisfy the following conditions, and more preferably all the films have the same laminated structure.
  • the optical multilayer film has a seven-layer structure in which low refractive index layers and high refractive index layers are alternately stacked. When the layer closest to the substrate (the layer closest to the substrate) is the first layer, the odd layer is the low refractive index layer and the even layer is the high refractive index layer.
  • the low refractive index layer is formed using silica (silicon dioxide, SiO 2 ), and the high refractive index layer is formed using a material having a refractive index of 2.145 or more with respect to light having a wavelength of 500 nm.
  • the refractive index of the high refractive index layer includes the material, the degree of vacuum during vapor deposition, the amount of oxygen gas supplied per unit time, the presence of various assists, the film formation speed, etc. It can be changed depending on the film forming conditions. Compared to the difference in refractive index due to the difference in material, the difference in refractive index due to film formation conditions is relatively small, and the change in refractive index due to film formation conditions remains relatively small.
  • the rate is fine tuned.
  • the physical thickness of the fifth layer (low refractive index layer) is 145 nm or more and 165 nm or less.
  • the optical multilayer film is preferably formed by a vacuum deposition method, a sputtering method, or the like.
  • the material for the high refractive index layer include titanium dioxide (titania, TiO 2 ), zirconium dioxide (zirconia, ZrO 2 ), tantalum dioxide (TaO 2 ), niobium dioxide (NbO 2 ), and hafnium dioxide (HfO 2 ). Or a combination thereof.
  • another type of film such as a hard coat film or a water repellent film may be added between the optical multilayer film and the substrate and / or on the surface of the optical multilayer film.
  • the types of different types of films to be added may be changed with each other, and the presence or absence of the film may be changed with each other.
  • the hard coat film is preferably formed by uniformly applying a hard coat solution to the surface of the substrate.
  • an organosiloxane resin preferably containing inorganic oxide fine particles can be used as the hard coat film.
  • the organosiloxane resin is preferably obtained by hydrolyzing and condensing alkoxysilane.
  • organosiloxane resin examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, methyltrimethoxysilane, ethylsilicate, and combinations thereof.
  • These hydrolysis-condensation products of alkoxysilane are produced by hydrolyzing the alkoxysilane compound or a combination thereof with an acidic aqueous solution such as hydrochloric acid.
  • the material of the inorganic oxide fine particles zinc oxide, silicon dioxide (silica fine particles), aluminum oxide, titanium oxide (titania fine particles), zirconium oxide (zirconia fine particles), tin oxide, beryllium oxide, antimony oxide, oxidation
  • examples thereof include single sols of tungsten and cerium oxide or a mixture of two or more of them.
  • the diameter of the inorganic oxide fine particles is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 50 nm or less, from the viewpoint of ensuring the transparency of the hard coat film.
  • the blending amount (concentration) of the inorganic oxide fine particles is not less than 40% by weight and not more than 60% by weight in the total components of the hard coat film from the viewpoint of ensuring an appropriate degree of hardness and toughness in the hard coat film. It is preferable to occupy.
  • acetylacetone metal salt and / or ethylenediaminetetraacetic acid metal salt can be added to the hard coat solution as a curing catalyst, and further, ensuring adhesion to the substrate and facilitating formation, desired (semi) transparent
  • a surfactant, a colorant, a solvent, and the like can be added as necessary for imparting color.
  • the physical thickness of the hard coat film is preferably 0.5 ⁇ m (micrometer) or more and 4.0 ⁇ m or less.
  • the lower limit of this film thickness range is determined because it is difficult to obtain sufficient hardness if it is thinner than this range.
  • the upper limit is determined by increasing the possibility that problems related to physical properties such as generation of cracks and brittleness will increase dramatically.
  • a primer layer may be added between the hard coat film and the substrate surface. Examples of the material for the primer layer include polyurethane resins, acrylic resins, methacrylic resins, organic silicon resins, or combinations thereof.
  • the optical product having the optical multilayer film described above has seven optical multilayer films, it is easier to form and costs less than 20 optical multilayer films, and cracks are generated due to stress and radiant heat. Durability can be improved by reducing the possibility or reducing the possibility of peeling or deformation of the substrate by improving the adhesion to the substrate. Further, the above optical product has high transmittance in the visible region (for example, 400 nm to 800 nm, 450 nm to 800 nm, or 450 nm to 750 nm), and has antireflection performance. For example, the maximum reflectance relating to light in the wavelength range of 450 nm to 750 nm is 4% or less. Also, the visibility reflectance is 2% or less.
  • the optical product described above has a low transmittance of light having a wavelength in the near infrared region, and has a function of reflecting and cutting near infrared light.
  • the light cut does not represent only the case where the light is completely blocked (transmittance 0%), but a predetermined transmittance (for example, 90% or 80%) or less (in other words, reflectivity 10). % Or more or 20% or more).
  • the average reflectance on the single-sided substrate relating to light in the wavelength region of 800 nm to 1500 nm is 35% or higher, and the reflectance on the single-sided substrate of light having a wavelength of 1000 nm is 50% or higher. It becomes.
  • the base is preferably a spectacle lens base, and the optical product is a spectacle lens.
  • the spectacle lens spectacles that cut near infrared rays while preventing reflection of light in the visible region can be manufactured.
  • Examples 1 to 12 and Comparative Examples 1 to 4 Next, examples of the present invention according to the above embodiment and comparative examples not belonging to the present invention will be described.
  • the embodiments of the present invention are not limited to the following examples.
  • Examples 1 to 12 and Comparative Examples 1 to 4 relating to spectacle lenses were produced by forming different types of intermediate films and optical multilayer films on both surfaces of each spectacle lens base on the same plurality of spectacle lens bases. .
  • the spectacle lens base is a spherical lens base made of thiourethane resin and having a power of S-2.00, a refractive index of 1.60, an Abbe number of 41, and is a standard spectacle lens. It was a circular size.
  • the intermediate film was a hard coat film formed by applying a hard coat solution.
  • the hard coat solution was prepared as follows. First, in a container, 206 g (gram) of methanol, 300 g of methanol-dispersed titania sol (manufactured by JGC Catalysts and Chemicals, solid content 30%), 60 g of ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldi 30 g of ethoxysilane and 60 g of tetraethoxysilane were added dropwise, and a 0.01N (normality) hydrochloric acid aqueous solution was added dropwise to the mixture and stirred for hydrolysis.
  • the hard coat solution was applied to each surface of the spectacle lens substrate as follows. That is, the hard coat solution was uniformly spread by a spin coat method, and placed in an environment of 120 ° C. for 1.5 hours, whereby the hard coat solution was heated and cured.
  • the hard coat films thus formed all had a physical film thickness of 2.5 ⁇ m.
  • the optical multilayer film has the same film structure on both sides in the same spectacle lens substrate, and both have a seven-layer optical multilayer in which a low refractive index layer (silicon dioxide) and a high refractive index layer are alternately deposited. It is a membrane.
