WO2015118944A1 - Optical film - Google Patents

Optical film Download PDF

Info

Publication number
WO2015118944A1
WO2015118944A1 PCT/JP2015/051415 JP2015051415W WO2015118944A1 WO 2015118944 A1 WO2015118944 A1 WO 2015118944A1 JP 2015051415 W JP2015051415 W JP 2015051415W WO 2015118944 A1 WO2015118944 A1 WO 2015118944A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
interval
daylighting
transparent
Prior art date
Application number
PCT/JP2015/051415
Other languages
French (fr)
Japanese (ja)
Inventor
和也 藤岡
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015118944A1 publication Critical patent/WO2015118944A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • E06B3/6715Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light

Definitions

  • the present invention relates to an optical film, and more particularly to an optical film used for daylighting a building such as a house.
  • daylighting also called daylighting or daylighting
  • sunlight is introduced into a room in order to adjust the environment such as the brightness of the room indoors.
  • it is desired to more efficiently introduce sunlight into a room and reduce the use of artificial lighting during the daytime.
  • an optical member that can change the traveling direction of light by optical action such as light refraction, diffraction, or reflection is attached to a window, etc., and sunlight is efficiently introduced into the room to improve indoor brightness.
  • Various attempts have been made to achieve this.
  • an optical member for example, a transparent plastic plate in which a plurality of slits extending in the horizontal direction are arranged at regular intervals in the vertical direction has been proposed (for example, see Patent Document 1).
  • plastic plate is installed in a window of a house, for example, and reflects and refracts sunlight incident from the outside through the window to collect light.
  • the altitude of the sun changes with the passage of time during the day, and if the date (season) is different, it is different even at the same time. Therefore, the incident angle of sunlight changes depending on the time of day and the date (season).
  • the plastic plate described in Patent Document 1 can extract sunlight and improve indoor brightness when the solar altitude is within a specific range. If it is out of range, it may not be possible to efficiently illuminate and the indoor brightness may not be sufficiently secured.
  • an object of the present invention is to provide an optical film that can efficiently and stably illuminate even if the altitude of the sun changes and can improve the brightness of the entire room.
  • the optical film of the present invention is an optical film including a plurality of reflective layers configured to reflect light, and each of the plurality of reflective layers is in a first direction orthogonal to the thickness direction of the optical film. Extending in a second direction perpendicular to both the thickness direction and the first direction, the plurality of reflective layers are arranged adjacent to each other at a first interval. And a reflective layer disposed adjacent to each other with a second interval having a different dimension in the second direction from the first interval.
  • the optical film since the optical film includes a plurality of reflective layers, for example, if the optical film is installed on a window of a house such that the second direction is along the vertical direction, a plurality of the optical films are provided.
  • the reflection layer reflects sunlight from the outside upward and takes light.
  • the optical film including a plurality of reflective layers can sufficiently improve the indoor brightness when the altitude of the sun is changed depends on whether the reflective layers adjacent to each other in the plurality of reflective layers. It depends on the interval between them (the pitch of the plurality of reflective layers).
  • the distance between the reflective layers adjacent to each other in the plurality of reflective layers (the pitch of the plurality of reflective layers) is constant, it is not possible to perform stable lighting when the altitude of the sun changes.
  • the plurality of reflective layers includes the reflective layer arranged to be adjacent to each other with the first interval, and the second interval having different dimensions in the second direction from the first interval. And a reflective layer disposed so as to be adjacent to each other.
  • the reflective layers adjacent to each other with an interval suitable for the incident angle of the sunlight with respect to the optical film, specifically, the first and second intervals are separated from each other. Adjacent reflective layers reflect incident light and travel upward.
  • the light can be efficiently and stably lit, and the brightness of the entire room can be improved.
  • the first interval is 1.25 times to 10 times the second interval.
  • the incident light is reliably reflected even if the altitude of the sun changes greatly. , It can be made to progress upward.
  • the optical film of the present invention even if the altitude of the sun changes, the light can be efficiently and stably lit, and the brightness of the entire room can be improved.
  • FIG. 1 is a perspective view of a daylighting film as a first embodiment of the optical film of the present invention.
  • FIG. 2 is a side view of the daylighting film shown in FIG. 1 as viewed from the first surface direction.
  • FIG. 3 is a perspective view of the first unit film and the second unit film according to the daylighting film shown in FIG.
  • FIG. 4 illustrates a process in which the side layer of the laminate is cut after the support is attached to the side of the laminate formed by laminating the first unit film and the second unit film shown in FIG. It is explanatory drawing for doing.
  • FIG. 5 is an explanatory diagram for explaining a process in which the side layer of the laminate is continuously cut after the support drawn from the support roll is attached to the side of the laminate shown in FIG. It is.
  • FIG. 5 is an explanatory diagram for explaining a process in which the side layer of the laminate is continuously cut after the support drawn from the support roll is attached to the side of the laminate shown in FIG. It is.
  • FIG. 6 is a perspective view of the daylighting layer and the support shown in FIG.
  • FIG. 7A is a schematic explanatory diagram for explaining a state in which the daylighting film shown in FIG. 1 is attached to a glass window, and shows a case where the altitude of the sun is relatively low.
  • FIG. 7B is a schematic explanatory diagram for explaining a state in which the daylighting film shown in FIG. 1 is attached to the glass window, and shows a case where the altitude of the sun is relatively high.
  • FIG. 8 is a side view of the daylighting film as the second embodiment of the present invention viewed from the first surface direction.
  • FIG. 9 is a side view of a daylighting film as a third embodiment of the present invention viewed from the first surface direction.
  • FIG. 10 is a perspective view of a daylighting film as the fourth and fifth embodiments of the present invention.
  • FIG. 11 is a perspective view of the first unit film and the second unit film according to the daylighting film shown in FIG.
  • FIG. 12 is an explanatory diagram for explaining a method of measuring the reference illuminance and the measured illuminance in Examples and Comparative Examples.
  • FIG. 13 is a diagram showing the change in the direction change efficiency with respect to the incident angle of light in the daylighting films of Examples and Comparative Examples.
  • a daylighting film 1 as an example of an optical film is formed in a flexible sheet shape (film shape) as shown in FIG. 1, and is rectangular when viewed from the thickness direction X of the daylighting film 1. It is formed into a shape.
  • the dimension in the thickness direction X of the daylighting film 1 is, for example, 30 ⁇ m or more, preferably 50 ⁇ m or more, for example, 1500 ⁇ m or less, and preferably 500 ⁇ m or less from the viewpoint of permeability.
  • the dimension of the 1st surface direction Y (an example of 1st direction) orthogonal to the thickness direction X of the lighting film 1 is 10 cm, for example. As mentioned above, Preferably, it is 60 cm or more, for example, 200 cm or less, Preferably, it is 100 cm or less.
  • the dimension of the second surface direction Z (an example of the second direction) orthogonal to both the thickness direction X and the first surface direction Y of the daylighting film 1 is, for example, 5 cm or more, preferably 10 cm or more, for example, 150 cm. Hereinafter, it is preferably 80 cm or less.
  • the lighting film 1 is provided with the lighting layer 2, the support body 3, and the peeling body 4, as shown in FIG.
  • the lower side of the paper surface in FIG. 2 is one of the second surface direction Z
  • the upper side of the paper surface in FIG. 2 is the other of the second surface direction Z
  • the left side of the paper surface in FIG. 2 is the other side in the thickness direction X.
  • the daylighting layer 2 is a substantially central portion in the thickness direction X of the daylighting film 1 and includes a plurality of transparent layers 9 and a plurality of air layers 10 as an example of a reflective layer.
  • the plurality of transparent layers 9 are arranged in parallel in the second surface direction Z with a slight gap (air layer 10) therebetween. As shown in FIGS. 1 and 2, each of the plurality of transparent layers 9 is formed in a substantially bowl shape and extends over the entire first surface direction Y of the daylighting layer 2. Further, one surface and the other surface in the second surface direction Z of the transparent layer 9 are along the thickness direction X.
  • the transparent layer 9 is configured to transmit light, and is preferably formed from a transparent resin material from the viewpoint of ease of processing.
  • the transparent resin material examples include known resin materials.
  • the resin material include polyester (for example, polyethylene terephthalate (PET)), polyolefin (for example, polyethylene (PE), polypropylene (PP)). , Polycarbonate (PC), polyvinyl chloride, acrylic resin, polystyrene (PS), epoxy resin, silicone resin, fluororesin, urethane resin, cellulose, polyvinyl butyral, ethylene vinyl acetate copolymer and the like.
  • polyolefin and polyvinyl chloride are preferable, and polyvinyl chloride is more preferable.
  • Such resin materials may be used alone or in combination of two or more.
  • the light transmittance of the transparent layer 9 is, for example, 80% or more, preferably 90% or more, more preferably 92% with respect to light having a wavelength of 440 to 600 nm when the thickness of the transparent layer 9 is 100 ⁇ m. % Or more, for example, 98% or less.
  • the relative refractive index of the transparent layer 9 is, for example, 1.3 or more, preferably 1.4 or more, for example, 1.8 or less, preferably 1.65 or less with respect to the refractive index of air. .
  • the refractive index can be measured with a prism coupler.
  • the plurality of transparent layers 9 include a first transparent layer 20 and a second transparent layer 21 having different dimensions in the second surface direction Z.
  • the plurality of transparent layers 9 include only the plurality of first transparent layers 20 and the plurality of second transparent layers 21.
  • the first transparent layer 20 and the second transparent layer 21 are alternately arranged in the second surface direction Z so as to be continuous with a slight distance (air layer 10) therebetween. .
  • the first transparent layer 20 has a dimension in the second surface direction Z larger than that of the second transparent layer 21.
  • the dimension in the second surface direction Z of the first transparent layer 20 is, for example, 30 ⁇ m or more, preferably 50 ⁇ m or more, for example, 500 ⁇ m or less, preferably 300 ⁇ m or less.
  • the dimension of the first transparent layer 20 in the second surface direction Z is, for example, 1.25 times or more the dimension of the second transparent layer 21 in the second surface direction Z, preferably from the viewpoint of the stability of lighting. 1.5 times or more, for example, 10 times or less, preferably 4 times or less.
  • the dimension in the thickness direction X of the first transparent layer 20 is, for example, 30 ⁇ m or more, preferably 50 ⁇ m or more, for example, 1500 ⁇ m or less, preferably 500 ⁇ m or less.
  • the dimension in the second surface direction Z of the first transparent layer 20 is, for example, 20% or more with respect to 100% in the thickness direction X of the first transparent layer 20, and preferably 40% from the viewpoint of lighting. For example, it is 1000% or less, and preferably 500% or less from the viewpoint of daylighting.
  • the dimension in the second surface direction Z of the second transparent layer 21 is, for example, 20 ⁇ m or more, preferably 40 ⁇ m or more, for example, 400 ⁇ m or less, preferably 200 ⁇ m or less, and the dimension in the thickness direction X of the second transparent layer 21. These are the same as the dimension of the first transparent layer 20 in the thickness direction X.
  • the dimension in the second surface direction Z of the second transparent layer 21 is, for example, 10% or more with respect to 100% in the thickness direction X of the second transparent layer 21, and preferably 30% from the viewpoint of lighting. For example, 100% or less, and preferably 80% or less from the viewpoint of daylighting.
  • the plurality of air layers 10 are formed as gaps between adjacent transparent layers 9 among the plurality of transparent layers 9. That is, in the first embodiment, the plurality of air layers 10 are formed as gaps between the first transparent layer 20 and the second transparent layer 21 adjacent to each other, and the first air layer 23 and the second air Layer 24.
  • the first air layer 23 is a gap between the first transparent layer 20 and the second transparent layer 21 that is adjacent to the first transparent layer 20 on the other side in the second surface direction Z with a gap. Is formed. That is, the first air layer 23 is partitioned by the other surface of the first transparent layer 20 in the second surface direction Z and the one surface of the second transparent layer 21 in the second surface direction Z.
  • the second air layer 24 is formed as a gap between the first transparent layer 20 and the second transparent layer 21 adjacent to the first transparent layer 20 with a gap in one of the second surface directions Z. Has been. That is, the second air layer 24 is partitioned by one surface of the first transparent layer 20 in the second surface direction Z and the other surface of the second transparent layer 21 in the second surface direction Z.
  • each of the first air layer 23 and the second air layer 24 extends over the entire first surface direction Y of the daylighting layer 2 as shown in FIG. 1 and FIG.
  • the boundary between each of the two air layers 24 and each of the first transparent layer 20 and the second transparent layer 21 is along the first surface direction Y and the thickness direction X. Yes.
  • the dimension of the first air layer 23 in the second surface direction Z is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, for example, 20 ⁇ m or less, preferably 10 ⁇ m or less. With respect to the dimension in the dihedral direction Z, for example, it is 1/5000 or more, preferably 1/300 or more, for example, 2/3 or less, preferably 1/3 or less.
  • the dimension of the second air layer 24 in the second surface direction Z is the same as the dimension of the first air layer 23 in the second surface direction Z.
  • the first air layer 23 and the second air layer 24 disposed on one side in the second surface direction Z with respect to the first air layer 23 are the first transparent layer. 20 are sandwiched in the second surface direction Z, and are adjacent to each other with a first interval S1.
  • the dimension in the second surface direction Z of the first interval S1 is, for example, 25 ⁇ m or more, preferably 50 ⁇ m or more, for example, 500 ⁇ m or less, preferably 300 ⁇ m or less.
  • the dimension in the second surface direction Z of the first interval S1 is the same as the dimension in the second surface direction Z of the first transparent layer 20. .
  • the first interval S1 is, for example, 1.25 times or more with respect to the second interval S2, preferably 1.5 times or more, for example, 10 times or less, preferably from the viewpoint of lighting stability. 4 times or less.
  • first air layer 23 and the second air layer 24 disposed on the other side in the second surface direction Z with respect to the first air layer 23 include the second transparent layer 21 in the second surface direction Z. And are adjacent to each other with a second interval S2.
  • the dimension in the second surface direction Z of the second distance S2 is different from the dimension in the first distance S1 and the second surface direction Z, for example, 20 ⁇ m or more, preferably 40 ⁇ m or more, for example, 400 ⁇ m or less, preferably Is 200 ⁇ m or less.
  • the dimension of the second interval S2 in the second surface direction Z is the same as the dimension of the second transparent layer 21 in the second surface direction Z. .
  • the plurality of air layers 10 are adjacent to each other with the first air layer 23 and the second air layer 24 adjacent to each other at the first interval S1 and at the first interval adjacent to each other at the second interval S2. It includes an air layer 23 and a second air layer 24, and is arranged with either one of the first interval S1 and the second interval S2.
  • the pattern P1 including the two transparent layers 9 and the two air layers 10 is sequentially and repeatedly arranged in the second surface direction Z.
  • the first transparent layer 20, the first air layer 23, the second transparent layer 21, and the second air layer 24 are sequentially arranged from one side to the other side in the second surface direction Z.
  • the support 3 is one side portion in the thickness direction X of the daylighting film 1 and is adjacent to one side in the thickness direction X with respect to the daylighting layer 2.
  • the support 3 includes a substrate 12 and an adhesive layer 11.
  • the base material 12 is one side portion in the thickness direction X of the support 3 and is configured to transmit light.
  • the substrate 12 include a substrate such as a PET film, a fluorine-based polymer (for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer).
  • a fluorine-based polymer for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer.
  • low adhesive substrates made of nonpolar polymers (for example, olefinic resins such as polyethylene and polypropylene).
  • a PET film and a low-adhesion base material made of a nonpolar polymer are mentioned, and a polypropylene film is more preferred.
  • the dimension of the base material 12 in the thickness direction X is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the light transmittance of the substrate 12 is, for example, 85% or more, preferably 90% or more, with respect to light having a wavelength of 440 to 600 nm when the dimension in the thickness direction X of the substrate 12 is 50 ⁇ m. Preferably, it is 92% or more, for example, 98% or less.
  • the pressure-sensitive adhesive layer 11 is the other side portion in the thickness direction X of the support 3 and is interposed between the base material 12 and the daylighting layer 2. Thereby, the daylighting layer 2 and the base material 12 are adhered.
  • Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 11 include known pressure-sensitive adhesives such as an epoxy-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, and an ultraviolet curable pressure-sensitive adhesive.
  • the pressure-sensitive adhesive preferably transmits light.
  • the adhesive layer 11 can also be comprised from a well-known double-sided adhesive tape.
  • pressure-sensitive adhesives an acrylic pressure-sensitive adhesive is preferable.
  • Such pressure-sensitive adhesives may be used alone or in combination of two or more.
  • the dimension in the thickness direction X of the pressure-sensitive adhesive layer 11 is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, for example, 100 ⁇ m or less, preferably 40 ⁇ m or less.
  • the pressure-sensitive adhesive layer 11 is not necessary in the support 3.
  • the peeling body 4 is the other side portion in the thickness direction X of the daylighting film 1 and is adjacent to the other side in the thickness direction X with respect to the daylighting layer 2.
  • the release body 4 includes a release material 14 and an adhesive layer 13.
  • the release material 14 is the other side portion in the thickness direction X of the release body 4 and is configured to transmit light.
  • Examples of the release material 14 include a substrate similar to the substrate 12, preferably a PET film and a low-adhesive substrate made of a nonpolar polymer, and more preferably a PET film. .
  • the dimension in the thickness direction X of the release material 14 is, for example, 10 ⁇ m or more, preferably 40 ⁇ m or more, for example, 100 ⁇ m or less, preferably 60 ⁇ m or less.
  • the light transmittance of the release material 14 is, for example, 60% or more, preferably 80% or more with respect to light having a wavelength of 440 to 600 nm when the dimension in the thickness direction X of the release material 14 is 50 ⁇ m. Preferably, it is 92% or more, for example, 98% or less.
  • a release treatment layer (not shown) is provided on one surface in the thickness direction X of the release material 14.
  • the pressure-sensitive adhesive layer 13 is one side portion in the thickness direction X of the release body 4 and is interposed between the release treatment layer (not shown) of the release material 14 and the daylighting layer 2. Thereby, the daylighting layer 2 and the release material 14 are bonded.
  • Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 13 include the same pressure-sensitive adhesive as the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 11. Among such pressure-sensitive adhesives, an acrylic pressure-sensitive adhesive is preferable. Such pressure-sensitive adhesives may be used alone or in combination of two or more. Moreover, the adhesive layer 13 can also be comprised from a well-known double-sided adhesive tape.
  • the dimension in the thickness direction X of the pressure-sensitive adhesive layer 13 is, for example, 5 ⁇ m or more, preferably 20 ⁇ m or more, for example, 100 ⁇ m or less, preferably 60 ⁇ m or less. 2.
  • the manufacturing method of the lighting film Next, the manufacturing method of the lighting film 1 is demonstrated.
  • the first unit film 29 having a predetermined shape is cut out from the first processed sheet.
  • Examples of the method for cutting out the first unit film 29 from the first processed sheet include known processing methods such as cutting and punching.
  • the second unit film 30 for example, after preparing a second processed sheet made of the second transparent layer 21, the second unit film 30 having a predetermined shape is cut out from the second processed sheet.
  • Examples of the method for cutting out the second unit film 30 from the second processed sheet include the above-described processing methods.
  • each of the first unit film 29 and the second unit film 30 is not particularly limited, and the first unit film 29 and the second unit film 30 are, for example, viewed from their thickness direction by the above-described cutting method. , Polygonal or circular, preferably rectangular or circular, particularly preferably circular.
  • the sizes of the first unit film 29 and the second unit film 30 are appropriately changed according to the purpose of use. Specifically, when each of the first unit film 29 and the second unit film 30 is circular when viewed in the thickness direction, the diameter is, for example, 10 cm to 1 m (100 cm), which is preferable from the viewpoint of workability. Is between 10 cm and 50 cm.
  • Each of the first unit film 29 and the second unit film 30 is a plurality of sheets, for example, 100 sheets or more, preferably 5000 sheets or more, for example, 30000 sheets or less, preferably 15000 sheets or less, more preferably Prepare 10,000 sheets or less.
  • the first processed sheet is formed large so that the plurality of first unit films 29 can be cut out, and the first unit film 29 is formed from the first processed sheet.
  • a plurality of first processed sheets may be cut out, and a plurality of first processed sheets may be prepared, and the first unit film 29 may be cut out one by one from each first processed sheet.
  • the second unit film 30 may be cut out one by one from the plurality of second processed sheets.
  • Each of the plurality of first unit films 29 and second unit films 30 is preferably formed in the same shape and size.
  • a plurality of first unit films 29 and a plurality of second unit films 30 are laminated in the thickness direction without sandwiching an adhesive layer to prepare a laminate 31.
  • the first unit film 29 and the second unit film 30 are laminated in the thickness direction so that the first unit film 29 and the second unit film 30 are alternately overlapped. That is, the thickness direction of the first unit film 29, the thickness direction of the second unit film 30, and the stacking direction of the laminate 31 are the same direction.
  • first unit film 29 and the second unit film 30 are adjacent to each other in the laminating direction. Adjacent first unit film 29 and second unit film 30 are partitioned.
  • the laminated body 31 includes six first unit films 29,
  • the laminate 31 is, for example, 100 to 30000 sheets, preferably 5000 to 15000 sheets, and more preferably 5000. 1 to 10000 first unit films 29 and, for example, 100 to 30000 sheets, preferably 5000 to 15000 sheets, and more preferably 5000 to 10000 second unit films 30 are laminated to form. Has been.
  • each first unit film 29 and each second unit film 30 are formed in the same shape and size, when the plurality of first unit films 29 and the plurality of second unit films 30 are projected in the stacking direction. Are laminated so that their outer peripheral edges coincide with each other.
  • the columnar (block-shaped) stacked body 31 extending in the stacking direction is formed.
  • a prismatic laminate 31 is formed, and the first unit film 29 and the second unit film 30 are viewed from the thickness direction.
  • a cylindrical laminated body 31 is formed.
  • the height (length in the stacking direction) of the stacked body 31 is, for example, 1 cm or more, preferably 5 cm or more, more preferably 10 cm or more, for example, 200 cm or less, preferably 100 cm or less, more preferably 50 cm or less. is there.
  • the side layer 33 of the stacked body 31 to which the support 3 is bonded is attached.
  • the first unit film 29 and the second unit film 30 are cut so as to be aligned in the stacking direction of the stacked body 31.
  • the cutting method for cutting the side layer 33 of the laminate 31 is not particularly limited as long as the side layer 33 supported by the support 3 can be cut out from the laminate 31.
  • the laminated body 31 is formed in a cylindrical shape, and the side layer 33 of the laminated body 31 is continuously cut out by the cutting device 40 as shown in FIG. Is preferred.
  • the cutting device 40 includes a rotating shaft 41, a pair of holding members 42, and a cutting blade 35.
  • the rotary shaft 41 has a substantially cylindrical shape and is configured to be rotatable about the axis.
  • a long and flat belt-like support 3 is wound around the rotary shaft 41.
  • the long and flat support 3 is wound around the rotary shaft 41 in a spiral shape so that the pressure-sensitive adhesive layer 11 is positioned radially inward of the rotary shaft 41 with respect to the base material 12.
  • the support 3 is configured as a support roll 45 centered on the rotation shaft 41.
  • the peeling process layer (not shown) is provided in the surface on the opposite side to the adhesive layer 11 in the base material 12. As shown in FIG. The peeling force of the base material 12 by a peeling process layer is adjusted suitably.
  • the support 3 is disposed adjacent to the radial direction of the rotation shaft 41, and the adhesive layer 11 and the base material 12 are sequentially and repeatedly disposed.
  • the release treatment layer is provided on the surface of the base material 12 opposite to the pressure-sensitive adhesive layer 11, in the radial direction of the rotating shaft 41, between the supports 3 adjacent to each other, A release treatment layer is interposed between the pressure-sensitive adhesive layer 11 of the support 3 disposed on the radially outer side and the base material 12 of the support 3 disposed on the radially inner side.
  • the pair of holding members 42 are arranged with respect to the support roll 45 at an interval in the radial direction of the support roll 45.
  • Each of the pair of holding members 42 has a substantially disc shape, and is configured to be rotatable about its axis.
  • the pair of holding members 42 are arranged at intervals from each other in the axial direction of the holding member 42. Then, the pair of holding members 42 press the substantially cylindrical laminated body 31 from both sides in the laminating direction to hold the laminated body 31.
  • the pressure from one side (the other side) in the stacking direction with respect to the stacked body 31 is, for example, 0.01 MPa or more, preferably 0.1 MPa or more, for example, 10 MPa or less, preferably 5 MPa or less. is there.
  • each holding member 42 is arranged so that the axis line of the laminated body 31 coincides with the laminated body 31 held.
  • the cutting blade 35 is disposed along the stacking direction with respect to the side surface 32 of the stacked body 31 held by the pair of holding members 42, and the tip of the cutting blade 35 is placed on the side surface 32 of the stacked body 31. It is in contact from a substantially tangential direction.
  • the cutting blade 35 maintains the state in which the tip of the cutting blade 35 is in contact with the side surface 32 of the laminated body 31 as the diameter of the laminated body 31 decreases as the cutting process proceeds. It is configured to approach.
  • the laminate 31 held by the pair of holding members 42 is supported on the support 3 drawn from the support roll 45. Affixed to the side surface 32.
  • the support 3 is drawn toward the tangential direction of the laminate 31 so that the pressure-sensitive adhesive layer 11 of the drawn support 3 adheres to the side surface 32 of the laminate 31, and the central angle in the laminate 31 is For example, it is attached to the side surface 32 of the laminate 31 in the range of 90 ° to 270 °, preferably in the range of 120 ° to 240 °.
  • the pair of holding members 42 are rotated in the counterclockwise direction when viewed from one axial direction (the front side in FIG. 5) of the holding member 42 by a driving force from a driving source such as a motor included in the cutting device 40. To drive.
  • the laminate 31 held by the pair of holding members 42 rotates about the axis, and the support roll 45 is driven about the axis of the rotation shaft 41.
  • the side layer 33 of the laminated body 31 to which the support 3 is attached is continuously cut out by the cutting blade 35 like wig peeling.
  • the thickness of the side layer 33 to be cut out can be appropriately adjusted by the arrangement and angle of the cutting blade 35 with respect to the laminated body 31 when the laminated body 31 is cut.
  • the side layer 33 in which the support 3 is bonded to one surface continuously from the laminate 31, that is, the lighting layer 2 in which the support 3 is bonded to one surface is formed. , Cut into long and flat strips.
  • the peeling body 4 is attached to the other surface of the daylighting layer 2. Specifically, the pressure-sensitive adhesive layer 13 of the release body 4 is adhered to the other surface of the daylighting layer 2.
  • the support 3 and the release body 4 are attached to the daylighting layer 2 so as to sandwich the daylighting layer 2, and the daylighting film 1 is prepared.
  • the daylighting film 1 is cut into a predetermined shape and size.
  • Examples of the method for cutting the daylighting film 1 include known processing methods such as cutting and punching. 3.
  • a usage mode of the daylighting film 1 will be described.
  • the daylighting film 1 is attached to the inner side surface of a glass window 51 provided in a building such as a house 50.
  • the release material 14 is peeled off. And the lighting film 1 is arrange