  • the film thickness of at least one of the low refractive index layer and the high refractive index layer and the refractive index (material and film forming method) of the high refractive index layer are different from each other.
  • the optical multilayer films of Examples 1 to 12 and Comparative Examples 1 to 4 were all formed by vacuum deposition.
  • the odd layers (1, 3, 5, and 7) are low refractive index layers and are formed of silicon dioxide, and the even layers (2, 4, and 6 layers) are high refractive index layers and are refracted from silicon dioxide. It is made of a highly refractive material with a high rate.
  • the refractive index of the high refractive index layer is basically determined by the material to be selected, but can be adjusted by the film formation rate (the speed at which the film is formed), the film formation pressure, the ion assist process, and the like.
  • the film formation rate the speed at which the film is formed
  • the film formation pressure the ion assist process
  • titanium dioxide is selected as the material for the high refractive index layer
  • the refractive index is different from each other by changing the pressure during film formation and the ion assist conditions.
  • the pressure at the time of film formation is adjusted by the degree of vacuum in the vapor deposition chamber, the introduction amount per unit time when oxygen gas and / or argon gas are slightly introduced, and the like.
  • the ion assist condition is defined as an ion gun operation pattern (on / off mode) or voltage when oxygen molecules and argon molecules in oxygen gas and / or argon gas are converted into oxygen ions or argon ions by an ion gun or the like. It can be changed according to the amount of various gases introduced.
  • zirconium dioxide was selected as the material for the high refractive index layer, and as in the case of titanium dioxide, the film formation pressure and ion assist conditions were changed. The refractive indexes are different from each other.
  • Examples 1 to 12 and Comparative Examples 1 to 4 have an antireflection function in the visible region, but there is still a slight amount of reflected light (with a maximum reflectance of about 3% or less).
  • the color of the reflected light is designed to be green.
  • the color of the reflected light is blue.
  • [Table 1] to [Table 12] show the refractive index and film thickness of each layer of the optical multilayer film according to Examples 1 to 12, and [Table 13] to [Table 16] show Comparative Examples 1 to 4 respectively. The refractive index and film thickness of each layer of the optical multilayer film are shown.
  • [Antireflection in the visible region] In the following [Table 17], the reflected color in the reflected light of Examples 1 to 6 and Comparative Examples 1 and 2, the x and y values in the CIE color system, and the luminous reflectance are shown.
  • [Table 18] The reflection color in the reflected light of Examples 7 to 12 and Comparative Examples 3 to 4, the x and y values in the CIE color system, and the visibility reflectance are shown. According to the reflection color and x value and y value in the table, the reflection color is green in Examples 1 to 6 and Comparative Examples 1 and 2, and the reflection color is blue in Examples 7 to 12 and Comparative Examples 3 and 4.
  • the visibility reflectance is 1.2% or less in any of the examples, and it is visible when viewed in combination with the reflectance distribution of FIGS. It can be seen that the region exhibits antireflection properties. If the visibility reflectance is 2% or less, sufficient antireflection properties can be imparted to improve visibility.
  • the physical thickness of the fifth layer (154.84 nm) is in the range of 145 nm to 165 nm, and the total optical thickness (1.323 ⁇ ) of the fourth to sixth layers is 1. Although it is in the range of 3 ⁇ or more and 1.5 ⁇ or less, since the refractive index (2.1071) of the high refractive index layer is less than 2.145, the average reflection related to light in the wavelength range of 800 nm to 1500 nm. The rate (31.88%) is less than 35%, and the reflectance of light with a wavelength of 1000 nm (46.88%) is less than 50%, and the near-infrared cut performance is relatively poor.
  • the physical thickness (155.40 nm) of the fifth layer is in the range of 145 nm to 165 nm, but the total optical thickness (1.279 ⁇ ) of the fourth to sixth layers is 1. Since it is out of the range of 3 ⁇ to 1.5 ⁇ and the refractive index (2.0577) of the high refractive index layer is less than 2.145, the average reflectance related to the light in the wavelength range of 800 nm to 1500 nm. (29.12%) is less than 35%, and the reflectance of light with a wavelength of 1000 nm (44.31%) is less than 50%, so that the near-infrared cut performance is relatively poor.
  • the physical thickness of the fifth layer is in the range of 145 nm to 165 nm, and the total optical thickness of the fourth to sixth layers is 1.3 ⁇ or more. Since it is in the range of 1.5 ⁇ or less and the refractive index of the high refractive index layer is 2.145 or more, the average reflectance relating to light in the wavelength region of wavelength 800 nm or more and 1500 nm or less is 35% or more. In addition, the reflectance of light with a wavelength of 1000 nm is 50% or more, and the near-infrared cut performance is good.
  • the physical thickness (145.11 nm) of the fifth layer is in the range of 145 nm to 165 nm
  • the total optical thickness (1.394 ⁇ ) of the fourth to sixth layers is Although it is within the range of 1.3 ⁇ or more and 1.5 ⁇ or less, since the refractive index (2.1071) of the high refractive index layer is less than 2.145, it relates to light in the wavelength range of 800 nm to 1500 nm.
  • the average reflectance (31.92%) is less than 35%, and the reflectance (47.65%) of light having a wavelength of 1000 nm is less than 50%, so that the near-infrared cut performance is relatively poor.
  • the physical thickness (147.51 nm) of the fifth layer is in the range of 145 nm to 165 nm, and the total optical thickness (1.412 ⁇ ) of the fourth to sixth layers is 1.3 ⁇ . Although it is outside the range of 1.5 ⁇ or less, the refractive index (2.0577) of the high refractive index layer is less than 2.145. Therefore, the average reflectance related to light in the wavelength region of wavelengths of 800 nm to 1500 nm. (30.17%) is less than 35%, and the reflectance (44.86%) of light having a wavelength of 1000 nm is less than 50%, and the near-infrared cut performance is relatively poor.
  • the physical film thickness of the fifth layer is in the range of 145 nm to 165 nm, and the total optical film thickness of the fourth to sixth layers is 1.3 ⁇ or more. Since the refractive index of the high refractive index layer is 2.145 or more within the range of 1.5 ⁇ or less, the average reflectance with respect to one surface relating to light in the wavelength region of wavelengths of 800 nm to 1500 nm is 35. %, And the reflectance for one surface of light having a wavelength of 1000 nm is 50% or more, and the near-infrared cut performance is good.
  • the physical film thickness of the fifth layer is less than 145 nm, the near-infrared cut rate is relatively insufficient, and if it exceeds 165 nm, it becomes difficult to design including the provision of antireflection in the visible region. And the cost of forming increases.
  • the lower limit and upper limit of the total optical film thickness of the fourth to sixth layers are the same as the physical film thickness of the fifth layer.
  • silica silicon dioxide, SiO 2
  • SiO 2 silicon dioxide
  • the reflection color can be (very light) green as in Examples 1 to 6, or the reflection color can be (very light) blue as in Examples 7 to 12. While satisfying the condition of the layer structure in the optical multilayer film, the reflected color can be changed to another color.
  • the spectacle lenses of Examples 1 to 12 it is possible to produce spectacles that achieve both the antireflection property in the visible region and the cut of near infrared rays.
  • optical products such as window films (buildings, vehicles, etc.) and camera lens filters having the same characteristics as in Examples 1 to 12 can be produced.

Abstract

【課題】可視領域の反射防止性能がより高く、近赤外線光の透過率がより低く、コストがより低廉で、耐久性がより高い光学製品等を提供する。 【解決手段】光学製品において、低屈折率層と高屈折率層を交互に積層した7層構造の光学多層膜を基体の片面又は両面に有し、前記低屈折率層は、SiOを用いて形成され、前記高屈折率層は、波長500nmの光に対する屈折率が2.145以上である材料を用いて形成され、前記基体に最も近い層を1層目として、前記低屈折率層である5層目の物理膜厚は、145nm以上165nm以下であり、4層目ないし6層目の光学膜厚(λ=500nm)の総和が、1.3λ以上1.5λ以下であるようにする。

Description

光学製品並びに眼鏡レンズ及び眼鏡
 本発明は、近赤外線反射機能を有する、眼鏡レンズ(サングラスレンズを含む)を始めとする光学製品、及び当該眼鏡レンズを用いた眼鏡(サングラスを含む)に関する。
 近赤外線をカットするフィルタとして、下記特許文献1,2のものが知られている。このフィルタは、撮像素子用のフィルタ、あるいはカメラやミュージックプレイヤーにおけるディスプレイや自動車用ガラス等に採用され得るもので、基体の両面に対し、シリカ(SiO,二酸化ケイ素)とチタニア(TiO,二酸化チタン)を交互に各面20層合計40層積層した誘電体多層膜を形成して成る。
特開2008-106836号公報 特開2011-100084号公報
 特許文献1,2のものでは、近赤外線をカットすることができるものの、誘電体多層膜の層数が40層となり、高コストとなる。
 又、20層以上ともなると、誘電体多層膜の膜厚が厚くなり、膜応力や成膜中の輻射熱の影響によって、クラックが発生するおそれがあるし、基体に対する密着性が比較的に低下するおそれがあるし、基体が変形するおそれがあり、耐久性が比較的に劣ってしまう可能性がある。
 更に、特許文献1,2のものでは、可視領域(例えば400~780nm(ナノメートル),あるいは400~800nm)における透過率(反射防止性)をより一層良好にする余地がある。
 特に、眼鏡レンズにおいては、可視領域における反射防止性能が求められる。
 又、眼鏡レンズにおいては、紫外線や青色光のカットに比べ、近赤外線のカットが議論されてこなかったが、次の理由から、近赤外線のカットを行った方が良いものである。即ち、眼の水晶体の約70%(パーセント)は水であるところ、水は近赤外線をよく吸収し(水の近赤外線吸収係数が高い)、温度上昇を始めとして眼に悪影響を少しずつ及ぼす可能性がある。例えば、眼疾患の一つである白内障は、近赤外線により高温となった水晶体を紫外線や青色光線が通過することで進行するものである可能性がある。近赤外線は、例えば800~2000nmの波長域の光であり、紫外線や可視光線と同様に太陽から放射され、地上に降り注いでいる。近赤外線は、紫外線や青色光線より波長が比較的に長く、その分地上への到達量が比較的に少なくなるが、それでも可視領域に近い近赤外線は、紫外線より僅かに減少した(同等量と言っても差し支えない程度の)量、地上に到達している。
 眼鏡レンズに対して、近赤外線からの保護効果を付与すべく、特許文献1,2の多層膜をレンズ基体に施したとすると、コストが見合わず、耐久性に満足がいかず、可視領域の反射防止性が充分でなく視認性に満足できない可能性がある。
 そこで、請求項1,4,5に記載の発明は、可視領域の反射防止性能がより高く、近赤外線光の透過率がより低く、コストがより低廉で、耐久性がより高い光学製品,眼鏡レンズ,眼鏡を提供することを目的とするものである。
 上記目的を達成するために、請求項1に記載の発明は、光学製品にあって、(1)低屈折率層と高屈折率層を交互に積層した7層構造の光学多層膜を基体の片面又は両面に有し、(2)前記低屈折率層は、SiO(シリカ,二酸化ケイ素)を用いて形成され、(3)前記高屈折率層は、波長500nmの光に対する屈折率が2.145以上である材料を用いて形成され、(4)前記基体に最も近い層を1層目として、前記低屈折率層である5層目の物理膜厚は、145nm以上165nm以下であり、(5)4層目ないし6層目の光学膜厚(λ=500nm)の総和が、1.3λ以上1.5λ以下であることを特徴とするものである。
 請求項2に記載の発明は、上記発明にあって、前記光学多層膜は更に(6)波長800nm以上1500nm以下の波長域の光に係る片面に対する平均反射率が35%以上であり、(7)波長1000nmの光に係る片面に対する反射率が50%以上であることを特徴とするものである。
 請求項3に記載の発明は、上記発明において、前記光学多層膜は更に(8)視感度反射率が2%以下であるという条件を満たすことを特徴とするものである。
 請求項4に記載の発明は、眼鏡レンズにあって、上記発明の光学製品を用いたことを特徴とするものである。
 請求項5に記載の発明は、眼鏡にあって、上記発明の眼鏡レンズを用いたことを特徴とするものである。
 本発明によれば、充分な近赤外線に対する保護性能を有しながら、可視領域の反射防止性能が充分に高く、コストが低廉で、耐久性も充分である光学製品,眼鏡レンズ,眼鏡を提供することが可能となる、という効果を奏する。
実施例1~3に係る、可視領域ないし近赤外域に係る分光反射率分布を示すグラフである。 実施例1~3に係る、可視領域に係る分光反射率分布を示すグラフである。 実施例4~6に係る、可視領域ないし近赤外域に係る分光反射率分布を示すグラフである。 実施例4~6に係る、可視領域に係る分光反射率分布を示すグラフである。 実施例7~9に係る、可視領域ないし近赤外域に係る分光反射率分布を示すグラフである。 実施例7~9に係る、可視領域に係る分光反射率分布を示すグラフである。 実施例10~12に係る、可視領域ないし近赤外域に係る分光反射率分布を示すグラフである。 実施例10~12に係る、可視領域に係る分光反射率分布を示すグラフである。 比較例1~2に係る、可視領域ないし近赤外域に係る分光反射率分布を示すグラフである。 比較例1~2に係る、可視領域に係る分光反射率分布を示すグラフである。 比較例3~4に係る、可視領域ないし近赤外域に係る分光反射率分布を示すグラフである。 比較例3~4に係る、可視領域に係る分光反射率分布を示すグラフである。