  • the light L4 of the other part is reflected by the boundary 17 (second air layer 24), and the traveling direction thereof is changed so as to be directed upward, from the first transparent layer 20 toward the ceiling portion 53 of the house 50. And proceed. Then, the light L4 of another part is reflected again by the ceiling part 53, for example, and reaches
  • Such a daylighting film 1 includes a plurality of air layers 10 as shown in FIGS. 7A and 7B. Therefore, if the lighting film 1 is affixed to the glass window 51 of the house 50 so that the second surface direction Z is along the vertical direction, the plurality of air layers 10 reflect the sunlight L from the outdoors upward. And daylight.
  • the plurality of air layers 10 are separated from each other by the first air layer 23 and the second air layer 24 that are arranged adjacent to each other with a first interval S1 therebetween.
  • the first air layer 23 and the second air layer 24 are arranged so as to be adjacent to each other.
  • the adjacent air layer 10 with an interval suitable for the incident angle of the sunlight with respect to the daylighting film 1 reflects the incident light and travels upward.
  • the first air layer 23 reflects the light L2 of the other part of the sunlight L, and the altitude of the sun is relative. If it is high, the second air layer 24 reflects the light L4 of the other part of the sunlight L as shown in FIG. 7B.
  • the light can be efficiently and stably lit, and the brightness of the entire room can be improved.
  • the first interval S1 is 1.25 to 10 times the second interval S2. Therefore, even if the altitude of the sun changes greatly, the incident light (sunlight L) can be reliably reflected and advanced upward. 4).
  • Second Embodiment a second embodiment of the daylighting film 1 of the present invention will be described with reference to FIG.
  • the same reference numerals are given to the same members as those in the first embodiment, and the description thereof is omitted.
  • the plurality of air layers 10 include an air layer 10 adjacent to each other with a first interval S ⁇ b> 1 and an air layer 10 adjacent to each other with a second interval S ⁇ b> 2. Including. However, if the plurality of air layers 10 include at least the air layers 10 that are adjacent to each other with a first interval S1 and the air layers 10 that are adjacent to each other with a different interval from the first interval S1, It is not limited.
  • a plurality of air layers 10 are formed into air layers 10 that are adjacent to each other with a first interval S ⁇ b> 1 and air layers 10 that are adjacent to each other with a second interval S ⁇ b> 2.
  • it includes air layers 10 that are adjacent to each other with a third interval S3.
  • the plurality of transparent layers 9 according to the second embodiment includes a plurality of third transparent layers 56 in addition to the plurality of first transparent layers 20 and the plurality of second transparent layers 21.
  • the first transparent layer 20, the second transparent layer 21, and the third transparent layer 56 are arranged with a slight space (the air layer 10) therebetween in the second surface direction Z. They are sequentially and repeatedly arranged from one side of the two-plane direction Z to the other side.
  • the dimension in the second surface direction Z of the third transparent layer 56 is, for example, 25 ⁇ m or more, preferably 50 ⁇ m or more, for example, 500 ⁇ m or less, preferably 300 ⁇ m or less.
  • the dimension in the second surface direction Z of the third transparent layer 56 is, for example, 1.25 times or more the dimension in the second surface direction Z of the second transparent layer 21, preferably from the viewpoint of the stability of lighting. 1.5 times or more, for example, 10 times or less, preferably 4 times or less.
  • the dimension in the thickness direction X of the third transparent layer 56 is the same as the dimension in the thickness direction X of the first transparent layer 20.
  • the dimension in the second surface direction Z of the third transparent layer 56 is, for example, 10% or more with respect to 100% in the thickness direction X of the third transparent layer 56, and preferably 30% from the viewpoint of lighting. As described above, for example, 400% or less, and preferably 200% or less from the viewpoint of daylighting.
  • the plurality of air layers 10 according to the second embodiment include a plurality of third air layers 57 in addition to the plurality of first air layers 23 and the plurality of second air layers 24.
  • the third air layer 57 is formed as a gap between the third transparent layer 56 and the first transparent layer 20 that is adjacent to the third transparent layer 56 at the other side in the second surface direction Z with a gap. Has been. That is, the third air layer 57 is partitioned by the other surface of the third transparent layer 56 in the second surface direction Z and the one surface of the first transparent layer 20 in the second surface direction Z.
  • the 3rd air layer 57 is extended over the whole 1st surface direction Y of the lighting layer 2, and the 3rd air layer 57 and the transparent layer 9 (each of the 1st transparent layer 20 and the 3rd transparent layer 56). Is along the first surface direction Y and the thickness direction X.
  • the dimensions of the third air layer 57 in the second surface direction Z and the dimensions in the thickness direction X are the same as the dimensions of the first air layer 23 in the second surface direction Z and the dimensions in the thickness direction X, respectively. .
  • the third air layer 57 and the second air layer 24 disposed on one side in the second surface direction Z with respect to the third air layer 57 include the third transparent layer 56 in the second surface direction Z. And are adjacent to each other with a third interval S3.
  • the dimension in the second surface direction Z of the third interval S3 is, for example, 25 ⁇ m or more, preferably 50 ⁇ m or more, for example, 500 ⁇ m or less, preferably 300 ⁇ m or less.
  • the dimension of the third interval S3 in the second surface direction Z is the same as the dimension of the third transparent layer 56 in the second surface direction Z. .
  • the third interval S3 is, for example, 1.25 times or more with respect to the second interval S2, preferably 1.5 times or more, for example, 10 times or less, preferably from the viewpoint of lighting stability. 4 times or less.
  • the third air layer 57 and the first air layer 23 disposed on the other side in the second surface direction Z with respect to the third air layer 57 include the first transparent layer 20 in the second surface direction Z. And arranged adjacent to each other with a first interval S1.
  • the plurality of air layers 10 are adjacent to each other with the first air layer 23 and the third air layer 57 adjacent to each other at the first interval S1, and at the first interval adjacent to each other at the second interval S2. It includes an air layer 23 and a second air layer 24, and a second air layer 24 and a third air layer 57 that are adjacent to each other with an interval of a third interval S3.
  • the pattern P2 including the three transparent layers 9 and the three air layers 10 is sequentially and repeatedly arranged in the second surface direction Z.
  • the pattern P2 includes the first transparent layer 20, the first air layer 23, the second transparent layer 21, the second air layer 24, the third transparent layer 56, and the third air layer 57 in the second surface direction Z. They are sequentially arranged from one to the other.
  • a third unit film (not shown) corresponding to the third air layer 57 is the same as the first unit film 29.
  • a plurality of sheets (for example, 100 to 30000 sheets) are prepared by the above method.
  • first unit films 29, a plurality of second unit films 30, and a plurality of third unit films are sequentially laminated in the thickness direction without sandwiching an adhesive layer, and laminated.
  • Body 31 is prepared.
  • the daylighting layer 2 with the support 3 attached to one surface is cut out into a long and flat strip shape from the laminate 31.
  • a peeler 4 is attached to the other surface of the daylighting layer 2.
  • the lighting film 1 provided with the 3rd transparent layer 56 and the 3rd air layer 57 is prepared.
  • the plurality of air layers 10 are spaced apart from each other by the first air layer 23 and the third air layer 57 that are adjacent to each other with the first space S1 therebetween.
  • the adjacent air layer 10 with an interval suitable for the incident angle of the sunlight with respect to the daylighting film 1 reflects the incident light more reliably and moves upward. Proceed to.
  • the altitude of the sun changes, it is possible to perform daylighting more efficiently and stably, and the brightness of the entire room can be reliably improved.
  • the interval between the first air layer 23 and the third air layer 57 adjacent to each other is defined as a first interval S1
  • the first air layer 23 and the second air layer 24 adjacent to each other are
  • the interval between the second air layer 24 and the third air layer 57 adjacent to each other is defined as a third interval S3.
  • Any interval of the air layer 10 may be the first interval.
  • the interval between the first air layer 23 and the second air layer 24 adjacent to each other is the first interval
  • the interval between the first air layer 23 and the third air layer 57 adjacent to each other One of the intervals between the second air layer 24 and the third air layer 57 adjacent to each other corresponds to the second interval
  • the other corresponds to the third interval
  • the interval between the second air layer 24 and the third air layer 57 adjacent to each other is the first interval
  • the interval between the first air layer 23 and the third air layer 57 adjacent to each other One of the intervals between the first air layer 23 and the second air layer 24 adjacent to each other corresponds to the second interval
  • the other corresponds to the third interval. 5.
  • the pattern P ⁇ b> 1 including the first transparent layer 20, the first air layer 23, the second transparent layer 21, and the second air layer 24 is formed on the second surface.
  • positions sequentially and repeatedly in the direction Z arrangement
  • the daylighting layer 2 includes a unit U1 including a plurality of first transparent layers 20 arranged in parallel in the second surface direction Z with the air layer 10 therebetween. And a unit U2 composed of a plurality of second transparent layers 21 arranged in parallel in the second surface direction Z with the air layer 10 therebetween.
  • the unit U1 and the unit U2 are arranged so as to be aligned in the second surface direction Z.
  • a plurality of first unit films 29 are laminated in the thickness direction without sandwiching an adhesive layer.
  • a body (not shown) is prepared, and a plurality of second unit films 30 are laminated in the thickness direction without sandwiching the pressure-sensitive adhesive layer to prepare a second laminate (not shown).
  • the 1st laminated body (not shown) and the 2nd laminated body (not shown) are laminated
  • the daylighting layer 2 with the support 3 attached to one surface is cut out in a long and flat strip shape from the laminate 31.
  • the peeler 4 is attached to the other surface of the daylighting layer 2.
  • the lighting film 1 provided with the 3rd transparent layer 56 and the 3rd air layer 57 is prepared.
  • the daylighting film 1 includes a plurality of air layers 10.
  • the daylighting film 1 includes a plurality of air layers 10.
  • a plurality of low refractive layers 60 as an example of a reflective layer are provided.
  • the daylighting film 1 includes only the transparent layer 9 and the low refraction layer 60, and the transparent layer 9 and the low refraction layer 60 are sequentially and repeatedly repeated in the second surface direction Z. Has been placed.
  • the plurality of low-refractive layers 60 are arranged in parallel in the second surface direction Z with an interval (transparent layer 9) therebetween.
  • Each of the plurality of low refractive layers 60 is disposed between the transparent layers 9 adjacent to each other in the plurality of transparent layers 9, and is formed in a thin film shape that extends over the entire first surface direction Y of the daylighting layer 2.
  • one surface and the other surface of the low refractive layer 60 in the second surface direction Z are along the thickness direction X.
  • the low refractive layer 60 is configured to have a refractive index smaller than that of the transparent layer 9.
  • the relative refractive index of the low refractive layer 60 is, for example, 1.20 or more, preferably 1.34 or more, for example 1.90 or less, preferably 1.80 or less with respect to the refractive index of air.
  • the refractive index of the transparent layer 9 is 0.05 or more, preferably 0.1 or more, such as 0.5 or less, preferably 0.3 or less.
  • the refractive index can be measured with a prism coupler.
  • the low refractive layer 60 is preferably formed from a transparent resin material from the viewpoint of ease of processing.
  • the transparent resin material include a fluorine-based resin and a silicone resin.
  • Such transparent resin materials fluorine resin is preferable.
  • Such transparent resin materials may be used alone or in combination of two or more.
  • the dimension of the low refractive layer 60 in the second surface direction Z is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, for example, 50 ⁇ m or less, preferably 10 ⁇ m or less.
  • the light transmittance of the low refractive layer 60 is, for example, 60% or more, preferably 80% or more, more preferably, for light having a wavelength of 440 to 600 nm when the thickness of the low refractive layer 60 is 100 ⁇ m. , 90% or more, for example, 98% or less.
  • the low refractive layers 60 adjacent to each other with the first transparent layer 20 interposed therebetween are arranged with a first interval S1 therebetween, and are adjacent to each other with the second transparent layer 21 interposed therebetween.
  • the low refractive layer 60 is disposed with a second interval S2.
  • the first unit film 29 including the first transparent layer 20 and the low refractive layer 60, the second transparent layer 21, and the low refractive layer 60 are provided.
  • a plurality of second unit films 30 are prepared.
  • a method for preparing such a first unit film 29 for example, after arranging the low refraction layer 60 on the surface of the first transparent layer 20 (one surface in the thickness direction) and preparing the first processed sheet, A method of cutting out the first unit film 29 having a predetermined shape from the processed sheet, a method of forming the first unit film 29 by disposing the low refractive layer 60 on the surface of the first transparent layer 20 processed into a predetermined shape, etc. Is mentioned.
  • the same method as the method for preparing the first unit film 29 can be used except that the first transparent layer 20 is changed to the second transparent layer 21.
  • a known film forming method is used to form the first transparent layer 20 (or the second transparent layer 21).
  • Examples thereof include a method of forming the low refractive layer 60 on the surface and a method of simultaneously forming the first transparent layer 20 (or the second transparent layer 21) and the low refractive layer 60 by a coextrusion method.
  • a known film formation method is preferably used.
  • a process, a wet process, etc. are mentioned, Preferably a wet process is mentioned.
  • first unit films 29 and a plurality of second unit films 30 are laminated in the thickness direction so that the first unit films 29 and the second unit films 30 are alternately overlapped, and a laminate 31 is obtained.
  • first unit films 29 and the second unit films 30 are alternately overlapped, and a laminate 31 is obtained.
  • an adhesive layer may be provided between the first unit film 29 and the second unit film 30 adjacent to each other in the stacking direction, or an adhesive layer may not be provided.
  • an adhesive layer is not provided between the first unit film 29 and the second unit film 30 that are adjacent to each other in the stacking direction, the stacked body 31 is subjected to thermocompression bonding (heating press).
  • the columnar (block-shaped) stacked body 31 extending in the stacking direction is formed.
  • the support body 3 is attached to the side surface 32 (surface extending along the stacking direction) of the stack body 31 along the stacking direction. After that, the side layer 33 of the laminate 31 to which the support 3 is attached is cut so that the first unit film 29 and the second unit film 30 are arranged in parallel in the lamination direction of the laminate 31.
  • the daylighting layer 2 having the support 3 attached to one surface is cut out from the laminate 31 in a long and flat band shape. Subsequently, the peeling body 4 is attached to the other surface of the daylighting layer 2.
  • the daylighting film 1 is prepared as shown in FIG.
  • the plurality of low-refractive layers 60 are adjacent to each other with a low-refractive layer 60 adjacent to each other with an interval of the first interval S1, and to the low-refractive layers adjacent to each other with an interval of the second interval S2. Layer 60.
  • the adjacent low-refractive layer 60 with an interval suitable for the incident angle of the sunlight with respect to the daylighting film 1 reflects the incident light and travels upward.
  • the same operational effects as those of the first embodiment described above can be achieved.
  • the daylighting film 1 includes a plurality of metal layers 61 as an example of a reflective layer instead of the plurality of air layers 10.
  • the daylighting film 1 includes only the transparent layer 9 and the metal layer 61, and the transparent layer 9 and the metal layer 61 are sequentially and repeatedly arranged in the second surface direction Z so as to be continuous. ing.
  • the plurality of metal layers 61 are arranged in parallel at intervals (transparent layer 9) in the second surface direction Z.
  • Each of the plurality of metal layers 61 is disposed between the transparent layers 9 adjacent to each other in the plurality of transparent layers 9, and is formed in a thin film shape that extends over the entire first surface direction Y of the daylighting layer 2.
  • one surface and the other surface of the metal layer 61 in the second surface direction Z are along the thickness direction X.
  • the metal layer 61 is configured to reflect light and is formed in a thin film shape from a metal material.
  • the metal material forming the metal layer 61 include metal elements (for example, gold, silver, copper, iron, aluminum, chromium, nickel, etc.), alloys made of a plurality of metal elements, and the like. Silver, aluminum, and an alloy containing them are mentioned, More preferably, aluminum is mentioned. Such a metal material may be used as a single thin film, or two or more thin films may be laminated.
  • the dimension in the second surface direction Z of the metal layer 61 is not particularly limited as long as light can be sufficiently reflected, but is, for example, 20 nm or more, preferably 30 nm or more, for example, 10 ⁇ m (10 4 nm). Hereinafter, it is preferably 1 ⁇ m (10 3 nm) or less, more preferably 300 nm or less.
  • the reflectivity (incident angle 5 °) of the metal layer 61 is, for example, 70% or more, preferably 80% or more, for example 98% or less, preferably 95% with respect to light having a wavelength of 440 to 600 nm. It is as follows.
  • the metal layers 61 that are adjacent to each other with the first transparent layer 20 interposed therebetween are arranged at a first interval S ⁇ b> 1, and the metal layers that are adjacent to each other with the second transparent layer 21 in between. 61 are arranged at a second interval S2.
  • a plurality of unit films 30 are prepared.
  • a metal sheet 61 is arranged on the surface (one surface in the thickness direction) of the first transparent layer 20 to prepare a processed sheet, and then the processed sheet.
  • positioning the metal layer 61 on the surface of the 1st transparent layer 20 processed into the predetermined shape, etc. are mentioned.
  • the same method as the method for preparing the first unit film 29 can be used except that the first transparent layer 20 is changed to the second transparent layer 21.
  • the first transparent layer 20 (or the second transparent layer 21) and the metal layer 61 are separately adjusted. And a method of laminating them, a method of forming the metal layer 61 on the surface of the first transparent layer 20 (or the second transparent layer 21), and the like.
  • the metal layer 61 is formed on the surface of the transparent layer 9 The method of doing is mentioned.
  • the metal layer 61 As a method of forming the metal layer 61 on the surface of the first transparent layer 20 (or the second transparent layer 21), for example, the surface of the first transparent layer 20 (or the second transparent layer 21) by a known film forming method.
  • a method of forming the metal layer 61 may be mentioned. Examples of such a known film forming method include a dry process and a wet process, and a dry process is preferable.
  • first unit films 29 and a plurality of second unit films 30 are laminated in the thickness direction so that the first unit films 29 and the second unit films 30 are alternately overlapped, and a laminate 31 is obtained.
  • first unit films 29 and the second unit films 30 are alternately overlapped, and a laminate 31 is obtained.
  • an adhesive layer may be provided between the first unit film 29 and the second unit film 30 adjacent to each other in the stacking direction, or an adhesive layer may not be provided.
  • an adhesive layer is not provided between the first unit film 29 and the second unit film 30 that are adjacent to each other in the stacking direction, the stacked body 31 is subjected to thermocompression bonding (heating press).
  • the columnar (block-shaped) stacked body 31 extending in the stacking direction is formed.
  • the support body 3 is attached to the side surface 32 (surface extending along the stacking direction) of the stack body 31 along the stacking direction. After that, the side layer 33 of the laminate 31 to which the support 3 is attached is cut so that the first unit film 29 and the second unit film 30 are arranged in parallel in the lamination direction of the laminate 31.
  • the daylighting layer 2 having the support 3 attached to one surface is cut out from the laminate 31 in a long and flat band shape. Subsequently, the peeling body 4 is attached to the other surface of the daylighting layer 2.
  • the daylighting film 1 is prepared as shown in FIG.
  • the plurality of metal layers 61 include metal layers 61 adjacent to each other with an interval of the first interval S1, and metal layers 61 adjacent to each other with an interval of the second interval S2. Is included.
  • the adjacent metal layer 61 with an interval suitable for the incident angle of the sunlight with respect to the daylighting film 1 reflects the incident light and advances it upward.
  • the same operational effects as those of the first embodiment described above can be achieved.
  • Example 1 A 200 ⁇ m-thick polyvinyl chloride film (first processed sheet) and a 100 ⁇ m-thick polyvinyl chloride film (second processed sheet) are each punched into a circular shape having a diameter of 18 cm, and the first transparent has a thickness of 200 ⁇ m. 500 layers (first unit film) and 500 second transparent layers (second unit film) having a thickness of 100 ⁇ m were prepared. The relative refractive index of the polyvinyl chloride film with respect to air was 1.54.
  • the first transparent layer and the second transparent layer having different thicknesses are alternately laminated without using an adhesive therebetween, and then held in a cylindrical shape by applying pressure (5 MPa) from both sides in the lamination direction.
  • a laminate was prepared.
  • the laminate was 18 cm in diameter ⁇ height (dimension in the stacking direction) 15 cm (100 ⁇ m ⁇ 500 sheets + 200 ⁇ m ⁇ 500 sheets).
  • the laminated body was held by a pair of holding members 42 so as to be sandwiched from both sides in the laminating direction, and the support was wound around the rotating shaft 41 to constitute a support roll.
  • the support also had a polypropylene film (base material) having a thickness of 40 ⁇ m and an acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) having a thickness of 30 ⁇ m.
  • the acrylic pressure-sensitive adhesive layer was formed on one side of the polypropylene film, and a release treatment layer with a release treatment agent was provided on the other side of the polypropylene film.
  • the tip of the cutting blade 35 is in contact with the side surface of the laminated body.
  • the cutting blade 35 was arrange
  • the support drawn from the support roll is drawn toward the tangential direction of the laminate so that the adhesive layer adheres to the side of the laminate, and the side of the laminate in the range of the central angle of 240 ° in the laminate Pasted on.
  • the pair of holding members 42 were driven to rotate counterclockwise by a motor (not shown) of the cutting device 40 as viewed from one axial direction of the holding member 42 (the front side in FIG. 5). .
  • the laminated body held by the pair of holding members 42 was rotated about the axis, and the support roll was driven about the axis of the rotary shaft 41.
  • the daylighting layer (side layer of the laminated body) on which the support was stuck on one side was cut into a long and flat strip shape.
  • the daylighting layer had a thickness of 200 ⁇ m.
  • the first transparent layer, the second transparent layer, and the air layer are continuous in the stacking direction (the daylighting layer is a second surface direction orthogonal to both the thickness direction and the first surface direction). It was arranged repeatedly in order. Moreover, the dimension of the lamination direction of the first transparent layer (the second surface direction orthogonal to both the thickness direction and the first surface direction as the daylighting layer) is 200 ⁇ m, and the dimension of the second transparent layer in the lamination direction is The dimension in the stacking direction of the air layer was 1 ⁇ m.
  • a double-sided tape with a single-sided separator (peeled body) was prepared separately, and the adhesive layer of the double-sided tape with a single-sided separator was adhered to the other side (cutting surface) of the daylighting layer.
  • the double-sided tape with a single-sided separator had a 50 ⁇ m-thick PET film (peeling material, separator) and a 50 ⁇ m-thick acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer).
  • the acrylic pressure-sensitive adhesive layer was formed on one side of the PET film, and a release treatment layer with a release treatment agent was provided on the other side of the PET film.
  • the support and the double-sided tape were affixed to the daylighting layer so as to sandwich the daylighting layer, and a daylighting film was prepared.
  • the dimension of the thickness direction of the lighting film was 370 micrometers.
  • the daylighting film was appropriately cut in accordance with the size of the glass window to be attached.
  • a rectangular daylighting film having a long side of 20 cm and a short side of 15 cm was obtained.
  • Comparative Example 1 After only 1500 circular second transparent layers (second unit films) having a thickness of 100 ⁇ m and a diameter of 18 cm were formed, 1500 second transparent layers were laminated without using an adhesive therebetween. A daylighting film was obtained in the same manner as in Example 1 except that a cylindrical laminate was prepared. The laminate was 18 cm in diameter ⁇ height (dimension in the stacking direction) 15 cm (100 ⁇ m ⁇ 1500 sheets).
  • the second transparent layer and the air layer are continuous in the stacking direction (the daylighting layer is a second surface direction orthogonal to both the thickness direction and the first surface direction). It was arranged repeatedly in order.
  • the daylighting layer has a thickness of 200 ⁇ m, the dimension of the second transparent layer in the stacking direction (the daylighting layer is a second surface direction perpendicular to both the thickness direction and the first surface direction) is 100 ⁇ m, and air The dimension in the stacking direction of the layers was 1 ⁇ m.
  • Comparative Example 2 After only 750 sheets of a circular first transparent layer (first unit film) having a thickness of 200 ⁇ m and a diameter of 18 cm were prepared, 750 first transparent layers were laminated without using an adhesive therebetween. A daylighting film was obtained in the same manner as in Example 1 except that a cylindrical laminate was prepared. The laminate was 18 cm in diameter ⁇ height (dimension in the stacking direction) 15 cm (200 ⁇ m ⁇ 750 sheets).
  • the first transparent layer and the air layer were sequentially and repeatedly arranged so as to be continuous in the stacking direction (the surface direction perpendicular to the thickness direction as the daylighting layer).
  • the thickness of the daylighting layer is 200 ⁇ m
  • the dimension in the stacking direction of the first transparent layer is 200 ⁇ m
  • the dimension in the stacking direction of the air layer is 1 ⁇ m.
  • a room 90 including a wall portion 91 on which a transparent glass window 92 is installed, a floor portion 93, and a ceiling portion 94 was prepared.
  • the glass window 92 had a rectangular shape with a long side of 20 cm ⁇ short side of 15 cm, and the thickness of the glass window 92 was 3 mm.
  • an illuminance meter 95 manufactured by T & D Corporation, illuminance UV recorder, product name: TR-74Ui
  • a light 96 manufactured by Pyphotonics, product name: HL01W
  • the illuminance meter 95 was arranged in the brightest place on the floor 93. Specifically, the illuminance meter 95 is disposed on the floor portion 93 at a position of 50.6 cm from the wall portion 91. And the illuminance meter 95 measured the illumination intensity on the floor part 93, and made the value the reference illumination intensity.
  • the light 96 is moved so that the incident angle ⁇ of light with respect to the glass window 92 changes by 10 ° from 40 ° to 80 °, and the illuminance is applied to the brightest part on the floor portion 93 at each incident angle ⁇ .
  • a total of 95 was moved sequentially.
  • the illuminance meter 95 is disposed at a position 35.7 cm from the wall portion 91 when the incident angle ⁇ is 50 °, and is located at a position 24.5 cm from the wall portion 91 when the incident angle ⁇ is 60 °.
  • the incident angle ⁇ is 70 °, it is disposed at a position of 15.5 cm from the wall portion 91, and when the incident angle ⁇ is 80 °, it is disposed at a position of 7.5 cm from the wall portion 91.
  • the illuminance meter 95 was used to measure the reference illuminance on the floor portion 93 at each incident angle ⁇ . The results are shown in Table 1.
  • the adhesive layer of the release body was attached to the inner surface of the glass window 92.
  • the light 96 is irradiated from the outside of the room 90 by the light 96 so that the incident angle ⁇ of the light with respect to the glass window 92 becomes 40 °, and the illuminance meter 95 is placed 50.6 cm from the wall portion 91 on the floor portion 93. Placed in the position. And the illumination intensity on the floor part 93 was measured with the illumination meter 95, and the value was made into measurement illumination intensity.
  • a part of the transmitted light A passes through the glass window 92 and then is reflected by a plurality of air layers of the daylighting film and travels upward as the direction changing light A1 toward the ceiling portion 94.
  • the other light A2 passed through the daylighting film linearly and illuminated the floor portion 93.
  • the light 96 is moved so that the incident angle ⁇ of light with respect to the glass window 92 changes by 10 ° from 40 ° to 80 °, and the illuminance meter 95 is placed on the floor portion 93 from the wall portions 91 to 35. They were sequentially moved to positions of 7 cm, 24.5 cm, 15.5 cm, and 7.5 cm. And the measurement illumination intensity on the floor part 93 in each incident angle (theta) was measured.
  • Light redirection efficiency [%] ((reference illuminance [lx] ⁇ measured illuminance [lx]) / reference illuminance [lx]) ⁇ 100
  • FIG. 13 shows the change in direction change efficiency with respect to the incident angle ⁇ of light.
  • the optical film of the present invention is used for, for example, a daylighting film used for lighting a building.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Laminated Bodies (AREA)

Abstract

 This optical film is provided with a plurality of reflection layers configured so as to reflect light. The plurality of reflection layers respectively extend in a first direction orthogonal to the thickness direction of the optical film, the plurality of reflection layers being arranged parallel and spaced apart from one another in a second direction orthogonal to both the thickness direction and the first direction. The plurality of reflection layers include reflection layers arranged to be adjacently spaced apart at a first spacing, and reflection layers arranged to be adjacently spaced apart at a second spacing the dimension of which in the second direction is different than that of the first spacing.

Description

光学フィルムOptical film
 本発明は、光学フィルム、詳しくは、家屋などの建築物の採光に用いられる光学フィルムに関する。 The present invention relates to an optical film, and more particularly to an optical film used for daylighting a building such as a house.
 従来より、建築物の室内の明るさなどの環境を調整するために、太陽光を室内に導入すること、いわゆる、採光(太陽光照明、昼光照明とも呼ばれる。)が知られている。しかるに、近年、環境負荷低減の観点から、より効率的に太陽光を室内に導入し、日中における人工照明の利用を低減することが望まれている。 Conventionally, so-called daylighting (also called daylighting or daylighting) is known in which sunlight is introduced into a room in order to adjust the environment such as the brightness of the room indoors. However, in recent years, from the viewpoint of reducing the environmental load, it is desired to more efficiently introduce sunlight into a room and reduce the use of artificial lighting during the daytime.
 そこで、光の屈折、回折または反射などの光学的作用により、光の進行方向を変更可能な光学部材を、窓などに取り付け、太陽光を室内に効率的に導入し、室内の明るさの向上を図ることが種々検討されている。 Therefore, an optical member that can change the traveling direction of light by optical action such as light refraction, diffraction, or reflection is attached to a window, etc., and sunlight is efficiently introduced into the room to improve indoor brightness. Various attempts have been made to achieve this.
 そのような光学部材として、例えば、水平方向に延びる複数のスリットが、上下方向に一定間隔で配列される透明なプラスチック板が提案されている(例えば、特許文献1参照)。 As such an optical member, for example, a transparent plastic plate in which a plurality of slits extending in the horizontal direction are arranged at regular intervals in the vertical direction has been proposed (for example, see Patent Document 1).
 そして、そのようなプラスチック板は、例えば、家屋の窓などに設置され、窓を介して室外から入射した太陽光を反射および屈折して、採光する。 And such a plastic plate is installed in a window of a house, for example, and reflects and refracts sunlight incident from the outside through the window to collect light.
特開2000-268610号公報JP 2000-268610 A
 しかるに、太陽の高度は、日中において時間の経過とともに変化し、また、日にち(季節)が異なれば、同時刻であっても相異する。そのため、太陽光の入射角度は、日中における時刻および日にち(季節)により変化する。 However, the altitude of the sun changes with the passage of time during the day, and if the date (season) is different, it is different even at the same time. Therefore, the incident angle of sunlight changes depending on the time of day and the date (season).
 しかし、特許文献1に記載のプラスチック板は、太陽の高度が特定の範囲内であるときに、太陽光を採光して、屋内の明るさを向上することができるが、太陽の高度が特定の範囲外であると、効率よく採光できず、屋内の明るさを十分に確保することができない場合がある。 However, the plastic plate described in Patent Document 1 can extract sunlight and improve indoor brightness when the solar altitude is within a specific range. If it is out of range, it may not be possible to efficiently illuminate and the indoor brightness may not be sufficiently secured.
 そこで、本発明の目的は、太陽の高度が変化しても、効率よく安定して採光でき、室内全体の明るさの向上を図ることができる光学フィルムを提供することにある。 Therefore, an object of the present invention is to provide an optical film that can efficiently and stably illuminate even if the altitude of the sun changes and can improve the brightness of the entire room.
 本発明の光学フィルムは、光を反射するように構成される複数の反射層を備える光学フィルムであって、前記複数の反射層のそれぞれは、前記光学フィルムの厚み方向と直交する第1方向に延び、前記厚み方向および前記第1方向の両方向と直交する第2方向に、互いに間隔を隔てて並列配置され、前記複数の反射層は、第1の間隔を隔てて互いに隣り合うように配置される反射層と、前記第1の間隔と前記第2方向の寸法が異なる第2の間隔を隔てて互いに隣り合うように配置される反射層とを含んでいることを特徴としている。 The optical film of the present invention is an optical film including a plurality of reflective layers configured to reflect light, and each of the plurality of reflective layers is in a first direction orthogonal to the thickness direction of the optical film. Extending in a second direction perpendicular to both the thickness direction and the first direction, the plurality of reflective layers are arranged adjacent to each other at a first interval. And a reflective layer disposed adjacent to each other with a second interval having a different dimension in the second direction from the first interval.
 このような構成によれば、光学フィルムが複数の反射層を備えているので、この光学フィルムを、例えば、第2方向が上下方向に沿うように、家屋の窓などに設置すれば、複数の反射層が、屋外からの太陽光を上方に向かって反射して採光する。 According to such a configuration, since the optical film includes a plurality of reflective layers, for example, if the optical film is installed on a window of a house such that the second direction is along the vertical direction, a plurality of the optical films are provided. The reflection layer reflects sunlight from the outside upward and takes light.
 しかるに、複数の反射層を備える光学フィルムが、太陽の高度が変化したときに、屋内の明るさの向上を十分に図ることができるか否かは、複数の反射層における互いに隣り合う反射層の間の間隔(複数の反射層のピッチ)に依存する。 However, whether or not the optical film including a plurality of reflective layers can sufficiently improve the indoor brightness when the altitude of the sun is changed depends on whether the reflective layers adjacent to each other in the plurality of reflective layers. It depends on the interval between them (the pitch of the plurality of reflective layers).
 具体的には、互いに隣り合う反射層の間の間隔が小さい場合、太陽光の光学フィルムに対する入射角度が小さいと(太陽の高度が低いと)、入射光の大部分は、反射層に反射されて、上方に向かって進行し、太陽光の光学フィルムに対する入射角度が大きいと(太陽の高度が高いと)、入射光の大部分は、反射層に上方に向かって反射された後、その反射層の上側に配置される反射層に再度反射され、下方に向かって進行する。ここで、室内に導入される太陽光が、下方に向かって進行すると、窓の近傍は照らされるが、室内における他の部分の明るさを十分に確保できない。一方、室内に導入される太陽光が、上方に向かって進行すると、導入された太陽光が天井部などに反射されて、窓からより遠方に到達し、室内全体の明るさの向上を図ることができる。 Specifically, when the interval between the reflective layers adjacent to each other is small, when the incident angle of sunlight with respect to the optical film is small (when the altitude of the sun is low), most of the incident light is reflected by the reflective layer. When the incident angle of sunlight with respect to the optical film is large (when the altitude of the sun is high), most of the incident light is reflected upward by the reflection layer and then reflected. The light is reflected again by the reflective layer disposed above the layer and travels downward. Here, when the sunlight introduced into the room travels downward, the vicinity of the window is illuminated, but the brightness of other parts in the room cannot be sufficiently ensured. On the other hand, when the sunlight introduced into the room progresses upward, the introduced sunlight is reflected by the ceiling or the like and reaches farther from the window, thereby improving the overall brightness of the room. Can do.
 つまり、互いに隣り合う反射層の間の間隔が小さい場合、太陽光の光学フィルムに対する入射角度が小さいと、室内全体の明るさの向上を図ることができるが、太陽光の光学フィルムに対する入射角度が大きいと、室内全体の明るさの向上を図ることができない。 In other words, when the interval between the reflective layers adjacent to each other is small, if the incident angle of the sunlight to the optical film is small, the brightness of the entire room can be improved, but the incident angle of the sunlight to the optical film is If it is large, the brightness of the entire room cannot be improved.
 また、互いに隣り合う反射層の間の間隔が大きい場合、太陽光の光学フィルムに対する入射角度が小さいと、入射光の大部分は、隣り合う反射層の間を通過し、下方に向かって進行し、太陽光の光学フィルムに対する入射角度が大きいと、入射光の大部分は、反射層に反射されて、上方に向かって進行する。 In addition, when the interval between the reflective layers adjacent to each other is large, if the incident angle of sunlight with respect to the optical film is small, most of the incident light passes between the adjacent reflective layers and proceeds downward. When the incident angle of sunlight with respect to the optical film is large, most of the incident light is reflected by the reflective layer and proceeds upward.
 つまり、互いに隣り合う反射層の間の間隔が大きい場合、太陽光の光学フィルムに対する入射角度が大きいと、室内全体の明るさの向上を図ることができるが、太陽光の光学フィルムに対する入射角度が小さいと、室内全体の明るさの向上を図ることができない。 That is, when the interval between the reflective layers adjacent to each other is large, if the incident angle with respect to the optical film of sunlight is large, the brightness of the entire room can be improved, but the incident angle with respect to the optical film of sunlight is If it is small, the brightness of the entire room cannot be improved.
 そのため、複数の反射層における互いに隣り合う反射層の間の間隔(複数の反射層のピッチ)が一定であると、太陽の高度が変化した場合、安定して採光することができない。 Therefore, if the distance between the reflective layers adjacent to each other in the plurality of reflective layers (the pitch of the plurality of reflective layers) is constant, it is not possible to perform stable lighting when the altitude of the sun changes.
 しかし、上記の構成によれば、複数の反射層は、第1の間隔を隔てて互いに隣り合うように配置される反射層と、第1の間隔と第2方向の寸法が異なる第2の間隔を隔てて互いに隣り合うように配置される反射層とを含んでいる。 However, according to the above-described configuration, the plurality of reflective layers includes the reflective layer arranged to be adjacent to each other with the first interval, and the second interval having different dimensions in the second direction from the first interval. And a reflective layer disposed so as to be adjacent to each other.
 そのため、太陽の高度が変化しても、その太陽光の光学フィルムに対する入射角度に適した間隔を隔てて隣り合う反射層、具体的には、第1の間隔または第2の間隔を隔てて互いに隣り合う反射層が、入射光を反射して、上方に向かうように進行させる。 Therefore, even if the altitude of the sun changes, the reflective layers adjacent to each other with an interval suitable for the incident angle of the sunlight with respect to the optical film, specifically, the first and second intervals are separated from each other. Adjacent reflective layers reflect incident light and travel upward.
 その結果、太陽の高度が変化しても、効率よく安定して採光することができ、室内全体の明るさの向上を図ることができる。 As a result, even if the altitude of the sun changes, the light can be efficiently and stably lit, and the brightness of the entire room can be improved.
 また、前記第1の間隔は、前記第2の間隔に対して、1.25倍~10倍であることが好適である。 Further, it is preferable that the first interval is 1.25 times to 10 times the second interval.
 このような構成によれば、第1の間隔が第2の間隔に対して、1.25倍~10倍であるので、太陽の高度が大きく変化しても、入射光を確実に反射して、上方に向かうように進行させることができる。 According to such a configuration, since the first interval is 1.25 to 10 times the second interval, the incident light is reliably reflected even if the altitude of the sun changes greatly. , It can be made to progress upward.
 本発明の光学フィルムによれば、太陽の高度が変化しても、効率よく安定して採光でき、室内全体の明るさの向上を図ることができる。 According to the optical film of the present invention, even if the altitude of the sun changes, the light can be efficiently and stably lit, and the brightness of the entire room can be improved.
図1は、本発明の光学フィルムの第1実施形態としての採光フィルムの斜視図である。FIG. 1 is a perspective view of a daylighting film as a first embodiment of the optical film of the present invention. 図2は、図1に示す採光フィルムを第1面方向から見た側面図である。FIG. 2 is a side view of the daylighting film shown in FIG. 1 as viewed from the first surface direction. 図3は、図2に示す採光フィルムに係る第1単位フィルムおよび第2単位フィルムの斜視図である。FIG. 3 is a perspective view of the first unit film and the second unit film according to the daylighting film shown in FIG. 図4は、図3に示す第1単位フィルムおよび第2単位フィルムが積層されて形成される積層体の側面に支持体が貼り付けられた後、積層体の側面層が切断される工程を説明するための説明図である。FIG. 4 illustrates a process in which the side layer of the laminate is cut after the support is attached to the side of the laminate formed by laminating the first unit film and the second unit film shown in FIG. It is explanatory drawing for doing. 図5は、図4に示す積層体の側面に、支持体ロールから引き出された支持体が貼り付けられた後、積層体の側面層が連続的に切断される工程を説明するための説明図である。FIG. 5 is an explanatory diagram for explaining a process in which the side layer of the laminate is continuously cut after the support drawn from the support roll is attached to the side of the laminate shown in FIG. It is. 図6は、図5に示す採光層および支持体の斜視図である。FIG. 6 is a perspective view of the daylighting layer and the support shown in FIG. 図7Aは、図1に示す採光フィルムがガラス窓に取り付けられた状態を説明するための概略説明図であって、太陽の高度が相対的に低い場合を示す。図7Bは、図1に示す採光フィルムがガラス窓に取り付けられた状態を説明するための概略説明図であって、太陽の高度が相対的に高い場合を示す。FIG. 7A is a schematic explanatory diagram for explaining a state in which the daylighting film shown in FIG. 1 is attached to a glass window, and shows a case where the altitude of the sun is relatively low. FIG. 7B is a schematic explanatory diagram for explaining a state in which the daylighting film shown in FIG. 1 is attached to the glass window, and shows a case where the altitude of the sun is relatively high. 図8は、本発明の第2実施形態としての採光フィルムを、第1面方向から見た側面である。FIG. 8 is a side view of the daylighting film as the second embodiment of the present invention viewed from the first surface direction. 図9は、本発明の第3実施形態としての採光フィルムを、第1面方向から見た側面である。FIG. 9 is a side view of a daylighting film as a third embodiment of the present invention viewed from the first surface direction. 図10は、本発明の第4実施形態および第5実施形態としての採光フィルムの斜視図である。FIG. 10 is a perspective view of a daylighting film as the fourth and fifth embodiments of the present invention. 図11は、図10に示す採光フィルムに係る第1単位フィルムおよび第2単位フィルムの斜視図である。FIG. 11 is a perspective view of the first unit film and the second unit film according to the daylighting film shown in FIG. 図12は、実施例および比較例における、基準照度および測定照度の測定方法を説明するための説明図である。FIG. 12 is an explanatory diagram for explaining a method of measuring the reference illuminance and the measured illuminance in Examples and Comparative Examples. 図13は、実施例および比較例の採光フィルムにおける、光の入射角に対する方向転換効率の変化を示す図である。FIG. 13 is a diagram showing the change in the direction change efficiency with respect to the incident angle of light in the daylighting films of Examples and Comparative Examples.
1.採光フィルムの構成
 光学フィルムの一例としての採光フィルム1は、図1に示すように、可撓性を有するシート状(フィルム状)に形成されており、採光フィルム1の厚み方向Xからみて、矩形状に形成されている。
1. Configuration of Daylighting Film A daylighting film 1 as an example of an optical film is formed in a flexible sheet shape (film shape) as shown in FIG. 1, and is rectangular when viewed from the thickness direction X of the daylighting film 1. It is formed into a shape.
 採光フィルム1の厚み方向Xの寸法は、例えば、30μm以上、好ましくは、50μm以上、例えば、1500μm以下、透過性の観点から好ましくは、500μm以下である。 The dimension in the thickness direction X of the daylighting film 1 is, for example, 30 μm or more, preferably 50 μm or more, for example, 1500 μm or less, and preferably 500 μm or less from the viewpoint of permeability.
 また、採光フィルム1のサイズは、使用目的などに応じて適宜変更されるが、採光フィルム1の厚み方向Xと直交する第1面方向Y(第1方向の一例)の寸法は、例えば、10cm以上、好ましくは、60cm以上、例えば、200cm以下、好ましくは、100cm以下である。また、採光フィルム1の厚み方向Xおよび第1面方向Yの両方向と直交する第2面方向Z(第2方向の一例)の寸法は、例えば、5cm以上、好ましくは、10cm以上、例えば、150cm以下、好ましくは、80cm以下である。 Moreover, although the size of the lighting film 1 is suitably changed according to a use purpose etc., the dimension of the 1st surface direction Y (an example of 1st direction) orthogonal to the thickness direction X of the lighting film 1 is 10 cm, for example. As mentioned above, Preferably, it is 60 cm or more, for example, 200 cm or less, Preferably, it is 100 cm or less. The dimension of the second surface direction Z (an example of the second direction) orthogonal to both the thickness direction X and the first surface direction Y of the daylighting film 1 is, for example, 5 cm or more, preferably 10 cm or more, for example, 150 cm. Hereinafter, it is preferably 80 cm or less.
 また、採光フィルム1は、図2に示すように、採光層2と、支持体3と、剥離体4とを備えている。 Moreover, the lighting film 1 is provided with the lighting layer 2, the support body 3, and the peeling body 4, as shown in FIG.
 なお、以下の説明において、図2における紙面下側を第2面方向Zの一方とし、図2における紙面上側を第2面方向Zの他方とし、図2における紙面左側を厚み方向Xの一方とし、図2における紙面右側を厚み方向Xの他方とする。 In the following description, the lower side of the paper surface in FIG. 2 is one of the second surface direction Z, the upper side of the paper surface in FIG. 2 is the other of the second surface direction Z, and the left side of the paper surface in FIG. 2 is the other side in the thickness direction X.
 採光層2は、採光フィルム1の厚み方向Xの略中央部分であって、複数の透明層9と、反射層の一例としての複数の空気層10とを備えている。 The daylighting layer 2 is a substantially central portion in the thickness direction X of the daylighting film 1 and includes a plurality of transparent layers 9 and a plurality of air layers 10 as an example of a reflective layer.
 複数の透明層9は、第2面方向Zに互いに僅かな間隔(空気層10)を隔てて並列配置されている。複数の透明層9のそれぞれは、図1および図2に示すように、略杆状に形成され、採光層2の第1面方向Yの全体にわたって延びている。また、透明層9の第2面方向Zの一方面および他方面は、厚み方向Xに沿っている。 The plurality of transparent layers 9 are arranged in parallel in the second surface direction Z with a slight gap (air layer 10) therebetween. As shown in FIGS. 1 and 2, each of the plurality of transparent layers 9 is formed in a substantially bowl shape and extends over the entire first surface direction Y of the daylighting layer 2. Further, one surface and the other surface in the second surface direction Z of the transparent layer 9 are along the thickness direction X.
 透明層9は、光を透過するように構成されており、加工の容易性の観点から好ましくは、透明の樹脂材料から形成される。 The transparent layer 9 is configured to transmit light, and is preferably formed from a transparent resin material from the viewpoint of ease of processing.
 透明の樹脂材料としては、例えば、公知の樹脂材料などが挙げられ、樹脂材料としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレート(PET))、ポリオレフィン(例えば、ポリエチレン(PE)、ポリプロピレン(PP))、ポリカーボネート(PC)、ポリ塩化ビニル、アクリル樹脂、ポリスチレン(PS)、エポキシ樹脂、シリコーン樹脂、フッ素樹脂、ウレタン樹脂、セルロース、ポリビニルブチラール、エチレン酢酸ビニル共重合体などが挙げられる。 Examples of the transparent resin material include known resin materials. Examples of the resin material include polyester (for example, polyethylene terephthalate (PET)), polyolefin (for example, polyethylene (PE), polypropylene (PP)). , Polycarbonate (PC), polyvinyl chloride, acrylic resin, polystyrene (PS), epoxy resin, silicone resin, fluororesin, urethane resin, cellulose, polyvinyl butyral, ethylene vinyl acetate copolymer and the like.
 このような透明の樹脂材料のなかでは、好ましくは、ポリオレフィンおよびポリ塩化ビニルが挙げられ、さらに好ましくは、ポリ塩化ビニルが挙げられる。このような樹脂材料は、単独で使用してもよく、2種以上併用することもできる。 Among such transparent resin materials, polyolefin and polyvinyl chloride are preferable, and polyvinyl chloride is more preferable. Such resin materials may be used alone or in combination of two or more.
 また、透明層9の光透過率は、透明層9の厚みが100μmの場合に、波長440~600nmの光に対して、例えば、80%以上、好ましくは、90%以上、さらに好ましくは、92%以上であり、例えば、98%以下である。 The light transmittance of the transparent layer 9 is, for example, 80% or more, preferably 90% or more, more preferably 92% with respect to light having a wavelength of 440 to 600 nm when the thickness of the transparent layer 9 is 100 μm. % Or more, for example, 98% or less.
 また、透明層9の相対屈折率は、空気の屈折率に対して、例えば、1.3以上、好ましくは、1.4以上、例えば、1.8以下、好ましくは、1.65以下である。なお、屈折率は、プリズムカプラにより測定することができる。 Further, the relative refractive index of the transparent layer 9 is, for example, 1.3 or more, preferably 1.4 or more, for example, 1.8 or less, preferably 1.65 or less with respect to the refractive index of air. . The refractive index can be measured with a prism coupler.
 このような複数の透明層9は、詳しくは、第2面方向Zの寸法が互いに異なる第1透明層20および第2透明層21を備えている。なお、第1実施形態では、複数の透明層9は、複数の第1透明層20、および、複数の第2透明層21のみからなる。 More specifically, the plurality of transparent layers 9 include a first transparent layer 20 and a second transparent layer 21 having different dimensions in the second surface direction Z. In the first embodiment, the plurality of transparent layers 9 include only the plurality of first transparent layers 20 and the plurality of second transparent layers 21.
 第1透明層20および第2透明層21は、図2に示すように、第2面方向Zにおいて、互いに僅かな間隔(空気層10)を隔てて、連続するように交互に配置されている。 As shown in FIG. 2, the first transparent layer 20 and the second transparent layer 21 are alternately arranged in the second surface direction Z so as to be continuous with a slight distance (air layer 10) therebetween. .
 第1透明層20は、第2透明層21よりも第2面方向Zの寸法が大きく形成されている。具体的には、第1透明層20の第2面方向Zの寸法は、例えば、30μm以上、好ましくは、50μm以上、例えば、500μm以下、好ましくは、300μm以下である。第1透明層20の第2面方向Zの寸法は、第2透明層21の第2面方向Zの寸法に対して、例えば、1.25倍以上、採光の安定性の観点から好ましくは、1.5倍以上、例えば、10倍以下、好ましくは、4倍以下である。 The first transparent layer 20 has a dimension in the second surface direction Z larger than that of the second transparent layer 21. Specifically, the dimension in the second surface direction Z of the first transparent layer 20 is, for example, 30 μm or more, preferably 50 μm or more, for example, 500 μm or less, preferably 300 μm or less. The dimension of the first transparent layer 20 in the second surface direction Z is, for example, 1.25 times or more the dimension of the second transparent layer 21 in the second surface direction Z, preferably from the viewpoint of the stability of lighting. 1.5 times or more, for example, 10 times or less, preferably 4 times or less.
 また、第1透明層20の厚み方向Xの寸法は、例えば、30μm以上、好ましくは、50μm以上、例えば、1500μm以下、好ましくは、500μm以下である。また、第1透明層20の第2面方向Zの寸法は、第1透明層20の厚み方向Xの寸法100%に対して、例えば、20%以上、採光性の観点から好ましくは、40%以上、例えば、1000%以下、採光性の観点から好ましくは、500%以下である。 The dimension in the thickness direction X of the first transparent layer 20 is, for example, 30 μm or more, preferably 50 μm or more, for example, 1500 μm or less, preferably 500 μm or less. The dimension in the second surface direction Z of the first transparent layer 20 is, for example, 20% or more with respect to 100% in the thickness direction X of the first transparent layer 20, and preferably 40% from the viewpoint of lighting. For example, it is 1000% or less, and preferably 500% or less from the viewpoint of daylighting.
 第2透明層21の第2面方向Zの寸法は、例えば、20μm以上、好ましくは、40μm以上、例えば、400μm以下、好ましくは、200μm以下であり、第2透明層21の厚み方向Xの寸法は、第1透明層20の厚み方向Xの寸法と同様である。 The dimension in the second surface direction Z of the second transparent layer 21 is, for example, 20 μm or more, preferably 40 μm or more, for example, 400 μm or less, preferably 200 μm or less, and the dimension in the thickness direction X of the second transparent layer 21. These are the same as the dimension of the first transparent layer 20 in the thickness direction X.
 また、第2透明層21の第2面方向Zの寸法は、第2透明層21の厚み方向Xの寸法100%に対して、例えば、10%以上、採光性の観点から好ましくは、30%以上、例えば、100%以下、採光性の観点から好ましくは、80%以下である。 Further, the dimension in the second surface direction Z of the second transparent layer 21 is, for example, 10% or more with respect to 100% in the thickness direction X of the second transparent layer 21, and preferably 30% from the viewpoint of lighting. For example, 100% or less, and preferably 80% or less from the viewpoint of daylighting.