 以下、本発明に係る実施の形態の例につき、適宜図面を用いて説明する。尚、本発明の形態は、以下のものに限定されない。
 本発明に係る眼鏡レンズでは、基体の片面あるいは両面に対し、光学多層膜が形成されている。
 本発明において、基体はどのような材質であっても良く、好ましくは透光性を有する。基体の材料(基材)として、例えばポリウレタン樹脂、チオウレタン樹脂、エピスルフィド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、アクリル樹脂、ポリエーテルサルホン樹脂、ポリ4-メチルペンテン-1樹脂、ジエチレングリコールビスアリルカーボネート樹脂を採用することができる。又、屈折率が高く(特に眼鏡レンズ用として)好適なものとして、エピスルフィド基とポリチオール及び/又は含硫黄ポリオールとを付加重合して得られるエピスルフィド樹脂を挙げることができる。
 又、本発明において、光学多層膜は、下記の条件を満たす。尚、光学多層膜は、両面に形成される場合、好ましくは何れの膜も下記の条件を満たし、更に好ましくは何れの膜も同一の積層構造となるようにする。
 まず、光学多層膜は、低屈折率層と高屈折率層を交互に積層した7層構造である。最も基体側の層(基体に最も近い層)を1層目とすると、奇数層目が低屈折率層であり、偶数層目が高屈折率層である。
 次に、低屈折率層は、シリカ(二酸化ケイ素,SiO)を用いて形成され、高屈折率層は、波長500nmの光に対する屈折率が2.145以上である材料を用いて形成される。尚、高屈折率層の屈折率は、一般の薄膜において知られているように、材質の他、蒸着時の真空度や単位時間当たり酸素ガス供給量や各種アシストの有無や成膜速度等の成膜条件により変化させることができる。材質の相違による屈折率の相違に比べ、成膜条件による屈折率の相違は比較的に小さく、成膜条件による屈折率変化は比較的に微量に留まり、成膜条件によって高屈折率層の屈折率は微調整される。
 更に、5層目(低屈折率層)の物理膜厚は、145nm以上165nm以下である。
 加えて、4層目(高屈折率層),5層目(低屈折率層),及び6層目(高屈折率層)の光学膜厚(λ=500nm)の総和が1.3λ以上1.5λ以下である。
 上記の光学多層膜は、好適には真空蒸着法やスパッタ法等により形成される。
 又、高屈折率層の材料の例として、二酸化チタン(チタニア,TiO)、二酸化ジルコニウム(ジルコニア,ZrO)、二酸化タンタル(TaO)、二酸化ニオブ(NbO)、二酸化ハフニウム(HfO)、又はこれらの組合せが挙げられる。
 本発明において、光学多層膜と基体の間、及び/又は光学多層膜の表面に、ハードコート膜や撥水膜等の別種の膜を付加しても良く、光学多層膜を両面に形成する場合には、付加する別種の膜の種類を互いに変えたり、膜の有無を互いに変えたりして良い。
 光学多層膜と基体の間に付加する膜として、ハードコート膜を採用する場合、ハードコート膜は、好適には基体の表面にハードコート液を均一に施すことで形成される。
 又、ハードコート膜として、好ましくは無機酸化物微粒子を含むオルガノシロキサン系樹脂を用いることができる。オルガノシロキサン系樹脂は、アルコキシシランを加水分解し縮合させることで得られるものが好ましい。又、オルガノシロキサン系樹脂の具体例として、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、メチルトリメトキシシラン、エチルシリケート、又はこれらの組合せが挙げられる。これらアルコキシシランの加水分解縮合物は、当該アルコキシシラン化合物あるいはそれらの組合せを、塩酸等の酸性水溶液で加水分解することにより製造される。
 一方、無機酸化物微粒子の材質の具体例として、酸化亜鉛、二酸化ケイ素(シリカ微粒子)、酸化アルミニウム、酸化チタン(チタニア微粒子)、酸化ジルコニウム(ジルコニア微粒子)、酸化スズ、酸化ベリリウム、酸化アンチモン、酸化タングステン、酸化セリウムの各ゾルを単独であるいは何れか2種以上を混晶化したものが挙げられる。無機酸化物微粒子の直径は、ハードコート膜の透明性確保の観点から、1nm以上100nm以下であることが好ましく、1nm以上50nm以下であるとより好ましい。又、無機酸化物微粒子の配合量(濃度)は、ハードコート膜における硬度や強靱性の適切な度合での確保という観点から、ハードコート膜の全成分中の40重量%以上60重量%以下を占めることが好ましい。加えて、ハードコート液には、硬化触媒としてアセチルアセトン金属塩、及び/又はエチレンジアミン四酢酸金属塩等を付加することができ、更に基体に対する密着性確保や形成の容易化、所望の(半)透明色の付与等の必要に応じて界面活性剤、着色剤、溶媒等を添加することができる。
 ハードコート膜の物理膜厚は、0.5μm(マイクロメートル)以上4.0μm以下とすると好ましい。この膜厚範囲の下限については、これより薄いと充分な硬度を得難いことから定まる。一方、上限については、これより厚くするとクラックや脆さの発生等、物性に関する問題の生ずる可能性が飛躍的に高まることから定まる。
 更に、ハードコート膜と基体表面の間に、プライマー層を付加しても良い。プライマー層の材質として、例えばポリウレタン系樹脂、アクリル系樹脂、メタクリル樹脂、有機ケイ素系樹脂、又はこれらの組合せが挙げられる。
 上記の光学多層膜を有する光学製品は、7層の光学多層膜を有するので、20層程度の光学多層膜に比べ、形成が容易で、コストが低廉であり、応力や輻射熱によりクラックが発生する可能性を低減したり、基体に対する密着性を向上して剥離や基体の変形が発生する可能性を低減したりして、耐久性を向上することができる。
 又、上記の光学製品は、可視領域(例えば400nm以上800nm以下、450nm以上800nm以下、又は450nm以上750nm以下等)において透過率が高く、反射防止性能を有する。例えば、波長450nm以上750nm以下の波長域の光に係る最大反射率が、4%以下となる。又、視感度反射率が2%以下となる。