 複数の空気層10は、複数の透明層9のうち、互いに隣り合う透明層9の間の隙間として形成されている。つまり、複数の空気層10は、第1実施形態では、互いに隣り合う第1透明層20と第2透明層21との間の隙間として形成されており、第1空気層23と、第2空気層24とを備えている。 The plurality of air layers 10 are formed as gaps between adjacent transparent layers 9 among the plurality of transparent layers 9. That is, in the first embodiment, the plurality of air layers 10 are formed as gaps between the first transparent layer 20 and the second transparent layer 21 adjacent to each other, and the first air layer 23 and the second air Layer 24.
 第1空気層23は、第1透明層20と、その第1透明層20に対して、第2面方向Zの他方側に間隔を隔てて隣り合う第2透明層21との間の隙間として形成されている。つまり、第1空気層23は、第1透明層20の第2面方向Zの他方面と、第2透明層21の第2面方向Zの一方面とにより区画されている。 The first air layer 23 is a gap between the first transparent layer 20 and the second transparent layer 21 that is adjacent to the first transparent layer 20 on the other side in the second surface direction Z with a gap. Is formed. That is, the first air layer 23 is partitioned by the other surface of the first transparent layer 20 in the second surface direction Z and the one surface of the second transparent layer 21 in the second surface direction Z.
 第2空気層24は、第1透明層20と、その第1透明層20に対して、第2面方向Zの一方に間隔を隔てて隣り合う第2透明層21との間の隙間として形成されている。つまり、第2空気層24は、第1透明層20の第2面方向Zの一方面と、第2透明層21の第2面方向Zの他方面とにより区画されている。 The second air layer 24 is formed as a gap between the first transparent layer 20 and the second transparent layer 21 adjacent to the first transparent layer 20 with a gap in one of the second surface directions Z. Has been. That is, the second air layer 24 is partitioned by one surface of the first transparent layer 20 in the second surface direction Z and the other surface of the second transparent layer 21 in the second surface direction Z.
 そのため、第1空気層23および第2空気層24のそれぞれは、図1および図2に示すように、採光層2の第1面方向Yの全体にわたって延びており、第1空気層23および第2空気層24のそれぞれと、第1透明層20および第2透明層21のそれぞれとの境界(後述する境界15、境界16および境界17)は、第1面方向Yおよび厚み方向Xに沿っている。 Therefore, each of the first air layer 23 and the second air layer 24 extends over the entire first surface direction Y of the daylighting layer 2 as shown in FIG. 1 and FIG. The boundary between each of the two air layers 24 and each of the first transparent layer 20 and the second transparent layer 21 (a boundary 15, a boundary 16, and a boundary 17 described later) is along the first surface direction Y and the thickness direction X. Yes.
 また、第1空気層23の第2面方向Zの寸法は、例えば、0.1μm以上、好ましくは、1μm以上、例えば、20μm以下、好ましくは、10μm以下であり、第1透明層20の第2面方向Zの寸法に対して、例えば、1/5000以上、好ましくは、1/300以上、例えば、2/3以下、好ましくは、1/3以下である。なお、第2空気層24の第2面方向Zの寸法は、第1空気層23の第2面方向Zの寸法と同様である。 The dimension of the first air layer 23 in the second surface direction Z is, for example, 0.1 μm or more, preferably 1 μm or more, for example, 20 μm or less, preferably 10 μm or less. With respect to the dimension in the dihedral direction Z, for example, it is 1/5000 or more, preferably 1/300 or more, for example, 2/3 or less, preferably 1/3 or less. The dimension of the second air layer 24 in the second surface direction Z is the same as the dimension of the first air layer 23 in the second surface direction Z.
 また、図2に示すように、第1空気層23と、その第1空気層23に対して、第2面方向Zの一方側に配置される第2空気層24とは、第1透明層20を第2面方向Zに挟んでおり、第1の間隔S1を隔てて互いに隣り合っている。 In addition, as shown in FIG. 2, the first air layer 23 and the second air layer 24 disposed on one side in the second surface direction Z with respect to the first air layer 23 are the first transparent layer. 20 are sandwiched in the second surface direction Z, and are adjacent to each other with a first interval S1.
 第1の間隔S1の第2面方向Zの寸法は、例えば、25μm以上、好ましくは、50μm以上、例えば、500μm以下、好ましくは、300μm以下である。なお、本実施形態(第1実施形態~第5実施形態)では、第1の間隔S1の第2面方向Zの寸法は、第1透明層20の第2面方向Zの寸法と同一である。 The dimension in the second surface direction Z of the first interval S1 is, for example, 25 μm or more, preferably 50 μm or more, for example, 500 μm or less, preferably 300 μm or less. In the present embodiment (the first to fifth embodiments), the dimension in the second surface direction Z of the first interval S1 is the same as the dimension in the second surface direction Z of the first transparent layer 20. .
 また、第1の間隔S1は、第2の間隔S2に対して、例えば、1.25倍以上、採光の安定性の観点から好ましくは、1.5倍以上、例えば、10倍以下、好ましくは、4倍以下である。 Further, the first interval S1 is, for example, 1.25 times or more with respect to the second interval S2, preferably 1.5 times or more, for example, 10 times or less, preferably from the viewpoint of lighting stability. 4 times or less.
 また、第1空気層23と、その第1空気層23に対して、第2面方向Zの他方側に配置される第2空気層24とは、第2透明層21を第2面方向Zに挟んでおり、第2の間隔S2を隔てて互いに隣り合っている。 Further, the first air layer 23 and the second air layer 24 disposed on the other side in the second surface direction Z with respect to the first air layer 23 include the second transparent layer 21 in the second surface direction Z. And are adjacent to each other with a second interval S2.
 第2の間隔S2の第2面方向Zの寸法は、第1の間隔S1と第2面方向Zの寸法が異なっており、例えば、20μm以上、好ましくは、40μm以上、例えば、400μm以下、好ましくは、200μm以下である。なお、本実施形態(第1実施形態~第5実施形態)では、第2の間隔S2の第2面方向Zの寸法は、第2透明層21の第2面方向Zの寸法と同一である。 The dimension in the second surface direction Z of the second distance S2 is different from the dimension in the first distance S1 and the second surface direction Z, for example, 20 μm or more, preferably 40 μm or more, for example, 400 μm or less, preferably Is 200 μm or less. In the present embodiment (the first to fifth embodiments), the dimension of the second interval S2 in the second surface direction Z is the same as the dimension of the second transparent layer 21 in the second surface direction Z. .
 つまり、複数の空気層10は、第1の間隔S1の間隔を隔てて互いに隣り合う第1空気層23および第2空気層24と、第2の間隔S2の間隔を隔てて互いに隣り合う第1空気層23および第2空気層24とを含んでおり、第1の間隔S1および第2の間隔S2のいずれか一方を隔てて配置されている。 That is, the plurality of air layers 10 are adjacent to each other with the first air layer 23 and the second air layer 24 adjacent to each other at the first interval S1 and at the first interval adjacent to each other at the second interval S2. It includes an air layer 23 and a second air layer 24, and is arranged with either one of the first interval S1 and the second interval S2.
 これにより、採光層2において、2つの透明層9および2つの空気層10からなるパターンP1が、第2面方向Zに順次繰り返して配置されている。パターンP1は、詳しくは、第1透明層20、第1空気層23、第2透明層21および第2空気層24が、第2面方向Zの一方から他方に向かって順次配置されている。 Thereby, in the daylighting layer 2, the pattern P1 including the two transparent layers 9 and the two air layers 10 is sequentially and repeatedly arranged in the second surface direction Z. Specifically, in the pattern P1, the first transparent layer 20, the first air layer 23, the second transparent layer 21, and the second air layer 24 are sequentially arranged from one side to the other side in the second surface direction Z.
 支持体3は、採光フィルム1の厚み方向Xの一方側部分であって、採光層2に対して、厚み方向Xの一方に隣接されている。支持体3は、基材12と、粘着剤層11とを備えている。 The support 3 is one side portion in the thickness direction X of the daylighting film 1 and is adjacent to one side in the thickness direction X with respect to the daylighting layer 2. The support 3 includes a substrate 12 and an adhesive layer 11.
 基材12は、支持体3の厚み方向Xの一方側部分であって、光を透過するように構成されている。基材12としては、例えば、PETフィルムなどの基材、フッ素系ポリマー(例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、クロロフルオロエチレン-フッ化ビニリデン共重合体など)からなる低接着性基材、無極性ポリマー(例えば、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂など)からなる低接着性基材などが挙げられる。 The base material 12 is one side portion in the thickness direction X of the support 3 and is configured to transmit light. Examples of the substrate 12 include a substrate such as a PET film, a fluorine-based polymer (for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer). And low adhesive substrates made of nonpolar polymers (for example, olefinic resins such as polyethylene and polypropylene).
 このような基材12のなかでは、好ましくは、PETフィルム、および、無極性ポリマーからなる低接着性基材が挙げられ、さらに好ましくは、ポリプロピレンフィルムが挙げられる。 Among such base materials 12, preferably, a PET film and a low-adhesion base material made of a nonpolar polymer are mentioned, and a polypropylene film is more preferred.
 このような基材12の厚み方向Xの寸法は、例えば、10μm以上、好ましくは、30μm以上、例えば、100μm以下、好ましくは、50μm以下である。また、基材12の光透過率は、基材12の厚み方向Xの寸法が50μmの場合に、波長440~600nmの光に対して、例えば、85%以上、好ましくは、90%以上、さらに好ましくは、92%以上であり、例えば、98%以下である。 The dimension of the base material 12 in the thickness direction X is, for example, 10 μm or more, preferably 30 μm or more, for example, 100 μm or less, preferably 50 μm or less. The light transmittance of the substrate 12 is, for example, 85% or more, preferably 90% or more, with respect to light having a wavelength of 440 to 600 nm when the dimension in the thickness direction X of the substrate 12 is 50 μm. Preferably, it is 92% or more, for example, 98% or less.
 粘着剤層11は、支持体3の厚み方向Xの他方側部分であって、基材12と採光層2との間に介在されている。これによって、採光層2と基材12とは、接着されている。 The pressure-sensitive adhesive layer 11 is the other side portion in the thickness direction X of the support 3 and is interposed between the base material 12 and the daylighting layer 2. Thereby, the daylighting layer 2 and the base material 12 are adhered.
 粘着剤層11を形成する粘着剤としては、例えば、エポキシ系粘着剤、シリコーン系粘着剤、アクリル系粘着剤、紫外線硬化型粘着剤などの公知の粘着剤が挙げられる。また、粘着剤は、光を透過することが好ましい。また、粘着剤層11は、公知の両面粘着テープから構成することもできる。 Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 11 include known pressure-sensitive adhesives such as an epoxy-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, and an ultraviolet curable pressure-sensitive adhesive. The pressure-sensitive adhesive preferably transmits light. Moreover, the adhesive layer 11 can also be comprised from a well-known double-sided adhesive tape.
 このような粘着剤のなかでは、好ましくは、アクリル系粘着剤が挙げられる。このような粘着剤は、単独で使用してもよく、2種以上併用することもできる。 Among these pressure-sensitive adhesives, an acrylic pressure-sensitive adhesive is preferable. Such pressure-sensitive adhesives may be used alone or in combination of two or more.
 粘着剤層11の厚み方向Xの寸法は、例えば、1μm以上、好ましくは、5μm以上、例えば、100μm以下、好ましくは、40μm以下である。なお、基材12自体に粘着性がある場合は、支持体3において粘着剤層11は不要である。 The dimension in the thickness direction X of the pressure-sensitive adhesive layer 11 is, for example, 1 μm or more, preferably 5 μm or more, for example, 100 μm or less, preferably 40 μm or less. In addition, when the base material 12 itself is sticky, the pressure-sensitive adhesive layer 11 is not necessary in the support 3.
 剥離体4は、採光フィルム1の厚み方向Xの他方側部分であって、採光層2に対して、厚み方向Xの他方に隣接されている。剥離体4は、剥離材14と、粘着剤層13とを備えている。 The peeling body 4 is the other side portion in the thickness direction X of the daylighting film 1 and is adjacent to the other side in the thickness direction X with respect to the daylighting layer 2. The release body 4 includes a release material 14 and an adhesive layer 13.
 剥離材14は、剥離体4の厚み方向Xの他方側部分であって、光を透過するように構成されている。剥離材14としては、基材12と同様の基材などが挙げられ、好ましくは、PETフィルム、および、無極性ポリマーからなる低接着性基材が挙げられ、さらに好ましくは、PETフィルムが挙げられる。 The release material 14 is the other side portion in the thickness direction X of the release body 4 and is configured to transmit light. Examples of the release material 14 include a substrate similar to the substrate 12, preferably a PET film and a low-adhesive substrate made of a nonpolar polymer, and more preferably a PET film. .
 このような剥離材14の厚み方向Xの寸法は、例えば、10μm以上、好ましくは、40μm以上、例えば、100μm以下、好ましくは、60μm以下である。また、剥離材14の光透過率は、剥離材14の厚み方向Xの寸法が50μmの場合に、波長440~600nmの光に対して、例えば、60%以上、好ましくは、80%以上、さらに好ましくは、92%以上であり、例えば、98%以下である。 The dimension in the thickness direction X of the release material 14 is, for example, 10 μm or more, preferably 40 μm or more, for example, 100 μm or less, preferably 60 μm or less. The light transmittance of the release material 14 is, for example, 60% or more, preferably 80% or more with respect to light having a wavelength of 440 to 600 nm when the dimension in the thickness direction X of the release material 14 is 50 μm. Preferably, it is 92% or more, for example, 98% or less.
 また、図示しないが、剥離材14の厚み方向Xの一方面には、剥離処理層(図示せず)が設けられている。 Although not shown, a release treatment layer (not shown) is provided on one surface in the thickness direction X of the release material 14.
 粘着剤層13は、剥離体4の厚み方向Xの一方側部分であって、剥離材14の剥離処理層(図示せず)と採光層2との間に介在されている。これによって、採光層2と剥離材14とは、接着されている。 The pressure-sensitive adhesive layer 13 is one side portion in the thickness direction X of the release body 4 and is interposed between the release treatment layer (not shown) of the release material 14 and the daylighting layer 2. Thereby, the daylighting layer 2 and the release material 14 are bonded.
 粘着剤層13を形成する粘着剤としては、例えば、粘着剤層11を形成する粘着剤と同様の粘着剤が挙げられる。このような粘着剤のなかでは、好ましくは、アクリル系粘着剤が挙げられる。このような粘着剤は、単独で使用してもよく、2種以上併用することもできる。また、粘着剤層13は、公知の両面粘着テープから構成することもできる。 Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 13 include the same pressure-sensitive adhesive as the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 11. Among such pressure-sensitive adhesives, an acrylic pressure-sensitive adhesive is preferable. Such pressure-sensitive adhesives may be used alone or in combination of two or more. Moreover, the adhesive layer 13 can also be comprised from a well-known double-sided adhesive tape.
 粘着剤層13の厚み方向Xの寸法は、例えば、5μm以上、好ましくは、20μm以上、例えば、100μm以下、好ましくは、60μm以下である。
2.採光フィルムの製造方法
 次に、採光フィルム1の製造方法について説明する。
The dimension in the thickness direction X of the pressure-sensitive adhesive layer 13 is, for example, 5 μm or more, preferably 20 μm or more, for example, 100 μm or less, preferably 60 μm or less.
2. The manufacturing method of the lighting film Next, the manufacturing method of the lighting film 1 is demonstrated.
 採光フィルム1を製造するには、図3に示すように、まず、第1透明層20に対応する第1単位フィルム29と、第2透明層21に対応する第2単位フィルム30とを、それぞれ複数枚調製する。 In order to manufacture the daylighting film 1, as shown in FIG. 3, first, the first unit film 29 corresponding to the first transparent layer 20 and the second unit film 30 corresponding to the second transparent layer 21, respectively, Prepare multiple sheets.
 第1単位フィルム29を調製するには、例えば、第1透明層20からなる第1加工シートを調製した後、その第1加工シートから所定の形状の第1単位フィルム29を切り出す。第1加工シートから第1単位フィルム29を切り出す方法としては、例えば、裁断、打ち抜きなどの公知の加工方法が挙げられる。 To prepare the first unit film 29, for example, after preparing a first processed sheet made of the first transparent layer 20, the first unit film 29 having a predetermined shape is cut out from the first processed sheet. Examples of the method for cutting out the first unit film 29 from the first processed sheet include known processing methods such as cutting and punching.
 また、第2単位フィルム30を調製するには、例えば、第2透明層21からなる第2加工シートを調製した後、その第2加工シートから所定の形状の第2単位フィルム30を切り出す。第2加工シートから第2単位フィルム30を切り出す方法としては、上記の加工方法が挙げられる。 Further, in order to prepare the second unit film 30, for example, after preparing a second processed sheet made of the second transparent layer 21, the second unit film 30 having a predetermined shape is cut out from the second processed sheet. Examples of the method for cutting out the second unit film 30 from the second processed sheet include the above-described processing methods.
 第1単位フィルム29および第2単位フィルム30のそれぞれの形状は、特に制限されず、第1単位フィルム29および第2単位フィルム30は、上記の切り出し方法により、それらの厚み方向から見て、例えば、多角形または円形状、好ましくは、矩形状または円形状、とりわけ好ましくは、円形状となるように形成される。 The shape of each of the first unit film 29 and the second unit film 30 is not particularly limited, and the first unit film 29 and the second unit film 30 are, for example, viewed from their thickness direction by the above-described cutting method. , Polygonal or circular, preferably rectangular or circular, particularly preferably circular.
 また、第1単位フィルム29および第2単位フィルム30のサイズは、使用目的などに応じて適宜変更される。具体的には、第1単位フィルム29および第2単位フィルム30のそれぞれが厚み方向から見て円形状である場合、直径が、例えば、10cm~1m(100cm)であり、加工性の観点から好ましくは、10cm~50cmである。 Further, the sizes of the first unit film 29 and the second unit film 30 are appropriately changed according to the purpose of use. Specifically, when each of the first unit film 29 and the second unit film 30 is circular when viewed in the thickness direction, the diameter is, for example, 10 cm to 1 m (100 cm), which is preferable from the viewpoint of workability. Is between 10 cm and 50 cm.
 このような第1単位フィルム29および第2単位フィルム30のそれぞれを、複数枚、例えば、100枚以上、好ましくは、5000枚以上、例えば、30000枚以下、好ましくは、15000枚以下、さらに好ましくは、10000枚以下準備する。 Each of the first unit film 29 and the second unit film 30 is a plurality of sheets, for example, 100 sheets or more, preferably 5000 sheets or more, for example, 30000 sheets or less, preferably 15000 sheets or less, more preferably Prepare 10,000 sheets or less.
 第1単位フィルム29を複数枚準備するには、例えば、第1加工シートを、複数の第1単位フィルム29が切り出し可能となるように大きく形成し、その第1加工シートから第1単位フィルム29を複数枚切り出してもよく、第1加工シートを複数枚調製して、各第1加工シートから1枚ずつ第1単位フィルム29を切り出してもよい。 In order to prepare a plurality of the first unit films 29, for example, the first processed sheet is formed large so that the plurality of first unit films 29 can be cut out, and the first unit film 29 is formed from the first processed sheet. A plurality of first processed sheets may be cut out, and a plurality of first processed sheets may be prepared, and the first unit film 29 may be cut out one by one from each first processed sheet.
 また、第2単位フィルム30を複数枚準備するには、複数枚の第1単位フィルム29を準備する場合と同様に、大きく形成した第2加工シートから第2単位フィルム30を複数枚切り出してもよく、複数枚の第2加工シートから1枚ずつ第2単位フィルム30を切り出してもよい。なお、複数の第1単位フィルム29および第2単位フィルム30のそれぞれは、好ましくは、同一形状およびサイズに形成される。 Further, in order to prepare a plurality of second unit films 30, even when a plurality of second unit films 30 are cut out from a large second processed sheet, as in the case of preparing a plurality of first unit films 29. The second unit film 30 may be cut out one by one from the plurality of second processed sheets. Each of the plurality of first unit films 29 and second unit films 30 is preferably formed in the same shape and size.
 次いで、図4に示すように、複数の第1単位フィルム29、および、複数の第2単位フィルム30を、粘着剤層を挟むことなく、厚み方向に積層して、積層体31を調製する。 Next, as shown in FIG. 4, a plurality of first unit films 29 and a plurality of second unit films 30 are laminated in the thickness direction without sandwiching an adhesive layer to prepare a laminate 31.
 より具体的には、第1単位フィルム29と第2単位フィルム30とが交互に重なるように、第1単位フィルム29および第2単位フィルム30を、それらの厚み方向に積層する。つまり、第1単位フィルム29の厚み方向と、第2単位フィルム30の厚み方向と、積層体31の積層方向とは同一方向である。 More specifically, the first unit film 29 and the second unit film 30 are laminated in the thickness direction so that the first unit film 29 and the second unit film 30 are alternately overlapped. That is, the thickness direction of the first unit film 29, the thickness direction of the second unit film 30, and the stacking direction of the laminate 31 are the same direction.
 ここで、積層体31において、積層方向に互いに隣り合う第1単位フィルム29と第2単位フィルム30との間には、僅かな空気が介在しており、それが空気層10として供され、互いに隣り合う第1単位フィルム29および第2単位フィルム30を区画している。 Here, in the laminated body 31, a slight amount of air is interposed between the first unit film 29 and the second unit film 30 that are adjacent to each other in the laminating direction. Adjacent first unit film 29 and second unit film 30 are partitioned.
 なお、図4では、便宜上、複数の第1単位フィルム29、および、複数の第2単位フィルム30のそれぞれの枚数が省略されており、積層体31が、6枚の第1単位フィルム29と、6枚の第2単位フィルム30とからなるように記載しているが、実際には、積層体31は、例えば、100枚~30000枚、好ましくは、5000枚~15000枚、さらに好ましくは、5000枚~10000枚の第1単位フィルム29と、例えば、100枚~30000枚、好ましくは、5000枚~15000枚、さらに好ましくは、5000枚~10000枚の第2単位フィルム30とが積層されて形成されている。 In FIG. 4, for convenience, the number of each of the plurality of first unit films 29 and the plurality of second unit films 30 is omitted, and the laminated body 31 includes six first unit films 29, Although it is described that the second unit film 30 is composed of six sheets, in practice, the laminate 31 is, for example, 100 to 30000 sheets, preferably 5000 to 15000 sheets, and more preferably 5000. 1 to 10000 first unit films 29 and, for example, 100 to 30000 sheets, preferably 5000 to 15000 sheets, and more preferably 5000 to 10000 second unit films 30 are laminated to form. Has been.
 また、各第1単位フィルム29および各第2単位フィルム30が同一形状およびサイズに形成されている場合、複数の第1単位フィルム29および複数の第2単位フィルム30は、積層方向に投影したときに、それらの外周端縁が互いに一致するように積層される。 When each first unit film 29 and each second unit film 30 are formed in the same shape and size, when the plurality of first unit films 29 and the plurality of second unit films 30 are projected in the stacking direction. Are laminated so that their outer peripheral edges coincide with each other.
 以上によって、積層方向に延びる柱状(ブロック状)の積層体31が形成される。例えば、第1単位フィルム29および第2単位フィルム30が厚み方向から見て矩形である場合、角柱状の積層体31が形成され、第1単位フィルム29および第2単位フィルム30が厚み方向から見て円形である場合、円柱状の積層体31が形成される。 As described above, the columnar (block-shaped) stacked body 31 extending in the stacking direction is formed. For example, when the first unit film 29 and the second unit film 30 are rectangular when viewed from the thickness direction, a prismatic laminate 31 is formed, and the first unit film 29 and the second unit film 30 are viewed from the thickness direction. In the case of a circular shape, a cylindrical laminated body 31 is formed.
 積層体31の高さ(積層方向長さ)は、例えば、1cm以上、好ましくは、5cm以上、さらに好ましくは、10cm以上、例えば、200cm以下、好ましくは、100cm以下、さらに好ましくは、50cm以下である。 The height (length in the stacking direction) of the stacked body 31 is, for example, 1 cm or more, preferably 5 cm or more, more preferably 10 cm or more, for example, 200 cm or less, preferably 100 cm or less, more preferably 50 cm or less. is there.
 次いで、積層体31の側面32(積層方向に沿って延びる表面)に、積層方向に沿うように支持体3を貼り付けた後、支持体3が貼り付けられた積層体31の側面層33を、第1単位フィルム29および第2単位フィルム30が積層体31の積層方向に並列するように切断する。 Next, after the support 3 is attached to the side surface 32 (surface extending along the stacking direction) of the stacked body 31 so as to be along the stacking direction, the side layer 33 of the stacked body 31 to which the support 3 is bonded is attached. The first unit film 29 and the second unit film 30 are cut so as to be aligned in the stacking direction of the stacked body 31.
 積層体31の側面層33を切断する切断方法としては、積層体31から、支持体3に支持された側面層33を切り出せれば特に限定されない。 The cutting method for cutting the side layer 33 of the laminate 31 is not particularly limited as long as the side layer 33 supported by the support 3 can be cut out from the laminate 31.
 このような切断方法のなかでは、生産性の観点から、積層体31を円柱状に形成し、図5に示すように、切削装置40により連続的に、積層体31の側面層33を切り出す方法が好ましい。 Among such cutting methods, from the viewpoint of productivity, the laminated body 31 is formed in a cylindrical shape, and the side layer 33 of the laminated body 31 is continuously cut out by the cutting device 40 as shown in FIG. Is preferred.
 切削装置40は、回転軸41と、1対の保持部材42と、切削刃35とを備えている。 The cutting device 40 includes a rotating shaft 41, a pair of holding members 42, and a cutting blade 35.
 回転軸41は、略円柱形状であり、その軸線を中心として回転可能に構成されている。回転軸41には、長尺かつ平帯状の支持体3が巻回される。詳しくは、長尺かつ平帯状の支持体3は、粘着剤層11が基材12に対して回転軸41の径方向内側に位置するように、回転軸41に渦巻き状に巻回される。これによって、支持体3は、回転軸41を中心とする支持体ロール45として構成される。なお、基材12における粘着剤層11と反対側の表面には、剥離処理層(図示せず)が設けられている。剥離処理層による基材12の剥離力は、適宜調整される。 The rotary shaft 41 has a substantially cylindrical shape and is configured to be rotatable about the axis. A long and flat belt-like support 3 is wound around the rotary shaft 41. Specifically, the long and flat support 3 is wound around the rotary shaft 41 in a spiral shape so that the pressure-sensitive adhesive layer 11 is positioned radially inward of the rotary shaft 41 with respect to the base material 12. Thus, the support 3 is configured as a support roll 45 centered on the rotation shaft 41. In addition, the peeling process layer (not shown) is provided in the surface on the opposite side to the adhesive layer 11 in the base material 12. As shown in FIG. The peeling force of the base material 12 by a peeling process layer is adjusted suitably.
 支持体ロール45では、回転軸41の径方向において、支持体3が隣接するように配置され、粘着剤層11と基材12とが順次繰り返して配置されている。また、上記したように、基材12における粘着剤層11と反対側の表面には剥離処理層が設けられるので、回転軸41の径方向において、互いに隣り合う支持体3の間、詳しくは、径方向外側に配置される支持体3の粘着剤層11と、径方向内側に配置される支持体3の基材12との間には、剥離処理層が介在される。 In the support roll 45, the support 3 is disposed adjacent to the radial direction of the rotation shaft 41, and the adhesive layer 11 and the base material 12 are sequentially and repeatedly disposed. In addition, as described above, since the release treatment layer is provided on the surface of the base material 12 opposite to the pressure-sensitive adhesive layer 11, in the radial direction of the rotating shaft 41, between the supports 3 adjacent to each other, A release treatment layer is interposed between the pressure-sensitive adhesive layer 11 of the support 3 disposed on the radially outer side and the base material 12 of the support 3 disposed on the radially inner side.
 1対の保持部材42は、支持体ロール45に対して、支持体ロール45の径方向に間隔を空けて配置されている。1対の保持部材42のそれぞれは、略円板形状であり、その軸線を中心として回転可能に構成されている。 The pair of holding members 42 are arranged with respect to the support roll 45 at an interval in the radial direction of the support roll 45. Each of the pair of holding members 42 has a substantially disc shape, and is configured to be rotatable about its axis.
 また、1対の保持部材42は、保持部材42の軸線方向に互いに間隔を空けて配置されている。そして、1対の保持部材42は、略円柱形状の積層体31を積層方向の両側から加圧して、積層体31を保持する。 Further, the pair of holding members 42 are arranged at intervals from each other in the axial direction of the holding member 42. Then, the pair of holding members 42 press the substantially cylindrical laminated body 31 from both sides in the laminating direction to hold the laminated body 31.
 加圧条件としては、積層体31に対する積層方向の一方側(他方側)からの圧力が、例えば、0.01MPa以上、好ましくは、0.1MPa以上、例えば、10MPa以下、好ましくは、5MPa以下である。 As a pressurizing condition, the pressure from one side (the other side) in the stacking direction with respect to the stacked body 31 is, for example, 0.01 MPa or more, preferably 0.1 MPa or more, for example, 10 MPa or less, preferably 5 MPa or less. is there.
 なお、各保持部材42は、積層体31を保持した状態において、積層体31と軸線が一致するように配置される。 In addition, each holding member 42 is arranged so that the axis line of the laminated body 31 coincides with the laminated body 31 held.
 切削刃35は、1対の保持部材42に保持される積層体31の側面32に対して、積層方向に沿うように配置されており、切削刃35の先端が、積層体31の側面32に略接線方向から接触している。 The cutting blade 35 is disposed along the stacking direction with respect to the side surface 32 of the stacked body 31 held by the pair of holding members 42, and the tip of the cutting blade 35 is placed on the side surface 32 of the stacked body 31. It is in contact from a substantially tangential direction.
 また、切削刃35は、切断工程の進行により積層体31の径が小さくなるに伴って、切削刃35の先端が積層体31の側面32に接触した状態を維持したまま、積層体31の軸線に近づくように構成されている。 In addition, the cutting blade 35 maintains the state in which the tip of the cutting blade 35 is in contact with the side surface 32 of the laminated body 31 as the diameter of the laminated body 31 decreases as the cutting process proceeds. It is configured to approach.
 このような切削装置40により、積層体31の側面層33を連続的に切り出すには、まず、支持体ロール45から引き出した支持体3を、1対の保持部材42に保持される積層体31の側面32に貼り付ける。 In order to continuously cut out the side layer 33 of the laminate 31 with such a cutting device 40, first, the laminate 31 held by the pair of holding members 42 is supported on the support 3 drawn from the support roll 45. Affixed to the side surface 32.
 より詳しくは、引き出された支持体3の粘着剤層11が積層体31の側面32に接着するように、支持体3を積層体31の接線方向に向かって引き回し、積層体31における中心角が、例えば、90°~270°の範囲、好ましくは、120°~240°の範囲の積層体31の側面32に貼り付ける。 More specifically, the support 3 is drawn toward the tangential direction of the laminate 31 so that the pressure-sensitive adhesive layer 11 of the drawn support 3 adheres to the side surface 32 of the laminate 31, and the central angle in the laminate 31 is For example, it is attached to the side surface 32 of the laminate 31 in the range of 90 ° to 270 °, preferably in the range of 120 ° to 240 °.
 次いで、1対の保持部材42が、切削装置40が備えるモータなどの駆動源からの駆動力により、保持部材42の軸線方向一方(図5における紙面手前側)から見て反時計回り方向に回転駆動する。 Next, the pair of holding members 42 are rotated in the counterclockwise direction when viewed from one axial direction (the front side in FIG. 5) of the holding member 42 by a driving force from a driving source such as a motor included in the cutting device 40. To drive.
 そうすると、1対の保持部材42に保持される積層体31が、軸線を中心として回転するとともに、支持体ロール45が回転軸41の軸線を中心として従動する。 Then, the laminate 31 held by the pair of holding members 42 rotates about the axis, and the support roll 45 is driven about the axis of the rotation shaft 41.
 これによって、支持体3が貼り付けられた積層体31の側面層33が、切削刃35によって、かつら剥きのように連続的に切り出される。なお、切り出される側面層33の厚みは、積層体31を切断する際の、積層体31に対する切削刃35の配置および角度などにより適宜調整できる。 Thereby, the side layer 33 of the laminated body 31 to which the support 3 is attached is continuously cut out by the cutting blade 35 like wig peeling. In addition, the thickness of the side layer 33 to be cut out can be appropriately adjusted by the arrangement and angle of the cutting blade 35 with respect to the laminated body 31 when the laminated body 31 is cut.
 以上によって、図6に示すように、積層体31から連続的に、一方面に支持体3が貼り付けられた側面層33、つまり、一方面に支持体3が貼り付けられた採光層2が、長尺かつ平帯状に切り出される。 As described above, as shown in FIG. 6, the side layer 33 in which the support 3 is bonded to one surface continuously from the laminate 31, that is, the lighting layer 2 in which the support 3 is bonded to one surface is formed. , Cut into long and flat strips.
 次いで、採光層2の他方面に、剥離体4を貼り付ける。詳しくは、剥離体4の粘着剤層13を、採光層2の他方面に接着させる。 Next, the peeling body 4 is attached to the other surface of the daylighting layer 2. Specifically, the pressure-sensitive adhesive layer 13 of the release body 4 is adhered to the other surface of the daylighting layer 2.
 これによって、図2に示すように、支持体3および剥離体4が採光層2を挟むように、採光層2に貼り付けられ、採光フィルム1が調製される。 As a result, as shown in FIG. 2, the support 3 and the release body 4 are attached to the daylighting layer 2 so as to sandwich the daylighting layer 2, and the daylighting film 1 is prepared.
 その後、採光フィルム1を、所定の形状およびサイズにカットする。採光フィルム1をカットする方法としては、例えば、裁断、打ち抜きなどの公知の加工方法が挙げられる。
3.採光フィルムの使用態様
 次に、採光フィルム1の使用態様について説明する。
Thereafter, the daylighting film 1 is cut into a predetermined shape and size. Examples of the method for cutting the daylighting film 1 include known processing methods such as cutting and punching.
3. Next, a usage mode of the daylighting film 1 will be described.
 採光フィルム1は、図7Aおよび図7Bに示すように、家屋50などの建築物に備えられるガラス窓51の内側面に貼り付けられる。 As shown in FIGS. 7A and 7B, the daylighting film 1 is attached to the inner side surface of a glass window 51 provided in a building such as a house 50.
 採光フィルム1をガラス窓51の内側面に貼り付けるには、まず、剥離材14を剥離する。そして、採光フィルム1を第2面方向Zが上下方向に沿うように配置して、露出した粘着剤層13をガラス窓51の内側面に接着する。これによって、採光フィルム1が、ガラス窓51の内側面に貼り付けられる。 In order to attach the daylighting film 1 to the inner surface of the glass window 51, first, the release material 14 is peeled off. And the lighting film 1 is arrange | positioned so that the 2nd surface direction Z may follow an up-down direction, and the exposed adhesive layer 13 is adhere | attached on the inner surface of the glass window 51. FIG. Thus, the daylighting film 1 is attached to the inner surface of the glass window 51.
 このように採光フィルム1がガラス窓51に貼り付けられた状態において、図7Aに示すように、太陽の高度が相対的に低い場合、太陽光Lが、ガラス窓51を介して、家屋50外(屋外)から入射すると、太陽光Lのうち一部の光L1は、第1透明層20を直線的に透過して、家屋50の床部52に向かって進行する。また、太陽光Lのうち他の部分の光L2は、第2透明層21に入射した後、第2透明層21と第1空気層23との境界15に到達する。すると、他の部分の光L2は、境界15(第1空気層23)に反射されて、その進行方向が上側に向かうように変更され、第2透明層21から家屋50の天井部53に向かって進行する。その後、他の部分の光L2は、例えば、天井部53に再度反射され、家屋50内において、一部の光L1よりも、ガラス窓51が設置される壁部54から遠方に到達する。 In the state where the daylighting film 1 is attached to the glass window 51 as described above, as shown in FIG. 7A, when the altitude of the sun is relatively low, the sunlight L is outside the house 50 through the glass window 51. When incident from (outdoors), a part of the light L1 in the sunlight L passes through the first transparent layer 20 linearly and travels toward the floor 52 of the house 50. In addition, light L <b> 2 of another part of sunlight L enters the second transparent layer 21 and then reaches the boundary 15 between the second transparent layer 21 and the first air layer 23. Then, the light L2 of the other part is reflected by the boundary 15 (first air layer 23), and the traveling direction thereof is changed so as to be directed upward, from the second transparent layer 21 toward the ceiling portion 53 of the house 50. And proceed. Then, the light L2 of another part is reflected again by the ceiling part 53, for example, and reaches | attains far from the wall part 54 in which the glass window 51 is installed in the house 50 rather than some light L1.
 また、図7Bに示すように、太陽の高度が相対的に高い場合、太陽光Lが、ガラス窓51を介して、家屋50外(屋外)から入射すると、太陽光Lのうち一部の光L3は、第2透明層21に入射した後、境界15(第1空気層23)に反射されて、第2透明層21内を上側に向かうように進行し、第2透明層21と第2空気層24との境界16に到達する。すると、一部の光L3は、境界16(第2空気層24)に反射されて、下方に向かって進行し、第2透明層21から家屋50の床部52に向かって進行する。また、太陽光Lのうち他の部分の光L4は、第1透明層20に入射した後、第1透明層20と第2空気層24との境界17に到達する。すると、他の部分の光L4は、境界17(第2空気層24)に反射されて、その進行方向が上側に向かうように変更され、第1透明層20から家屋50の天井部53に向かって進行する。その後、他の部分の光L4は、例えば、天井部53に再度反射され、家屋50内において、一部の光L3よりも、壁部54から遠方に到達する。 In addition, as shown in FIG. 7B, when the solar altitude is relatively high, when sunlight L enters from outside the house 50 (outdoors) through the glass window 51, some of the light in the sunlight L L3 is incident on the second transparent layer 21, is reflected by the boundary 15 (first air layer 23), travels upward in the second transparent layer 21, and the second transparent layer 21 and the second transparent layer 21 The boundary 16 with the air layer 24 is reached. Then, a part of the light L3 is reflected by the boundary 16 (second air layer 24), travels downward, and travels from the second transparent layer 21 toward the floor 52 of the house 50. In addition, the light L4 of the other part of the sunlight L enters the first transparent layer 20 and then reaches the boundary 17 between the first transparent layer 20 and the second air layer 24. Then, the light L4 of the other part is reflected by the boundary 17 (second air layer 24), and the traveling direction thereof is changed so as to be directed upward, from the first transparent layer 20 toward the ceiling portion 53 of the house 50. And proceed. Then, the light L4 of another part is reflected again by the ceiling part 53, for example, and reaches | attains far from the wall part 54 rather than some light L3 in the house 50. FIG.
 このような採光フィルム1は、図7Aおよび図7Bに示すように、複数の空気層10を備えている。そのため、採光フィルム1を、第2面方向Zが上下方向に沿うように、家屋50のガラス窓51に貼り付ければ、複数の空気層10が、屋外からの太陽光Lを上方に向かって反射して採光する。 Such a daylighting film 1 includes a plurality of air layers 10 as shown in FIGS. 7A and 7B. Therefore, if the lighting film 1 is affixed to the glass window 51 of the house 50 so that the second surface direction Z is along the vertical direction, the plurality of air layers 10 reflect the sunlight L from the outdoors upward. And daylight.
 複数の空気層10は、図2に示すように、第1の間隔S1を隔てて互いに隣り合うように配置される第1空気層23および第2空気層24と、第2の間隔S2を隔てて互いに隣り合うように配置される第1空気層23および第2空気層24とを含んでいる。 As shown in FIG. 2, the plurality of air layers 10 are separated from each other by the first air layer 23 and the second air layer 24 that are arranged adjacent to each other with a first interval S1 therebetween. The first air layer 23 and the second air layer 24 are arranged so as to be adjacent to each other.
 そのため、太陽の高度が変化しても、その太陽光の採光フィルム1に対する入射角度に適した間隔を隔てて隣り合う空気層10が、入射光を反射して、上方に向かうように進行させる。 Therefore, even if the altitude of the sun changes, the adjacent air layer 10 with an interval suitable for the incident angle of the sunlight with respect to the daylighting film 1 reflects the incident light and travels upward.
 具体的には、太陽の高度が相対的に低い場合には、図7Aに示すように、第1空気層23が、太陽光Lの他の部分の光L2を反射し、太陽の高度が相対的に高い場合には、図7Bに示すように、第2空気層24が、太陽光Lの他の部分の光L4を反射する。 Specifically, when the altitude of the sun is relatively low, as shown in FIG. 7A, the first air layer 23 reflects the light L2 of the other part of the sunlight L, and the altitude of the sun is relative. If it is high, the second air layer 24 reflects the light L4 of the other part of the sunlight L as shown in FIG. 7B.
 その結果、太陽の高度が変化しても、効率よく安定して採光することができ、室内全体の明るさの向上を図ることができる。 As a result, even if the altitude of the sun changes, the light can be efficiently and stably lit, and the brightness of the entire room can be improved.
 また、第1の間隔S1は、第2の間隔S2に対して、1.25倍~10倍である。そのため、太陽の高度が大きく変化しても、入射光(太陽光L)を確実に反射して、上方に向かうように進行させることができる。
4.第2実施形態
 次に、図8を参照して、本発明の採光フィルム1の第2実施形態について説明する。なお、第2実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
Further, the first interval S1 is 1.25 to 10 times the second interval S2. Therefore, even if the altitude of the sun changes greatly, the incident light (sunlight L) can be reliably reflected and advanced upward.
4). Second Embodiment Next, a second embodiment of the daylighting film 1 of the present invention will be described with reference to FIG. In the second embodiment, the same reference numerals are given to the same members as those in the first embodiment, and the description thereof is omitted.
 第1実施形態では、図2に示すように、複数の空気層10は、第1の間隔S1を隔てて互いに隣り合う空気層10と、第2の間隔S2を隔てて互いに隣り合う空気層10とを含んでいる。しかし、複数の空気層10は、第1の間隔S1を隔てて互いに隣り合う空気層10と、第1の間隔S1と異なる間隔を隔てて隣り合う空気層10とを少なくとも含んでいれば、特に限定されない。 In the first embodiment, as shown in FIG. 2, the plurality of air layers 10 include an air layer 10 adjacent to each other with a first interval S <b> 1 and an air layer 10 adjacent to each other with a second interval S <b> 2. Including. However, if the plurality of air layers 10 include at least the air layers 10 that are adjacent to each other with a first interval S1 and the air layers 10 that are adjacent to each other with a different interval from the first interval S1, It is not limited.
 第2実施形態では、図8に示すように、複数の空気層10が、第1の間隔S1を隔てて互いに隣り合う空気層10および第2の間隔S2を隔てて互いに隣り合う空気層10に加え、第3の間隔S3を隔てて互いに隣り合う空気層10を含んでいる。 In the second embodiment, as shown in FIG. 8, a plurality of air layers 10 are formed into air layers 10 that are adjacent to each other with a first interval S <b> 1 and air layers 10 that are adjacent to each other with a second interval S <b> 2. In addition, it includes air layers 10 that are adjacent to each other with a third interval S3.
 このような第2実施形態に係る複数の透明層9は、複数の第1透明層20および複数の第2透明層21に加え、複数の第3透明層56を備えている。 The plurality of transparent layers 9 according to the second embodiment includes a plurality of third transparent layers 56 in addition to the plurality of first transparent layers 20 and the plurality of second transparent layers 21.
 第1透明層20、第2透明層21および第3透明層56は、図8に示すように、第2面方向Zに互いに僅かな間隔(空気層10)を隔てて配置されており、第2面方向Zの一方から他方に向かって、順次繰り返して配置されている。 As shown in FIG. 8, the first transparent layer 20, the second transparent layer 21, and the third transparent layer 56 are arranged with a slight space (the air layer 10) therebetween in the second surface direction Z. They are sequentially and repeatedly arranged from one side of the two-plane direction Z to the other side.
 第3透明層56の第2面方向Zの寸法は、例えば、25μm以上、好ましくは、50μm以上、例えば、500μm以下、好ましくは、300μm以下である。第3透明層56の第2面方向Zの寸法は、第2透明層21の第2面方向Zの寸法に対して、例えば、1.25倍以上、採光の安定性の観点から好ましくは、1.5倍以上、例えば、10倍以下、好ましくは、4倍以下である。また、第3透明層56の厚み方向Xの寸法は、第1透明層20の厚み方向Xの寸法と同様である。 The dimension in the second surface direction Z of the third transparent layer 56 is, for example, 25 μm or more, preferably 50 μm or more, for example, 500 μm or less, preferably 300 μm or less. The dimension in the second surface direction Z of the third transparent layer 56 is, for example, 1.25 times or more the dimension in the second surface direction Z of the second transparent layer 21, preferably from the viewpoint of the stability of lighting. 1.5 times or more, for example, 10 times or less, preferably 4 times or less. The dimension in the thickness direction X of the third transparent layer 56 is the same as the dimension in the thickness direction X of the first transparent layer 20.
 また、第3透明層56の第2面方向Zの寸法は、第3透明層56の厚み方向Xの寸法100%に対して、例えば、10%以上、採光性の観点から好ましくは、30%以上、例えば、400%以下、採光性の観点から好ましくは、200%以下である。 Further, the dimension in the second surface direction Z of the third transparent layer 56 is, for example, 10% or more with respect to 100% in the thickness direction X of the third transparent layer 56, and preferably 30% from the viewpoint of lighting. As described above, for example, 400% or less, and preferably 200% or less from the viewpoint of daylighting.
 また、第2実施形態に係る複数の空気層10は、複数の第1空気層23および複数の第2空気層24に加え、複数の第3空気層57を備えている。 Further, the plurality of air layers 10 according to the second embodiment include a plurality of third air layers 57 in addition to the plurality of first air layers 23 and the plurality of second air layers 24.
 第3空気層57は、第3透明層56と、その第3透明層56に対して、第2面方向Zの他方に間隔を隔てて隣り合う第1透明層20との間の隙間として形成されている。つまり、第3空気層57は、第3透明層56の第2面方向Zの他方面と、第1透明層20の第2面方向Zの一方面とにより区画されている。 The third air layer 57 is formed as a gap between the third transparent layer 56 and the first transparent layer 20 that is adjacent to the third transparent layer 56 at the other side in the second surface direction Z with a gap. Has been. That is, the third air layer 57 is partitioned by the other surface of the third transparent layer 56 in the second surface direction Z and the one surface of the first transparent layer 20 in the second surface direction Z.
 そのため、第3空気層57は、採光層2の第1面方向Yの全体にわたって延びており、第3空気層57と、透明層9(第1透明層20および第3透明層56のそれぞれ)との境界は、第1面方向Yおよび厚み方向Xに沿っている。 Therefore, the 3rd air layer 57 is extended over the whole 1st surface direction Y of the lighting layer 2, and the 3rd air layer 57 and the transparent layer 9 (each of the 1st transparent layer 20 and the 3rd transparent layer 56). Is along the first surface direction Y and the thickness direction X.
 また、第3空気層57の第2面方向Zの寸法および厚み方向Xの寸法のそれぞれは、第1空気層23の第2面方向Zの寸法および厚み方向Xの寸法のそれぞれと同様である。 The dimensions of the third air layer 57 in the second surface direction Z and the dimensions in the thickness direction X are the same as the dimensions of the first air layer 23 in the second surface direction Z and the dimensions in the thickness direction X, respectively. .
 また、第3空気層57と、その第3空気層57に対して、第2面方向Zの一方側に配置される第2空気層24とは、第3透明層56を第2面方向Zに挟んでおり、第3の間隔S3を隔てて互いに隣り合っている。 Further, the third air layer 57 and the second air layer 24 disposed on one side in the second surface direction Z with respect to the third air layer 57 include the third transparent layer 56 in the second surface direction Z. And are adjacent to each other with a third interval S3.
 第3の間隔S3の第2面方向Zの寸法は、例えば、25μm以上、好ましくは、50μm以上、例えば、500μm以下、好ましくは、300μm以下である。なお、本実施形態(第1実施形態~第5実施形態)では、第3の間隔S3の第2面方向Zの寸法は、第3透明層56の第2面方向Zの寸法と同一である。 The dimension in the second surface direction Z of the third interval S3 is, for example, 25 μm or more, preferably 50 μm or more, for example, 500 μm or less, preferably 300 μm or less. In the present embodiment (first to fifth embodiments), the dimension of the third interval S3 in the second surface direction Z is the same as the dimension of the third transparent layer 56 in the second surface direction Z. .
 また、第3の間隔S3は、第2の間隔S2に対して、例えば、1.25倍以上、採光の安定性の観点から好ましくは、1.5倍以上、例えば、10倍以下、好ましくは、4倍以下である。 Further, the third interval S3 is, for example, 1.25 times or more with respect to the second interval S2, preferably 1.5 times or more, for example, 10 times or less, preferably from the viewpoint of lighting stability. 4 times or less.
 また、第3空気層57と、その第3空気層57に対して、第2面方向Zの他方側に配置される第1空気層23とは、第1透明層20を第2面方向Zに挟んでおり、第1の間隔S1を隔てて互いに隣り合うように配置されている。 Further, the third air layer 57 and the first air layer 23 disposed on the other side in the second surface direction Z with respect to the third air layer 57 include the first transparent layer 20 in the second surface direction Z. And arranged adjacent to each other with a first interval S1.
 つまり、複数の空気層10は、第1の間隔S1の間隔を隔てて互いに隣り合う第1空気層23および第3空気層57と、第2の間隔S2の間隔を隔てて互いに隣り合う第1空気層23および第2空気層24と、第3の間隔S3の間隔を隔てて互いに隣り合う第2空気層24および第3空気層57とを含んでいる。 In other words, the plurality of air layers 10 are adjacent to each other with the first air layer 23 and the third air layer 57 adjacent to each other at the first interval S1, and at the first interval adjacent to each other at the second interval S2. It includes an air layer 23 and a second air layer 24, and a second air layer 24 and a third air layer 57 that are adjacent to each other with an interval of a third interval S3.
 これにより、採光層2において、3つの透明層9および3つの空気層10からなるパターンP2が、第2面方向Zに順次繰り返して配置されている。パターンP2は、詳しくは、第1透明層20、第1空気層23、第2透明層21、第2空気層24、第3透明層56および第3空気層57が、第2面方向Zの一方から他方に向かって順次配置されている。 Thereby, in the daylighting layer 2, the pattern P2 including the three transparent layers 9 and the three air layers 10 is sequentially and repeatedly arranged in the second surface direction Z. Specifically, the pattern P2 includes the first transparent layer 20, the first air layer 23, the second transparent layer 21, the second air layer 24, the third transparent layer 56, and the third air layer 57 in the second surface direction Z. They are sequentially arranged from one to the other.