 しかも、上記の光学製品は、近赤外域の波長の光の透過率が低く、近赤外線を反射してカットする機能を有する。尚、本願において、光のカットは、光を完全に遮断する場合(透過率0%)のみを表すものではなく、所定の透過率(例えば90%又は80%)以下(換言すれば反射率10%以上又は20%以上)とする場合も含む。
 上記の光学多層膜においては、波長800nm以上1500nm以下の波長域の光に係る基材片面における平均反射率が35%以上となり、且つ、波長1000nmの光の基材片面における反射率が50%以上となる。
 又、上記の光学多層膜において、上記の条件を満足しつつ、可視領域において僅かに反射する(微量の)反射光の色につき、緑色を始めとする各種の色に調節することが可能である。
 上記の光学製品において、好適には基体は眼鏡レンズ基体であり、光学製品は眼鏡レンズである。又、当該眼鏡レンズを用いて、可視領域の光の反射を防止しつつ近赤外線をカットする眼鏡を作製することができる。
[実施例1~12及び比較例1~4]
 次いで、上記実施形態に係る本発明の実施例、及び本発明に属さない比較例を説明する。尚、本発明の実施形態は、以下の実施例に限定されない。
 互いに同じ複数の眼鏡レンズ基体に対し、各眼鏡レンズ基体の両面においてそれぞれ異なる種類の中間膜や光学多層膜を形成して、眼鏡レンズに係る実施例1~12,比較例1~4を作製した。
 眼鏡レンズ基体は、チオウレタン系樹脂製で、度数がS-2.00である球面レンズ基体であり、屈折率は1.60であり、アッベ数は41であって、眼鏡レンズとして標準的な大きさの円形のものとした。
 又、中間膜は、ハードコート液の塗布により形成したハードコート膜とした。
 ハードコート液は、次のように作製した。
 まず、容器中にメタノール206g(グラム)、メタノール分散チタニア系ゾル(日揮触媒化成株式会社製,固形分30%)300g、γ-グリシドキシプロピルトリメトキシシラン60g、γ-グリシドキシプロピルメチルジエトキシシラン30g、テトラエトキシシラン60gを滴下し、その混合液中に0.01N(規定度)の塩酸水溶液を滴下、撹拌して加水分解を行った。
 次いで、フロー調整剤0.5g及び触媒1.0gを加え、室温で3時間撹拌した。
 ハードコート液は、眼鏡レンズ基材の各面に対し、次のように塗布した。
 即ち、スピンコート法によりハードコート液を均一に行き渡らせ、120℃の環境に1.5時間置くことで、ハードコート液を加熱硬化させた。
 このようにして形成されたハードコート膜は、何れも物理膜厚が2.5μmとなった。
 更に、光学多層膜は、同じ眼鏡レンズ基体においては両面とも同じ膜構造を有しており、何れも低屈折率層(二酸化ケイ素)と高屈折率層を交互に蒸着した7層構造の光学多層膜である。実施例1~12,比較例1~4では、低屈折率層や高屈折率層の少なくとも何れかの膜厚や高屈折率層の屈折率(材質や成膜法)が互いに相違する。
 実施例1~12,比較例1~4の光学多層膜は、何れも真空蒸着法により形成した。
 奇数層目(1,3,5,7層目)は低屈折率層で、二酸化ケイ素により形成され、偶数層目(2,4,6層目)は高屈折率層で、二酸化ケイ素より屈折率の大きい高屈折材料で形成される。
 高屈折率層の屈折率は、基本的には選択する材料によって定まるが、成膜レート(膜を形成する速さ)や成膜時圧力、イオンアシスト処理等により調整することができる。
 実施例1~4,7~10では、高屈折率層の材料として二酸化チタンを選択し、成膜時圧力及びイオンアシスト条件を変えることで、互いに屈折率の異なったものとされている。成膜時圧力は、蒸着チャンバ内の真空度や、酸素ガス及び/又はアルゴンガスを僅かに導入した場合の単位時間当たりの導入量等により調節される。又、イオンアシスト条件は、酸素ガス及び/又はアルゴンガス中の酸素分子やアルゴン分子をイオン銃等により酸素イオンやアルゴンイオンとする場合の、イオン銃の作動パターン(オンオフの態様)や電圧、あるいは各種ガスの導入量により変更可能である。
 実施例5,6,11,12や比較例1~4では、高屈折率層の材料として二酸化ジルコニウムを選択し、二酸化チタンの場合と同様に、成膜時圧力及びイオンアシスト条件を変えることで、互いに屈折率の異なったものとされている。
 実施例1~12,比較例1~4では、可視領域において反射防止機能を有するが、それでも僅かに(最大3%以下程度の反射率で)反射光が存在する。実施例1~6や比較例1,2では、その反射光の色が緑色になるように設計されており、実施例7~12や比較例3,4では、その反射光の色が青色になるように設計されている。
 次の[表1]~[表12]において実施例1~12に係る光学多層膜の各層の屈折率や膜厚等を示し、[表13]~[表16]において比較例1~4に係る光学多層膜の各層の屈折率や膜厚等を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
[可視領域ないし近赤外域における反射率分布]
 実施例1~12,比較例1~4における、可視領域ないし近赤外域に係る分光反射率分布を図1,3,5,7,9,11に示し、可視領域に係る分光反射率分布を図2,4,6,8,10,12に示す。
 実施例1~3については図1,2に、実施例4~6については図3,4に、実施例7~9については図5,6に、実施例10~12については図7.8に、比較例1,2については図9,10に、比較例3,4については図11,12に示す。
 これらの図で示された反射率分布においても、以下に説明する可視域での反射防止性能や近赤外域でのカット性能が分かる。
[可視領域での反射防止性]
 次の[表17]において、実施例1~6,比較例1~2の反射光における反射色、CIE表色系におけるx値とy値、及び視感度反射率を示し、[表18]において、実施例7~12,比較例3~4の反射光における反射色、CIE表色系におけるx値とy値、及び視感度反射率を示す。
 同表の反射色やx値とy値によれば、実施例1~6や比較例1,2では反射色が緑色になり、実施例7~12や比較例3,4では反射色が青色になることが分かる。
 又、同表の視感度反射率によれば、何れの例においても、視感度反射率が1.2%以下となっており、図1~12の反射率分布と適宜併せて見れば、可視領域において反射防止性を呈することが分かる。尚、視感度反射率は2%以下であれば、視認性を良好にするために充分な反射防止性を付与することができる。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
[近赤外線のカット性]
 次の[表19]において、実施例1~6,比較例1~2の近赤外域(波長800nm以上1500nm以下)における平均反射率、及び波長1000nmにおける反射率を示し、[表20]において、実施例7~12,比較例3~4の近赤外域(波長800nm以上1500nm以下)における平均反射率、及び波長1000nmにおける反射率を示す。
 同表や図1~12によれば、比較例1~4では近赤外域の平均反射率が30%前後で最大でも31.92%(比較例3)であるのに対し、実施例1~12では、最低の反射率でも35.27%(実施例10)であって何れも35%以上となっており、実施例1~12において充分な近赤外線のカット性能を具備していることが分かる。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 比較例1では、5層目の物理膜厚(154.84nm)が145nm以上165nm以下の範囲内となっており、又4~6層目の光学膜厚の総和(1.323λ)が1.3λ以上1.5λ以下の範囲内となっているが、高屈折率層の屈折率(2.1071)が2.145未満であるため、波長800nm以上1500nm以下の波長域の光に係る平均反射率(31.88%)が35%未満となり、且つ、波長1000nmの光の反射率(46.88%)が50%未満となって、近赤外線のカット性能が比較的に劣る。
 比較例2では、5層目の物理膜厚(155.40nm)が145nm以上165nm以下の範囲内となっているが、4~6層目の光学膜厚の総和(1.279λ)が1.3λ以上1.5λ以下の範囲外となっており、高屈折率層の屈折率(2.0577)が2.145未満であるため、波長800nm以上1500nm以下の波長域の光に係る平均反射率(29.12%)が35%未満となり、且つ、波長1000nmの光の反射率(44.31%)が50%未満となって、近赤外線のカット性能が比較的に劣る。
 これに対し、実施例1~6では、何れも5層目の物理膜厚が145nm以上165nm以下の範囲内となっており、又4~6層目の光学膜厚の総和が1.3λ以上1.5λ以下の範囲内となっており、更に高屈折率層の屈折率が2.145以上となっているため、波長800nm以上1500nm以下の波長域の光に係る平均反射率が35%以上となり、且つ、波長1000nmの光の反射率が50%以上となって、近赤外線のカット性能が良好なものとなる。
 又、比較例3では、5層目の物理膜厚(145.11nm)が145nm以上165nm以下の範囲内となっており、又4~6層目の光学膜厚の総和(1.394λ)が1.3λ以上1.5λ以下の範囲内となっているが、高屈折率層の屈折率(2.1071)が2.145未満であるため、波長800nm以上1500nm以下の波長域の光に係る平均反射率(31.92%)が35%未満となり、且つ、波長1000nmの光の反射率(47.65%)が50%未満となって、近赤外線のカット性能が比較的に劣る。
 比較例4では、5層目の物理膜厚(147.51nm)が145nm以上165nm以下の範囲内となっており、4~6層目の光学膜厚の総和(1.412λ)が1.3λ以上1.5λ以下の範囲外となっているが、高屈折率層の屈折率(2.0577)が2.145未満であるため、波長800nm以上1500nm以下の波長域の光に係る平均反射率(30.17%)が35%未満となり、且つ、波長1000nmの光の反射率(44.86%)が50%未満となって、近赤外線のカット性能が比較的に劣る。
 これに対し、実施例7~12では、何れも5層目の物理膜厚が145nm以上165nm以下の範囲内となっており、又4~6層目の光学膜厚の総和が1.3λ以上1.5λ以下の範囲内となっており、更に高屈折率層の屈折率が2.145以上となっているため、波長800nm以上1500nm以下の波長域の光に係る片面に対する平均反射率が35%以上となり、且つ、波長1000nmの光の片面に対する反射率が50%以上となって、近赤外線のカット性能が良好なものとなる。
 尚、5層目の物理膜厚が145nm未満であると近赤外線のカット率が比較的に不十分となり、165nmを超えると可視領域の反射防止性の付与を含めて設計が難しくなるし、材料や形成等のコストが嵩む。4~6層目の光学膜厚の総和の下限や上限についても、5層目の物理膜厚と同様である。
[まとめ等]
 実施例1~12のように、低屈折率層と高屈折率層を交互に積層した7層構造の光学多層膜において、低屈折率層にシリカ(二酸化ケイ素,SiO)を用い、高屈折率層に波長500nmの光に対する屈折率が2.145以上である材料を用い、5層目(低屈折率層)の物理膜厚を145nm以上165nm以下とし、4~6層目(高屈折率層)の光学膜厚(λ=500nm)の総和が1.3λ以上1.5λ以下とすると、形成が容易で、耐久性を向上することがで、コストを低廉化することができ、可視領域において充分な反射防止性能を有し、近赤外域において充分なカット性能を有する眼鏡レンズを提供することができる。
 しかも、実施例1~6のように、反射色を(極薄い)緑色にしたり、実施例7~12のように、反射色を(極薄い)青色にしたりすることが可能である。上記の光学多層膜における層構造の条件を満たしながら、反射色を他の色にすることも可能である。
 実施例1~12の眼鏡レンズを用いて、可視領域の反射防止性と近赤外線のカットを両立した眼鏡を作製することができる。又、実施例1~12と同様の特性を有する窓用フィルム(建物や車両等)やカメラレンズ用フィルタ等の光学製品を作製することができる。