 第3透明層56および第3空気層57を備える採光フィルム1を製造するには、まず、第3空気層57に対応する第3単位フィルム(図示せず)を、第1単位フィルム29と同様の方法により、複数枚(例えば、100枚~30000枚)調製する。 In order to manufacture the daylighting film 1 including the third transparent layer 56 and the third air layer 57, first, a third unit film (not shown) corresponding to the third air layer 57 is the same as the first unit film 29. A plurality of sheets (for example, 100 to 30000 sheets) are prepared by the above method.
 次いで、複数の第1単位フィルム29、複数の第2単位フィルム30、および、複数の第3単位フィルム(図示せず)を、粘着剤層を挟むことなく、厚み方向に順次積層して、積層体31を調製する。 Next, a plurality of first unit films 29, a plurality of second unit films 30, and a plurality of third unit films (not shown) are sequentially laminated in the thickness direction without sandwiching an adhesive layer, and laminated. Body 31 is prepared.
 そして、図4および図5に示すように、例えば、第1実施形態と同様に、積層体31から、一方面に支持体3が貼り付けられた採光層2を長尺かつ平帯状に切り出し、採光層2の他方面に、剥離体4を貼り付ける。これによって、図8に示すように、第3透明層56および第3空気層57を備える採光フィルム1が調製される。 Then, as shown in FIGS. 4 and 5, for example, as in the first embodiment, the daylighting layer 2 with the support 3 attached to one surface is cut out into a long and flat strip shape from the laminate 31. A peeler 4 is attached to the other surface of the daylighting layer 2. Thereby, as shown in FIG. 8, the lighting film 1 provided with the 3rd transparent layer 56 and the 3rd air layer 57 is prepared.
 第2実施形態によれば、複数の空気層10が、第1の間隔S1の間隔を隔てて互いに隣り合う第1空気層23および第3空気層57と、第2の間隔S2の間隔を隔てて互いに隣り合う第1空気層23および第2空気層24と、第3の間隔S3の間隔を隔てて互いに隣り合う第2空気層24および第3空気層57とを含んでいる。 According to the second embodiment, the plurality of air layers 10 are spaced apart from each other by the first air layer 23 and the third air layer 57 that are adjacent to each other with the first space S1 therebetween. The first air layer 23 and the second air layer 24 that are adjacent to each other, and the second air layer 24 and the third air layer 57 that are adjacent to each other with an interval of the third interval S3 included.
 そのため、太陽の高度が変化しても、その太陽光の採光フィルム1に対する入射角度に適した間隔を隔てて隣り合う空気層10が、入射光をより一層確実に反射して、上方に向かうように進行させる。その結果、太陽の高度が変化しても、より一層効率よく安定して採光することができ、室内全体の明るさの向上を確実に図ることができる。 Therefore, even if the altitude of the sun changes, the adjacent air layer 10 with an interval suitable for the incident angle of the sunlight with respect to the daylighting film 1 reflects the incident light more reliably and moves upward. Proceed to. As a result, even if the altitude of the sun changes, it is possible to perform daylighting more efficiently and stably, and the brightness of the entire room can be reliably improved.
 なお、第2実施形態では、互いに隣り合う第1空気層23と第3空気層57との間の間隔を第1の間隔S1とし、互いに隣り合う第1空気層23と第2空気層24との間の間隔を第2の間隔S2とし、互いに隣り合う第2空気層24と第3空気層57との間の間隔を第3の間隔S3とするが、これに限定されず、互いに隣り合う空気層10のいずれの間隔を第1の間隔としてもよい。 In the second embodiment, the interval between the first air layer 23 and the third air layer 57 adjacent to each other is defined as a first interval S1, and the first air layer 23 and the second air layer 24 adjacent to each other are The interval between the second air layer 24 and the third air layer 57 adjacent to each other is defined as a third interval S3. Any interval of the air layer 10 may be the first interval.
 例えば、互いに隣り合う第1空気層23と第2空気層24との間の間隔を第1の間隔とする場合、互いに隣り合う第1空気層23と第3空気層57との間の間隔、および、互いに隣り合う第2空気層24と第3空気層57との間の間隔のいずれか一方が、第2の間隔に対応し、他方が、第3の間隔に対応する。 For example, when the interval between the first air layer 23 and the second air layer 24 adjacent to each other is the first interval, the interval between the first air layer 23 and the third air layer 57 adjacent to each other, One of the intervals between the second air layer 24 and the third air layer 57 adjacent to each other corresponds to the second interval, and the other corresponds to the third interval.
 また、互いに隣り合う第2空気層24と第3空気層57との間の間隔を第1の間隔とする場合、互いに隣り合う第1空気層23と第3空気層57との間の間隔、および、互いに隣り合う第1空気層23と第2空気層24との間の間隔のいずれか一方が、第2の間隔に対応し、他方が、第3の間隔に対応する。
5.第3実施形態
 次に、図9を参照して、本発明の採光フィルム1の第3実施形態について説明する。なお、第3実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
In addition, when the interval between the second air layer 24 and the third air layer 57 adjacent to each other is the first interval, the interval between the first air layer 23 and the third air layer 57 adjacent to each other, One of the intervals between the first air layer 23 and the second air layer 24 adjacent to each other corresponds to the second interval, and the other corresponds to the third interval.
5. 3rd Embodiment Next, with reference to FIG. 9, 3rd Embodiment of the daylighting film 1 of this invention is described. In the third embodiment, the same reference numerals are given to the same members as those in the first embodiment, and the description thereof is omitted.
 第1実施形態では、図2に示すように、採光層2において、第1透明層20、第1空気層23、第2透明層21および第2空気層24からなるパターンP1が、第2面方向Zに順次繰り返して配置されているが、第1透明層20および第2透明層21の配置は、特に限定されない。 In the first embodiment, as illustrated in FIG. 2, in the daylighting layer 2, the pattern P <b> 1 including the first transparent layer 20, the first air layer 23, the second transparent layer 21, and the second air layer 24 is formed on the second surface. Although it arrange | positions sequentially and repeatedly in the direction Z, arrangement | positioning of the 1st transparent layer 20 and the 2nd transparent layer 21 is not specifically limited.
 例えば、第3実施形態では、図9に示すように、採光層2が、第2面方向Zに互いに空気層10を隔てて並列配置される複数の第1透明層20からなるユニットU1と、第2面方向Zに互いに空気層10を隔てて並列配置される複数の第2透明層21からなるユニットU2とを備えている。そして、ユニットU1とユニットU2とは、第2面方向Zに並ぶように配置されている。 For example, in the third embodiment, as shown in FIG. 9, the daylighting layer 2 includes a unit U1 including a plurality of first transparent layers 20 arranged in parallel in the second surface direction Z with the air layer 10 therebetween. And a unit U2 composed of a plurality of second transparent layers 21 arranged in parallel in the second surface direction Z with the air layer 10 therebetween. The unit U1 and the unit U2 are arranged so as to be aligned in the second surface direction Z.
 ユニットU1およびユニットU2を備える採光フィルム1を調製するには、図3に示すように、複数の第1単位フィルム29を、粘着剤層を挟むことなく、厚み方向に積層して、第1積層体(図示せず)を調製するとともに、複数の第2単位フィルム30を、粘着剤層を挟むことなく、厚み方向に積層して、第2積層体(図示せず)を調製する。 In order to prepare the daylighting film 1 including the unit U1 and the unit U2, as shown in FIG. 3, a plurality of first unit films 29 are laminated in the thickness direction without sandwiching an adhesive layer. A body (not shown) is prepared, and a plurality of second unit films 30 are laminated in the thickness direction without sandwiching the pressure-sensitive adhesive layer to prepare a second laminate (not shown).
 そして、第1積層体(図示せず)および第2積層体(図示せず)を、それらの積層方向に積層して、積層体31を構成する。 And the 1st laminated body (not shown) and the 2nd laminated body (not shown) are laminated | stacked in those lamination directions, and the laminated body 31 is comprised.
 次いで、図4および図5に示すように、例えば、第1実施形態と同様に、積層体31から、一方面に支持体3が貼り付けられた採光層2を、長尺かつ平帯状に切り出し、採光層2の他方面に、剥離体4を貼り付ける。これによって、図9に示すように、第3透明層56および第3空気層57を備える採光フィルム1が調製される。 Next, as shown in FIGS. 4 and 5, for example, as in the first embodiment, the daylighting layer 2 with the support 3 attached to one surface is cut out in a long and flat strip shape from the laminate 31. The peeler 4 is attached to the other surface of the daylighting layer 2. Thereby, as shown in FIG. 9, the lighting film 1 provided with the 3rd transparent layer 56 and the 3rd air layer 57 is prepared.
 このような第3実施形態によっても、上記した第1実施形態と同様の作用効果を奏することができる。
6.第4実施形態および第5実施形態
 次に、図10および図11を参照して、本発明の採光フィルム1の第4実施形態および第5実施形態について説明する。なお、第4実施形態および第5実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
Also according to the third embodiment, it is possible to achieve the same operational effects as those of the first embodiment.
6). 4th Embodiment and 5th Embodiment Next, with reference to FIG. 10 and FIG. 11, 4th Embodiment and 5th Embodiment of the lighting film 1 of this invention are described. In the fourth embodiment and the fifth embodiment, members similar to those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 第1実施形態では、図2に示すように、採光フィルム1は、複数の空気層10を備えているが、第4実施形態では、図10に示すように、採光フィルム1は、複数の空気層10に代えて、反射層の一例としての複数の低屈折層60を備えている。 In the first embodiment, as shown in FIG. 2, the daylighting film 1 includes a plurality of air layers 10. In the fourth embodiment, as shown in FIG. 10, the daylighting film 1 includes a plurality of air layers 10. Instead of the layer 10, a plurality of low refractive layers 60 as an example of a reflective layer are provided.
 なお、第4実施形態では、採光フィルム1は、透明層9および低屈折層60のみからなり、透明層9と低屈折層60とは、第2面方向Zにおいて、連続するように順次繰り返して配置されている。 In the fourth embodiment, the daylighting film 1 includes only the transparent layer 9 and the low refraction layer 60, and the transparent layer 9 and the low refraction layer 60 are sequentially and repeatedly repeated in the second surface direction Z. Has been placed.
 複数の低屈折層60は、第2面方向Zに互いに間隔(透明層9)を隔てて並列配置されている。複数の低屈折層60のそれぞれは、複数の透明層9において互いに隣り合う透明層9の間に配置され、採光層2の第1面方向Yの全体にわたって延びる薄膜状に形成されている。また、低屈折層60の第2面方向Zの一方面および他方面は、厚み方向Xに沿っている。 The plurality of low-refractive layers 60 are arranged in parallel in the second surface direction Z with an interval (transparent layer 9) therebetween. Each of the plurality of low refractive layers 60 is disposed between the transparent layers 9 adjacent to each other in the plurality of transparent layers 9, and is formed in a thin film shape that extends over the entire first surface direction Y of the daylighting layer 2. In addition, one surface and the other surface of the low refractive layer 60 in the second surface direction Z are along the thickness direction X.
 低屈折層60は、透明層9よりも屈折率が小さくなるように構成されている。低屈折層60の相対屈折率は、空気の屈折率に対して、例えば、1.20以上、好ましくは、1.34以上、例えば、1.90以下、好ましくは、1.80以下であり、透明層9の屈折率に対して、例えば、0.05以上、好ましくは、0.1以上、例えば、0.5以下、好ましくは、0.3以下である。なお、屈折率は、プリズムカプラにより測定することができる。 The low refractive layer 60 is configured to have a refractive index smaller than that of the transparent layer 9. The relative refractive index of the low refractive layer 60 is, for example, 1.20 or more, preferably 1.34 or more, for example 1.90 or less, preferably 1.80 or less with respect to the refractive index of air. For example, the refractive index of the transparent layer 9 is 0.05 or more, preferably 0.1 or more, such as 0.5 or less, preferably 0.3 or less. The refractive index can be measured with a prism coupler.
 低屈折層60は、加工の容易性の観点から好ましくは、透明の樹脂材料から形成される。透明の樹脂材料としては、例えば、フッ素系樹脂、シリコーン樹脂などが挙げられる。 The low refractive layer 60 is preferably formed from a transparent resin material from the viewpoint of ease of processing. Examples of the transparent resin material include a fluorine-based resin and a silicone resin.
 このような透明の樹脂材料のなかでは、好ましくは、フッ素系樹脂が挙げられる。このような透明の樹脂材料は、単独で使用してもよく、2種以上併用することもできる。 Among such transparent resin materials, fluorine resin is preferable. Such transparent resin materials may be used alone or in combination of two or more.
 このような低屈折層60の第2面方向Zの寸法は、例えば、0.1μm以上、好ましくは、1μm以上、例えば、50μm以下、好ましくは、10μm以下である。 The dimension of the low refractive layer 60 in the second surface direction Z is, for example, 0.1 μm or more, preferably 1 μm or more, for example, 50 μm or less, preferably 10 μm or less.
 また、低屈折層60の光透過率は、低屈折層60の厚みが100μmの場合に、波長440~600nmの光に対して、例えば、60%以上、好ましくは、80%以上、さらに好ましくは、90%以上であり、例えば、98%以下である。 The light transmittance of the low refractive layer 60 is, for example, 60% or more, preferably 80% or more, more preferably, for light having a wavelength of 440 to 600 nm when the thickness of the low refractive layer 60 is 100 μm. , 90% or more, for example, 98% or less.
 また、複数の低屈折層60のうち、第1透明層20を挟んで隣り合う低屈折層60は、第1の間隔S1を隔てて配置されており、第2透明層21を挟んで隣り合う低屈折層60は、第2の間隔S2を隔てて配置されている。 In addition, among the plurality of low refractive layers 60, the low refractive layers 60 adjacent to each other with the first transparent layer 20 interposed therebetween are arranged with a first interval S1 therebetween, and are adjacent to each other with the second transparent layer 21 interposed therebetween. The low refractive layer 60 is disposed with a second interval S2.
 このような採光フィルム1を製造するには、図11に示すように、第1透明層20および低屈折層60を備える第1単位フィルム29と、第2透明層21および低屈折層60を備える第2単位フィルム30とを、それぞれ複数枚調製する。 In order to manufacture such a daylighting film 1, as shown in FIG. 11, the first unit film 29 including the first transparent layer 20 and the low refractive layer 60, the second transparent layer 21, and the low refractive layer 60 are provided. A plurality of second unit films 30 are prepared.
 このような第1単位フィルム29を調製する方法としては、例えば、第1透明層20の表面(厚み方向の一方面)に低屈折層60を配置して、第1加工シートを調製した後、その加工シートから所定の形状の第1単位フィルム29を切り出す方法や、所定の形状に加工した第1透明層20の表面に低屈折層60を配置して、第1単位フィルム29とする方法などが挙げられる。また、第2単位フィルム30を調製する方法としては、第1透明層20を第2透明層21に変更する点以外は、第1単位フィルム29を調製する方法と同様の方法が挙げられる。 As a method for preparing such a first unit film 29, for example, after arranging the low refraction layer 60 on the surface of the first transparent layer 20 (one surface in the thickness direction) and preparing the first processed sheet, A method of cutting out the first unit film 29 having a predetermined shape from the processed sheet, a method of forming the first unit film 29 by disposing the low refractive layer 60 on the surface of the first transparent layer 20 processed into a predetermined shape, etc. Is mentioned. Moreover, as a method for preparing the second unit film 30, the same method as the method for preparing the first unit film 29 can be used except that the first transparent layer 20 is changed to the second transparent layer 21.
 第1透明層20(または第2透明層21)の表面に低屈折層60を配置する方法としては、例えば、公知の成膜方法により、第1透明層20(または第2透明層21)の表面に低屈折層60を成膜する方法や、共押し出し法により、第1透明層20(または第2透明層21)と低屈折層60とを同時に形成する方法が挙げられる。 As a method of disposing the low refractive layer 60 on the surface of the first transparent layer 20 (or the second transparent layer 21), for example, a known film forming method is used to form the first transparent layer 20 (or the second transparent layer 21). Examples thereof include a method of forming the low refractive layer 60 on the surface and a method of simultaneously forming the first transparent layer 20 (or the second transparent layer 21) and the low refractive layer 60 by a coextrusion method.
 このような第1透明層20(または第2透明層21)の表面に低屈折層60を配置する方法のなかでは、好ましくは、公知の成膜方法が挙げられ、より具体的には、ドライプロセス、ウェットプロセスなどが挙げられ、好ましくは、ウェットプロセスが挙げられる。 Among such methods for disposing the low refractive layer 60 on the surface of the first transparent layer 20 (or the second transparent layer 21), a known film formation method is preferably used. A process, a wet process, etc. are mentioned, Preferably a wet process is mentioned.
 次いで、複数の第1単位フィルム29および複数の第2単位フィルム30を、第1単位フィルム29と第2単位フィルム30とが交互に重なるように、それらの厚み方向に積層して、積層体31を調製する。 Next, a plurality of first unit films 29 and a plurality of second unit films 30 are laminated in the thickness direction so that the first unit films 29 and the second unit films 30 are alternately overlapped, and a laminate 31 is obtained. To prepare.
 このような積層体31では、積層方向に互いに隣接する第1単位フィルム29および第2単位フィルム30の間において、接着剤層を設けてもよく、また、接着剤層を設けなくてもよい。積層方向に互いに隣接する第1単位フィルム29および第2単位フィルム30の間に接着剤層を設けない場合、積層体31は、熱圧着(加熱プレス)される。 In such a laminate 31, an adhesive layer may be provided between the first unit film 29 and the second unit film 30 adjacent to each other in the stacking direction, or an adhesive layer may not be provided. When an adhesive layer is not provided between the first unit film 29 and the second unit film 30 that are adjacent to each other in the stacking direction, the stacked body 31 is subjected to thermocompression bonding (heating press).
 以上によって、積層方向に延びる柱状(ブロック状)の積層体31が形成される。 As described above, the columnar (block-shaped) stacked body 31 extending in the stacking direction is formed.
 次いで、図4および図5に示すように、第1実施形態と同様にして、積層体31の側面32(積層方向に沿って延びる表面)に、積層方向に沿うように支持体3を貼り付けた後、支持体3が貼り付けられた積層体31の側面層33を、第1単位フィルム29および第2単位フィルム30が積層体31の積層方向に並列するように切断する。 Next, as shown in FIGS. 4 and 5, in the same manner as in the first embodiment, the support body 3 is attached to the side surface 32 (surface extending along the stacking direction) of the stack body 31 along the stacking direction. After that, the side layer 33 of the laminate 31 to which the support 3 is attached is cut so that the first unit film 29 and the second unit film 30 are arranged in parallel in the lamination direction of the laminate 31.
 これによって、一方面に支持体3が貼り付けられた採光層2が、積層体31から長尺かつ平帯状に切り出される。続いて、採光層2の他方面に剥離体4を貼り付ける。 Thus, the daylighting layer 2 having the support 3 attached to one surface is cut out from the laminate 31 in a long and flat band shape. Subsequently, the peeling body 4 is attached to the other surface of the daylighting layer 2.
 以上によって、図10に示すように、採光フィルム1が調製される。 Thus, the daylighting film 1 is prepared as shown in FIG.
 第4実施形態によれば、複数の低屈折層60が、第1の間隔S1の間隔を隔てて互いに隣り合う低屈折層60と、第2の間隔S2の間隔を隔てて互いに隣り合う低屈折層60とを含んでいる。 According to the fourth embodiment, the plurality of low-refractive layers 60 are adjacent to each other with a low-refractive layer 60 adjacent to each other with an interval of the first interval S1, and to the low-refractive layers adjacent to each other with an interval of the second interval S2. Layer 60.
 そのため、太陽の高度が変化しても、その太陽光の採光フィルム1に対する入射角度に適した間隔を隔てて隣り合う低屈折層60が、入射光を反射して、上方に向かうように進行させる。その結果、このような第4実施形態においても、上記した第1実施形態と同様の作用効果を奏することができる。 Therefore, even if the altitude of the sun changes, the adjacent low-refractive layer 60 with an interval suitable for the incident angle of the sunlight with respect to the daylighting film 1 reflects the incident light and travels upward. . As a result, also in the fourth embodiment, the same operational effects as those of the first embodiment described above can be achieved.
 また、第5実施形態では、図10に示すように、採光フィルム1は、複数の空気層10に代えて、反射層の一例としての複数の金属層61を備えている。なお、第5実施形態では、採光フィルム1は、透明層9および金属層61のみからなり、透明層9と金属層61とは、第2面方向Zにおいて、連続するように順次繰り返して配置されている。 In the fifth embodiment, as shown in FIG. 10, the daylighting film 1 includes a plurality of metal layers 61 as an example of a reflective layer instead of the plurality of air layers 10. In the fifth embodiment, the daylighting film 1 includes only the transparent layer 9 and the metal layer 61, and the transparent layer 9 and the metal layer 61 are sequentially and repeatedly arranged in the second surface direction Z so as to be continuous. ing.
 複数の金属層61は、第2面方向Zに互いに間隔(透明層9)を隔てて並列配置されている。複数の金属層61のそれぞれは、複数の透明層9において互いに隣り合う透明層9の間に配置され、採光層2の第1面方向Yの全体にわたって延びる薄膜状に形成されている。また、金属層61の第2面方向Zの一方面および他方面は、厚み方向Xに沿っている。 The plurality of metal layers 61 are arranged in parallel at intervals (transparent layer 9) in the second surface direction Z. Each of the plurality of metal layers 61 is disposed between the transparent layers 9 adjacent to each other in the plurality of transparent layers 9, and is formed in a thin film shape that extends over the entire first surface direction Y of the daylighting layer 2. In addition, one surface and the other surface of the metal layer 61 in the second surface direction Z are along the thickness direction X.
 金属層61は、光を反射するように構成されており、金属材料から薄膜状に形成されている。金属層61を形成する金属材料としては、例えば、金属元素(例えば、金、銀、銅、鉄、アルミニウム、クロム、ニッケルなど)や、複数の金属元素からなる合金などが挙げられ、好ましくは、銀、アルミニウムおよびそれらを含有する合金が挙げられ、さらに好ましくは、アルミニウムが挙げられる。このような金属材料は、単独の薄膜として使用してもよく、2種以上の薄膜を積層することもできる。 The metal layer 61 is configured to reflect light and is formed in a thin film shape from a metal material. Examples of the metal material forming the metal layer 61 include metal elements (for example, gold, silver, copper, iron, aluminum, chromium, nickel, etc.), alloys made of a plurality of metal elements, and the like. Silver, aluminum, and an alloy containing them are mentioned, More preferably, aluminum is mentioned. Such a metal material may be used as a single thin film, or two or more thin films may be laminated.
 このような金属層61の第2面方向Zの寸法は、光が十分に反射可能であれば、特に制限されないが、例えば、20nm以上、好ましくは、30nm以上、例えば、10μm(10nm)以下、好ましくは、1μm(10nm)以下、さらに好ましくは、300nm以下である。 The dimension in the second surface direction Z of the metal layer 61 is not particularly limited as long as light can be sufficiently reflected, but is, for example, 20 nm or more, preferably 30 nm or more, for example, 10 μm (10 4 nm). Hereinafter, it is preferably 1 μm (10 3 nm) or less, more preferably 300 nm or less.
 また、金属層61の反射率(入射角5°)は、波長440~600nmの光に対して、例えば、70%以上、好ましくは、80%以上、例えば、98%以下、好ましくは、95%以下である。 The reflectivity (incident angle 5 °) of the metal layer 61 is, for example, 70% or more, preferably 80% or more, for example 98% or less, preferably 95% with respect to light having a wavelength of 440 to 600 nm. It is as follows.
 また、複数の金属層61のうち、第1透明層20を挟んで隣り合う金属層61は、第1の間隔S1を隔てて配置されており、第2透明層21を挟んで隣り合う金属層61は、第2の間隔S2を隔てて配置されている。 In addition, among the plurality of metal layers 61, the metal layers 61 that are adjacent to each other with the first transparent layer 20 interposed therebetween are arranged at a first interval S <b> 1, and the metal layers that are adjacent to each other with the second transparent layer 21 in between. 61 are arranged at a second interval S2.
 このような採光フィルム1を製造するには、図11に示すように、第1透明層20および金属層61を備える第1単位フィルム29と、第2透明層21および金属層61を備える第2単位フィルム30とを、それぞれ複数枚調製する。 In order to manufacture such a daylighting film 1, as shown in FIG. 11, a first unit film 29 including a first transparent layer 20 and a metal layer 61, and a second unit including a second transparent layer 21 and a metal layer 61. A plurality of unit films 30 are prepared.
 このような第1単位フィルム29を調製する方法としては、例えば、第1透明層20の表面(厚み方向の一方面)に金属層61を配置して、加工シートを調製した後、その加工シートから所定の形状の第1単位フィルム29を切り出す方法や、所定の形状に加工した第1透明層20の表面に金属層61を配置して、第1単位フィルム29とする方法などが挙げられる。また、第2単位フィルム30を調製する方法としては、第1透明層20を第2透明層21に変更する点以外は、第1単位フィルム29を調製する方法と同様の方法が挙げられる。 As a method for preparing such a first unit film 29, for example, a metal sheet 61 is arranged on the surface (one surface in the thickness direction) of the first transparent layer 20 to prepare a processed sheet, and then the processed sheet. The method of cutting out the 1st unit film 29 of a predetermined shape from the method, the method of arrange | positioning the metal layer 61 on the surface of the 1st transparent layer 20 processed into the predetermined shape, etc. are mentioned. Moreover, as a method for preparing the second unit film 30, the same method as the method for preparing the first unit film 29 can be used except that the first transparent layer 20 is changed to the second transparent layer 21.
 第1透明層20(または第2透明層21)の表面に金属層61を配置する方法としては、例えば、第1透明層20(または第2透明層21)と金属層61とを別途調整して、それらを積層する方法、第1透明層20(または第2透明層21)の表面に金属層61を形成する方法などが挙げられ、好ましくは、透明層9の表面に金属層61を形成する方法が挙げられる。 As a method of disposing the metal layer 61 on the surface of the first transparent layer 20 (or the second transparent layer 21), for example, the first transparent layer 20 (or the second transparent layer 21) and the metal layer 61 are separately adjusted. And a method of laminating them, a method of forming the metal layer 61 on the surface of the first transparent layer 20 (or the second transparent layer 21), and the like. Preferably, the metal layer 61 is formed on the surface of the transparent layer 9 The method of doing is mentioned.
 第1透明層20(または第2透明層21)の表面に金属層61を形成する方法としては、例えば、公知の成膜方法により、第1透明層20(または第2透明層21)の表面に金属層61を成膜する方法が挙げられる。このような公知の成膜方法としては、例えば、ドライプロセス、ウェットプロセスなどが挙げられ、好ましくは、ドライプロセスが挙げられる。 As a method of forming the metal layer 61 on the surface of the first transparent layer 20 (or the second transparent layer 21), for example, the surface of the first transparent layer 20 (or the second transparent layer 21) by a known film forming method. For example, a method of forming the metal layer 61 may be mentioned. Examples of such a known film forming method include a dry process and a wet process, and a dry process is preferable.
 次いで、複数の第1単位フィルム29および複数の第2単位フィルム30を、第1単位フィルム29と第2単位フィルム30とが交互に重なるように、それらの厚み方向に積層して、積層体31を調製する。 Next, a plurality of first unit films 29 and a plurality of second unit films 30 are laminated in the thickness direction so that the first unit films 29 and the second unit films 30 are alternately overlapped, and a laminate 31 is obtained. To prepare.
 このような積層体31では、積層方向に互いに隣接する第1単位フィルム29および第2単位フィルム30の間において、接着剤層を設けてもよく、また、接着剤層を設けなくてもよい。積層方向に互いに隣接する第1単位フィルム29および第2単位フィルム30の間に接着剤層を設けない場合、積層体31は、熱圧着(加熱プレス)される。 In such a laminate 31, an adhesive layer may be provided between the first unit film 29 and the second unit film 30 adjacent to each other in the stacking direction, or an adhesive layer may not be provided. When an adhesive layer is not provided between the first unit film 29 and the second unit film 30 that are adjacent to each other in the stacking direction, the stacked body 31 is subjected to thermocompression bonding (heating press).
 以上によって、積層方向に延びる柱状(ブロック状)の積層体31が形成される。 As described above, the columnar (block-shaped) stacked body 31 extending in the stacking direction is formed.
 次いで、図4および図5に示すように、第1実施形態と同様にして、積層体31の側面32(積層方向に沿って延びる表面)に、積層方向に沿うように支持体3を貼り付けた後、支持体3が貼り付けられた積層体31の側面層33を、第1単位フィルム29および第2単位フィルム30が積層体31の積層方向に並列するように切断する。 Next, as shown in FIGS. 4 and 5, in the same manner as in the first embodiment, the support body 3 is attached to the side surface 32 (surface extending along the stacking direction) of the stack body 31 along the stacking direction. After that, the side layer 33 of the laminate 31 to which the support 3 is attached is cut so that the first unit film 29 and the second unit film 30 are arranged in parallel in the lamination direction of the laminate 31.
 これによって、一方面に支持体3が貼り付けられた採光層2が、積層体31から長尺かつ平帯状に切り出される。続いて、採光層2の他方面に剥離体4を貼り付ける。 Thus, the daylighting layer 2 having the support 3 attached to one surface is cut out from the laminate 31 in a long and flat band shape. Subsequently, the peeling body 4 is attached to the other surface of the daylighting layer 2.
 以上によって、図10に示すように、採光フィルム1が調製される。 Thus, the daylighting film 1 is prepared as shown in FIG.
 第5実施形態によれば、複数の金属層61が、第1の間隔S1の間隔を隔てて互いに隣り合う金属層61と、第2の間隔S2の間隔を隔てて互いに隣り合う金属層61とを含んでいる。 According to the fifth embodiment, the plurality of metal layers 61 include metal layers 61 adjacent to each other with an interval of the first interval S1, and metal layers 61 adjacent to each other with an interval of the second interval S2. Is included.
 そのため、太陽の高度が変化しても、その太陽光の採光フィルム1に対する入射角度に適した間隔を隔てて隣り合う金属層61が、入射光を反射して、上方に向かうように進行させる。その結果、このような第5実施形態においても、上記した第1実施形態と同様の作用効果を奏することができる。 Therefore, even if the altitude of the sun changes, the adjacent metal layer 61 with an interval suitable for the incident angle of the sunlight with respect to the daylighting film 1 reflects the incident light and advances it upward. As a result, also in the fifth embodiment, the same operational effects as those of the first embodiment described above can be achieved.
 なお、これら第1実施形態~第5実施形態および変形例のそれぞれは、適宜組み合わせることができる。 Each of the first to fifth embodiments and the modified examples can be combined as appropriate.
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明は、それらに限定されない。なお、実施例中の寸法などの数値は、上記の実施形態において記載される対応箇所の上限値または下限値に代替することができる。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited thereto. In addition, numerical values, such as a dimension in an Example, can be substituted for the upper limit value or the lower limit value of the corresponding location described in the above embodiment.
  実施例1
 厚み200μmのポリ塩化ビニルフィルム(第1加工シート)、および、厚み100μmのポリ塩化ビニルフィルム(第2加工シート)のそれぞれを、直径18cmの円形状に打ち抜き加工して、厚み200μmの第1透明層(第1単位フィルム)500枚と、厚み100μmの第2透明層(第2単位フィルム)500枚とを作成した。なお、空気に対するポリ塩化ビニルフィルムの相対屈折率は1.54であった。
Example 1
A 200 μm-thick polyvinyl chloride film (first processed sheet) and a 100 μm-thick polyvinyl chloride film (second processed sheet) are each punched into a circular shape having a diameter of 18 cm, and the first transparent has a thickness of 200 μm. 500 layers (first unit film) and 500 second transparent layers (second unit film) having a thickness of 100 μm were prepared. The relative refractive index of the polyvinyl chloride film with respect to air was 1.54.
 次いで、厚みの異なる第1透明層および第2透明層を、それらの間に接着剤を用いることなく、交互に積層した後、積層方向の両側から圧力(5MPa)をかけて円柱形状に保持して、積層体を調製した。積層体は、直径18cm×高さ(積層方向の寸法)15cm(100μm×500枚+200μm×500枚)であった。 Next, the first transparent layer and the second transparent layer having different thicknesses are alternately laminated without using an adhesive therebetween, and then held in a cylindrical shape by applying pressure (5 MPa) from both sides in the lamination direction. Thus, a laminate was prepared. The laminate was 18 cm in diameter × height (dimension in the stacking direction) 15 cm (100 μm × 500 sheets + 200 μm × 500 sheets).
 次いで、積層体および支持体を、図5に示す切削装置40にセットした。 Next, the laminate and the support were set in a cutting device 40 shown in FIG.
 具体的には、積層体を1対の保持部材42に積層方向の両側から挟むように保持させるとともに、支持体を回転軸41に巻回して支持体ロールとして構成した。 Specifically, the laminated body was held by a pair of holding members 42 so as to be sandwiched from both sides in the laminating direction, and the support was wound around the rotating shaft 41 to constitute a support roll.
 このとき、1対の保持部材42は、積層体を積層方向の両側から上記の圧力(5MPa)で挟んでいた。また、支持体は、厚み40μmのポリプロピレンフィルム(基材)と、厚み30μmのアクリル系粘着剤層(粘着剤層)とを有していた。アクリル系粘着剤層は、ポリプロピレンフィルムの一方面に形成されており、ポリプロピレンフィルムの他方面には、剥離処理剤による剥離処理層が設けられていた。 At this time, the pair of holding members 42 sandwiched the laminated body from both sides in the laminating direction at the pressure (5 MPa). The support also had a polypropylene film (base material) having a thickness of 40 μm and an acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) having a thickness of 30 μm. The acrylic pressure-sensitive adhesive layer was formed on one side of the polypropylene film, and a release treatment layer with a release treatment agent was provided on the other side of the polypropylene film.
 また、積層体が1対の保持部材42に保持された状態において、積層体の側面には、切削刃35の先端が接触していた。なお、切削刃35は、積層体の積層方向に沿うように配置されていた。 Further, in a state where the laminated body is held by the pair of holding members 42, the tip of the cutting blade 35 is in contact with the side surface of the laminated body. In addition, the cutting blade 35 was arrange | positioned along the lamination direction of a laminated body.
 そして、支持体ロールから引き出した支持体を、粘着剤層が積層体の側面に接着するように、積層体の接線方向に向かって引き回し、積層体における中心角240°の範囲の積層体の側面に貼り付けた。 Then, the support drawn from the support roll is drawn toward the tangential direction of the laminate so that the adhesive layer adheres to the side of the laminate, and the side of the laminate in the range of the central angle of 240 ° in the laminate Pasted on.
 続いて、1対の保持部材42を、切削装置40のモータ(図示せず)により、保持部材42の軸線方向一方(図5の紙面手前側)から見て反時計回り方向に回転駆動させた。 Subsequently, the pair of holding members 42 were driven to rotate counterclockwise by a motor (not shown) of the cutting device 40 as viewed from one axial direction of the holding member 42 (the front side in FIG. 5). .
 そうすると、1対の保持部材42に保持される積層体が、軸線を中心として回転するとともに、支持体ロールが回転軸41の軸線を中心として従動した。 Then, the laminated body held by the pair of holding members 42 was rotated about the axis, and the support roll was driven about the axis of the rotary shaft 41.
 これにより、支持体が貼り付けられた積層体の側面層が、かつら剥きのように連続的に切り出された。 Thereby, the side layer of the laminate on which the support was attached was continuously cut out like a wig.
 以上により、一方面に支持体が貼り付けられる採光層(積層体の側面層)が、長尺かつ平帯状に切り出された。なお、採光層の厚みは、200μmであった。 As described above, the daylighting layer (side layer of the laminated body) on which the support was stuck on one side was cut into a long and flat strip shape. The daylighting layer had a thickness of 200 μm.
 このような採光層は、第1透明層、第2透明層および空気層が、積層方向(採光層としては厚み方向および第1面方向の両方向と直交する第2面方向)において、連続するように順次繰り返して配置されていた。また、第1透明層の積層方向(採光層としては厚み方向および第1面方向の両方向と直交する第2面方向)の寸法は、200μmであり、第2透明層の積層方向の寸法は、100μmであり、空気層の積層方向の寸法は、1μmであった。 In such a daylighting layer, the first transparent layer, the second transparent layer, and the air layer are continuous in the stacking direction (the daylighting layer is a second surface direction orthogonal to both the thickness direction and the first surface direction). It was arranged repeatedly in order. Moreover, the dimension of the lamination direction of the first transparent layer (the second surface direction orthogonal to both the thickness direction and the first surface direction as the daylighting layer) is 200 μm, and the dimension of the second transparent layer in the lamination direction is The dimension in the stacking direction of the air layer was 1 μm.
 そして、片面セパレータ付両面テープ(剥離体)を別途準備し、その片面セパレータ付両面テープの粘着剤層を、採光層の他方面(切削面)に接着させた。また、片面セパレータ付両面テープは、厚み50μmのPETフィルム(剥離材、セパレータ)と、厚み50μmのアクリル系粘着剤層(粘着剤層)とを有していた。アクリル系粘着剤層は、PETフィルムの一方面に形成されており、PETフィルムの他方面には、剥離処理剤による剥離処理層が設けられていた。 Then, a double-sided tape with a single-sided separator (peeled body) was prepared separately, and the adhesive layer of the double-sided tape with a single-sided separator was adhered to the other side (cutting surface) of the daylighting layer. Moreover, the double-sided tape with a single-sided separator had a 50 μm-thick PET film (peeling material, separator) and a 50 μm-thick acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer). The acrylic pressure-sensitive adhesive layer was formed on one side of the PET film, and a release treatment layer with a release treatment agent was provided on the other side of the PET film.
 これによって、支持体および両面テープが、採光層を挟むように、採光層に貼り付けられ、採光フィルムが調製された。なお、採光フィルムの厚み方向の寸法は、370μmであった。 Thus, the support and the double-sided tape were affixed to the daylighting layer so as to sandwich the daylighting layer, and a daylighting film was prepared. In addition, the dimension of the thickness direction of the lighting film was 370 micrometers.
 その後、採光フィルムを、貼り付けられるガラス窓の寸法に合わせて、適宜カットした。これによって、長辺20cm×短辺15cmの平面視長方形状の採光フィルムを得た。 Thereafter, the daylighting film was appropriately cut in accordance with the size of the glass window to be attached. Thus, a rectangular daylighting film having a long side of 20 cm and a short side of 15 cm was obtained.
  比較例1
 厚み100μm、直径18cmの円形状の第2透明層(第2単位フィルム)のみを、1500枚作成した後、1500枚の第2透明層を、それらの間に接着剤を用いることなく積層して、円柱形状の積層体を調製した点以外は、実施例1と同様にして、採光フィルムを得た。なお、積層体は、直径18cm×高さ(積層方向の寸法)15cm(100μm×1500枚)であった。
Comparative Example 1
After only 1500 circular second transparent layers (second unit films) having a thickness of 100 μm and a diameter of 18 cm were formed, 1500 second transparent layers were laminated without using an adhesive therebetween. A daylighting film was obtained in the same manner as in Example 1 except that a cylindrical laminate was prepared. The laminate was 18 cm in diameter × height (dimension in the stacking direction) 15 cm (100 μm × 1500 sheets).
 このような比較例1に係る採光層は、第2透明層および空気層が、積層方向(採光層としては厚み方向および第1面方向の両方向と直交する第2面方向)において、連続するように順次繰り返して配置されていた。また、採光層の厚みは、200μmであり、第2透明層の積層方向(採光層としては厚み方向および第1面方向の両方向と直交する第2面方向)の寸法は、100μmであり、空気層の積層方向の寸法は、1μmであった。 In the daylighting layer according to Comparative Example 1, the second transparent layer and the air layer are continuous in the stacking direction (the daylighting layer is a second surface direction orthogonal to both the thickness direction and the first surface direction). It was arranged repeatedly in order. The daylighting layer has a thickness of 200 μm, the dimension of the second transparent layer in the stacking direction (the daylighting layer is a second surface direction perpendicular to both the thickness direction and the first surface direction) is 100 μm, and air The dimension in the stacking direction of the layers was 1 μm.
  比較例2
 厚み200μm、直径18cmの円形状の第1透明層(第1単位フィルム)のみを、750枚作成した後、750枚の第1透明層を、それらの間に接着剤を用いることなく積層して、円柱形状の積層体を調製した点以外は、実施例1と同様にして、採光フィルムを得た。なお、積層体は、直径18cm×高さ(積層方向の寸法)15cm(200μm×750枚)であった。
Comparative Example 2
After only 750 sheets of a circular first transparent layer (first unit film) having a thickness of 200 μm and a diameter of 18 cm were prepared, 750 first transparent layers were laminated without using an adhesive therebetween. A daylighting film was obtained in the same manner as in Example 1 except that a cylindrical laminate was prepared. The laminate was 18 cm in diameter × height (dimension in the stacking direction) 15 cm (200 μm × 750 sheets).
 このような比較例2に係る採光層は、第1透明層および空気層が、積層方向(採光層としては厚み方向と直交する面方向)において、連続するように順次繰り返して配置されていた。また、採光層の厚みは、200μmであり、第1透明層の積層方向(採光層としては厚み方向と直交する面方向)の寸法は、200μmであり、空気層の積層方向の寸法は、1μmであった。 In the daylighting layer according to Comparative Example 2, the first transparent layer and the air layer were sequentially and repeatedly arranged so as to be continuous in the stacking direction (the surface direction perpendicular to the thickness direction as the daylighting layer). In addition, the thickness of the daylighting layer is 200 μm, the dimension in the stacking direction of the first transparent layer (the surface direction perpendicular to the thickness direction as the daylighting layer) is 200 μm, and the dimension in the stacking direction of the air layer is 1 μm. Met.
  (評価)
 得られた実施例および各比較例の採光フィルムについて、光の入射角度に対する、光の方向転換効率を、下記のように測定した。
(Evaluation)
About the lighting film of the obtained Example and each comparative example, the direction change efficiency of light with respect to the incident angle of light was measured as follows.
 図12に示すように、透明のガラス窓92が設置される壁部91と、床部93と、天井部94とを備える部屋90を準備した。なお、ガラス窓92は、長辺20cm×短辺15cmの長方形状であり、ガラス窓92の厚みは、3mmであった。 As shown in FIG. 12, a room 90 including a wall portion 91 on which a transparent glass window 92 is installed, a floor portion 93, and a ceiling portion 94 was prepared. The glass window 92 had a rectangular shape with a long side of 20 cm × short side of 15 cm, and the thickness of the glass window 92 was 3 mm.
 また、照度計95(テイアンドデイ社製、照度UVレコーダー、商品名:TR-74Ui)およびライト96(パイフォトニクス社製、商品名:HL01W)を準備した。 Further, an illuminance meter 95 (manufactured by T & D Corporation, illuminance UV recorder, product name: TR-74Ui) and a light 96 (manufactured by Pyphotonics, product name: HL01W) were prepared.
 次いで、部屋90外からライト96により、ガラス窓92に対する光の入射角θが40°となるように、白色光を照射した。なお、ライト96から照射される光の一部は、透過光Aとしてガラス窓92を透過して、部屋90内を直線的に進行し、床部93を照らした。一方、ライト96から照射される光のうち、透過光A以外の光は、ガラス窓92により部屋90外に反射された。 Next, white light was irradiated from the outside of the room 90 with a light 96 so that the incident angle θ of light with respect to the glass window 92 was 40 °. Part of the light emitted from the light 96 passed through the glass window 92 as transmitted light A, proceeded linearly in the room 90, and illuminated the floor portion 93. On the other hand, light other than the transmitted light A out of the light emitted from the light 96 was reflected outside the room 90 by the glass window 92.
 そして、床部93上において最も明るい箇所に、照度計95を配置した。具体的には、照度計95は、床部93上において、壁部91から50.6cmの位置に配置した。そして、照度計95により、床部93上の照度を測定し、その値を基準照度とした。 And the illuminance meter 95 was arranged in the brightest place on the floor 93. Specifically, the illuminance meter 95 is disposed on the floor portion 93 at a position of 50.6 cm from the wall portion 91. And the illuminance meter 95 measured the illumination intensity on the floor part 93, and made the value the reference illumination intensity.
 次いで、ガラス窓92に対する光の入射角θが40°から80°まで10°ずつ変化するように、ライト96を移動させるとともに、各入射角θにおいて、床部93上の最も明るい箇所に、照度計95を順次移動させた。具体的には、照度計95は、入射角θが50°のとき、壁部91から35.7cmの位置に配置され、入射角θが60°のとき、壁部91から24.5cmの位置に配置され、入射角θが70°のとき、壁部91から15.5cmの位置に配置され、入射角θが80°のとき、壁部91から7.5cmの位置に配置された。 Next, the light 96 is moved so that the incident angle θ of light with respect to the glass window 92 changes by 10 ° from 40 ° to 80 °, and the illuminance is applied to the brightest part on the floor portion 93 at each incident angle θ. A total of 95 was moved sequentially. Specifically, the illuminance meter 95 is disposed at a position 35.7 cm from the wall portion 91 when the incident angle θ is 50 °, and is located at a position 24.5 cm from the wall portion 91 when the incident angle θ is 60 °. When the incident angle θ is 70 °, it is disposed at a position of 15.5 cm from the wall portion 91, and when the incident angle θ is 80 °, it is disposed at a position of 7.5 cm from the wall portion 91.
 そして、照度計95により、各入射角θにおける床部93上の基準照度を測定した。その結果を、表1に示す。 Then, the illuminance meter 95 was used to measure the reference illuminance on the floor portion 93 at each incident angle θ. The results are shown in Table 1.
 次いで、採光フィルムの剥離体の剥離材を剥離した後、剥離体の粘着剤層を、ガラス窓92の内側面に貼り付けた。 Next, after the release material of the release body of the daylighting film was released, the adhesive layer of the release body was attached to the inner surface of the glass window 92.
 次いで、部屋90外からライト96により、ガラス窓92に対する光の入射角θが40°となるように、光を照射するとともに、照度計95を、床部93上の壁部91から50.6cmの位置に配置した。そして、照度計95により、床部93上の照度を測定し、その値を測定照度とした。 Next, the light 96 is irradiated from the outside of the room 90 by the light 96 so that the incident angle θ of the light with respect to the glass window 92 becomes 40 °, and the illuminance meter 95 is placed 50.6 cm from the wall portion 91 on the floor portion 93. Placed in the position. And the illumination intensity on the floor part 93 was measured with the illumination meter 95, and the value was made into measurement illumination intensity.
 なお、透過光Aの一部は、ガラス窓92を透過した後、採光フィルムの複数の空気層に反射され、方向転換光A1として、天井部94に向かうように上方に進行し、透過光Aの他の光A2は、採光フィルムを直線的に通過して、床部93を照らした。 A part of the transmitted light A passes through the glass window 92 and then is reflected by a plurality of air layers of the daylighting film and travels upward as the direction changing light A1 toward the ceiling portion 94. The other light A2 passed through the daylighting film linearly and illuminated the floor portion 93.
 次いで、ガラス窓92に対する光の入射角θが40°から80°まで10°ずつ変化するように、ライト96を移動させるとともに、照度計95を、床部93上において、壁部91から35.7cm、24.5cm、15.5cm、7.5cmの位置に順次移動させた。そして、各入射角θにおける床部93上の測定照度を測定した。 Next, the light 96 is moved so that the incident angle θ of light with respect to the glass window 92 changes by 10 ° from 40 ° to 80 °, and the illuminance meter 95 is placed on the floor portion 93 from the wall portions 91 to 35. They were sequentially moved to positions of 7 cm, 24.5 cm, 15.5 cm, and 7.5 cm. And the measurement illumination intensity on the floor part 93 in each incident angle (theta) was measured.
 そして、下記式(1)により、各入射角θにおける光の方向転換効率を算出した。その結果を表1に示す。 The light direction changing efficiency at each incident angle θ was calculated by the following formula (1). The results are shown in Table 1.
 式(1)
光の方向転換効率[%]=((基準照度[lx]-測定照度[lx])/基準照度[lx])×100
Formula (1)
Light redirection efficiency [%] = ((reference illuminance [lx] −measured illuminance [lx]) / reference illuminance [lx]) × 100
Figure JPOXMLDOC01-appb-T000001
 また、光の入射角θに対する方向転換効率の変化を、図13に示す。
Figure JPOXMLDOC01-appb-T000001
FIG. 13 shows the change in direction change efficiency with respect to the incident angle θ of light.
 図13に示すように、比較例1では、入射角θが小さいときに(例えば、入射角θ=40°のときに)、光の方向転換効率が高く、入射角θが大きくなるにつれて、光の方向転換効率が低下する。また、比較例2では、入射角θが大きいときに(例えば、入射角θ=80°のときに)、光の方向転換効率が高く、入射角θが小さくなるにつれて、光の方向転換効率が低下する。 As shown in FIG. 13, in the comparative example 1, when the incident angle θ is small (for example, when the incident angle θ = 40 °), the light turning efficiency is high, and as the incident angle θ increases, the light The direction change efficiency is reduced. In Comparative Example 2, when the incident angle θ is large (for example, when the incident angle θ = 80 °), the light direction changing efficiency is high, and as the incident angle θ decreases, the light direction changing efficiency is increased. descend.
 これに対して、実施例1では、入射角θの変化に依存せず、安定した光の方向転換効率が確保されている。 On the other hand, in the first embodiment, stable light direction changing efficiency is ensured without depending on the change in the incident angle θ.
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
 本発明の光学フィルムは、例えば、建築物の採光に用いられる採光フィルムなどの用途に用いられる。 The optical film of the present invention is used for, for example, a daylighting film used for lighting a building.
 1   採光フィルム
 10  空気層
 60  低屈折層
 61  金属層
 Y   第1面方向
 Z   第2面方向
 S1  第1の間隔
 S2  第2の間隔
DESCRIPTION OF SYMBOLS 1 Daylighting film 10 Air layer 60 Low-refractive layer 61 Metal layer Y 1st surface direction Z 2nd surface direction S1 1st space | interval S2 2nd space | interval

Claims (2)

  1.  光を反射するように構成される複数の反射層を備える光学フィルムであって、
     前記複数の反射層のそれぞれは、
      前記光学フィルムの厚み方向と直交する第1方向に延び、
      前記厚み方向および前記第1方向の両方向と直交する第2方向に、互いに間隔を隔てて並列配置され、
     前記複数の反射層は、第1の間隔を隔てて互いに隣り合うように配置される反射層と、前記第1の間隔と前記第2方向の寸法が異なる第2の間隔を隔てて互いに隣り合うように配置される反射層とを含んでいることを特徴とする、光学フィルム。
    An optical film comprising a plurality of reflective layers configured to reflect light,
    Each of the plurality of reflective layers is
    Extending in a first direction orthogonal to the thickness direction of the optical film,
    In a second direction perpendicular to both the thickness direction and the first direction, the two are arranged in parallel at an interval,
    The plurality of reflection layers are adjacent to each other at a first interval and a reflection layer disposed adjacent to each other at a first interval, and a second interval having a different dimension in the second direction from the first interval. An optical film comprising a reflective layer arranged as described above.
  2.  前記第1の間隔は、前記第2の間隔に対して、1.25倍~10倍であることを特徴とする、請求項1に記載の光学フィルム。 2. The optical film according to claim 1, wherein the first interval is 1.25 to 10 times the second interval.
PCT/JP2015/051415 2014-02-04 2015-01-20 Optical film WO2015118944A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014019535A JP2015146004A (en) 2014-02-04 2014-02-04 optical film
JP2014-019535 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015118944A1 true WO2015118944A1 (en) 2015-08-13

Family

ID=53777751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051415 WO2015118944A1 (en) 2014-02-04 2015-01-20 Optical film

Country Status (2)

Country Link
JP (1) JP2015146004A (en)
WO (1) WO2015118944A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379140A4 (en) * 2015-11-17 2019-07-17 Sharp Kabushiki Kaisha Lighting device and lighting system
JP2018013694A (en) * 2016-07-22 2018-01-25 大日本印刷株式会社 Natural lighting film, natural lighting film laminate, natural lighting member and natural lighting tool
CN110917373B (en) * 2019-11-23 2021-04-20 张家港市嘉瑞制药机械有限公司 High sealing door body welded structure of sterilizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040021A (en) * 2006-08-03 2008-02-21 Fujifilm Corp Lighting film and window provided with the same
JP2010526220A (en) * 2007-05-04 2010-07-29 サン−ゴバン グラス フランス Light diffusion grating
JP2012038626A (en) * 2010-08-09 2012-02-23 Sony Corp Optical element, method for manufacturing the same, illumination device, window material, and fitting
JP2012224975A (en) * 2011-04-14 2012-11-15 Shimizu Corp Rolling screen
JP2014238511A (en) * 2013-06-07 2014-12-18 大日本印刷株式会社 Light control member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040021A (en) * 2006-08-03 2008-02-21 Fujifilm Corp Lighting film and window provided with the same
JP2010526220A (en) * 2007-05-04 2010-07-29 サン−ゴバン グラス フランス Light diffusion grating
JP2012038626A (en) * 2010-08-09 2012-02-23 Sony Corp Optical element, method for manufacturing the same, illumination device, window material, and fitting
JP2012224975A (en) * 2011-04-14 2012-11-15 Shimizu Corp Rolling screen
JP2014238511A (en) * 2013-06-07 2014-12-18 大日本印刷株式会社 Light control member

Also Published As

Publication number Publication date
JP2015146004A (en) 2015-08-13

Similar Documents

Publication Publication Date Title
US9341334B2 (en) Optical film
TWI597529B (en) Multiple sequenced daylight redirecting layers
JP5609406B2 (en) OPTICAL ELEMENT, ITS MANUFACTURING METHOD, LIGHTING DEVICE, WINDOW MATERIAL, AND JOINT
TWI575259B (en) Light management construction and window comprising light management construction
CN104602908B (en) Glass substrate band
JP6384734B2 (en) Method and apparatus for joining first film web and second film web
WO2015118944A1 (en) Optical film
JP2016519438A5 (en)
EP1920426A1 (en) Optical sheet for display unit and manufacturing method thereof
US20150072160A1 (en) Method for producing optical film and daylighting film
JP5750980B2 (en) Elongated body with pattern structure layer and method for bonding pattern structure layer
WO2013008682A1 (en) Solar cell backside protective sheet having reflectivity
WO2020118962A1 (en) Reflective strip for backplane assemblies and manufacturing method therefor
JP5356449B2 (en) Knife edge and liquid crystal display manufacturing system including the same
WO2013002187A1 (en) Knife edge and liquid-crystal display device manufacturing system including same
JP2007518597A (en) Cover removal tab for optical products
WO2016088445A1 (en) Daylighting film
JP2016109861A (en) Daylighting film
JP2016110986A (en) Daylighting film
JP2015140638A (en) Rolling screen
JP2015151744A (en) Lighting film, lighting device, and lighting film-attaching method
WO2016076039A1 (en) Optical film manufacturing method and daylighting film
CN105321835A (en) Optical inspection method for display cell having flexible thin-film structure, and virtual terminal unit
KR101893279B1 (en) Release sheet
KR100874572B1 (en) Retro-reflective sheet containing glass beads and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15745898

Country of ref document: EP

Kind code of ref document: A1