Claims (5)

  1.  下記の各条件を全て満たす光学多層膜を基体の片面又は両面に対して形成したことを特徴とする光学製品。
    (1)低屈折率層と高屈折率層を交互に積層した7層構造である。
    (2)前記低屈折率層は、SiOを用いて形成される。
    (3)前記高屈折率層は、波長500nmの光に対する屈折率が2.145以上である材料を用いて形成される。
    (4)前記基体に最も近い層を1層目として、前記低屈折率層である5層目の物理膜厚は、145nm以上165nm以下である。
    (5)4層目ないし6層目の光学膜厚(λ=500nm)の総和が、1.3λ以上1.5λ以下である。
  2.  前記光学多層膜は更に下記の各条件を全て満たすことを特徴とする請求項1に記載の光学製品。
    (6)波長800nm以上1500nm以下の波長域の光に係る片面に対する平均反射率が35%以上である。
    (7)波長1000nmの光に係る片面に対する反射率が50%以上である。
  3.  前記光学多層膜は更に下記の条件を満たすことを特徴とする請求項1又は請求項2に記載の光学製品。
    (8)視感度反射率が2%以下である。
  4.  請求項1ないしは請求項3の何れかに記載の光学製品を用いた
    ことを特徴とする眼鏡レンズ。
  5.  請求項4に記載の眼鏡レンズを用いた
    ことを特徴とする眼鏡。
PCT/JP2015/052346 2014-02-04 2015-01-28 光学製品並びに眼鏡レンズ及び眼鏡 WO2015119016A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167021224A KR102232170B1 (ko) 2014-02-04 2015-01-28 광학 제품 및 안경 렌즈 및 안경
EP15746576.6A EP3088921B1 (en) 2014-02-04 2015-01-28 Optical product, spectacle lens and spectacles
ES15746576T ES2791198T3 (es) 2014-02-04 2015-01-28 Producto óptico, lente para gafas y gafas
CN201580005203.2A CN106415330B (zh) 2014-02-04 2015-01-28 光学制品、眼镜镜片和眼镜
US15/194,936 US10031349B2 (en) 2014-02-04 2016-06-28 Optical product, and spectacle lens and spectacles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014019631A JP6451057B2 (ja) 2014-02-04 2014-02-04 可視域反射防止近赤外域透過抑制光学製品並びに眼鏡レンズ及び眼鏡
JP2014-019631 2014-02-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/194,936 Continuation US10031349B2 (en) 2014-02-04 2016-06-28 Optical product, and spectacle lens and spectacles

Publications (1)

Publication Number Publication Date
WO2015119016A1 true WO2015119016A1 (ja) 2015-08-13

Family

ID=53777823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052346 WO2015119016A1 (ja) 2014-02-04 2015-01-28 光学製品並びに眼鏡レンズ及び眼鏡

Country Status (7)

Country Link
US (1) US10031349B2 (ja)
EP (1) EP3088921B1 (ja)
JP (1) JP6451057B2 (ja)
KR (1) KR102232170B1 (ja)
CN (1) CN106415330B (ja)
ES (1) ES2791198T3 (ja)
WO (1) WO2015119016A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3242150A1 (en) * 2016-05-04 2017-11-08 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Optical article comprising an antireflective coating with a high reflection in the near infrared region (nir)
JPWO2020067409A1 (ja) * 2018-09-28 2021-08-30 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズ

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI542919B (zh) * 2014-08-15 2016-07-21 萬能光學科技有限公司 一種可有效阻隔藍光和紅外光之光學鏡片真空蒸鍍方法
JP2018031975A (ja) 2016-08-26 2018-03-01 東海光学株式会社 光学製品並びにプラスチック眼鏡レンズ及び眼鏡
JP7018634B2 (ja) 2016-10-11 2022-02-14 東海光学株式会社 眼球運動測定装置及び眼球運動解析システム
DE102016120122C5 (de) * 2016-10-21 2020-03-12 Carl Zeiss Vision International Gmbh Brillenglas mit Beschichtung, Verfahren zum Herstellen eines Brillenglases sowie computerimplementiertes oder experimentelles Verfahren zur Auslegung eines Brillenglases
TWM553424U (zh) * 2017-05-09 2017-12-21 Onelensolution Optical Tech Sdn Bhd 光學鏡片
EP3670303B1 (en) * 2017-08-14 2022-04-13 Nissan Motor Co., Ltd. Mobile body having reflection control layer
CN108107602A (zh) * 2017-12-15 2018-06-01 江苏黄金屋光学眼镜股份有限公司 一种眼镜片超硬涂层
EP3528037A1 (en) 2018-02-15 2019-08-21 Essilor International Ophthalmic tinted glass
EP3627194A1 (en) * 2018-09-20 2020-03-25 Essilor International An optical device with reduced reflection in deep red, near infrared and visible ranges
EP3884314B1 (en) * 2018-11-19 2024-01-03 Essilor International Optical lens having a mirror coating and a multilayer system for improving abrasion-resistance
EP3702830A1 (de) * 2019-03-01 2020-09-02 Wetzlich Optik-Präzision GmbH Brillenglas mit infrarotabsorbierender beschichtung
CN109917497A (zh) * 2019-05-08 2019-06-21 河南达人视界眼镜有限公司 一种阿贝数45的高清镜片
JP2023182009A (ja) * 2019-09-30 2023-12-26 ホヤ レンズ タイランド リミテッド 眼鏡レンズ
KR102243076B1 (ko) * 2020-10-07 2021-04-21 최준석 시력 보정 패턴이 적용된 렌즈 및 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281409A (ja) * 2000-03-30 2001-10-10 Olympus Optical Co Ltd 反射防止膜付きレンズ及び内視鏡
JP2005292204A (ja) * 2004-03-31 2005-10-20 Hoya Corp プラスチック製ミラーコートレンズ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202408A (ja) * 1982-05-20 1983-11-25 Nippon Soken Inc 熱線反射膜
US5183700A (en) * 1990-08-10 1993-02-02 Viratec Thin Films, Inc. Solar control properties in low emissivity coatings
JP2724260B2 (ja) * 1991-10-17 1998-03-09 ホーヤ株式会社 反射防止膜を有する光学部材
US5856018A (en) * 1996-06-17 1999-01-05 Yazaki Corporation Plastic articles having multi-layer antireflection coatings, and sol-gel process for depositing such coatings
AU741691C (en) * 1997-05-16 2004-08-12 Hoya Kabushiki Kaisha Plastic optical component having a reflection prevention film and mechanism for making reflection prevention film thickness uniform
CN1439900A (zh) * 2001-12-24 2003-09-03 中国科学院光电技术研究所 一种激光防护膜及其制作方法
WO2004079278A1 (en) * 2003-03-06 2004-09-16 Ecole Polytechnique Federale De Lausanne (Epfl) Glazing
JP2006126233A (ja) * 2004-10-26 2006-05-18 Seiko Epson Corp 反射防止膜付き眼鏡レンズ
CN1808184A (zh) * 2005-01-19 2006-07-26 柯尼卡美能达精密光学株式会社 防反射膜、光学元件和光发送接收模块
JP2006301489A (ja) * 2005-04-25 2006-11-02 Nidec Copal Corp 近赤外線カットフィルタ
JP2008277625A (ja) * 2007-05-01 2008-11-13 Mitsubishi Electric Corp 半導体発光素子
JP5509616B2 (ja) * 2008-02-28 2014-06-04 リコーイメージング株式会社 反射防止膜、光学部品、交換レンズ及び撮像装置
JP2009258362A (ja) 2008-04-16 2009-11-05 Jsr Corp 近赤外線カットフィルター
EP2275843A4 (en) * 2008-04-30 2013-02-06 Hoya Corp OPTICAL DEVICE AND ANTIREFLECTION FILM
JP5489669B2 (ja) 2008-11-28 2014-05-14 Jsr株式会社 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
JP5588135B2 (ja) * 2009-08-10 2014-09-10 ホーヤ レンズ マニュファクチャリング フィリピン インク 光学物品の製造方法
JP5586017B2 (ja) * 2010-08-20 2014-09-10 東海光学株式会社 光学製品及び眼鏡プラスチックレンズ
JP5893271B2 (ja) * 2011-06-10 2016-03-23 オリンパス株式会社 反射防止膜、光学系、及び光学機器
CN104040379B (zh) * 2012-01-10 2016-02-10 纳卢克斯株式会社 光学多层膜
US9201172B2 (en) * 2012-09-14 2015-12-01 Ricoh Imaging Company, Ltd. Anti-reflection coating, optical member having it, and optical equipment comprising such optical member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281409A (ja) * 2000-03-30 2001-10-10 Olympus Optical Co Ltd 反射防止膜付きレンズ及び内視鏡
JP2005292204A (ja) * 2004-03-31 2005-10-20 Hoya Corp プラスチック製ミラーコートレンズ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3242150A1 (en) * 2016-05-04 2017-11-08 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Optical article comprising an antireflective coating with a high reflection in the near infrared region (nir)
WO2017191254A1 (en) * 2016-05-04 2017-11-09 Essilor International (Compagnie Générale d'Optique) Optical article comprising an antireflective coating with a high reflection in the near infrared region (nir)
US10877183B2 (en) 2016-05-04 2020-12-29 Essilor International Optical article comprising an antireflective coating with a high reflection in the near infrared region (NIR)
JPWO2020067409A1 (ja) * 2018-09-28 2021-08-30 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズ
JP7136909B2 (ja) 2018-09-28 2022-09-13 ホヤ レンズ タイランド リミテッド 眼鏡レンズ

Also Published As

Publication number Publication date
JP2015148643A (ja) 2015-08-20
ES2791198T3 (es) 2020-11-03
US10031349B2 (en) 2018-07-24
CN106415330B (zh) 2018-02-23
JP6451057B2 (ja) 2019-01-16
EP3088921A1 (en) 2016-11-02
US20160306194A1 (en) 2016-10-20
CN106415330A (zh) 2017-02-15
EP3088921A4 (en) 2017-08-30
KR102232170B1 (ko) 2021-03-26
KR20160117459A (ko) 2016-10-10
EP3088921B1 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6451057B2 (ja) 可視域反射防止近赤外域透過抑制光学製品並びに眼鏡レンズ及び眼鏡
JP7266510B2 (ja) 紫外領域及び可視領域の両方において低い反射性を持つ反射防止膜を有する光学部品
CN109716173B (zh) 包括在近红外区(nir)中具有高反射的干涉涂层的光学制品
EP3118658B1 (en) Mirror-coated lens
CN109073785B (zh) 包括在近红外区(nir)中具有高反射的减反射涂层的光学制品
CN107111000B (zh) 包括在紫外区域具有高反射率的干涉涂层的光学物品
CN113056683B (zh) 具有过滤干涉涂层和用于改善耐磨性的多层系统的光学镜片
WO2018037850A1 (ja) 光学製品並びにプラスチック眼鏡レンズ及び眼鏡
CN109642965B (zh) 包含反射性抗磨损多层涂层的眼科镜片和用于制造所述镜片的方法
WO2019009127A1 (ja) プラスチック光学製品並びにプラスチック眼鏡レンズ及び眼鏡
WO2015122278A1 (ja) 光学製品並びに眼鏡レンズ及び眼鏡
CN113167927B (zh) 具有增强型干涉涂层和用于改善耐磨性的多层系统的光学镜片
WO2014038632A1 (ja) 光学製品及び眼鏡プラスチックレンズ
WO2017002965A1 (ja) 光学製品並びにプラスチックレンズ及び眼鏡
CN105717559A (zh) 用于具有不同折射率的镜片上的减反射设计的适配层
CN113167926A (zh) 具有反射镜涂层和用于改善耐磨性的多层系统的光学镜片
WO2020066532A1 (ja) 眼鏡レンズ及び眼鏡
JP2022069259A (ja) プラスチック光学製品及びプラスチック眼鏡レンズ
CN117546055A (zh) 具有用于改善耐磨性的干涉涂层和多层体系的光学镜片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746576

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015746576

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015746576

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167021224

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE