WO2016088445A1 - Daylighting film - Google Patents

Daylighting film Download PDF

Info

Publication number
WO2016088445A1
WO2016088445A1 PCT/JP2015/078355 JP2015078355W WO2016088445A1 WO 2016088445 A1 WO2016088445 A1 WO 2016088445A1 JP 2015078355 W JP2015078355 W JP 2015078355W WO 2016088445 A1 WO2016088445 A1 WO 2016088445A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
daylighting
transparent
film
support
Prior art date
Application number
PCT/JP2015/078355
Other languages
French (fr)
Japanese (ja)
Inventor
和也 藤岡
弘義 武
矢野 雅也
暁恵 星子
周作 柴田
坂本 亨枝
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015138000A external-priority patent/JP2016110986A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016088445A1 publication Critical patent/WO2016088445A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a daylighting film.
  • daylighting also referred to as sunlight illumination or daylight illumination
  • sunlight illumination also referred to as sunlight illumination
  • daylight illumination is known in which sunlight is introduced indoors in order to adjust the environment such as the indoor brightness of a building.
  • sunlight illumination also referred to as sunlight illumination or daylight illumination
  • an optical member for example, an optical element including a light transmission layer in which a structural layer having voids arranged at a predetermined pitch in the vertical direction is formed on one surface in the thickness direction has been proposed (for example, Patent Document 1).
  • the light transmission layer provided in the optical element described in Patent Document 1 is formed by pressing a master having a concavo-convex shape onto a resin sheet and transferring the concavo-convex shape of the master to the resin sheet.
  • the depth of such voids (the dimension in the thickness direction of the light transmissive layer) is shorter than the thickness of the light transmissive layer, and the light transmissive layer includes portions where voids are not formed in addition to the structural layer where voids are formed.
  • the light transmission layer has a portion that does not contribute to daylighting.
  • the gap is formed in order to provide the light transmission layer with an interface for reflecting light from outside (that is, the interface between the resin material of the light transmission layer and the air in the gap). If the interface can be formed, it is not necessary to ensure a large gap width (a dimension in a direction perpendicular to the thickness direction of the light transmission layer).
  • the entire light transmissive layer cannot be effectively used for daylighting, and there is a limit to improving the daylighting efficiency of the optical element including the light transmissive layer.
  • an object of the present invention is to provide a daylighting film capable of improving the daylighting efficiency.
  • the present invention includes a support layer and a daylighting layer laminated on the support layer, and the daylighting layers are arranged at a distance from each other in a first direction orthogonal to the thickness direction of the daylighting layer.
  • a plurality of transparent portions, and a plurality of gap portions arranged one by one between the transparent portions adjacent to each other among the plurality of transparent portions, each of the plurality of gap portions in the daylighting layer,
  • the volume ratio of the plurality of transparent portions with respect to the daylighting layer is 93% by volume or more while extending over the entire thickness direction and extending in the second direction perpendicular to both the thickness direction and the first direction.
  • the ratio of the dimension in the first direction of each of the plurality of gaps to the dimension in the first direction of each of the plurality of transparent parts is a daylighting film that is 0.1 or less.
  • each of the plurality of gaps extends across the entire thickness direction and the second direction in the daylighting layer, and thus from outside in the thickness direction of the daylighting layer and the entire second direction. Light can be reliably reflected.
  • the volume ratio of the plurality of transparent portions to the daylighting layer is 93% by volume or more, and the ratio of the dimension in the first direction of the gap portion to the dimension in the first direction of the transparent portion is 0.1 or less. It is.
  • the daylighting layer can be secured while ensuring that the volume ratio of the plurality of gaps to the daylighting layer is less than 7% by volume. In, the number of voids can be reliably increased.
  • the entire daylighting layer can be used effectively for daylighting, and the daylighting efficiency of the daylighting film is improved.
  • the present invention also includes the daylighting film according to the above [1], wherein both end surfaces of the plurality of transparent portions in the first direction are substantially parallel to each other.
  • both end faces in the first direction of the transparent portion are substantially parallel to each other, light from the outside can be stably taken indoors.
  • the present invention is the above [1] or [2], in which at least one of both end surfaces of the plurality of transparent portions in the first direction has an uneven shape. Includes daylighting film.
  • the both end faces in the first direction of the transparent portion has an uneven shape
  • one surface of the transparent portion having the uneven shape hereinafter referred to as an uneven surface.
  • the void portion where the uneven surface faces has an uneven shape. Therefore, when light from the outside reaches the interface between the uneven surface and the gap, the light is reflected and scattered.
  • the indoor brightness is widened compared with the case where the transparent portion does not have the uneven surface. It is possible to improve the brightness and darkness indoors.
  • the present invention provides the daylighting film according to the above [2] or [3], wherein each of the plurality of transparent portions has an end face in the first direction inclined with respect to the thickness direction. Including.
  • the angle of light introduced indoors can be adjusted as appropriate while having a simple configuration.
  • the brightness (light) distribution in the room can be appropriately controlled.
  • the present invention provides the above [1] to [4], wherein in the support layer, the material constituting the surface opposite to the daylighting layer has a refractive index of 1.35 to 1.55.
  • the lighting film as described in any one of these is included.
  • the daylighting film can be attached to the object to be adhered such as a glass window from the indoor side.
  • the daylighting layer is adjacent to the object to be adhered, and the support layer that supports the daylighting layer is positioned on the opposite side of the object to be adhered to the daylighting layer, that is, the indoor side.
  • the refractive index of the material which comprises the surface on the opposite side to the lighting layer of a support layer ie, the indoor side surface of a support layer
  • the daylighting film of the present invention can improve daylighting efficiency.
  • FIG. 1 is a perspective view of a first embodiment of a daylighting film of the present invention.
  • FIG. 2 is a side sectional view of the daylighting film shown in FIG.
  • FIG. 3 is a perspective view of a transparent film according to the daylighting film shown in FIG.
  • FIG. 4 is an explanatory diagram for explaining a process in which the side layer of the laminate is cut after the support is attached to the side of the laminate formed by laminating the transparent film shown in FIG. 3.
  • FIG. 5 is an explanatory diagram for explaining a process of cutting a plurality of transparent films shown in FIG. 3 from a processed sheet.
  • FIG. 6 is a schematic configuration diagram for explaining a production unit for continuously producing the daylighting film shown in FIG. 1.
  • FIG. 1 is a perspective view of a first embodiment of a daylighting film of the present invention.
  • FIG. 2 is a side sectional view of the daylighting film shown in FIG.
  • FIG. 3 is a perspective view of a transparent film according to the daylighting film shown
  • FIG. 7 is an explanatory diagram for explaining a state in which the daylighting film shown in FIG. 1 is attached to the glass window.
  • FIG. 8A is a side sectional view of a second embodiment of the daylighting film of the present invention.
  • FIG. 8B is an explanatory diagram for explaining a state in which the daylighting film shown in FIG. 8A is attached to the glass window.
  • FIG. 9 is a sectional side view of a third embodiment of the daylighting film of the present invention.
  • FIG. 10 is an explanatory diagram for explaining a daylighting film model in the simulations of Examples 1 and 2 and Comparative Example 1.
  • FIG. 11 is a graph showing simulation results of Examples 1 and 2 and Comparative Example 1.
  • FIG. 12 is an explanatory diagram for explaining a daylighting film model in the simulations of Examples 3 to 7.
  • FIG. 13A is an explanatory diagram for explaining a method of measuring ceiling surface illuminance in Examples 8 and 9.
  • FIG. 13B is a bottom view of the illuminance measurement
  • the daylighting film 1 has a flexible sheet shape (film shape). Specifically, the daylighting film 1 has a predetermined thickness and is orthogonal to the thickness direction. It extends in a predetermined direction (longitudinal direction and lateral direction), and has a flat surface and a flat back surface.
  • the dimension in the thickness direction of the daylighting film 1 is, for example, 30 ⁇ m or more, preferably 50 ⁇ m or more, for example, 1500 ⁇ m or less, and preferably 500 ⁇ m or less from the viewpoint of permeability.
  • the daylighting film 1 has a rectangular shape when viewed from the thickness direction of the daylighting film 1.
  • the size of the daylighting film 1 is appropriately changed according to the purpose of use, but the dimension in the longitudinal direction (an example of the first direction) orthogonal to the thickness direction of the daylighting film 1 is, for example, 10 cm or more, preferably 60 cm. As described above, for example, 200 cm or less, preferably 100 cm or less, and the dimension in the lateral direction (an example of the second direction) orthogonal to both the thickness direction and the longitudinal direction is, for example, 5 cm or more, preferably 10 cm or more, for example, , 150 cm or less, preferably 80 cm or less.
  • Such a daylighting film 1 is configured to transmit light and reflect light, and includes a daylighting layer 2, a support 3 as an example of a support layer, and a peeling body 4.
  • the daylighting layer 2 is sandwiched between the support 3 and the release body 4 in the thickness direction of the daylighting film 1 and has a thin film shape extending in the vertical and horizontal directions.
  • the daylighting layer 2 includes a plurality of transparent portions 9 and a plurality of gap portions 10.
  • the plurality of transparent portions 9 are arranged in parallel in the vertical direction with a slight gap (gap portion 10) therebetween. Each of the plurality of transparent portions 9 can transmit light and has a substantially prismatic shape extending in the lateral direction. Each of the plurality of transparent portions 9 extends over the entire thickness direction and lateral direction of the daylighting layer 2.
  • each of the plurality of transparent portions 9 has a substantially rectangular shape in a side view, and includes a first surface 9A that is a lower surface in the vertical direction and a second surface that is an upper surface in the vertical direction. 9B, a third surface 9C that is one surface in the thickness direction, and a fourth surface 9D that is opposite to the third surface 9C in the thickness direction.
  • Each of the first surface 9A and the second surface 9B is substantially parallel to each other, and is along the thickness direction and the lateral direction of the daylighting layer 2.
  • Each of the plurality of transparent portions 9 is configured to transmit light, and is preferably made of a transparent resin material (hard resin material) from the viewpoint of ease of processing.
  • the transparent resin material examples include known resin materials. Specifically, for example, polyester (for example, polyethylene terephthalate (PET)), polyolefin (for example, polyethylene (PE), polypropylene (PP)) , Polycarbonate (PC), polyvinyl chloride, acrylic resin, polystyrene (PS), epoxy resin, silicone resin, fluororesin, urethane resin, cellulose, polyvinyl butyral, ethylene vinyl acetate copolymer and the like.
  • PET polyethylene terephthalate
  • polyolefin for example, polyethylene (PE), polypropylene (PP)
  • PC Polycarbonate
  • polyvinyl chloride acrylic resin
  • PS polystyrene
  • epoxy resin silicone resin
  • fluororesin urethane resin
  • urethane resin cellulose
  • polyvinyl butyral ethylene vinyl acetate copolymer and the like.
  • polyolefin, acrylic resin, polyester and polyvinyl chloride are preferable, and acrylic resin and polyvinyl chloride are more preferable.
  • Such resin materials may be used alone or in combination of two or more.
  • the vertical dimension of the transparent portion 9 can be appropriately changed depending on the purpose of use, but is, for example, 10 ⁇ m or more, preferably 25 ⁇ m or more, more preferably 30 ⁇ m or more, for example, 500 ⁇ m or less, preferably 200 ⁇ m or less,
  • the thickness is preferably 70 ⁇ m or less, particularly preferably 50 ⁇ m or less.
  • the dimension in the thickness direction of the transparent portion 9 can be appropriately set depending on the purpose of use, but is, for example, 15 ⁇ m or more, preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, for example, 400 ⁇ m or less, preferably 250 ⁇ m or less, more preferably. Is 80 ⁇ m or less.
  • the ratio of the dimension in the thickness direction of the transparent part 9 to the dimension in the thickness direction of the transparent part 9 is, for example, 0.5 or more, preferably 1.0. For example, it is 2.5 or less, preferably 2.0 or less.
  • the volume ratio of each of the plurality of transparent portions 9 with respect to the daylighting layer 2 is, for example, 0.0005% by volume or more, and preferably 0.00. 05 volume% or more, for example, 0.5 volume% or less, preferably 0.1 volume% or less.
  • the volume ratio of the sum of the plurality of transparent portions 9 to the daylighting layer 2 (the sum of the volumes of the plurality of transparent portions 9 / the volume of the daylighting layer 2 ⁇ 100) is 93% by volume or more, preferably 95% by volume or more. For example, it is 99 volume% or less, Preferably, it is 98 volume% or less.
  • the relative refractive index of the transparent portion 9 with respect to the refractive index of air is, for example, 1.3 or more, preferably 1.4 or more, for example, 1.8 or less, preferably 1.65 or less.
  • the refractive index can be measured with a prism coupler.
  • the plurality of gap portions 10 are partitioned as gaps between the transparent portions 9 adjacent to each other among the plurality of transparent portions 9. That is, each of the plurality of gaps 10 is arranged one by one between the transparent parts 9 adjacent to each other among the plurality of transparent parts 9, and each of the plurality of transparent parts 9 and the plurality of gaps 10. Are arranged alternately in the vertical direction.
  • each of the plurality of gap portions 10 is partitioned by a first surface 9A of the upper transparent portion 9 and a second surface 9B of the lower transparent portion 9 among the adjacent transparent portions 9. Yes.
  • each of the plurality of gap portions 10 extends over the entire thickness direction in the daylighting layer 2, and extends over the entire lateral direction.
  • the interface 6 is along the thickness direction and the lateral direction.
  • the vertical dimension of the gap 10 is, for example, 0.05 ⁇ m or more, preferably 1 ⁇ m or more, for example, 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the ratio of the vertical dimension of one gap 10 to the vertical dimension of one transparent part 9 is for example, it is 0.0001 or more, preferably 0.001 or more, more preferably 0.01 or more and 0.1 or less, preferably 0.05 or less, and more preferably 0.03 or less.
  • the volume ratio of the sum of the plurality of gaps 10 to the daylighting layer 2 is, for example, 1% by volume or more, preferably 2 volumes. % Or more, for example, 7% by volume or less, preferably 5% by volume or less.
  • the support 3 is disposed on one surface in the thickness direction of the daylighting layer 2 and includes a base material 14 and an adhesive layer 13.
  • the base material 14 is an outer portion in the thickness direction of the support 3.
  • the substrate 14 include a PET film, an acrylic resin film, a triacetyl cellulose (TAC) film, and a fluorine-based polymer (for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, tetrafluoro Low adhesion substrate made of ethylene-hexafluoropropylene copolymer, chlorofluoroethylene-vinylidene fluoride copolymer, etc., Low adhesion made of nonpolar polymer (for example, olefin resin such as polyethylene, polypropylene, etc.) Examples include base materials.
  • the relative refractive index of the base material 14 with respect to the refractive index of air is, for example, 1.3 or more, preferably 1.35 or more, for example, 1.8 or less, preferably 1.6 or less, more preferably 1 .55 or less, particularly preferably 1.45 or less.
  • the refractive index can be measured with a prism coupler.
  • the relative refractive index of the base material 14 is not less than the above lower limit and not more than the upper limit, the light transmittance can be improved and the haze value can be reliably reduced.
  • a transparent base material (film) capable of transmitting light is preferable, and a PET film, a low-adhesive base material made of a transparent nonpolar polymer, and relative Examples thereof include a base material made of a material having a refractive index of 1.35 or more and 1.55 or less, particularly preferably a transparent polypropylene film (relative refractive index: 1.48), an acrylic resin film (relative refractive index: 1.50). ) And TAC film (relative refractive index: 1.49).
  • the dimension in the thickness direction of the base material 14 is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the light transmittance of the substrate 14 is, for example, 85% or more, preferably 90% or more, more preferably, with respect to light having a wavelength of 440 to 600 nm when the dimension in the thickness direction of the substrate 14 is 50 ⁇ m. 92% or more, for example, 98% or less.
  • the haze value of the substrate 14 is, for example, 1% or more, for example, 20% or less, preferably 18% or less, more preferably 15% or less, and particularly preferably 10% or less.
  • the haze value can be measured according to JIS K7136: 2000.
  • the base material 14 can be provided with a hard coat layer 15 (indicated by phantom lines in FIG. 2), an antireflection layer 17 (indicated by imaginary lines in FIG. 2), or the like, if necessary.
  • the hard coat layer 15 and the antireflection layer 17 may be provided on the base material 14, preferably both the hard coat layer 15 and the antireflection layer 17 are provided.
  • the hard coat layer 15 is disposed on the opposite side of the daylighting layer 2 with respect to the base material 14, and is preferably disposed in a thin film shape on the entire one surface in the thickness direction of the base material 14.
  • the hard coat layer 15 is configured to transmit light and contains, for example, an organic component and particles.
  • the organic component of the hard coat layer 15 includes a curable resin and organic-inorganic composite particles.
  • the curable resin examples include a thermosetting resin, an ionizing radiation curable resin that is cured by ultraviolet rays or light, and preferably an ionizing radiation curable resin.
  • the ionizing radiation curable resin examples include a curable resin having at least one of an acryloyl group and a methacryloyl group (hereinafter referred to as (meth) acryloyl group), and more specifically, a (meth) acryloyl group.
  • (meth) acrylates of silicone resins polyester resins, polyether resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, polyfunctional compounds (eg, polyhydric alcohols, etc.)
  • Examples thereof include polymers (oligomers or prepolymers).
  • Such ionizing radiation curable resins may be used alone or in combination of two or more.
  • Organic-inorganic composite particles are prepared by combining inorganic oxide particles and an organic compound having a polymerizable unsaturated group.
  • inorganic oxide particles examples include silicon oxide particles (silica particles), titanium oxide particles, aluminum oxide particles, zinc oxide particles, tin oxide particles, and zirconium oxide particles. Such inorganic oxide particles may be used alone or in combination of two or more.
  • organic compound having a polymerizable unsaturated group for example, a polymerizable unsaturated group and a functional group (for example, an alkoxysilyl group) that generates a silanol group by hydrolysis are included in the molecule.
  • a polymerizable unsaturated group and a functional group for example, an alkoxysilyl group
  • a silanol group by hydrolysis are included in the molecule.
  • the polymerizable unsaturated group is a functional group that reacts with the curable resin, such as acryloyl group, methacryloyl group, vinyl group, propenyl group, butadienyl group, styryl group, ethynyl group, cinnamoyl group, maleate group, acrylamide group. Etc.
  • the content ratio of the organic / inorganic composite particles is, for example, from 100 parts by mass to 200 parts by mass, and preferably from 100 parts by mass to 150 parts by mass with respect to 100 parts by mass of the curable resin.
  • Examples of the particles of the hard coat layer 15 include inorganic particles (for example, the above-described inorganic oxide particles, calcium carbonate particles, barium sulfate particles, talc particles, kaolin particles, and calcium sulfate particles), organic particles (for example, polymethyl Methacrylate resin powder (PMMA particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, polyfluoride And ethylene resin powder). Such particles may be used alone or in combination of two or more.
  • inorganic particles for example, the above-described inorganic oxide particles, calcium carbonate particles, barium sulfate particles, talc particles, kaolin particles, and calcium sulfate particles
  • organic particles for example, polymethyl Methacrylate resin powder (PMMA particles), silicone resin powder, polystyrene
  • the content ratio of the particles of the hard coat layer 15 is, for example, 3 parts by mass or more and 20 parts by mass or less, preferably 5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the organic component.
  • the dimension in the thickness direction of the hard coat layer 15 is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, for example, 30 ⁇ m or less, preferably 15 ⁇ m or less.
  • the relative refractive index of the hard coat layer 15 with respect to the refractive index of air is, for example, 1.4 or more, preferably more than 1.5, for example, 1.8 or less, preferably 1.6 or less.
  • the combination of the base material 14 and the hard coat layer 15 is preferably a base material 14 having a relative refractive index of 1.4 or more and 1.6 or less, and a relative refractive index of more than 1.5, and 1.6
  • the following combination of the hard coat layer 15 is mentioned, More specifically, the combination of the PET film (base material 14) and the hard coat layer 15 containing a urethane resin or a polyester resin having a (meth) acryloyl group is included. Can be mentioned.
  • the antireflection layer 17 is disposed on the opposite side of the daylighting layer 2 with respect to the base material 14, and is preferably disposed in a thin film shape on the entire one surface in the thickness direction of the hard coat layer 15.
  • the antireflection layer 17 is configured to transmit light.
  • the material for forming the antireflection layer 17 include a resin material such as an ultraviolet curable acrylic resin, a hybrid material in which inorganic particles (for example, colloidal silica) are dispersed in a resin, and a metal alkoxide (for example, tetraethoxy). And sol-gel materials using silane, titanium tetraethoxide, etc.).
  • the material for forming the antireflection layer 17 preferably contains hollow spherical silicon oxide particles.
  • the average particle diameter of the hollow spherical silicon oxide particles is, for example, 5 nm to 300 nm, and preferably 10 nm to 200 nm.
  • the dimension in the thickness direction of the antireflection layer 17 is, for example, 0.01 ⁇ m or more, preferably 0.1 ⁇ m or more, for example, 5 ⁇ m or less, preferably less than 1 ⁇ m.
  • the relative refractive index of the antireflection layer 17 with respect to the refractive index of air is, for example, 1.3 or more, preferably 1.35 or more, for example, 1.6 or less, preferably 1.55 or less, more preferably Less than 1.4.
  • the relative refractive index of the antireflection layer 17 is not less than the above lower limit and not more than the upper limit, the light transmittance can be improved and the haze value can be reliably reduced.
  • the relative refractive index of the antireflection layer 17 is preferably smaller than the relative refractive indexes of the hard coat layer 15 and the base material 14.
  • the combination of the hard coat layer 15 and the antireflection layer 17 is preferably such that the refractive index exceeds 1.5 and the hard coat layer 15 is 1.6 or less, and the refractive index is 1.3 or more and 1.4. Less than antireflection layer 17 combination, more specifically, hard coat layer 15 containing urethane resin or polyester resin having (meth) acryloyl group, and UV curable acrylic resin containing hollow spherical silicon oxide particles And a combination with the antireflection layer 17 formed from the above.
  • the combination of the base material 14 and the antireflection layer 17 is preferably a base material 14 having a refractive index of 1.4 or more and 1.6 or less, and an antireflection layer having a refractive index of 1.3 or more and less than 1.4. 17, more specifically, a combination of a PET film (base material 14) and an antireflection layer 17 formed from an ultraviolet curable acrylic resin containing hollow spherical silicon oxide particles.
  • the base material 14 is provided with the hard coat layer 15 and the antireflection layer 17, and the combination thereof is a urethane film having a PET film (base material 14) and a (meth) acryloyl group.
  • the hard-coat layer 15 containing a polyester resin
  • the antireflection layer 17 formed from the ultraviolet curing acrylic resin containing a hollow spherical silicon oxide particle.
  • the light transmittance of the base material 14 on which the hard coat layer 15 and the antireflection layer 17 are provided is, for example, in the same range as the light transmittance range of the base material 14 described above.
  • the haze value of the base material 14 on which the hard coat layer 15 and the antireflection layer 17 are provided is, for example, in the same range as the above-described range of the haze value of the base material 14.
  • the surface of the support 3 opposite to the daylighting layer 2 that is, one surface in the thickness direction of the support 3 is one surface in the thickness direction of the substrate 14 when the antireflection layer 17 is not provided on the substrate 14.
  • the base material 14 constitutes the surface of the support 3 opposite to the daylighting layer 2.
  • one surface in the thickness direction of the support 3 is one surface in the thickness direction of the antireflection layer 17, and the antireflection layer 17 is daylighted in the support 3. It constitutes the surface opposite to layer 2.
  • the refractive index of the material (base material 14 or antireflection layer 17) constituting the surface opposite to the daylighting layer 2 is preferably 1.35 or more and 1.55 or less.
  • the pressure-sensitive adhesive layer 13 is an inner portion in the thickness direction of the support 3 and is disposed in a thin layer on the entire inner surface (surface on the daylighting layer 2 side) of the base material 14. That is, the pressure-sensitive adhesive layer 13 is interposed between the base material 14 and the daylighting layer 2, and adheres the daylighting layer 2 and the base material 14. Thereby, the daylighting layer 2 is laminated
  • Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 13 include known transparent pressure-sensitive adhesives such as epoxy pressure-sensitive adhesives, silicone pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, and ultraviolet curable pressure-sensitive adhesives.
  • an acrylic pressure-sensitive adhesive is preferable.
  • Such pressure-sensitive adhesives may be used alone or in combination of two or more.
  • the adhesive layer 13 can also be comprised from a well-known double-sided adhesive tape.
  • the dimension in the thickness direction of the pressure-sensitive adhesive layer 13 is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the pressure-sensitive adhesive layer 13 is not necessary in the support 3.
  • Examples of the support 3 include a known adhesive tape having a base material, preferably a transparent adhesive tape capable of transmitting light.
  • a commercially available product can be used, and examples thereof include SC-01 (manufactured by Nitoms).
  • the release body 4 is disposed on the other side in the thickness direction of the daylighting layer 2 and includes a release liner 11 and an adhesive layer 12.
  • the release liner 11 is an outer portion in the thickness direction of the release body 4.
  • the release liner 11 is a resin film having flexibility, and examples thereof include a base material similar to the base material 14, and preferably a PET film.
  • a release treatment layer is provided on the inner surface of the release liner 11 in the thickness direction.
  • the peeling force of the release liner 11 by the release treatment layer is adjusted as appropriate.
  • the pressure-sensitive adhesive layer 12 is an inner portion in the thickness direction of the release body 4 and is disposed in a thin layer on the entire inner side surface (the surface on the daylighting layer 2 side) of the release liner 11. That is, the pressure-sensitive adhesive layer 12 is interposed between the release liner 11 and the daylighting layer 2 and is adhered to the release treatment layer (not shown) of the release liner 11 and the other side in the thickness direction of the daylighting layer 2. (More specifically, it is bonded to the fourth surface 9D of the transparent portion 9).
  • Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 12 include the same pressure-sensitive adhesive as the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 13, and preferably an acrylic pressure-sensitive adhesive. Such pressure-sensitive adhesives may be used alone or in combination of two or more. Moreover, the adhesive layer 12 can also be comprised from a well-known double-sided adhesive tape.
  • the dimension in the thickness direction of the pressure-sensitive adhesive layer 12 is, for example, the same as the dimension in the thickness direction of the pressure-sensitive adhesive layer 13.
  • a plurality of transparent films 16 corresponding to the transparent portion 9 are first prepared (prepared) as shown in FIG.
  • the transparent film 16 is made of, for example, the transparent resin material described above.
  • a transparent film 16 commercially available products can be used.
  • PET T100-100 (manufactured by Mitsubishi Plastics)
  • PP Teffan BO (manufactured by Toray Industries, Inc.)
  • CPP P111 (Toyobo Co., Ltd.) Product)
  • CPP SOP5T (manufactured by OJK)) and the like.
  • a processed sheet 24 made of the above transparent resin material is prepared, and the transparent film 16 having a predetermined shape is cut out from the processed sheet 24.
  • the processed sheet 24 may be formed large so that a plurality of transparent films 16 can be cut out, and a plurality of transparent films 16 may be cut out from the processed sheet 24.
  • a plurality of processed sheets 24 may be prepared, and the transparent film 16 may be cut out from each processed sheet 24 one by one.
  • the processed sheet 24 is preferably formed in a long and flat strip shape that is continuous in a predetermined direction so that a plurality of transparent films 16 can be cut out.
  • a method of cutting a plurality of transparent films 16 from the processed sheet 24 may be mentioned.
  • the processed sheet 24 when the processed sheet 24 is formed in a long and flat band shape, the processed sheet 24 preferably has flexibility and is wound in a roll shape. Then, the plurality of transparent films 16 are cut out from the part drawn out from the roll-shaped processed sheet 24.
  • Examples of methods for cutting the transparent film 16 from the processed sheet 24 include known processing methods such as cutting and punching.
  • the shape of the transparent film 16 is not particularly limited, and is, for example, a polygonal shape or a circular shape, preferably a rectangular shape or a circular shape, and particularly preferably a circular shape when viewed from the thickness direction of the transparent film 16.
  • the size of the transparent film 16 is appropriately changed according to the purpose of use. Specifically, when the transparent film 16 has a circular shape as viewed from the thickness direction, the diameter is, for example, 10 cm or more, for example, 100 cm or less, and preferably 50 cm or less from the viewpoint of workability. Each of the plurality of transparent films 16 is formed in substantially the same size.
  • a plurality of transparent films 16, for example, 300 sheets or more, preferably 500 sheets or more, more preferably 1000 sheets or more, for example, 60000 sheets or less, preferably 10,000 sheets or less are prepared.
  • each of the plurality of transparent films 16 is laminated in the thickness direction without sandwiching the pressure-sensitive adhesive layer, thereby preparing (preparing) a laminate 20. That is, the thickness direction of the transparent film 16 and the lamination direction of the laminated body 20 are the same direction. Further, the outer peripheral edges of the plurality of transparent films 16 coincide with each other when projected in the stacking direction.
  • the laminate 20 a slight amount of air is interposed between the transparent films 16 adjacent to each other in the stacking direction, and the air is provided as a gap layer 23 to partition the adjacent transparent films 16. .
  • the laminate 20 extending in the lamination direction is prepared.
  • a prismatic laminate 20 is prepared, and when the transparent film 16 is circular when viewed from the thickness direction, a cylindrical laminate 20 is prepared. Is done.
  • the number of transparent films 16 is omitted, and the stacked body 20 is described as being composed of 8 transparent films 16.
  • the transparent film 16 includes 300 to 60000 sheets, preferably 500 to 30000 sheets, and more preferably 1000 to 10,000 sheets.
  • the height (length in the stacking direction) of the stacked body 20 is, for example, 1 cm or more, preferably 5 cm or more, more preferably 40 cm or more, for example, 200 cm or less, preferably 100 cm or less.
  • the support 3 is attached to the side surface 21 (surface extending along the lamination direction) of the laminate 20 so as to be along the lamination direction (thickness direction of the transparent film 16).
  • the stacked body 20 is held by applying pressure to the stacked body 20 from both sides in the stacking direction.
  • the pressure from the outside in the stacking direction with respect to the stacked body 20 is, for example, 0.01 MPa or more, preferably 0.1 MPa or more, for example, 10 MPa or less, preferably 5 MPa or less.
  • the support 3 is continuously attached to the laminate 20 using, for example, a touch roll so that the pressure-sensitive adhesive layer 13 of the support 3 adheres to the side surface 21 of the laminate 20.
  • the side surface 21 of the laminate 20 to which the support 3 is attached is cut so that the plurality of transparent films 16 are arranged in parallel in the lamination direction of the laminate 20.
  • the cutting method for cutting the side surface 21 of the laminate 20 is not particularly limited as long as the side surface 21 supported by the support 3 can be cut out from the laminate 20.
  • the laminated body 20 is formed in a cylindrical shape, the cutting blades 34 are arranged along the laminating direction, and then the laminated body 20 is rotated around the axis line to obtain the laminated body 20. From the above, a method of continuously cutting out the side layer 22 supported by the support 3 like a wig is mentioned.
  • the side layer 22 of the stacked body 20 that is, the daylighting layer 2 is cut out from the stacked body 20.
  • the peeling body 4 is attached to the surface of the lighting layer 2 opposite to the support 3.
  • the lighting film 1 provided with the lighting layer 2, the support body 3, and the peeling body 4 is prepared.
  • Such a daylighting film 1 is preferably continuously manufactured by a manufacturing unit 28 from the viewpoint of productivity as shown in FIG.
  • the support 3 is shown as a single layer for convenience.
  • the manufacturing unit 28 includes a cutting device 29 and a winding device 30.
  • the cutting device 29 is configured to continuously cut the side surface layer 22 of the laminate 20 to which the support 3 is attached after the support 3 is attached to the side 21 of the laminate 20.
  • the cutting device 29 includes a rotating shaft 32, a pair of holding members 33, and a cutting blade 34.
  • the rotating shaft 32 has a substantially cylindrical shape and is configured to be rotatable around the axis.
  • a long and flat belt-like support 3 is wound around the rotating shaft 32.
  • the long and flat belt-shaped support 3 is wound around the rotary shaft 32 in a spiral shape so that the pressure-sensitive adhesive layer 13 is positioned on the inner side in the radial direction of the rotary shaft 32 with respect to the base material 14.
  • the support 3 is configured as a support roll 35 centered on the rotation shaft 32.
  • the support 3 is disposed adjacent to the radial direction of the rotating shaft 32, and the adhesive layer 13 and the base material 14 are sequentially and repeatedly disposed.
  • the peeling process layer is provided in the surface on the opposite side to the adhesive layer 13 in the base material 14.
  • FIG. Therefore, in the radial direction of the rotating shaft 32, the pressure-sensitive adhesive layer 13 of the support 3 arranged on the radially outer side between the support bodies 3 adjacent to each other, and the support 3 arranged on the radially inner side.
  • a release treatment layer (not shown) is interposed between the substrate 14 and the substrate 14.
  • the pair of holding members 33 are arranged at a lower left side with respect to the support roll 35 in FIG.
  • Each of the pair of holding members 33 has a substantially disc shape, and is configured to be rotatable about its axis.
  • the pair of holding members 33 are arranged in the same direction as the direction in which the rotating shaft 32 extends and spaced from each other.
  • the pair of holding members 33 hold the stacked body 20 by sandwiching the substantially cylindrical stacked body 20 from both sides in the stacking direction with the above pressure.
  • each holding member 33 is arrange
  • the cutting blade 34 is arranged along the stacking direction with respect to the side surface 21 of the stacked body 20 held by the pair of holding members 33, and the tip of the cutting blade 34 is placed on the side surface 21 of the stacked body 20. In contact.
  • the cutting blade 34 maintains the state in which the tip of the cutting blade 34 is in contact with the side surface 21 of the laminated body 20. It is configured to approach 20 axes.
  • the winding device 30 is configured to continuously wind up the daylighting film 1 after the peeling body 4 is attached to the daylighting layer 2 (the side layer 22 of the laminated body 20) supported by the support body 3.
  • the cutting device 29 is arranged with an interval to the right.
  • the winding device 30 includes a rotating shaft 38, a winding shaft 39, and a plurality (two) of rollers 40.
  • Rotating shaft 38 is arranged with an interval to the upper right with respect to rotating shaft 32 in FIG.
  • the rotation shaft 38 has a substantially cylindrical shape extending in the same direction as the rotation shaft 32 and is configured to be rotatable about the axis.
  • a long and flat strip-shaped peeling body 4 is wound around the rotary shaft 38.
  • the long and flat strip-shaped release body 4 is spirally wound around the rotation shaft 38 such that the pressure-sensitive adhesive layer 12 is positioned radially outside the rotation shaft 38 with respect to the release liner 11. .
  • the peeling body 4 is configured as a peeling body roll 41 centering on the rotation shaft 38.
  • the peeling body 4 is arranged adjacent to each other in the radial direction of the rotary shaft 38, and the pressure-sensitive adhesive layer 12 and the peeling liner 11 are sequentially and repeatedly arranged.
  • a peeling process layer is provided also in the surface on the opposite side to the adhesive layer 12 in the peeling liner 11.
  • FIG. Therefore, in the radial direction of the rotating shaft 38, between the adjacent release bodies 4, specifically, the release liner 11 of the release body 4 disposed on the radially outer side and the adhesion of the release body 4 disposed on the radially inner side.
  • a release treatment layer (not shown) is interposed between the agent layer 12.
  • the winding shaft 39 is disposed with a space to the right with respect to the pair of holding members 33, and is disposed with a space to the lower right with respect to the rotation shaft 38. .
  • the take-up shaft 39 has a substantially cylindrical shape extending in the same direction as the rotation shaft 32, and is configured to be rotatable around the axis. Although the winding shaft 39 will be described later, the manufactured daylighting film 1 is wound.
  • Each of the plurality of rollers 40 extends in the same direction as the rotating shaft 32 and is appropriately disposed at a predetermined position.
  • the side surface 21 of the laminate 20 in which the support 3 drawn out from the support roll 35 is held by the pair of holding members 33. Paste to.
  • the support 3 is drawn toward the tangential direction of the laminate 20 such that the pressure-sensitive adhesive layer 13 of the drawn support 3 adheres to the side surface 21 of the laminate 20, and the central angle in the laminate 20 is For example, it is attached to the side surface 21 of the laminate 20 in the range of 90 ° to 270 °, preferably in the range of 120 ° to 240 °.
  • the pair of holding members 33 are rotationally driven in the counterclockwise direction when viewed from the front side in FIG. 6 by a driving force from a driving source such as a motor provided in the cutting device 29.
  • the laminate 20 held by the pair of holding members 33 rotates about the axis, and the support roll 35 is driven about the axis of the rotation shaft 32.
  • the side layer 22 of the laminate 20 to which the support 3 is attached is continuously cut out by the cutting blade 34 like a wig.
  • the daylighting layer 2 supported by the support 3 is formed into a long and flat strip shape, and is continuously prepared from the laminate 20 and the support roll 35.
  • the peeling body 4 is pulled out from the peeling body roll 41, and the pressure-sensitive adhesive layer 12 of the peeling body 4 is adhered to the exposed daylighting layer 2 (the surface of the daylighting layer 2 opposite to the support 3).
  • the peeling body 4 is affixed. Thereby, the long and flat strip-shaped daylighting film 1 is manufactured.
  • the end of the daylighting film 1 is fixed to the take-up shaft 39, and the take-up shaft 39 is rotated in the clockwise direction when viewed from the front side of the paper surface of FIG. Then, the daylighting film 1 is wound around the winding shaft 39 and wound around the winding shaft 39 in a spiral shape to form a roll.
  • the daylighting film 1 manufactured in this way is attached to an inner surface of a glass window 44 as an example of a sticking object in a building such as a house 43.
  • the daylighting film 1 is cut into a shape and size corresponding to the attachment location.
  • Examples of the method for cutting the daylighting film 1 include known processing methods such as cutting and punching.
  • the release liner 11 of the release body 4 is peeled from the pressure-sensitive adhesive layer 12 to expose the pressure-sensitive adhesive layer 12.
  • the daylighting film 1 (excluding the release liner 11) is disposed, for example, so that the vertical direction (stacking direction of the transparent portion 9) is along the vertical direction, and the exposed adhesive layer 12 is disposed. And affixing to the inner surface of the glass window 44.
  • the daylighting layer 2 is pressed toward the glass window 44 from the inside of the house 43 through the support 3 by, for example, a hand roller.
  • the daylighting layer 2 supported by the support 3 is attached to the inner side surface of the glass window 44.
  • the support 3 is held on the daylighting layer 2 without being peeled off. Therefore, it is not necessary to provide a release treatment layer on the surface of the base material 14 on the pressure-sensitive adhesive layer 13 side.
  • the base material 14 of the support 3 is provided with a hard coat layer 15 and an antireflection layer 17, and the antireflection layer 17 is located most indoor side in the support 3.
  • the light L2 of the other part is incident on the transparent part 9, and then the gap 10 between the transparent parts 9 adjacent to each other in the vertical direction (more specifically, The light is reflected by the first surface 9A (lower surface) of the transparent portion 9 and the interface 6 (see FIG. 2) between the gap portion 10 and travels toward the ceiling portion 46 of the house 43.
  • the daylighting film 1 it can daylight efficiently and the brightness of the whole house 43 can be improved efficiently.
  • each of the plurality of gaps 10 extends throughout the thickness direction and the lateral direction in the daylighting layer 2. Therefore, as shown in FIG. 7, the sunlight L from the outdoors can be reliably reflected in the thickness direction and the entire lateral direction of the daylighting layer 2.
  • the volume ratio of the plurality of transparent portions 9 to the daylighting layer 2 is 93% by volume or more, and the ratio of the vertical dimension of the gap portion 10 to the vertical dimension of the transparent portion 9 is 0. 1 or less.
  • the volume ratio of the plurality of gaps 10 to the daylighting layer 2 can be ensured to be 7% by volume or less.
  • gap part 10 can be increased reliably.
  • the entire daylighting layer 2 can be effectively used for daylighting, and the daylighting efficiency of the daylighting film 1 can be improved.
  • both end surfaces (specifically, the first surface 9A and the second surface 9B) of the transparent portion 9 in the vertical direction are substantially parallel to each other. Therefore, the sunlight L from the outdoors can be stably taken indoors.
  • both end surfaces in the vertical direction of the transparent portion 9 are along the thickness direction and the lateral direction of the daylighting film 1. Therefore, it is possible to ensure transparency when the daylighting film 1 is viewed from the thickness direction.
  • the antireflection layer 17 has a glass window 44 with respect to the daylighting layer 2. It is located on the opposite side, that is, on the indoor side.
  • the antireflection layer 17 constitutes an indoor surface of the support 3, and the refractive index of the antireflection layer 17 is preferably 1.35 or more and 1.55 or less. Therefore, the light transmittance of the support 3 can be improved and the haze value can be reduced. As a result, it is possible to improve the amount of light taken indoors, and to reliably improve the daylighting efficiency.
  • the support 3 is attached to the daylighting layer 2 even after the daylighting layer 2 is attached to the glass window 44.
  • the support 3 is not limited to this. After the daylighting layer 2 is attached to the glass window 44, it can be peeled off from the daylighting layer 2.
  • the hard-coat layer 15 and the antireflection layer 17 are provided in the base material 14, it is not limited to this, The hard-coat layer 15 and the antireflection layer 17 do not need to be provided. .
  • the lighting film 1 may be comprised only from the lighting layer 2 and the support body 3.
  • FIG. 8A and 8B a second embodiment of the optical film of the present invention will be described with reference to FIGS. 8A and 8B.
  • the same reference numerals are given to the same members as those in the first embodiment, and the description thereof is omitted.
  • the first surface 9A of the transparent portion 9 is a substantially flat surface, but in the second embodiment, the first surface 9A of the transparent portion 9 has an uneven shape. It is configured as an uneven surface 49.
  • the uneven surface 49 may be a part of the first surface 9A of the transparent portion 9, but is preferably spread over the entire first surface 9A from the viewpoint of light scattering.
  • the interface 6 between the uneven surface 49 and the gap 10 has a shape corresponding to the uneven surface 49.
  • the shape of the concave portion 49A on the uneven surface 49 is not particularly limited.
  • the concave portion 49A has a substantially arc shape, a substantially cone shape (for example, a cone, a pyramid shape), a substantially frustum shape (for example, A truncated cone and a truncated cone).
  • the recess 49A of the uneven surface 49 has a substantially semicircular arc shape.
  • Such an uneven surface 49 is formed by, for example, a known embossing process.
  • the density of the concave portions 49A of the uneven surface 49 is, for example, 50 pieces / cm 2 or more, preferably 500 pieces / cm 2 or more, for example, 5 million pieces / cm 2 or less, preferably 500,000 pieces / cm 2 or less. is there.
  • a plurality of transparent films 50 having uneven surfaces 49 are prepared (prepared).
  • the transparent film 50 is made of, for example, the above transparent resin material.
  • a commercially available product generally called an embossed film, a satin film, etc.
  • PVC satin clear # 320 manufactured by Okamoto
  • Emasoft 3C satin clear Okamoto
  • N Clear manufactured by Tatsuno Chemical Co., Ltd.
  • a processed sheet 51 made of the above-described transparent resin material is prepared, and at least one surface of the processed sheet 51 has a known embossing process. After forming the uneven surface 49 (see FIG. 8A), the transparent film 50 having a predetermined shape is cut out from the processed sheet 51.
  • the processed sheet 51 is formed into a long and flat strip shape.
  • the method include a method of cutting a plurality of transparent films 50 from a portion drawn out from the roll-shaped processed sheet 51 after being formed and wound into a roll.
  • each of the plurality of transparent films 50 is laminated in the thickness direction without sandwiching the pressure-sensitive adhesive layer in the same manner as in the first embodiment, thereby preparing (preparing) the laminate 20 (see FIG. 4). .
  • the side layer 22 (that is, the daylighting layer 2) of the laminate 20 is continuously peeled off, for example, like a wig. (See FIG. 4).
  • the daylighting film 1 including the daylighting layer 2, the support body 3, and the peeling body 4 is obtained by attaching the peeling body 4 to the surface opposite to the support body 3.
  • Such a daylighting film 1 is also preferably manufactured continuously by the manufacturing unit 28 from the viewpoint of productivity as shown in FIG.
  • this lighting film 1 is affixed on the inner surface of the glass window 44 as shown in FIG. 8B, for example, a part of the sunlight L incident from outside the house 43 through the glass window 44.
  • the light L1 passes through the transparent portion 9 and travels toward the floor portion 45 of the house 43.
  • the light L2 of the other part is incident on the transparent part 9, and then the gap 10 between the transparent parts 9 adjacent to each other in the vertical direction (more specifically, The light is reflected and scattered by the uneven surface 49 (lower surface) of the transparent portion 9 and the interface 6 between the gap portion 10 and introduced into the house 43. Therefore, the brightness in the house 43 can be improved over a wide range, and the brightness in the house 43 can be reduced.
  • the lower surface (1st surface 9A) of the transparent part 9 is the uneven surface 49, at least one surface has uneven
  • the upper surface (second surface 9B) of the transparent portion 9 can be configured as the uneven surface 49 in addition to the lower surface (first surface 9A) of the transparent portion 9.
  • each of the first surface 9A and the second surface 9B of the transparent portion 9 is along the thickness direction of the daylighting layer 2 as shown in FIG.
  • each of the first surface 9 ⁇ / b> A and the second surface 9 ⁇ / b> B of the transparent portion 9 is inclined with respect to the thickness direction of the daylighting layer 2.
  • the gap 10 defined by the first surface 9A and the second surface 9B is inclined with respect to the thickness direction of the daylighting layer 2. Further, the gap 10 may be inclined upward as it goes from one side in the thickness direction (the support 3 side) to the other side (the peeling body 4 side), and from the one side in the thickness direction (the support 3 side) to the other side. Although it may incline below as it goes to (the peeling body 4 side), it preferably inclines upward as it goes from the one side in the thickness direction (the supporting body 3 side) to the other side (the peeling body 4 side).
  • the inclination angle of the gap 10 with respect to the thickness direction of the daylighting layer 2 is, for example, ⁇ 5 ° or more and ⁇ 20 ° or less, preferably ⁇ 5 ° or more and ⁇ 15 ° or less, more preferably ⁇ 5 ° or more and ⁇ 10 ° or less. It is.
  • the inclination angle of the air gap 10 is not less than the above lower limit and not more than the upper limit, the angle of light introduced indoors can be reliably adjusted.
  • the inclination angle of the gap portion 10 is positive when the gap portion 10 is inclined upward from one side in the thickness direction to the other side, and the gap portion 10 is directed from one side to the other side in the thickness direction.
  • the case where it is inclined downward is negative.
  • Such a daylighting film 1 according to the third embodiment can be manufactured by the same method as in the first embodiment, and is used by being attached to the glass window 44 of the house 43, for example.
  • each of the first surface 9A and the second surface 9B (that is, the gap portion 10) of the transparent portion 9 is inclined with respect to the thickness direction, the light introduced into the house 43 while having a simple configuration. Can be adjusted as appropriate, and the distribution of brightness (light) in the house 43 can be appropriately controlled.
  • the third embodiment can provide the same operational effects as those of the first embodiment and the second embodiment.
  • Example 1 In order to confirm the influence on the reflection efficiency (reflected light intensity L r / incident light intensity L i ) of the volume ratio of the transparent part with respect to the daylighting layer and the vertical dimension ratio of the void to the transparent part, Simulation analysis was performed.
  • Lighttools optical simulation software, manufactured by Optical Research Associates
  • the lighting film model shown in FIG. 10 was simulated. That is, the daylighting film model consists of only the daylighting layer.
  • the volume ratio of the plurality of transparent portions 9 to the daylighting layer 2 was 99.5% by volume, and the volume ratio of the plurality of gaps 10 to the daylighting layer 2 was 0.5% by volume.
  • Comparative Example 1 A simulation was performed in the same manner as in Example 1 except that the vertical dimension L3 of the gap 10 was changed to 50 ⁇ m.
  • the volume ratio of the plurality of transparent portions 9 to the daylighting layer 2 was 80.0% by volume, and the volume ratio of the plurality of gaps 10 to the daylighting layer 2 was 20.0% by volume.
  • Examples 3-7 As shown in FIG. 12, in order to confirm the influence of the inclination angle ⁇ 2 of the gap portion (the first surface and the second surface of the transparent portion) on the emission angle ⁇ 3 of the reflected light, Table 2 The analysis by the simulation under the inclination angle ⁇ 2 shown and the following conditions was performed.
  • Lighttools Optical simulation software, the product made by Optical Research Associates
  • the lighting film model shown in FIG. 12 was simulated. That is, the daylighting film model consists of only the daylighting layer.
  • Example 8 An unstretched polypropylene film (processed sheet, manufactured by OJK, trade name: SOP5T) having a thickness of 65 ⁇ m was punched into a circular shape having a diameter of 25 cm, thereby producing 600 circular transparent films.
  • each of the thickness direction both surfaces of the transparent film was a substantially flat surface, and the relative refractive index of the polypropylene film film with respect to air was 1.48.
  • the laminate was held in a cylindrical shape by applying pressure (5 MPa) from both sides in the laminating direction. Prepared.
  • the laminate had a diameter of 25 cm ⁇ a height (a length in the stacking direction) of 39 mm (65 ⁇ m ⁇ 600).
  • the laminate was held by a pair of holding members 33 so as to be sandwiched from both sides in the lamination direction, and the support was wound around the rotating shaft 32 to constitute a support roll.
  • the support had a PET film (base material) having a thickness of 50 ⁇ m and an acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) having a thickness of 50 ⁇ m.
  • the acrylic pressure-sensitive adhesive layer was formed on one side of the PET film, and a release treatment layer with a release treatment agent was provided on the other side of the PET film.
  • the relative refractive index of the PET film with respect to air was 1.60.
  • the tip of the cutting blade 34 is in contact with the side surface of the laminated body.
  • the cutting blade 34 was arrange
  • the support pulled out from the support roll is drawn toward the tangential direction of the laminate so that the adhesive layer adheres to the side of the laminate, and the side of the laminate in the range of the central angle of 240 ° in the laminate Pasted on.
  • the pair of holding members 31 were driven to rotate counterclockwise as viewed from one axial direction of the holding member 31 (front side in FIG. 6) by a motor (not shown) of the manufacturing unit 28. .
  • the laminated body held by the pair of holding members 31 was rotated about the axis, and the support roll was driven about the axis of the rotating shaft 32.
  • the side layer of the laminate to which the support was attached was continuously cut out like a wig, and a daylighting layer supported by the support was obtained.
  • the release body was pulled out from the release body roll, and the release body was attached to the surface (cut surface) opposite to the support in the daylighting layer.
  • a long and flat strip-shaped daylighting film including a daylighting layer, a support and a release body was prepared, and the daylighting film was wound around the winding shaft 39.
  • the daylighting layer of the daylighting film has a plurality of transparent portions and a plurality of gap portions, and the plurality of transparent portions and the plurality of gap portions are continuous so as to alternate with each other in the stacking direction (vertical direction of the daylighting layer).
  • the daylighting layer had a thickness of 200 ⁇ m.
  • Example 9 A daylighting film was prepared in the same manner as in Example 8, except that an unstretched polypropylene film (processed sheet) was previously embossed. In addition, each of the thickness direction both surfaces of each transparent film was formed as an uneven surface.
  • Example 10 A daylighting film was obtained in the same manner as in Example 8, except that the unstretched polypropylene film (processed sheet) was changed to a 100 ⁇ m-thick polyvinyl chloride film (processed sheet, manufactured by Tatsuno Chemical Co., Ltd., trade name: N clear). Prepared.
  • each of the thickness direction both surfaces of each transparent film was formed as an uneven surface, and the relative refractive index of the polyvinyl chloride film was 1.54.
  • Example 11 In the same manner as in Example 10, except that the support was changed to a support having an acrylic resin film (base material) having a thickness of 50 ⁇ m and an acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) having a thickness of 50 ⁇ m, the daylighting was performed. A film was prepared. The relative refractive index of the acrylic resin film with respect to air was 1.50.
  • Example 12 The support includes a PET film (base material) having a thickness of 50 ⁇ m and an acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) having a thickness of 50 ⁇ m.
  • the hard coat layer having a thickness of 10 ⁇ m and a thickness of 1 ⁇ m are provided on the PET film (base material).
  • a daylighting film was prepared in the same manner as in Example 10 except that the support was provided with less than the antireflection layer.
  • the relative refractive index of the PET film with respect to air was 1.60
  • the relative refractive index of the hard coat layer was 1.53
  • the relative refractive index of the antireflection layer was 1.38.
  • the hard coat layer contained a urethane resin or polyester resin having a (meth) acryloyl group
  • the antireflection layer was formed from an ultraviolet curable acrylic resin containing hollow spherical silicon oxide particles.
  • a room 90 including a wall portion 91 on which a transparent glass window 92 is installed, a floor portion 93, and a ceiling portion 94 was prepared.
  • the glass window 92 had a square shape with a side of 14 cm, and the thickness of the glass window 92 was 3 mm. Moreover, the distance H between the upper end part of the glass window 92 and the lower surface of the ceiling part 94 was 4 cm.
  • an illuminance measurement unit 95 is arranged on the lower surface of the ceiling portion 94.
  • the illuminance measuring unit 95 includes a plurality of (six) illuminance meters 97 (manufactured by T & D Co., Ltd., illuminance UV recorder, trade name: TR-74Ui) in the front-rear direction (lighting film thickness direction).
  • a plurality (three) of rows 95A arranged at equal intervals in the left-right direction (lateral direction of the daylighting film) were included.
  • the column 95A at the center in the left-right direction passes through the center in the left-right direction of the glass window 92 when viewed from below, and is arranged so as to overlap with a virtual line along the front-rear direction.
  • the front-rear direction interval between the illuminance meters 97 adjacent to each other among the six illuminance meters 97 is 6.43 cm, and the illuminance meter 97 disposed at the front end in each row 95A, the glass window 92, The distance in the front-rear direction was 6.43 cm.
  • columns 95A was 7.5 cm.
  • the illuminance on the lower surface (ceiling surface) of the ceiling portion 94 was measured with a plurality of illuminance meters 97. Thereby, the reference illuminance [lux] before the daylighting film 1 was attached to the glass window 92 was measured.
  • each daylighting film was attached to the inner surface of the glass window 92 after the release liner was peeled off.
  • the support was held on the daylighting layer without being peeled off.
  • the illuminance on the lower surface (ceiling surface) of the ceiling portion 94 was measured with a plurality of illuminance meters 97. Thereby, the measurement illuminance [lux] in a state where the daylighting film 1 was attached to the glass window 92 was measured.
  • the left column 95A is the left column
  • the center column 95A is the center column
  • the right column 95A is the right column.
  • the six illuminance meters 97 in each row were designated as a first illuminance meter to a sixth illuminance meter in order from the front side (glass window 92 side).
  • the transmittance and haze value were measured with a haze meter (trade name: HR-100, manufactured by Murakami Color Research Laboratory Co., Ltd.). The results are shown in Table 4.
  • the PET film is PET
  • the acrylic resin film is acrylic resin
  • the PET film provided with a hard coat layer and an antireflection layer is PET + HC + AR.
  • the daylighting film of the present invention is suitably used, for example, as a daylighting film used for daylighting of buildings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • General Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

A daylighting film is provided with a support layer and a daylighting layer laminated on the support layer. The daylighting layer is provided with a plurality of transparent parts arranged mutually spaced apart in a first direction orthogonal to the thickness direction of the daylighting layer, and a plurality of gaps arranged one by one between mutually adjacent transparent parts among the plurality of transparent parts. Each of the plurality of gaps extends entirely along the thickness direction of the daylighting layer while extending entirely along a second direction orthogonal to both the thickness direction and the first direction. A volume ratio of the plurality of transparent parts to the daylighting layer is 93 vol% or more. A ratio of the dimension in the first direction of each of the plurality of gaps to the dimension in the first direction of each of the plurality of transparent parts is 0.1 or less.

Description

採光フィルムDaylighting film
 本発明は、採光フィルムに関する。 The present invention relates to a daylighting film.
 従来より、建築物の屋内の明るさなどの環境を調整するために、太陽光を屋内に導入すること、いわゆる、採光(太陽光照明、昼光照明とも呼ばれる。)が知られている。しかるに、近年、環境負荷低減の観点から、より効率的に太陽光を屋内に導入し、日中における人工照明の利用を低減することが望まれている。 Conventionally, so-called daylighting (also referred to as sunlight illumination or daylight illumination) is known in which sunlight is introduced indoors in order to adjust the environment such as the indoor brightness of a building. However, in recent years, from the viewpoint of reducing the environmental load, it has been desired to introduce sunlight more efficiently indoors and reduce the use of artificial lighting during the daytime.
 そこで、光の屈折、回折または反射などの光学的作用により、光の進行方向を変更可能な光学部材により、太陽光を屋内に効率的に導入し、屋内の明るさの向上を図ることが種々検討されている。 Therefore, there are various ways to efficiently introduce sunlight into an indoor by an optical member capable of changing the traveling direction of light by optical action such as light refraction, diffraction or reflection, and to improve indoor brightness. It is being considered.
 そのような光学部材としては、例えば、上下方向に所定ピッチで配列された空隙を有する構造層が、厚み方向の一方面に形成される光透過層を備える光学素子が提案されている(例えば、特許文献1参照)。 As such an optical member, for example, an optical element including a light transmission layer in which a structural layer having voids arranged at a predetermined pitch in the vertical direction is formed on one surface in the thickness direction has been proposed (for example, Patent Document 1).
 そして、そのような光学素子では、屋外からの太陽光が、空隙の上面(光透過層を構成する樹脂材料と、空隙内の空気との界面)に反射されて、屋内に採光される。 In such an optical element, sunlight from the outdoors is reflected on the upper surface of the air gap (the interface between the resin material constituting the light transmission layer and the air in the air gap) and is taken indoors.
特開2012-38626号公報JP 2012-38626 A
 しかるに、特許文献1に記載の光学素子が備える光透過層は、凹凸形状を有する金型などの原盤を、樹脂シートなどに圧接して、原盤の凹凸形状を樹脂シートに転写することにより形成される。 However, the light transmission layer provided in the optical element described in Patent Document 1 is formed by pressing a master having a concavo-convex shape onto a resin sheet and transferring the concavo-convex shape of the master to the resin sheet. The
 そのため、そのような空隙の深さ(光透過層の厚み方向寸法)は、光透過層の厚みよりも短く、光透過層は、空隙が形成される構造層に加え、空隙が形成されない部分を有する。つまり、光透過層は、採光性に寄与しない部分を有する。 Therefore, the depth of such voids (the dimension in the thickness direction of the light transmissive layer) is shorter than the thickness of the light transmissive layer, and the light transmissive layer includes portions where voids are not formed in addition to the structural layer where voids are formed. Have. That is, the light transmission layer has a portion that does not contribute to daylighting.
 また、空隙は、屋外からの光を反射するための界面(つまり、光透過層の樹脂材料と、空隙の空気との界面)を、光透過層に付与するために形成されるのであって、界面が形成できれば、空隙の幅(光透過層の厚み方向と直交する方向の寸法)を大きく確保する必要はない。 Further, the gap is formed in order to provide the light transmission layer with an interface for reflecting light from outside (that is, the interface between the resin material of the light transmission layer and the air in the gap). If the interface can be formed, it is not necessary to ensure a large gap width (a dimension in a direction perpendicular to the thickness direction of the light transmission layer).
 しかし、特許文献1に記載の光学素子では、光透過層の空隙が、原盤の転写により形成されるので、空隙の幅の低減を図るには限度があり、光透過層の構造層において、空隙数の向上を図るには限度がある。 However, in the optical element described in Patent Document 1, since the gap of the light transmission layer is formed by transfer of the master, there is a limit to reducing the width of the gap. There is a limit to improving the number.
 その結果、光透過層の全体を採光のために有効に利用することができず、光透過層を備える光学素子の採光効率の向上を図るには限度がある。 As a result, the entire light transmissive layer cannot be effectively used for daylighting, and there is a limit to improving the daylighting efficiency of the optical element including the light transmissive layer.
 そこで、本発明の目的は、採光効率の向上を図ることができる採光フィルムを提供することにある。 Therefore, an object of the present invention is to provide a daylighting film capable of improving the daylighting efficiency.
 [1]本発明は、支持層と、前記支持層に積層される採光層とを備え、前記採光層は、前記採光層の厚み方向に直交する第1方向に互いに間隔を空けて配置される複数の透明部と、前記複数の透明部のうち互いに隣り合う透明部の間に1つずつ配置される複数の空隙部とを備え、前記複数の空隙部のそれぞれは、前記採光層において、前記厚み方向の全体にわたって延びるとともに、前記厚み方向および前記第1方向の両方向と直交する第2方向の全体にわたって延び、前記採光層に対する、前記複数の透明部の体積割合は、93体積%以上であり、前記複数の透明部のそれぞれの前記第1方向の寸法に対する、前記複数の空隙部のそれぞれの前記第1方向の寸法の比率は、0.1以下である採光フィルムである。 [1] The present invention includes a support layer and a daylighting layer laminated on the support layer, and the daylighting layers are arranged at a distance from each other in a first direction orthogonal to the thickness direction of the daylighting layer. A plurality of transparent portions, and a plurality of gap portions arranged one by one between the transparent portions adjacent to each other among the plurality of transparent portions, each of the plurality of gap portions in the daylighting layer, The volume ratio of the plurality of transparent portions with respect to the daylighting layer is 93% by volume or more while extending over the entire thickness direction and extending in the second direction perpendicular to both the thickness direction and the first direction. The ratio of the dimension in the first direction of each of the plurality of gaps to the dimension in the first direction of each of the plurality of transparent parts is a daylighting film that is 0.1 or less.
 このような構成によれば、複数の空隙部のそれぞれが、採光層において、厚み方向および第2方向の全体にわたって延びているので、採光層の厚み方向および第2方向の全体において、屋外からの光を確実に反射することができる。 According to such a configuration, each of the plurality of gaps extends across the entire thickness direction and the second direction in the daylighting layer, and thus from outside in the thickness direction of the daylighting layer and the entire second direction. Light can be reliably reflected.
 また、採光層に対する、複数の透明部の体積割合は、93体積%以上であり、かつ、透明部の第1方向の寸法に対する、空隙部の第1方向の寸法の比率は、0.1以下である。 The volume ratio of the plurality of transparent portions to the daylighting layer is 93% by volume or more, and the ratio of the dimension in the first direction of the gap portion to the dimension in the first direction of the transparent portion is 0.1 or less. It is.
 つまり、空隙部の第1方向の寸法が、透明部の第1方向の寸法と比較して小さいので、採光層に対する、複数の空隙部の体積割合が7体積%未満を確保できながら、採光層において、空隙部の数を確実に増加させることができる。 That is, since the dimension in the first direction of the gap is smaller than the dimension in the first direction of the transparent part, the daylighting layer can be secured while ensuring that the volume ratio of the plurality of gaps to the daylighting layer is less than 7% by volume. In, the number of voids can be reliably increased.
 その結果、採光層の全体を採光のために有効に利用することができ、採光フィルムの採光効率の向上を図る。 As a result, the entire daylighting layer can be used effectively for daylighting, and the daylighting efficiency of the daylighting film is improved.
 [2]また、本発明は、前記複数の透明部のそれぞれの前記第1方向の両端面は、互いに略平行である、上記[1]に記載の採光フィルムを含む。 [2] The present invention also includes the daylighting film according to the above [1], wherein both end surfaces of the plurality of transparent portions in the first direction are substantially parallel to each other.
 このような構成によれば、透明部の第1方向の両端面が互いに略平行であるので、屋外からの光を安定して、屋内に採光することができる。 According to such a configuration, since both end faces in the first direction of the transparent portion are substantially parallel to each other, light from the outside can be stably taken indoors.
 [3]また、本発明は、前記複数の透明部のそれぞれの前記第1方向の両端面のうち、少なくとも一方は、凹凸形状を有している、上記[1]または[2]に記載の採光フィルムを含む。 [3] Moreover, the present invention is the above [1] or [2], in which at least one of both end surfaces of the plurality of transparent portions in the first direction has an uneven shape. Includes daylighting film.
 このような構成によれば、透明部の第1方向の両端面のうち、少なくとも一方面が凹凸形状を有しているので、凹凸形状を有する透明部の一方面(以下、凹凸面とする。)と、凹凸面が臨む空隙部との界面は、凹凸形状を有している。そのため、屋外からの光が、凹凸面と空隙部との界面に到達すると、その光は、反射されるとともに散乱される。 According to such a configuration, since at least one of the both end faces in the first direction of the transparent portion has an uneven shape, one surface of the transparent portion having the uneven shape (hereinafter referred to as an uneven surface). ) And the void portion where the uneven surface faces has an uneven shape. Therefore, when light from the outside reaches the interface between the uneven surface and the gap, the light is reflected and scattered.
 その結果、屋内に導入される光が、凹凸面と空隙部との界面により、反射および散乱されるので、透明部が凹凸面を有していない場合と比較して、屋内の明るさを広範囲にわたって向上することができ、屋内における明暗を低減することができる。 As a result, since the light introduced indoors is reflected and scattered by the interface between the uneven surface and the gap, the indoor brightness is widened compared with the case where the transparent portion does not have the uneven surface. It is possible to improve the brightness and darkness indoors.
 [4]また、本発明は、前記複数の透明部のそれぞれの前記第1方向の端面は、前記厚み方向に対して傾斜している、上記[2]または[3]に記載の採光フィルムを含む。 [4] The present invention provides the daylighting film according to the above [2] or [3], wherein each of the plurality of transparent portions has an end face in the first direction inclined with respect to the thickness direction. Including.
 このような構成によれば、透明部の第1方向の端面が厚み方向に対して傾斜しているので、簡易な構成でありながら、屋内に導入される光の角度を適宜調整することができ、室内における明るさ(光)の分布を、適宜制御することができる。 According to such a configuration, since the end surface in the first direction of the transparent portion is inclined with respect to the thickness direction, the angle of light introduced indoors can be adjusted as appropriate while having a simple configuration. The brightness (light) distribution in the room can be appropriately controlled.
 [5]また、本発明は、前記支持層において、前記採光層と反対側の表面を構成する材料の屈折率が、1.35以上1.55以下である、上記[1]~[4]のいずれか一項に記載の採光フィルムを含む。 [5] Further, the present invention provides the above [1] to [4], wherein in the support layer, the material constituting the surface opposite to the daylighting layer has a refractive index of 1.35 to 1.55. The lighting film as described in any one of these is included.
 しかるに、採光フィルムは、ガラス窓などの貼着対象物に対して、屋内側から取り付けることができる。このとき、採光層が貼着対象物に隣接され、採光層を支持する支持層が、採光層に対して貼着対象物の反対側、つまり、屋内側に位置される。 However, the daylighting film can be attached to the object to be adhered such as a glass window from the indoor side. At this time, the daylighting layer is adjacent to the object to be adhered, and the support layer that supports the daylighting layer is positioned on the opposite side of the object to be adhered to the daylighting layer, that is, the indoor side.
 そして、上記の構成によれば、支持層の採光層と反対側の表面、つまり、支持層の屋内側の表面を構成する材料の屈折率が、1.35以上1.55以下であるので、光の透過率の向上を図ることができるとともに、ヘイズ値(=拡散透過率/全光線透過率×100)の低減を図ることができる。 And according to said structure, since the refractive index of the material which comprises the surface on the opposite side to the lighting layer of a support layer, ie, the indoor side surface of a support layer, is 1.35 or more and 1.55 or less, The light transmittance can be improved and the haze value (= diffuse transmittance / total light transmittance × 100) can be reduced.
 そのため、屋内への光の取込量の向上を図ることができ、採光効率の向上を確実に図ることができる。 Therefore, it is possible to improve the amount of light taken indoors, and it is possible to reliably improve the daylighting efficiency.
 本発明の採光フィルムによれば、採光効率の向上を図ることができる。 The daylighting film of the present invention can improve daylighting efficiency.
図1は、本発明の採光フィルムの第1実施形態の斜視図である。FIG. 1 is a perspective view of a first embodiment of a daylighting film of the present invention. 図2は、図1に示す採光フィルムの側断面図である。FIG. 2 is a side sectional view of the daylighting film shown in FIG. 図3は、図1に示す採光フィルムに係る透明フィルムの斜視図である。FIG. 3 is a perspective view of a transparent film according to the daylighting film shown in FIG. 図4は、図3に示す透明フィルムが積層されて形成される積層体の側面に支持体が貼り付けられた後、積層体の側面層が切断される工程を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a process in which the side layer of the laminate is cut after the support is attached to the side of the laminate formed by laminating the transparent film shown in FIG. 3. . 図5は、図3に示す透明フィルムを、加工シートから複数切り出す工程を説明するための説明図である。FIG. 5 is an explanatory diagram for explaining a process of cutting a plurality of transparent films shown in FIG. 3 from a processed sheet. 図6は、図1に示す採光フィルムを連続的に製造する製造ユニットを説明するための概略構成図である。FIG. 6 is a schematic configuration diagram for explaining a production unit for continuously producing the daylighting film shown in FIG. 1. 図7は、図1に示す採光フィルムがガラス窓に取り付けられた状態を説明するための説明図である。FIG. 7 is an explanatory diagram for explaining a state in which the daylighting film shown in FIG. 1 is attached to the glass window. 図8Aは、本発明の採光フィルムの第2実施形態の側断面図である。図8Bは、図8Aに示す採光フィルムがガラス窓に取り付けられた状態を説明するための説明図である。FIG. 8A is a side sectional view of a second embodiment of the daylighting film of the present invention. FIG. 8B is an explanatory diagram for explaining a state in which the daylighting film shown in FIG. 8A is attached to the glass window. 図9は、本発明の採光フィルムの第3実施形態の側断面図である。FIG. 9 is a sectional side view of a third embodiment of the daylighting film of the present invention. 図10は、実施例1、2および比較例1のシミュレーションにおける、採光フィルムモデルを説明するための説明図である。FIG. 10 is an explanatory diagram for explaining a daylighting film model in the simulations of Examples 1 and 2 and Comparative Example 1. 図11は、実施例1、2および比較例1のシミュレーション結果を示すグラフである。FIG. 11 is a graph showing simulation results of Examples 1 and 2 and Comparative Example 1. 図12は、実施例3~7のシミュレーションにおける、採光フィルムモデルを説明するための説明図である。FIG. 12 is an explanatory diagram for explaining a daylighting film model in the simulations of Examples 3 to 7. 図13Aは、実施例8および9における、天井面照度の測定方法を説明するための説明図である。図13Bは、図13Aに示す照度測定ユニットの底面図である。FIG. 13A is an explanatory diagram for explaining a method of measuring ceiling surface illuminance in Examples 8 and 9. FIG. 13B is a bottom view of the illuminance measurement unit shown in FIG. 13A.
1.採光フィルムの構成
 採光フィルム1は、図1に示すように、可撓性を有するシート形状(フィルム形状)を有しており、具体的には、所定の厚みを有し、厚み方向と直交する所定方向(縦方向および横方向)に延び、平坦な表面および平坦な裏面を有している。
1. As shown in FIG. 1, the daylighting film 1 has a flexible sheet shape (film shape). Specifically, the daylighting film 1 has a predetermined thickness and is orthogonal to the thickness direction. It extends in a predetermined direction (longitudinal direction and lateral direction), and has a flat surface and a flat back surface.
 採光フィルム1の厚み方向の寸法は、例えば、30μm以上、好ましくは、50μm以上、例えば、1500μm以下、透過性の観点から好ましくは、500μm以下である。 The dimension in the thickness direction of the daylighting film 1 is, for example, 30 μm or more, preferably 50 μm or more, for example, 1500 μm or less, and preferably 500 μm or less from the viewpoint of permeability.
 また、採光フィルム1は、採光フィルム1の厚み方向からみて、矩形形状を有している。採光フィルム1のサイズは、使用目的などに応じて適宜変更されるが、採光フィルム1の厚み方向と直交する縦方向(第1方向の一例)の寸法は、例えば、10cm以上、好ましくは、60cm以上、例えば、200cm以下、好ましくは、100cm以下であり、厚み方向および縦方向の両方向と直交する横方向(第2方向の一例)の寸法は、例えば、5cm以上、好ましくは、10cm以上、例えば、150cm以下、好ましくは、80cm以下である。 Further, the daylighting film 1 has a rectangular shape when viewed from the thickness direction of the daylighting film 1. The size of the daylighting film 1 is appropriately changed according to the purpose of use, but the dimension in the longitudinal direction (an example of the first direction) orthogonal to the thickness direction of the daylighting film 1 is, for example, 10 cm or more, preferably 60 cm. As described above, for example, 200 cm or less, preferably 100 cm or less, and the dimension in the lateral direction (an example of the second direction) orthogonal to both the thickness direction and the longitudinal direction is, for example, 5 cm or more, preferably 10 cm or more, for example, , 150 cm or less, preferably 80 cm or less.
 このような採光フィルム1は、光を透過するとともに、光を反射するように構成されており、採光層2と、支持層の一例としての支持体3と、剥離体4とを備えている。 Such a daylighting film 1 is configured to transmit light and reflect light, and includes a daylighting layer 2, a support 3 as an example of a support layer, and a peeling body 4.
 採光層2は、採光フィルム1の厚み方向において、支持体3と剥離体4とに挟まれており、縦方向および横方向に延びる薄膜形状を有している。 The daylighting layer 2 is sandwiched between the support 3 and the release body 4 in the thickness direction of the daylighting film 1 and has a thin film shape extending in the vertical and horizontal directions.
 採光層2は、複数の透明部9と、複数の空隙部10とを備えている。 The daylighting layer 2 includes a plurality of transparent portions 9 and a plurality of gap portions 10.
 複数の透明部9は、縦方向に互いに僅かな間隔(空隙部10)を隔てて並列配置されている。複数の透明部9のそれぞれは、光を透過可能であって、横方向に延びる略角柱形状を有している。複数の透明部9のそれぞれは、採光層2の厚み方向および横方向の全体にわたって延びている。 The plurality of transparent portions 9 are arranged in parallel in the vertical direction with a slight gap (gap portion 10) therebetween. Each of the plurality of transparent portions 9 can transmit light and has a substantially prismatic shape extending in the lateral direction. Each of the plurality of transparent portions 9 extends over the entire thickness direction and lateral direction of the daylighting layer 2.
 また、複数の透明部9のそれぞれは、図2に示すように、側面視略矩形形状を有しており、縦方向の下面である第1面9Aと、縦方向の上面である第2面9Bと、厚み方向の一方面である第3面9Cと、厚み方向において第3面9Cと反対の第4面9Dとを有している。第1面9Aおよび第2面9Bのそれぞれは、互いに略平行であって、採光層2の厚み方向および横方向に沿っている。 Further, as shown in FIG. 2, each of the plurality of transparent portions 9 has a substantially rectangular shape in a side view, and includes a first surface 9A that is a lower surface in the vertical direction and a second surface that is an upper surface in the vertical direction. 9B, a third surface 9C that is one surface in the thickness direction, and a fourth surface 9D that is opposite to the third surface 9C in the thickness direction. Each of the first surface 9A and the second surface 9B is substantially parallel to each other, and is along the thickness direction and the lateral direction of the daylighting layer 2.
 複数の透明部9のそれぞれは、光を透過するように構成されており、加工の容易性の観点から好ましくは、透明の樹脂材料(硬質樹脂材料)からなる。 Each of the plurality of transparent portions 9 is configured to transmit light, and is preferably made of a transparent resin material (hard resin material) from the viewpoint of ease of processing.
 透明の樹脂材料としては、例えば、公知の樹脂材料などが挙げられ、具体的には、例えば、ポリエステル(例えば、ポリエチレンテレフタレート(PET))、ポリオレフィン(例えば、ポリエチレン(PE)、ポリプロピレン(PP))、ポリカーボネート(PC)、ポリ塩化ビニル、アクリル樹脂、ポリスチレン(PS)、エポキシ樹脂、シリコーン樹脂、フッ素樹脂、ウレタン樹脂、セルロース、ポリビニルブチラール、エチレン酢酸ビニル共重合体などが挙げられる。 Examples of the transparent resin material include known resin materials. Specifically, for example, polyester (for example, polyethylene terephthalate (PET)), polyolefin (for example, polyethylene (PE), polypropylene (PP)) , Polycarbonate (PC), polyvinyl chloride, acrylic resin, polystyrene (PS), epoxy resin, silicone resin, fluororesin, urethane resin, cellulose, polyvinyl butyral, ethylene vinyl acetate copolymer and the like.
 このような透明の樹脂材料のなかでは、好ましくは、ポリオレフィン、アクリル樹脂、ポリエステルおよびポリ塩化ビニルが挙げられ、さらに好ましくは、アクリル樹脂、ポリ塩化ビニルが挙げられる。このような樹脂材料は、単独で使用してもよく、2種以上併用することもできる。 Among such transparent resin materials, polyolefin, acrylic resin, polyester and polyvinyl chloride are preferable, and acrylic resin and polyvinyl chloride are more preferable. Such resin materials may be used alone or in combination of two or more.
 透明部9の縦方向寸法は、使用目的などに応じて適宜変更できるが、例えば、10μm以上、好ましくは、25μm以上、さらに好ましくは、30μm以上、例えば、500μm以下、好ましくは、200μm以下、さらに好ましくは、70μm以下、とりわけ好ましくは、50μm以下である。 The vertical dimension of the transparent portion 9 can be appropriately changed depending on the purpose of use, but is, for example, 10 μm or more, preferably 25 μm or more, more preferably 30 μm or more, for example, 500 μm or less, preferably 200 μm or less, The thickness is preferably 70 μm or less, particularly preferably 50 μm or less.
 また、透明部9の厚み方向寸法は、利用目的により適宜設定できるが、例えば、15μm以上、好ましくは、30μm以上、さらに好ましくは、50μm以上、例えば、400μm以下、好ましくは、250μm以下、さらに好ましくは、80μm以下である。 The dimension in the thickness direction of the transparent portion 9 can be appropriately set depending on the purpose of use, but is, for example, 15 μm or more, preferably 30 μm or more, more preferably 50 μm or more, for example, 400 μm or less, preferably 250 μm or less, more preferably. Is 80 μm or less.
 透明部9の縦方向寸法に対する、透明部9の厚み方向寸法の比率(透明部9の厚み方向寸法/透明部9の縦方向寸法)は、例えば、0.5以上、好ましくは、1.0以上、例えば、2.5以下、好ましくは、2.0以下である。 The ratio of the dimension in the thickness direction of the transparent part 9 to the dimension in the thickness direction of the transparent part 9 (thickness direction dimension of the transparent part 9 / vertical dimension of the transparent part 9) is, for example, 0.5 or more, preferably 1.0. For example, it is 2.5 or less, preferably 2.0 or less.
 採光層2に対する、複数の透明部9のそれぞれの体積割合(透明部9の1つ当たりの体積/採光層2の体積×100)は、例えば、0.0005体積%以上、好ましくは、0.05体積%以上、例えば、0.5体積%以下、好ましくは、0.1体積%以下である。 The volume ratio of each of the plurality of transparent portions 9 with respect to the daylighting layer 2 (volume per one transparent portion 9 / volume of the daylighting layer 2 × 100) is, for example, 0.0005% by volume or more, and preferably 0.00. 05 volume% or more, for example, 0.5 volume% or less, preferably 0.1 volume% or less.
 また、採光層2に対する、複数の透明部9の総和の体積割合(複数の透明部9の体積の総和/採光層2の体積×100)は、93体積%以上、好ましくは、95体積%以上、例えば、99体積%以下、好ましくは、98体積%以下である。 The volume ratio of the sum of the plurality of transparent portions 9 to the daylighting layer 2 (the sum of the volumes of the plurality of transparent portions 9 / the volume of the daylighting layer 2 × 100) is 93% by volume or more, preferably 95% by volume or more. For example, it is 99 volume% or less, Preferably, it is 98 volume% or less.
 また、空気の屈折率に対する、透明部9の相対屈折率は、例えば、1.3以上、好ましくは、1.4以上、例えば、1.8以下、好ましくは、1.65以下である。なお、屈折率は、プリズムカプラにより測定することができる。 Further, the relative refractive index of the transparent portion 9 with respect to the refractive index of air is, for example, 1.3 or more, preferably 1.4 or more, for example, 1.8 or less, preferably 1.65 or less. The refractive index can be measured with a prism coupler.
 複数の空隙部10は、複数の透明部9のうち、互いに隣り合う透明部9の間の隙間として区画されている。つまり、複数の空隙部10のそれぞれは、複数の透明部9のうち、互いに隣り合う透明部9の間に1つずつ配置されており、複数の透明部9のそれぞれと、複数の空隙部10のそれぞれとは、縦方向において、交互に連続するように配置されている。 The plurality of gap portions 10 are partitioned as gaps between the transparent portions 9 adjacent to each other among the plurality of transparent portions 9. That is, each of the plurality of gaps 10 is arranged one by one between the transparent parts 9 adjacent to each other among the plurality of transparent parts 9, and each of the plurality of transparent parts 9 and the plurality of gaps 10. Are arranged alternately in the vertical direction.
 より詳しくは、複数の空隙部10のそれぞれは、互いに隣り合う透明部9のうち、上側の透明部9の第1面9Aと、下側の透明部9の第2面9Bとにより区画されている。 More specifically, each of the plurality of gap portions 10 is partitioned by a first surface 9A of the upper transparent portion 9 and a second surface 9B of the lower transparent portion 9 among the adjacent transparent portions 9. Yes.
 そのため、複数の空隙部10のそれぞれは、図1および図2に示すように、採光層2において、厚み方向の全体にわたって延びるとともに、横方向の全体にわたって延びており、空隙部10と透明部9との界面6は、厚み方向および横方向に沿っている。 Therefore, as shown in FIG. 1 and FIG. 2, each of the plurality of gap portions 10 extends over the entire thickness direction in the daylighting layer 2, and extends over the entire lateral direction. The interface 6 is along the thickness direction and the lateral direction.
 空隙部10の縦方向の寸法は、例えば、0.05μm以上、好ましくは、1μm以上、例えば、20μm以下、好ましくは、10μm以下、さらに好ましくは、5μm以下である。 The vertical dimension of the gap 10 is, for example, 0.05 μm or more, preferably 1 μm or more, for example, 20 μm or less, preferably 10 μm or less, and more preferably 5 μm or less.
 また、1つの透明部9の縦方向寸法に対する、1つの空隙部10の縦方向寸法の比率(複数の空隙部10のそれぞれの縦方向寸法/複数の透明部9のそれぞれの縦方向寸法)は、例えば、0.0001以上、好ましくは、0.001以上、さらに好ましくは、0.01以上、0.1以下、好ましくは、0.05以下、さらに好ましくは、0.03以下である。 Further, the ratio of the vertical dimension of one gap 10 to the vertical dimension of one transparent part 9 (the respective vertical dimensions of the plurality of gaps 10 / the respective vertical dimensions of the plurality of transparent parts 9) is For example, it is 0.0001 or more, preferably 0.001 or more, more preferably 0.01 or more and 0.1 or less, preferably 0.05 or less, and more preferably 0.03 or less.
 また、採光層2に対する、複数の空隙部10の総和の体積割合(複数の空隙部10の体積の総和/採光層2の体積×100)は、例えば、1体積%以上、好ましくは、2体積%以上、例えば、7体積%以下、好ましくは、5体積%以下である。 The volume ratio of the sum of the plurality of gaps 10 to the daylighting layer 2 (sum of the volumes of the plurality of gaps 10 / volume of the daylighting layer 2 × 100) is, for example, 1% by volume or more, preferably 2 volumes. % Or more, for example, 7% by volume or less, preferably 5% by volume or less.
 支持体3は、採光層2の厚み方向一方面に配置されており、基材14と、粘着剤層13とを備えている。 The support 3 is disposed on one surface in the thickness direction of the daylighting layer 2 and includes a base material 14 and an adhesive layer 13.
 基材14は、支持体3の厚み方向外側部分である。基材14としては、例えば、PETフィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)フィルム、フッ素系ポリマー(例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、クロロフルオロエチレン-フッ化ビニリデン共重合体など)からなる低接着性基材、無極性ポリマー(例えば、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂など)からなる低接着性基材などが挙げられる。 The base material 14 is an outer portion in the thickness direction of the support 3. Examples of the substrate 14 include a PET film, an acrylic resin film, a triacetyl cellulose (TAC) film, and a fluorine-based polymer (for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, tetrafluoro Low adhesion substrate made of ethylene-hexafluoropropylene copolymer, chlorofluoroethylene-vinylidene fluoride copolymer, etc., Low adhesion made of nonpolar polymer (for example, olefin resin such as polyethylene, polypropylene, etc.) Examples include base materials.
 空気の屈折率に対する、基材14の相対屈折率は、例えば、1.3以上、好ましくは、1.35以上、例えば、1.8以下、好ましくは、1.6以下、さらに好ましくは、1.55以下、とりわけ好ましくは、1.45以下である。なお、屈折率は、プリズムカプラにより測定することができる。 The relative refractive index of the base material 14 with respect to the refractive index of air is, for example, 1.3 or more, preferably 1.35 or more, for example, 1.8 or less, preferably 1.6 or less, more preferably 1 .55 or less, particularly preferably 1.45 or less. The refractive index can be measured with a prism coupler.
 基材14の相対屈折率が上記下限以上上限以下であれば、光の透過率の向上を図ることができるとともに、ヘイズ値の低減を確実に図ることができる。 If the relative refractive index of the base material 14 is not less than the above lower limit and not more than the upper limit, the light transmittance can be improved and the haze value can be reliably reduced.
 基材14のなかでは、好ましくは、光の透過が可能な透明な基材(フィルム)が挙げられ、さらに好ましくは、PETフィルム、透明の無極性ポリマーからなる低接着性基材、および、相対屈折率が1.35以上1.55以下の材料からなる基材が挙げられ、とりわけ好ましくは、透明のポリプロピレンフィルム(相対屈折率:1.48)、アクリル樹脂フィルム(相対屈折率:1.50)、および、TACフィルム(相対屈折率:1.49)が挙げられる。 Among the base materials 14, a transparent base material (film) capable of transmitting light is preferable, and a PET film, a low-adhesive base material made of a transparent nonpolar polymer, and relative Examples thereof include a base material made of a material having a refractive index of 1.35 or more and 1.55 or less, particularly preferably a transparent polypropylene film (relative refractive index: 1.48), an acrylic resin film (relative refractive index: 1.50). ) And TAC film (relative refractive index: 1.49).
 このような基材14の厚み方向の寸法は、例えば、10μm以上、好ましくは、30μm以上、例えば、100μm以下、好ましくは、50μm以下である。 The dimension in the thickness direction of the base material 14 is, for example, 10 μm or more, preferably 30 μm or more, for example, 100 μm or less, preferably 50 μm or less.
 基材14の光透過率は、基材14の厚み方向の寸法が50μmの場合に、波長440~600nmの光に対して、例えば、85%以上、好ましくは、90%以上、さらに好ましくは、92%以上、例えば、98%以下である。 The light transmittance of the substrate 14 is, for example, 85% or more, preferably 90% or more, more preferably, with respect to light having a wavelength of 440 to 600 nm when the dimension in the thickness direction of the substrate 14 is 50 μm. 92% or more, for example, 98% or less.
 基材14のヘイズ値は、例えば、1%以上、例えば、20%以下、好ましくは、18%以下、さらに好ましくは、15%以下、とりわけ好ましくは、10%以下である。なお、ヘイズ値は、JIS K7136:2000に準拠して測定することができる。 The haze value of the substrate 14 is, for example, 1% or more, for example, 20% or less, preferably 18% or less, more preferably 15% or less, and particularly preferably 10% or less. The haze value can be measured according to JIS K7136: 2000.
 また、基材14には、必要により、ハードコート層15(図2において仮想線にて示す。)や、反射防止層17(図2において仮想線にて示す。)などを設けることができる。 Further, the base material 14 can be provided with a hard coat layer 15 (indicated by phantom lines in FIG. 2), an antireflection layer 17 (indicated by imaginary lines in FIG. 2), or the like, if necessary.
 なお、基材14には、ハードコート層15および反射防止層17のいずれか一方のみを設けてもよいが、好ましくは、ハードコート層15および反射防止層17の両方が設けられる。 In addition, although only one of the hard coat layer 15 and the antireflection layer 17 may be provided on the base material 14, preferably both the hard coat layer 15 and the antireflection layer 17 are provided.
 ハードコート層15は、基材14に対して採光層2の反対側に配置され、好ましくは、基材14の厚み方向一方面の全体に薄膜状に配置される。 The hard coat layer 15 is disposed on the opposite side of the daylighting layer 2 with respect to the base material 14, and is preferably disposed in a thin film shape on the entire one surface in the thickness direction of the base material 14.
 ハードコート層15は、光を透過するように構成されており、例えば、有機成分と、粒子とを含有している。 The hard coat layer 15 is configured to transmit light and contains, for example, an organic component and particles.
 ハードコート層15の有機成分は、硬化性樹脂と、有機無機複合粒子とを含んでいる。 The organic component of the hard coat layer 15 includes a curable resin and organic-inorganic composite particles.
 硬化性樹脂としては、例えば、熱硬化性樹脂、紫外線や光で硬化する電離放射線硬化性樹脂などが挙げられ、好ましくは、電離放射線硬化性樹脂が挙げられる。 Examples of the curable resin include a thermosetting resin, an ionizing radiation curable resin that is cured by ultraviolet rays or light, and preferably an ionizing radiation curable resin.
 電離放射線硬化性樹脂としては、例えば、アクリロイル基およびメタクリロイル基の少なくとも一方(以下、(メタ)アクリロイル基とする。)を有する硬化性樹脂が挙げられ、より具体的には、(メタ)アクリロイル基を有する、シリコーン樹脂、ポリエステル樹脂、ポリエーテル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多官能化合物(例えば、多価アルコールなど)の(メタ)アクリレートの重合体(オリゴマーまたはプレポリマー)などが挙げられる。このような電離放射線硬化性樹脂は、単独で使用してもよく、2種以上併用することもできる。 Examples of the ionizing radiation curable resin include a curable resin having at least one of an acryloyl group and a methacryloyl group (hereinafter referred to as (meth) acryloyl group), and more specifically, a (meth) acryloyl group. Of (meth) acrylates of silicone resins, polyester resins, polyether resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, polyfunctional compounds (eg, polyhydric alcohols, etc.) Examples thereof include polymers (oligomers or prepolymers). Such ionizing radiation curable resins may be used alone or in combination of two or more.
 有機無機複合粒子は、無機酸化物粒子と、重合性不飽和基を有する有機化合物とを結合させることにより調製される。 Organic-inorganic composite particles are prepared by combining inorganic oxide particles and an organic compound having a polymerizable unsaturated group.
 無機酸化物粒子としては、例えば、酸化ケイ素粒子(シリカ粒子)、酸化チタン粒子、酸化アルミニウム粒子、酸化亜鉛粒子、酸化錫粒子、酸化ジルコニウム粒子などが挙げられる。このような無機酸化物粒子は、単独で使用してもよく、2種以上併用することもできる。 Examples of the inorganic oxide particles include silicon oxide particles (silica particles), titanium oxide particles, aluminum oxide particles, zinc oxide particles, tin oxide particles, and zirconium oxide particles. Such inorganic oxide particles may be used alone or in combination of two or more.
 重合性不飽和基を有する有機化合物としては、例えば、分子内に、重合性不飽和基と、シラノール基および/または加水分解によりシラノール基を生成する官能基(例えば、アルコキシシリル基など)とを有する有機化合物が挙げられる。 As an organic compound having a polymerizable unsaturated group, for example, a polymerizable unsaturated group and a functional group (for example, an alkoxysilyl group) that generates a silanol group by hydrolysis are included in the molecule. The organic compound which has is mentioned.
 重合性不飽和基は、硬化性樹脂と反応する官能基であって、例えば、アクリロイル基、メタクリロイル基、ビニル基、プロペニル基、ブタジエニル基、スチリル基、エチニル基、シンナモイル基、マレエート基、アクリルアミド基などが挙げられる。 The polymerizable unsaturated group is a functional group that reacts with the curable resin, such as acryloyl group, methacryloyl group, vinyl group, propenyl group, butadienyl group, styryl group, ethynyl group, cinnamoyl group, maleate group, acrylamide group. Etc.
 有機無機複合粒子の含有割合は、硬化性樹脂100質量部に対して、例えば、100質量部以上200質量部以下、好ましくは、100質量部以上150質量部以下である。 The content ratio of the organic / inorganic composite particles is, for example, from 100 parts by mass to 200 parts by mass, and preferably from 100 parts by mass to 150 parts by mass with respect to 100 parts by mass of the curable resin.
 ハードコート層15の粒子としては、例えば、無機粒子(例えば、上記の無機酸化物粒子、炭酸カルシウム粒子、硫酸バリウム粒子、タルク粒子、カオリン粒子、硫酸カルシウム粒子など)、有機粒子(例えば、ポリメチルメタクリレート樹脂粉末(PMMA粒子)、シリコーン樹脂粉末、ポリスチレン樹脂粉末、ポリカーボネート樹脂粉末、アクリルスチレン樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン樹脂粉末、ポリオレフィン樹脂粉末、ポリエステル樹脂粉末、ポリアミド樹脂粉末、ポリイミド樹脂粉末、ポリフッ化エチレン樹脂粉末など)が挙げられる。このような粒子は、単独で使用してもよく、2種以上併用することもできる。 Examples of the particles of the hard coat layer 15 include inorganic particles (for example, the above-described inorganic oxide particles, calcium carbonate particles, barium sulfate particles, talc particles, kaolin particles, and calcium sulfate particles), organic particles (for example, polymethyl Methacrylate resin powder (PMMA particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, polyfluoride And ethylene resin powder). Such particles may be used alone or in combination of two or more.
 ハードコート層15の粒子の含有割合は、有機成分100質量部に対して、例えば、3質量部以上20質量部以下、好ましくは、5質量部以上10質量部以下である。 The content ratio of the particles of the hard coat layer 15 is, for example, 3 parts by mass or more and 20 parts by mass or less, preferably 5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the organic component.
 ハードコート層15の厚み方向の寸法は、例えば、1μm以上、好ましくは、5μm以上、例えば、30μm以下、好ましくは、15μm以下である。 The dimension in the thickness direction of the hard coat layer 15 is, for example, 1 μm or more, preferably 5 μm or more, for example, 30 μm or less, preferably 15 μm or less.
 空気の屈折率に対する、ハードコート層15の相対屈折率は、例えば、1.4以上、好ましくは、1.5を超過し、例えば、1.8以下、好ましくは、1.6以下である。 The relative refractive index of the hard coat layer 15 with respect to the refractive index of air is, for example, 1.4 or more, preferably more than 1.5, for example, 1.8 or less, preferably 1.6 or less.
 基材14とハードコート層15との組み合わせとしては、好ましくは、相対屈折率が1.4以上1.6以下の基材14、および、相対屈折率が1.5を超過し、1.6以下のハードコート層15の組み合わせが挙げられ、より具体的には、PETフィルム(基材14)と、(メタ)アクリロイル基を有するウレタン樹脂またはポリエステル樹脂を含有するハードコート層15との組み合わせが挙げられる。 The combination of the base material 14 and the hard coat layer 15 is preferably a base material 14 having a relative refractive index of 1.4 or more and 1.6 or less, and a relative refractive index of more than 1.5, and 1.6 The following combination of the hard coat layer 15 is mentioned, More specifically, the combination of the PET film (base material 14) and the hard coat layer 15 containing a urethane resin or a polyester resin having a (meth) acryloyl group is included. Can be mentioned.
 反射防止層17は、基材14に対して採光層2の反対側に配置されており、好ましくは、ハードコート層15の厚み方向一方面の全体に薄膜状に配置される。 The antireflection layer 17 is disposed on the opposite side of the daylighting layer 2 with respect to the base material 14, and is preferably disposed in a thin film shape on the entire one surface in the thickness direction of the hard coat layer 15.
 反射防止層17は、光を透過するように構成されている。反射防止層17の形成材料としては、例えば、紫外線硬化型アクリル樹脂などの樹脂系材料、樹脂中に無機粒子(例えば、コロイダルシリカなど)を分散させたハイブリッド系材料、金属アルコキシド(例えば、テトラエトキシシラン、チタンテトラエトキシドなど)を用いたゾル―ゲル系材料などが挙げられる。 The antireflection layer 17 is configured to transmit light. Examples of the material for forming the antireflection layer 17 include a resin material such as an ultraviolet curable acrylic resin, a hybrid material in which inorganic particles (for example, colloidal silica) are dispersed in a resin, and a metal alkoxide (for example, tetraethoxy). And sol-gel materials using silane, titanium tetraethoxide, etc.).
 また、反射防止層17の形成材料には、好ましくは、中空球状の酸化ケイ素粒子が含有される。中空球状の酸化ケイ素粒子の平均粒子径は、例えば、5nm以上300nm以下、好ましくは、10nm以上200nm以下である。 The material for forming the antireflection layer 17 preferably contains hollow spherical silicon oxide particles. The average particle diameter of the hollow spherical silicon oxide particles is, for example, 5 nm to 300 nm, and preferably 10 nm to 200 nm.
 また、反射防止層17の厚み方向の寸法は、例えば、0.01μm以上、好ましくは、0.1μm以上、例えば、5μm以下、好ましくは、1μm未満である。 The dimension in the thickness direction of the antireflection layer 17 is, for example, 0.01 μm or more, preferably 0.1 μm or more, for example, 5 μm or less, preferably less than 1 μm.
 空気の屈折率に対する、反射防止層17の相対屈折率は、例えば、1.3以上、好ましくは、1.35以上、例えば、1.6以下、好ましくは、1.55以下、さらに好ましくは、1.4未満である。 The relative refractive index of the antireflection layer 17 with respect to the refractive index of air is, for example, 1.3 or more, preferably 1.35 or more, for example, 1.6 or less, preferably 1.55 or less, more preferably Less than 1.4.
 反射防止層17の相対屈折率が上記下限以上上限以下であれば、光の透過率の向上を図ることができるとともに、ヘイズ値の低減を確実に図ることができる。 If the relative refractive index of the antireflection layer 17 is not less than the above lower limit and not more than the upper limit, the light transmittance can be improved and the haze value can be reliably reduced.
 また、反射防止層17の相対屈折率は、好ましくは、ハードコート層15および基材14のそれぞれの相対屈折率よりも小さい。 Further, the relative refractive index of the antireflection layer 17 is preferably smaller than the relative refractive indexes of the hard coat layer 15 and the base material 14.
 ハードコート層15と反射防止層17との組み合わせとしては、好ましくは、屈折率が1.5を超過し、1.6以下のハードコート層15、および、屈折率が1.3以上1.4未満の反射防止層17の組み合わせ、より具体的には、(メタ)アクリロイル基を有するウレタン樹脂またはポリエステル樹脂を含有するハードコート層15と、中空球状の酸化ケイ素粒子を含有する紫外線硬化型アクリル樹脂から形成される反射防止層17との組み合わせが挙げられる。 The combination of the hard coat layer 15 and the antireflection layer 17 is preferably such that the refractive index exceeds 1.5 and the hard coat layer 15 is 1.6 or less, and the refractive index is 1.3 or more and 1.4. Less than antireflection layer 17 combination, more specifically, hard coat layer 15 containing urethane resin or polyester resin having (meth) acryloyl group, and UV curable acrylic resin containing hollow spherical silicon oxide particles And a combination with the antireflection layer 17 formed from the above.
 基材14と反射防止層17との組み合わせとしては、好ましくは、屈折率が1.4以上1.6以下の基材14、および、屈折率が1.3以上1.4未満の反射防止層17の組み合わせ、より具体的には、PETフィルム(基材14)と、中空球状の酸化ケイ素粒子を含有する紫外線硬化型アクリル樹脂から形成される反射防止層17との組み合わせが挙げられる。 The combination of the base material 14 and the antireflection layer 17 is preferably a base material 14 having a refractive index of 1.4 or more and 1.6 or less, and an antireflection layer having a refractive index of 1.3 or more and less than 1.4. 17, more specifically, a combination of a PET film (base material 14) and an antireflection layer 17 formed from an ultraviolet curable acrylic resin containing hollow spherical silicon oxide particles.
 なお、第1実施形態では、基材14に、ハードコート層15および反射防止層17が設けられており、それらの組み合わせは、PETフィルム(基材14)、(メタ)アクリロイル基を有するウレタン樹脂またはポリエステル樹脂を含有するハードコート層15、および、中空球状の酸化ケイ素粒子を含有する紫外線硬化型アクリル樹脂から形成される反射防止層17である。 In the first embodiment, the base material 14 is provided with the hard coat layer 15 and the antireflection layer 17, and the combination thereof is a urethane film having a PET film (base material 14) and a (meth) acryloyl group. Or it is the hard-coat layer 15 containing a polyester resin, and the antireflection layer 17 formed from the ultraviolet curing acrylic resin containing a hollow spherical silicon oxide particle.
 ハードコート層15および反射防止層17が設けられる基材14の光透過率は、例えば、上記した基材14の光透過率の範囲と同一の範囲である。また、ハードコート層15および反射防止層17が設けられる基材14のヘイズ値は、例えば、上記した基材14のヘイズ値の範囲と同一の範囲である。 The light transmittance of the base material 14 on which the hard coat layer 15 and the antireflection layer 17 are provided is, for example, in the same range as the light transmittance range of the base material 14 described above. Moreover, the haze value of the base material 14 on which the hard coat layer 15 and the antireflection layer 17 are provided is, for example, in the same range as the above-described range of the haze value of the base material 14.
 なお、支持体3において採光層2と反対側の表面、つまり、支持体3の厚み方向一方面は、基材14に反射防止層17が設けられていない場合、基材14の厚み方向一方面であり、基材14が、支持体3において採光層2と反対側の表面を構成する。 Note that the surface of the support 3 opposite to the daylighting layer 2, that is, one surface in the thickness direction of the support 3 is one surface in the thickness direction of the substrate 14 when the antireflection layer 17 is not provided on the substrate 14. The base material 14 constitutes the surface of the support 3 opposite to the daylighting layer 2.
 一方、基材14に反射防止層17が設けられている場合、支持体3の厚み方向一方面は、反射防止層17の厚み方向一方面であり、反射防止層17が、支持体3において採光層2と反対側の表面を構成する。 On the other hand, when the antireflection layer 17 is provided on the base material 14, one surface in the thickness direction of the support 3 is one surface in the thickness direction of the antireflection layer 17, and the antireflection layer 17 is daylighted in the support 3. It constitutes the surface opposite to layer 2.
 そのため、支持体3において、採光層2と反対側の表面を構成する材料(基材14または反射防止層17)の屈折率は、好ましくは、1.35以上1.55以下である。 Therefore, in the support 3, the refractive index of the material (base material 14 or antireflection layer 17) constituting the surface opposite to the daylighting layer 2 is preferably 1.35 or more and 1.55 or less.
 粘着剤層13は、支持体3の厚み方向内側部分であって、基材14の内側面(採光層2側の面)の全体に薄層状に配置されている。つまり、粘着剤層13は、基材14と採光層2との間に介在されており、採光層2と基材14とを接着している。これによって、採光層2は、支持体3の粘着剤層13側の面に積層されており、複数の透明部9は、その第3面9Cが粘着剤層13に貼着されることにより、支持体3に一括して支持されている。 The pressure-sensitive adhesive layer 13 is an inner portion in the thickness direction of the support 3 and is disposed in a thin layer on the entire inner surface (surface on the daylighting layer 2 side) of the base material 14. That is, the pressure-sensitive adhesive layer 13 is interposed between the base material 14 and the daylighting layer 2, and adheres the daylighting layer 2 and the base material 14. Thereby, the daylighting layer 2 is laminated | stacked on the surface at the side of the adhesive layer 13 of the support body 3, and the some transparent part 9 is sticking the 3rd surface 9C to the adhesive layer 13, It is supported by the support body 3 collectively.
 粘着剤層13を形成する粘着剤としては、例えば、エポキシ系粘着剤、シリコーン系粘着剤、アクリル系粘着剤、紫外線硬化型粘着剤などの公知の透明の粘着剤が挙げられる。 Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 13 include known transparent pressure-sensitive adhesives such as epoxy pressure-sensitive adhesives, silicone pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, and ultraviolet curable pressure-sensitive adhesives.
 このような粘着剤のなかでは、好ましくは、アクリル系粘着剤が挙げられる。このような粘着剤は、単独で使用してもよく、2種以上併用することもできる。また、粘着剤層13は、公知の両面粘着テープから構成することもできる。 Among these pressure-sensitive adhesives, an acrylic pressure-sensitive adhesive is preferable. Such pressure-sensitive adhesives may be used alone or in combination of two or more. Moreover, the adhesive layer 13 can also be comprised from a well-known double-sided adhesive tape.
 粘着剤層13の厚み方向の寸法は、例えば、1μm以上、好ましくは、5μm以上、例えば、100μm以下、好ましくは、50μm以下、さらに好ましくは、40μm以下である。 The dimension in the thickness direction of the pressure-sensitive adhesive layer 13 is, for example, 1 μm or more, preferably 5 μm or more, for example, 100 μm or less, preferably 50 μm or less, and more preferably 40 μm or less.
 なお、基材14自体に粘着性がある場合は、支持体3において粘着剤層13は不要である。 In addition, when the base material 14 itself is sticky, the pressure-sensitive adhesive layer 13 is not necessary in the support 3.
 このような支持体3としては、例えば、基材を有する公知の粘着テープ、好ましくは、光を透過可能な透明粘着テープが挙げられる。支持体3としては、市販品を用いることができ、例えば、SC-01(ニトムズ社製)などが挙げられる。 Examples of the support 3 include a known adhesive tape having a base material, preferably a transparent adhesive tape capable of transmitting light. As the support 3, a commercially available product can be used, and examples thereof include SC-01 (manufactured by Nitoms).
 剥離体4は、採光層2の厚み方向他方面に配置されており、剥離ライナー11と、粘着剤層12とを備えている。 The release body 4 is disposed on the other side in the thickness direction of the daylighting layer 2 and includes a release liner 11 and an adhesive layer 12.
 剥離ライナー11は、剥離体4の厚み方向外側部分である。剥離ライナー11は、可撓性を有する樹脂フィルムであって、例えば、基材14と同様の基材などが挙げられ、好ましくは、PETフィルムが挙げられる。 The release liner 11 is an outer portion in the thickness direction of the release body 4. The release liner 11 is a resin film having flexibility, and examples thereof include a base material similar to the base material 14, and preferably a PET film.
 また、図示しないが、剥離ライナー11の厚み方向内側面には、剥離処理層が設けられている。剥離処理層による剥離ライナー11の剥離力は、適宜調整される。 Although not shown, a release treatment layer is provided on the inner surface of the release liner 11 in the thickness direction. The peeling force of the release liner 11 by the release treatment layer is adjusted as appropriate.
 粘着剤層12は、剥離体4の厚み方向内側部分であって、剥離ライナー11の内側面(採光層2側の面)の全体に薄層状に配置されている。つまり、粘着剤層12は、剥離ライナー11と採光層2との間に介在されており、剥離ライナー11の剥離処理層(図示せず)に接着されるとともに、採光層2の厚み方向他方面(より詳しくは、透明部9の第4面9D)に接着されている。 The pressure-sensitive adhesive layer 12 is an inner portion in the thickness direction of the release body 4 and is disposed in a thin layer on the entire inner side surface (the surface on the daylighting layer 2 side) of the release liner 11. That is, the pressure-sensitive adhesive layer 12 is interposed between the release liner 11 and the daylighting layer 2 and is adhered to the release treatment layer (not shown) of the release liner 11 and the other side in the thickness direction of the daylighting layer 2. (More specifically, it is bonded to the fourth surface 9D of the transparent portion 9).
 粘着剤層12を形成する粘着剤としては、例えば、粘着剤層13を形成する粘着剤と同様の粘着剤が挙げられ、好ましくは、アクリル系粘着剤が挙げられる。このような粘着剤は、単独で使用してもよく、2種以上併用することもできる。また、粘着剤層12は、公知の両面粘着テープから構成することもできる。 Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 12 include the same pressure-sensitive adhesive as the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 13, and preferably an acrylic pressure-sensitive adhesive. Such pressure-sensitive adhesives may be used alone or in combination of two or more. Moreover, the adhesive layer 12 can also be comprised from a well-known double-sided adhesive tape.
 粘着剤層12の厚み方向の寸法は、例えば、粘着剤層13の厚み方向の寸法と同様である。 The dimension in the thickness direction of the pressure-sensitive adhesive layer 12 is, for example, the same as the dimension in the thickness direction of the pressure-sensitive adhesive layer 13.
 2.採光フィルムの製造方法
 次に、採光フィルム1の製造方法について説明する。
2. The manufacturing method of the lighting film Next, the manufacturing method of the lighting film 1 is demonstrated.
 採光フィルム1を製造するには、図3に示すように、まず、透明部9に対応する透明フィルム16を複数枚調製(準備)する。 In order to manufacture the daylighting film 1, a plurality of transparent films 16 corresponding to the transparent portion 9 are first prepared (prepared) as shown in FIG.
 透明フィルム16は、例えば、上記の透明の樹脂材料からなる。このような透明フィルム16としては、市販品を用いることができ、例えば、PET(T100-100(三菱樹脂社製))、PP(トレファンBO(東レ社製))、CPP(P111(東洋紡社製))、CPP(SOP5T(OJK社製))などが挙げられる。 The transparent film 16 is made of, for example, the transparent resin material described above. As such a transparent film 16, commercially available products can be used. For example, PET (T100-100 (manufactured by Mitsubishi Plastics)), PP (Treffan BO (manufactured by Toray Industries, Inc.)), CPP (P111 (Toyobo Co., Ltd.) Product)), CPP (SOP5T (manufactured by OJK)) and the like.
 そして、透明フィルム16を複数枚調製するには、図5に示すように、まず、上記の透明の樹脂材料からなる加工シート24を準備し、加工シート24から所定形状の透明フィルム16を切り出す。 In order to prepare a plurality of transparent films 16, as shown in FIG. 5, first, a processed sheet 24 made of the above transparent resin material is prepared, and the transparent film 16 having a predetermined shape is cut out from the processed sheet 24.
 加工シート24から透明フィルム16を切り出すには、例えば、加工シート24を、複数枚の透明フィルム16が切り出し可能となるように大きく形成し、その加工シート24から透明フィルム16を複数枚切り出してもよく、加工シート24を複数枚調製して、各加工シート24から1枚ずつ透明フィルム16を切り出してもよい。 In order to cut out the transparent film 16 from the processed sheet 24, for example, the processed sheet 24 may be formed large so that a plurality of transparent films 16 can be cut out, and a plurality of transparent films 16 may be cut out from the processed sheet 24. Alternatively, a plurality of processed sheets 24 may be prepared, and the transparent film 16 may be cut out from each processed sheet 24 one by one.
 このような方法のなかでは、製造コストの観点から好ましくは、加工シート24を、複数の透明フィルム16が切り出し可能となるように、所定方向に連続する長尺かつ平帯形状に形成し、その加工シート24から透明フィルム16を複数枚切り出す方法が挙げられる。 Among such methods, from the viewpoint of manufacturing cost, the processed sheet 24 is preferably formed in a long and flat strip shape that is continuous in a predetermined direction so that a plurality of transparent films 16 can be cut out. A method of cutting a plurality of transparent films 16 from the processed sheet 24 may be mentioned.
 また、加工シート24が長尺かつ平帯形状に形成される場合、加工シート24は、好ましくは、可撓性を有しており、ロール状に巻回される。そして、複数枚の透明フィルム16は、ロール状の加工シート24から引き出された部分から切り出される。 Further, when the processed sheet 24 is formed in a long and flat band shape, the processed sheet 24 preferably has flexibility and is wound in a roll shape. Then, the plurality of transparent films 16 are cut out from the part drawn out from the roll-shaped processed sheet 24.
 加工シート24から透明フィルム16を切り出す方法としては、例えば、裁断、打ち抜きなどの公知の加工方法が挙げられる。 Examples of methods for cutting the transparent film 16 from the processed sheet 24 include known processing methods such as cutting and punching.
 透明フィルム16の形状は、特に制限されず、透明フィルム16の厚み方向から見て、例えば、多角形または円形形状、好ましくは、矩形形状または円形形状、とりわけ好ましくは、円形形状である。 The shape of the transparent film 16 is not particularly limited, and is, for example, a polygonal shape or a circular shape, preferably a rectangular shape or a circular shape, and particularly preferably a circular shape when viewed from the thickness direction of the transparent film 16.
 透明フィルム16のサイズは、使用目的などに応じて適宜変更される。具体的には、透明フィルム16が厚み方向から見て円形形状を有する場合、直径が、例えば、10cm以上、例えば、100cm以下、加工性の観点から好ましくは、50cm以下である。なお、複数の透明フィルム16のそれぞれは、略同一サイズに形成される。 The size of the transparent film 16 is appropriately changed according to the purpose of use. Specifically, when the transparent film 16 has a circular shape as viewed from the thickness direction, the diameter is, for example, 10 cm or more, for example, 100 cm or less, and preferably 50 cm or less from the viewpoint of workability. Each of the plurality of transparent films 16 is formed in substantially the same size.
 これによって、複数枚の透明フィルム16、例えば、300枚以上、好ましくは、500枚以上、さらに好ましくは、1000枚以上、例えば、60000枚以下、好ましくは、10000枚以下の透明フィルム16が準備される。 Thereby, a plurality of transparent films 16, for example, 300 sheets or more, preferably 500 sheets or more, more preferably 1000 sheets or more, for example, 60000 sheets or less, preferably 10,000 sheets or less are prepared. The
 次いで、図4に示すように、複数枚の透明フィルム16のそれぞれを、粘着剤層を挟むことなく、厚み方向に積層して、積層体20を調製(準備)する。つまり、透明フィルム16の厚み方向と、積層体20の積層方向とは同一方向である。また、複数枚の透明フィルム16の外周端縁は、積層方向に投影したときに互いに一致する。 Next, as shown in FIG. 4, each of the plurality of transparent films 16 is laminated in the thickness direction without sandwiching the pressure-sensitive adhesive layer, thereby preparing (preparing) a laminate 20. That is, the thickness direction of the transparent film 16 and the lamination direction of the laminated body 20 are the same direction. Further, the outer peripheral edges of the plurality of transparent films 16 coincide with each other when projected in the stacking direction.
 そして、積層体20において、積層方向に互いに隣り合う透明フィルム16の間には、僅かな空気が介在しており、それが空隙層23として供され、互いに隣り合う透明フィルム16を区画している。 In the laminate 20, a slight amount of air is interposed between the transparent films 16 adjacent to each other in the stacking direction, and the air is provided as a gap layer 23 to partition the adjacent transparent films 16. .
 以上により、積層方向に延びる積層体20が調製される。例えば、透明フィルム16が厚み方向から見て矩形形状である場合、角柱形状の積層体20が調製され、透明フィルム16が厚み方向から見て円形形状である場合、円柱形状の積層体20が調製される。 Thus, the laminate 20 extending in the lamination direction is prepared. For example, when the transparent film 16 is rectangular when viewed from the thickness direction, a prismatic laminate 20 is prepared, and when the transparent film 16 is circular when viewed from the thickness direction, a cylindrical laminate 20 is prepared. Is done.
 なお、図4では、便宜上、複数の透明フィルム16の枚数が省略されており、積層体20が8枚の透明フィルム16からなるように記載しているが、実際には、積層体20は、例えば、300枚~60000枚、好ましくは、500枚~30000枚、さらに好ましくは、1000枚~10000枚の透明フィルム16を有している。 In FIG. 4, for convenience, the number of transparent films 16 is omitted, and the stacked body 20 is described as being composed of 8 transparent films 16. For example, the transparent film 16 includes 300 to 60000 sheets, preferably 500 to 30000 sheets, and more preferably 1000 to 10,000 sheets.
 積層体20の高さ(積層方向長さ)は、例えば、1cm以上、好ましくは、5cm以上、さらに好ましくは、40cm以上、例えば、200cm以下、好ましくは、100cm以下である。 The height (length in the stacking direction) of the stacked body 20 is, for example, 1 cm or more, preferably 5 cm or more, more preferably 40 cm or more, for example, 200 cm or less, preferably 100 cm or less.
 次いで、積層体20の側面21(積層方向に沿って延びる表面)に、積層方向(透明フィルム16の厚み方向)に沿うように支持体3を貼り付ける。 Next, the support 3 is attached to the side surface 21 (surface extending along the lamination direction) of the laminate 20 so as to be along the lamination direction (thickness direction of the transparent film 16).
 支持体3を積層体20の側面21に貼り付けるには、必要により、積層体20に対して積層方向の両側から加圧して、積層体20を保持する。 In order to attach the support 3 to the side surface 21 of the stacked body 20, the stacked body 20 is held by applying pressure to the stacked body 20 from both sides in the stacking direction.
 加圧条件としては、積層体20に対する積層方向の外側からの圧力が、例えば、0.01MPa以上、好ましくは、0.1MPa以上、例えば、10MPa以下、好ましくは、5MPa以下である。 As the pressurizing condition, the pressure from the outside in the stacking direction with respect to the stacked body 20 is, for example, 0.01 MPa or more, preferably 0.1 MPa or more, for example, 10 MPa or less, preferably 5 MPa or less.
 そして、支持体3の粘着剤層13が、積層体20の側面21に接着するように、例えば、タッチロールなどを使用して、支持体3を積層体20に連続的に貼り付ける。 Then, the support 3 is continuously attached to the laminate 20 using, for example, a touch roll so that the pressure-sensitive adhesive layer 13 of the support 3 adheres to the side surface 21 of the laminate 20.
 その後、支持体3が貼り付けられた積層体20の側面21を、複数の透明フィルム16が積層体20の積層方向に並列するように切断する。 Thereafter, the side surface 21 of the laminate 20 to which the support 3 is attached is cut so that the plurality of transparent films 16 are arranged in parallel in the lamination direction of the laminate 20.
 積層体20の側面21を切断する切断方法としては、積層体20から、支持体3に支持された側面21を切り出せれば特に限定されない。このような切断方法のなかでは、好ましくは、積層体20を円柱形状に形成し、切削刃34を積層方向に沿うように配置した後、積層体20を軸線を中心として回転させ、積層体20から、支持体3に支持された側面層22をかつら剥きのように、連続的に切り出す方法が挙げられる。 The cutting method for cutting the side surface 21 of the laminate 20 is not particularly limited as long as the side surface 21 supported by the support 3 can be cut out from the laminate 20. In such a cutting method, preferably, the laminated body 20 is formed in a cylindrical shape, the cutting blades 34 are arranged along the laminating direction, and then the laminated body 20 is rotated around the axis line to obtain the laminated body 20. From the above, a method of continuously cutting out the side layer 22 supported by the support 3 like a wig is mentioned.
 これによって、積層体20の側面層22、すなわち採光層2が、積層体20から切り出される。その後、図1に示すように、採光層2において、支持体3の反対側の面に、剥離体4を貼り付ける。 Thereby, the side layer 22 of the stacked body 20, that is, the daylighting layer 2 is cut out from the stacked body 20. Thereafter, as shown in FIG. 1, the peeling body 4 is attached to the surface of the lighting layer 2 opposite to the support 3.
 以上によって、採光層2、支持体3および剥離体4を備える採光フィルム1が調製される。 By the above, the lighting film 1 provided with the lighting layer 2, the support body 3, and the peeling body 4 is prepared.
 このような採光フィルム1は、図6に示すように、生産性の観点から好ましくは、製造ユニット28により連続的に製造される。なお、図4および図6では、便宜上、支持体3を一層として記載している。 Such a daylighting film 1 is preferably continuously manufactured by a manufacturing unit 28 from the viewpoint of productivity as shown in FIG. In FIGS. 4 and 6, the support 3 is shown as a single layer for convenience.
 製造ユニット28は、切削装置29と、巻取装置30とを備えている。 The manufacturing unit 28 includes a cutting device 29 and a winding device 30.
 切削装置29は、支持体3を積層体20の側面21に貼り付けた後、支持体3が貼り付けられた積層体20の側面層22を連続的に切断するように構成されている。切削装置29は、回転軸32と、1対の保持部材33と、切削刃34とを備えている。 The cutting device 29 is configured to continuously cut the side surface layer 22 of the laminate 20 to which the support 3 is attached after the support 3 is attached to the side 21 of the laminate 20. The cutting device 29 includes a rotating shaft 32, a pair of holding members 33, and a cutting blade 34.
 回転軸32は、略円柱形状を有しており、その軸線を中心として回転可能に構成されている。回転軸32には、長尺かつ平帯形状の支持体3が巻回される。詳しくは、長尺かつ平帯形状の支持体3は、粘着剤層13が基材14に対して回転軸32の径方向内側に位置するように、回転軸32に渦巻き状に巻回される。これによって、支持体3は、回転軸32を中心とする支持体ロール35として構成される。 The rotating shaft 32 has a substantially cylindrical shape and is configured to be rotatable around the axis. A long and flat belt-like support 3 is wound around the rotating shaft 32. Specifically, the long and flat belt-shaped support 3 is wound around the rotary shaft 32 in a spiral shape so that the pressure-sensitive adhesive layer 13 is positioned on the inner side in the radial direction of the rotary shaft 32 with respect to the base material 14. . Thus, the support 3 is configured as a support roll 35 centered on the rotation shaft 32.
 支持体ロール35では、回転軸32の径方向において、支持体3が隣接するように配置され、粘着剤層13と基材14とが順次繰り返して配置されている。 In the support roll 35, the support 3 is disposed adjacent to the radial direction of the rotating shaft 32, and the adhesive layer 13 and the base material 14 are sequentially and repeatedly disposed.
 なお、支持体3が支持体ロール35として構成される場合、基材14における粘着剤層13と反対側の面には剥離処理層が設けられる。そのため、回転軸32の径方向において、互いに隣り合う支持体3の間、詳しくは、径方向外側に配置される支持体3の粘着剤層13と、径方向内側に配置される支持体3の基材14との間には、剥離処理層(図示せず)が介在される。 In addition, when the support body 3 is comprised as the support body roll 35, the peeling process layer is provided in the surface on the opposite side to the adhesive layer 13 in the base material 14. FIG. Therefore, in the radial direction of the rotating shaft 32, the pressure-sensitive adhesive layer 13 of the support 3 arranged on the radially outer side between the support bodies 3 adjacent to each other, and the support 3 arranged on the radially inner side. A release treatment layer (not shown) is interposed between the substrate 14 and the substrate 14.
 1対の保持部材33は、図6において、支持体ロール35に対して、左下方に間隔を空けて配置されている。1対の保持部材33のそれぞれは、略円板形状を有しており、その軸線を中心として回転可能に構成されている。 The pair of holding members 33 are arranged at a lower left side with respect to the support roll 35 in FIG. Each of the pair of holding members 33 has a substantially disc shape, and is configured to be rotatable about its axis.
 また、1対の保持部材33は、回転軸32の延びる方向と同一の方向に、互いに間隔を空けて配置されている。そして、1対の保持部材33は、略円柱形状の積層体20を積層方向の両側から上記の圧力で挟むことにより、積層体20を保持している。なお、各保持部材33は、積層体20を保持した状態において、積層体20と軸線が一致するように配置される。 Further, the pair of holding members 33 are arranged in the same direction as the direction in which the rotating shaft 32 extends and spaced from each other. The pair of holding members 33 hold the stacked body 20 by sandwiching the substantially cylindrical stacked body 20 from both sides in the stacking direction with the above pressure. In addition, each holding member 33 is arrange | positioned so that the laminated body 20 and an axis line may correspond in the state which hold | maintained the laminated body 20. FIG.
 切削刃34は、1対の保持部材33に保持される積層体20の側面21に対して、積層方向に沿うように配置されており、切削刃34の先端が、積層体20の側面21に接触している。 The cutting blade 34 is arranged along the stacking direction with respect to the side surface 21 of the stacked body 20 held by the pair of holding members 33, and the tip of the cutting blade 34 is placed on the side surface 21 of the stacked body 20. In contact.
 また、切削刃34は、積層体20の切り出しの進行に伴って、積層体20の径が小さくなると、切削刃34の先端が積層体20の側面21に接触した状態を維持したまま、積層体20の軸線に近づくように構成されている。 In addition, when the diameter of the laminated body 20 decreases as the cutting of the laminated body 20 progresses, the cutting blade 34 maintains the state in which the tip of the cutting blade 34 is in contact with the side surface 21 of the laminated body 20. It is configured to approach 20 axes.
 巻取装置30は、支持体3に支持される採光層2(積層体20の側面層22)に、剥離体4を貼り付けた後、その採光フィルム1を、連続的に巻き取るように構成されており、図6において、切削装置29に対して、右方に間隔を空けて配置されている。 The winding device 30 is configured to continuously wind up the daylighting film 1 after the peeling body 4 is attached to the daylighting layer 2 (the side layer 22 of the laminated body 20) supported by the support body 3. In FIG. 6, the cutting device 29 is arranged with an interval to the right.
 巻取装置30は、回転軸38と、巻取軸39と、複数(2つ)のローラ40とを備えている。 The winding device 30 includes a rotating shaft 38, a winding shaft 39, and a plurality (two) of rollers 40.
 回転軸38は、図6において、回転軸32に対して、右上方に間隔を空けて配置されている。回転軸38は、回転軸32と同一の方向に延びる略円柱形状を有しており、その軸線を中心として回転可能に構成されている。回転軸38には、長尺かつ平帯形状の剥離体4が巻回される。詳しくは、長尺かつ平帯形状の剥離体4は、粘着剤層12が剥離ライナー11に対して回転軸38の径方向外側に位置するように、回転軸38に渦巻き状に巻回される。これによって、剥離体4は、回転軸38を中心とする剥離体ロール41として構成される。 Rotating shaft 38 is arranged with an interval to the upper right with respect to rotating shaft 32 in FIG. The rotation shaft 38 has a substantially cylindrical shape extending in the same direction as the rotation shaft 32 and is configured to be rotatable about the axis. A long and flat strip-shaped peeling body 4 is wound around the rotary shaft 38. Specifically, the long and flat strip-shaped release body 4 is spirally wound around the rotation shaft 38 such that the pressure-sensitive adhesive layer 12 is positioned radially outside the rotation shaft 38 with respect to the release liner 11. . Thus, the peeling body 4 is configured as a peeling body roll 41 centering on the rotation shaft 38.
 剥離体ロール41では、回転軸38の径方向において、剥離体4が隣接するように配置され、粘着剤層12と剥離ライナー11とが順次繰り返して配置されている。 In the peeling body roll 41, the peeling body 4 is arranged adjacent to each other in the radial direction of the rotary shaft 38, and the pressure-sensitive adhesive layer 12 and the peeling liner 11 are sequentially and repeatedly arranged.
 なお、剥離体4が剥離体ロール41として構成される場合、剥離ライナー11における粘着剤層12と反対側の面にも剥離処理層が設けられる。そのため、回転軸38の径方向において、互いに隣り合う剥離体4の間、詳しくは、径方向外側に配置される剥離体4の剥離ライナー11と、径方向内側に配置される剥離体4の粘着剤層12との間には、剥離処理層(図示せず)が介在される。 In addition, when the peeling body 4 is comprised as the peeling body roll 41, a peeling process layer is provided also in the surface on the opposite side to the adhesive layer 12 in the peeling liner 11. FIG. Therefore, in the radial direction of the rotating shaft 38, between the adjacent release bodies 4, specifically, the release liner 11 of the release body 4 disposed on the radially outer side and the adhesion of the release body 4 disposed on the radially inner side. A release treatment layer (not shown) is interposed between the agent layer 12.
 巻取軸39は、図6において、1対の保持部材33に対して、右方に間隔を空けて配置されており、回転軸38に対して、右下方に間隔を空けて配置されている。 In FIG. 6, the winding shaft 39 is disposed with a space to the right with respect to the pair of holding members 33, and is disposed with a space to the lower right with respect to the rotation shaft 38. .
 巻取軸39は、回転軸32と同一の方向に延びる略円柱形状を有しており、その軸線を中心として回転可能に構成されている。巻取軸39は、後述するが、製造された採光フィルム1が巻回される。 The take-up shaft 39 has a substantially cylindrical shape extending in the same direction as the rotation shaft 32, and is configured to be rotatable around the axis. Although the winding shaft 39 will be described later, the manufactured daylighting film 1 is wound.
 複数のローラ40のそれぞれは、回転軸32と同一の方向に延びており、所定の位置に適宜配置されている。 Each of the plurality of rollers 40 extends in the same direction as the rotating shaft 32 and is appropriately disposed at a predetermined position.
 このような製造ユニット28により、採光フィルム1を連続的に製造するには、まず、支持体ロール35から引き出した支持体3を、1対の保持部材33に保持される積層体20の側面21に貼り付ける。 In order to continuously manufacture the daylighting film 1 with such a manufacturing unit 28, first, the side surface 21 of the laminate 20 in which the support 3 drawn out from the support roll 35 is held by the pair of holding members 33. Paste to.
 より詳しくは、引き出された支持体3の粘着剤層13が積層体20の側面21に接着するように、支持体3を積層体20の接線方向に向かって引き回し、積層体20における中心角が、例えば、90°~270°の範囲、好ましくは、120°~240°の範囲の積層体20の側面21に貼り付ける。 More specifically, the support 3 is drawn toward the tangential direction of the laminate 20 such that the pressure-sensitive adhesive layer 13 of the drawn support 3 adheres to the side surface 21 of the laminate 20, and the central angle in the laminate 20 is For example, it is attached to the side surface 21 of the laminate 20 in the range of 90 ° to 270 °, preferably in the range of 120 ° to 240 °.
 次いで、1対の保持部材33が、切削装置29が備えるモータなどの駆動源からの駆動力により、図6における紙面手前側から見て反時計回り方向に回転駆動する。 Next, the pair of holding members 33 are rotationally driven in the counterclockwise direction when viewed from the front side in FIG. 6 by a driving force from a driving source such as a motor provided in the cutting device 29.
 そうすると、1対の保持部材33に保持される積層体20が、軸線を中心として回転するとともに、支持体ロール35が回転軸32の軸線を中心として従動する。 Then, the laminate 20 held by the pair of holding members 33 rotates about the axis, and the support roll 35 is driven about the axis of the rotation shaft 32.
 これによって、支持体3が貼り付けられた積層体20の側面層22が、切削刃34によって、かつら剥きのように連続的に切り出される。 Thus, the side layer 22 of the laminate 20 to which the support 3 is attached is continuously cut out by the cutting blade 34 like a wig.
 以上によって、支持体3に支持される採光層2が、長尺かつ平帯形状に形成され、積層体20および支持体ロール35から、連続的に調製される。 As described above, the daylighting layer 2 supported by the support 3 is formed into a long and flat strip shape, and is continuously prepared from the laminate 20 and the support roll 35.
 次いで、剥離体ロール41から、剥離体4を引き出し、露出される採光層2(支持体3と反対側の採光層2の表面)に、剥離体4の粘着剤層12が接着するように、剥離体4を貼り付ける。これにより、長尺かつ平帯形状の採光フィルム1が製造される。 Next, the peeling body 4 is pulled out from the peeling body roll 41, and the pressure-sensitive adhesive layer 12 of the peeling body 4 is adhered to the exposed daylighting layer 2 (the surface of the daylighting layer 2 opposite to the support 3). The peeling body 4 is affixed. Thereby, the long and flat strip-shaped daylighting film 1 is manufactured.
 その後、採光フィルム1の端部を巻取軸39に固定し、巻取軸39を、図6の紙面手前側から見て時計回り方向に回転させる。すると、採光フィルム1が、巻取軸39に巻き取られ、巻取軸39に渦巻き状に巻回され、ロール状とされる。 Thereafter, the end of the daylighting film 1 is fixed to the take-up shaft 39, and the take-up shaft 39 is rotated in the clockwise direction when viewed from the front side of the paper surface of FIG. Then, the daylighting film 1 is wound around the winding shaft 39 and wound around the winding shaft 39 in a spiral shape to form a roll.
 このように製造された採光フィルム1は、図7に示すように、家屋43などの建築物において、例えば、貼着対象物の一例としてのガラス窓44の内側面に取り付けられる。 As shown in FIG. 7, the daylighting film 1 manufactured in this way is attached to an inner surface of a glass window 44 as an example of a sticking object in a building such as a house 43.
 採光フィルム1をガラス窓44などに取り付けるには、まず、採光フィルム1を、取り付け箇所に対応する形状およびサイズにカットする。採光フィルム1をカットする方法としては、例えば、裁断、打ち抜きなどの公知の加工方法が挙げられる。 In order to attach the daylighting film 1 to the glass window 44 or the like, first, the daylighting film 1 is cut into a shape and size corresponding to the attachment location. Examples of the method for cutting the daylighting film 1 include known processing methods such as cutting and punching.
 次いで、図1に示すように、剥離体4の剥離ライナー11を、粘着剤層12から剥離して、粘着剤層12を露出させる。 Next, as shown in FIG. 1, the release liner 11 of the release body 4 is peeled from the pressure-sensitive adhesive layer 12 to expose the pressure-sensitive adhesive layer 12.
 そして、図7に示すように、採光フィルム1(剥離ライナー11を除く)を、例えば、縦方向(透明部9の積層方向)が鉛直方向に沿うように配置し、露出した粘着剤層12を、ガラス窓44の内側面に貼り付ける。 Then, as shown in FIG. 7, the daylighting film 1 (excluding the release liner 11) is disposed, for example, so that the vertical direction (stacking direction of the transparent portion 9) is along the vertical direction, and the exposed adhesive layer 12 is disposed. And affixing to the inner surface of the glass window 44.
 その後、家屋43の屋内から、例えば、ハンドローラなどにより、支持体3を介して、採光層2をガラス窓44に向かって押圧する。 Thereafter, the daylighting layer 2 is pressed toward the glass window 44 from the inside of the house 43 through the support 3 by, for example, a hand roller.
 以上によって、支持体3に支持される採光層2が、ガラス窓44の内側面に取り付けられる。なお、第1実施形態では、支持体3は、剥がされることなく、採光層2に保持されている。そのため、基材14における粘着剤層13側の表面には、剥離処理層を設けなくてもよい。また、支持体3の基材14には、ハードコート層15および反射防止層17が設けられており、反射防止層17は、支持体3において最も屋内側に位置している。 Thus, the daylighting layer 2 supported by the support 3 is attached to the inner side surface of the glass window 44. In the first embodiment, the support 3 is held on the daylighting layer 2 without being peeled off. Therefore, it is not necessary to provide a release treatment layer on the surface of the base material 14 on the pressure-sensitive adhesive layer 13 side. Further, the base material 14 of the support 3 is provided with a hard coat layer 15 and an antireflection layer 17, and the antireflection layer 17 is located most indoor side in the support 3.
 採光層2がガラス窓44に取り付けられると、ガラス窓44を介して、屋外から入射する太陽光Lのうち、一部の光L1は、透明部9を透過して、家屋43の床部45に向かって進行する。 When the daylighting layer 2 is attached to the glass window 44, a part of the light L <b> 1 out of the sunlight L incident from the outside through the glass window 44 is transmitted through the transparent portion 9 and the floor portion 45 of the house 43. Proceed toward.
 一方、屋外から入射する太陽光Lのうち、他の部分の光L2は、透明部9に入射した後、鉛直方向に互いに隣り合う透明部9の間の空隙部10(より具体的には、透明部9の第1面9A(下面)と、空隙部10との界面6(図2参照))に反射されて、家屋43の天井部46に向かって進行する。 On the other hand, among the sunlight L incident from the outside, the light L2 of the other part is incident on the transparent part 9, and then the gap 10 between the transparent parts 9 adjacent to each other in the vertical direction (more specifically, The light is reflected by the first surface 9A (lower surface) of the transparent portion 9 and the interface 6 (see FIG. 2) between the gap portion 10 and travels toward the ceiling portion 46 of the house 43.
 そのため、採光フィルム1によれば、効率的に採光することができ、家屋43内全体の明るさを効率よく向上させることができる。 Therefore, according to the daylighting film 1, it can daylight efficiently and the brightness of the whole house 43 can be improved efficiently.
 このような採光フィルム1では、図1および図2に示すように、複数の空隙部10のそれぞれが、採光層2において、厚み方向および横方向の全体にわたって延びている。そのため、図7に示すように、採光層2の厚み方向および横方向の全体において、屋外からの太陽光Lを確実に反射することができる。 In such a daylighting film 1, as shown in FIGS. 1 and 2, each of the plurality of gaps 10 extends throughout the thickness direction and the lateral direction in the daylighting layer 2. Therefore, as shown in FIG. 7, the sunlight L from the outdoors can be reliably reflected in the thickness direction and the entire lateral direction of the daylighting layer 2.
 また、採光層2に対する、複数の透明部9の体積割合は、93体積%以上であり、かつ、透明部9の縦方向の寸法に対する、空隙部10の縦方向の寸法の比率は、0.1以下である。 The volume ratio of the plurality of transparent portions 9 to the daylighting layer 2 is 93% by volume or more, and the ratio of the vertical dimension of the gap portion 10 to the vertical dimension of the transparent portion 9 is 0. 1 or less.
 つまり、空隙部10の縦方向の寸法が、透明部9の縦方向の寸法と比較して大幅に小さいので、採光層2に対する、複数の空隙部10の体積割合が7体積%以下を確保できながら、採光層2において、空隙部10の数を確実に増加させることができる。 That is, since the vertical dimension of the gap 10 is significantly smaller than the vertical dimension of the transparent part 9, the volume ratio of the plurality of gaps 10 to the daylighting layer 2 can be ensured to be 7% by volume or less. However, in the daylighting layer 2, the number of the space | gap part 10 can be increased reliably.
 その結果、採光層2の全体を採光のために有効に利用することができ、採光フィルム1の採光効率の向上を図ることができる。 As a result, the entire daylighting layer 2 can be effectively used for daylighting, and the daylighting efficiency of the daylighting film 1 can be improved.
 また、透明部9の縦方向の両端面(具体的には、第1面9Aおよび第2面9B)は、互いに略平行である。そのため、屋外からの太陽光Lを安定して、屋内に採光することができる。 Further, both end surfaces (specifically, the first surface 9A and the second surface 9B) of the transparent portion 9 in the vertical direction are substantially parallel to each other. Therefore, the sunlight L from the outdoors can be stably taken indoors.
 また、透明部9の縦方向の両端面(具体的には、第1面9Aおよび第2面9B)は、採光フィルム1の厚み方向および横方向に沿っている。そのため、採光フィルム1を、厚み方向から見たときの透明性を確保することができる。 Also, both end surfaces in the vertical direction of the transparent portion 9 (specifically, the first surface 9A and the second surface 9B) are along the thickness direction and the lateral direction of the daylighting film 1. Therefore, it is possible to ensure transparency when the daylighting film 1 is viewed from the thickness direction.
 また、図7に示すように、支持体3に支持される採光層2が、ガラス窓44の内側面に取り付けられた状態において、反射防止層17は、採光層2に対して、ガラス窓44の反対側、つまり、屋内側に位置されている。 In addition, as shown in FIG. 7, in the state where the daylighting layer 2 supported by the support 3 is attached to the inner side surface of the glass window 44, the antireflection layer 17 has a glass window 44 with respect to the daylighting layer 2. It is located on the opposite side, that is, on the indoor side.
 そして、反射防止層17は、支持体3の屋内側の表面を構成し、反射防止層17の屈折率は、好ましくは、1.35以上1.55以下である。そのため、支持体3の光の透過率の向上を図ることができるとともに、ヘイズ値の低減を図ることができる。その結果、屋内への光の取込量の向上を図ることができ、採光効率の向上を確実に図ることができる。 The antireflection layer 17 constitutes an indoor surface of the support 3, and the refractive index of the antireflection layer 17 is preferably 1.35 or more and 1.55 or less. Therefore, the light transmittance of the support 3 can be improved and the haze value can be reduced. As a result, it is possible to improve the amount of light taken indoors, and to reliably improve the daylighting efficiency.
 なお、第1実施形態では、支持体3は、採光層2がガラス窓44に貼り付けられた後も、採光層2に貼着されているが、これに限定されず、支持体3は、採光層2がガラス窓44に貼り付けられた後に、採光層2から剥離することもできる。 In the first embodiment, the support 3 is attached to the daylighting layer 2 even after the daylighting layer 2 is attached to the glass window 44. However, the support 3 is not limited to this. After the daylighting layer 2 is attached to the glass window 44, it can be peeled off from the daylighting layer 2.
 また、第1実施形態では、基材14にハードコート層15および反射防止層17が設けられているが、これに限定されず、ハードコート層15および反射防止層17は設けらなくてもよい。 Moreover, in 1st Embodiment, although the hard-coat layer 15 and the antireflection layer 17 are provided in the base material 14, it is not limited to this, The hard-coat layer 15 and the antireflection layer 17 do not need to be provided. .
 また、第1実施形態では、採光フィルム1は、剥離体4を備えているが、採光フィルム1は、採光層2および支持体3のみから構成されてもよい。この場合、採光フィルム1が、ガラス窓44などに貼り付けられる前に、採光層2の表面に粘着剤が塗布されて、その粘着剤により、採光フィルム1がガラス窓44などに貼り付けられる。
3.第2実施形態
 次に、図8Aおよび図8Bを参照して、本発明の光学フィルムの第2実施形態について説明する。なお、第2実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
Moreover, in 1st Embodiment, although the lighting film 1 is provided with the peeling body 4, the lighting film 1 may be comprised only from the lighting layer 2 and the support body 3. FIG. In this case, before the daylighting film 1 is attached to the glass window 44 or the like, an adhesive is applied to the surface of the daylighting layer 2, and the daylighting film 1 is attached to the glass window 44 or the like by the adhesive.
3. Second Embodiment Next, a second embodiment of the optical film of the present invention will be described with reference to FIGS. 8A and 8B. In the second embodiment, the same reference numerals are given to the same members as those in the first embodiment, and the description thereof is omitted.
 第1実施形態では、図2に示すように、透明部9の第1面9Aは、略平坦面であるが、第2実施形態では、透明部9の第1面9Aは、凹凸形状を有する凹凸面49として構成されている。 In the first embodiment, as shown in FIG. 2, the first surface 9A of the transparent portion 9 is a substantially flat surface, but in the second embodiment, the first surface 9A of the transparent portion 9 has an uneven shape. It is configured as an uneven surface 49.
 凹凸面49は、透明部9の第1面9Aの一部であってもよいが、光の散乱性の観点から好ましくは、第1面9Aの全体にわたって広がっている。そして、凹凸面49と、空隙部10との界面6は、凹凸面49に対応した形状を有している。 The uneven surface 49 may be a part of the first surface 9A of the transparent portion 9, but is preferably spread over the entire first surface 9A from the viewpoint of light scattering. The interface 6 between the uneven surface 49 and the gap 10 has a shape corresponding to the uneven surface 49.
 凹凸面49における凹部49Aの形状としては、図8Bに示すように、特に制限されず、例えば、略円弧形状、略錐体形状(例えば、円錐体、角錐体)、略錐台形状(例えば、円錐台、角錐台)などが挙げられる。なお、第2実施形態において、凹凸面49の凹部49Aは、略半円弧形状を有している。 As shown in FIG. 8B, the shape of the concave portion 49A on the uneven surface 49 is not particularly limited. For example, the concave portion 49A has a substantially arc shape, a substantially cone shape (for example, a cone, a pyramid shape), a substantially frustum shape (for example, A truncated cone and a truncated cone). In the second embodiment, the recess 49A of the uneven surface 49 has a substantially semicircular arc shape.
 このような凹凸面49は、例えば、公知のエンボス加工により形成される。 Such an uneven surface 49 is formed by, for example, a known embossing process.
 凹凸面49の凹部49Aの密度は、例えば、50個/cm以上、好ましくは、500個/cm以上、例えば、500万個/cm以下、好ましくは、50万個/cm以下である。 The density of the concave portions 49A of the uneven surface 49 is, for example, 50 pieces / cm 2 or more, preferably 500 pieces / cm 2 or more, for example, 5 million pieces / cm 2 or less, preferably 500,000 pieces / cm 2 or less. is there.
 このような採光フィルム1を製造するには、図3に示すように、まず、凹凸面49を有する透明フィルム50を複数枚調製(準備)する。 In order to manufacture such a daylighting film 1, as shown in FIG. 3, first, a plurality of transparent films 50 having uneven surfaces 49 are prepared (prepared).
 透明フィルム50は、例えば、上記の透明の樹脂材料からなる。このような透明フィルム50としては、市販品(一般に、エンボスフィルム、梨地フィルムなどと呼ばれる。)を用いることができ、例えば、PVC梨地クリア#320(オカモト社製)、エマソフト3C梨地クリア(オカモト社製)、Nクリア(タツノ化学社製)などが挙げられる。 The transparent film 50 is made of, for example, the above transparent resin material. As such a transparent film 50, a commercially available product (generally called an embossed film, a satin film, etc.) can be used. For example, PVC satin clear # 320 (manufactured by Okamoto), Emasoft 3C satin clear (Okamoto) And N Clear (manufactured by Tatsuno Chemical Co., Ltd.).
 そして、透明フィルム50を複数枚調製するには、図5に示すように、まず、上記の透明の樹脂材料からなる加工シート51を準備し、加工シート51の少なくとも一方面に、公知のエンボス加工により凹凸面49(図8A参照)を形成した後、加工シート51から所定形状の透明フィルム50を切り出す。 In order to prepare a plurality of transparent films 50, first, as shown in FIG. 5, a processed sheet 51 made of the above-described transparent resin material is prepared, and at least one surface of the processed sheet 51 has a known embossing process. After forming the uneven surface 49 (see FIG. 8A), the transparent film 50 having a predetermined shape is cut out from the processed sheet 51.
 加工シート51から透明フィルム50を切り出す方法としては、例えば、上記の加工シート24から透明フィルム16を切り出す方法と同様の方法が挙げられ、好ましくは、加工シート51を、長尺かつ平帯形状に形成し、ロール状に巻回した後、ロール状の加工シート51から引き出した部分から、複数枚の透明フィルム50を切り出す方法が挙げられる。 As a method of cutting out the transparent film 50 from the processed sheet 51, for example, the same method as the method of cutting out the transparent film 16 from the processed sheet 24 described above can be cited. Preferably, the processed sheet 51 is formed into a long and flat strip shape. Examples of the method include a method of cutting a plurality of transparent films 50 from a portion drawn out from the roll-shaped processed sheet 51 after being formed and wound into a roll.
 そして、複数枚の透明フィルム50のそれぞれを、第1実施形態と同様にして、粘着剤層を挟むことなく、厚み方向に積層して、積層体20を調製(準備)する(図4参照)。 Then, each of the plurality of transparent films 50 is laminated in the thickness direction without sandwiching the pressure-sensitive adhesive layer in the same manner as in the first embodiment, thereby preparing (preparing) the laminate 20 (see FIG. 4). .
 その後、第1実施形態と同様に、積層体20の側面21に支持体3を貼り付けた後、積層体20の側面層22(すなわち採光層2)を、例えば、かつら剥きのように、連続的に切り出す(図4参照)。次いで、図8Aに示すように、採光層2において、支持体3の反対側の面に、剥離体4が貼り付けることにより、採光層2、支持体3および剥離体4を備える採光フィルム1が調製される。 Thereafter, as in the first embodiment, after the support 3 is attached to the side surface 21 of the laminate 20, the side layer 22 (that is, the daylighting layer 2) of the laminate 20 is continuously peeled off, for example, like a wig. (See FIG. 4). Next, as shown in FIG. 8A, in the daylighting layer 2, the daylighting film 1 including the daylighting layer 2, the support body 3, and the peeling body 4 is obtained by attaching the peeling body 4 to the surface opposite to the support body 3. Prepared.
 なお、このような採光フィルム1も、図6に示すように、生産性の観点から好ましくは、製造ユニット28により連続的に製造される。 Note that such a daylighting film 1 is also preferably manufactured continuously by the manufacturing unit 28 from the viewpoint of productivity as shown in FIG.
 そして、この採光フィルム1が、図8Bに示すように、例えば、ガラス窓44の内側面に貼り付けられると、ガラス窓44を介して、家屋43外から入射する太陽光Lのうち、一部の光L1は、透明部9を透過して、家屋43の床部45に向かって進行する。 And when this lighting film 1 is affixed on the inner surface of the glass window 44 as shown in FIG. 8B, for example, a part of the sunlight L incident from outside the house 43 through the glass window 44. The light L1 passes through the transparent portion 9 and travels toward the floor portion 45 of the house 43.
 一方、屋外から入射する太陽光Lのうち、他の部分の光L2は、透明部9に入射した後、鉛直方向に互いに隣り合う透明部9の間の空隙部10(より具体的には、透明部9の凹凸面49(下面)と、空隙部10との界面6)に反射されるとともに散乱されて、家屋43内に導入される。そのため、家屋43内の明るさを広範囲にわたって向上することができ、家屋43内における明暗を低減することができる。 On the other hand, among the sunlight L incident from the outside, the light L2 of the other part is incident on the transparent part 9, and then the gap 10 between the transparent parts 9 adjacent to each other in the vertical direction (more specifically, The light is reflected and scattered by the uneven surface 49 (lower surface) of the transparent portion 9 and the interface 6 between the gap portion 10 and introduced into the house 43. Therefore, the brightness in the house 43 can be improved over a wide range, and the brightness in the house 43 can be reduced.
 また、第2実施形態では、透明部9の下面(第1面9A)のみが、凹凸面49であるが、透明部9の縦方向両端面のうち、少なくとも一方面が凹凸形状を有していれば特に限定されず、透明部9の下面(第1面9A)に加え、透明部9の上面(第2面9B)を凹凸面49として構成することもできる。 Moreover, in 2nd Embodiment, although only the lower surface (1st surface 9A) of the transparent part 9 is the uneven surface 49, at least one surface has uneven | corrugated shape among the vertical direction both end surfaces of the transparent part 9. The upper surface (second surface 9B) of the transparent portion 9 can be configured as the uneven surface 49 in addition to the lower surface (first surface 9A) of the transparent portion 9.
 このような第2実施形態およびその変形例においても、上記した第1実施形態と同様の作用効果を奏することができる。
3.第3実施形態
 次に、図9を参照して、本発明の光学フィルムの第3実施形態について説明する。
Also in such 2nd Embodiment and its modification, there can exist an effect similar to above-described 1st Embodiment.
3. Third Embodiment Next, a third embodiment of the optical film of the present invention will be described with reference to FIG.
 第1実施形態では、透明部9の第1面9Aおよび第2面9Bのそれぞれは、図2に示すように、採光層2の厚み方向に沿っているが、これに限定されず、第3実施形態では、図9に示すように、透明部9の第1面9Aおよび第2面9Bのそれぞれは、採光層2の厚み方向に対して傾斜している。 In the first embodiment, each of the first surface 9A and the second surface 9B of the transparent portion 9 is along the thickness direction of the daylighting layer 2 as shown in FIG. In the embodiment, as shown in FIG. 9, each of the first surface 9 </ b> A and the second surface 9 </ b> B of the transparent portion 9 is inclined with respect to the thickness direction of the daylighting layer 2.
 つまり、第1面9Aおよび第2面9Bに区画される空隙部10は、採光層2の厚み方向に対して傾斜している。また、空隙部10は、厚み方向一方側(支持体3側)から他方側(剥離体4側)に向かうに従って上側に傾斜してもよく、厚み方向一方側(支持体3側)から他方側(剥離体4側)に向かうに従って下側に傾斜してもよいが、好ましくは、厚み方向一方側(支持体3側)から他方側(剥離体4側)に向かうに従って、上側に傾斜する。 That is, the gap 10 defined by the first surface 9A and the second surface 9B is inclined with respect to the thickness direction of the daylighting layer 2. Further, the gap 10 may be inclined upward as it goes from one side in the thickness direction (the support 3 side) to the other side (the peeling body 4 side), and from the one side in the thickness direction (the support 3 side) to the other side. Although it may incline below as it goes to (the peeling body 4 side), it preferably inclines upward as it goes from the one side in the thickness direction (the supporting body 3 side) to the other side (the peeling body 4 side).
 空隙部10の採光層2の厚み方向に対する傾斜角度は、例えば、±5°以上±20°以下、好ましくは、±5°以上±15°以下、さらに好ましくは、±5°以上±10°以下である。 The inclination angle of the gap 10 with respect to the thickness direction of the daylighting layer 2 is, for example, ± 5 ° or more and ± 20 ° or less, preferably ± 5 ° or more and ± 15 ° or less, more preferably ± 5 ° or more and ± 10 ° or less. It is.
 空隙部10の傾斜角度が上記下限以上上限以下であれば、屋内に導入される光の角度を確実に調整することができる。 If the inclination angle of the air gap 10 is not less than the above lower limit and not more than the upper limit, the angle of light introduced indoors can be reliably adjusted.
 なお、空隙部10の傾斜角度は、空隙部10が厚み方向一方側から他方側に向かうに従って、上側に傾斜している場合をプラスとし、空隙部10が厚み方向一方側から他方側に向かうに従って、下側に傾斜している場合をマイナスとする。 The inclination angle of the gap portion 10 is positive when the gap portion 10 is inclined upward from one side in the thickness direction to the other side, and the gap portion 10 is directed from one side to the other side in the thickness direction. The case where it is inclined downward is negative.
 このような第3実施形態に係る採光フィルム1は、第1実施形態と同様の方法で製造でき、例えば、家屋43のガラス窓44などに貼り付けられて使用される。 Such a daylighting film 1 according to the third embodiment can be manufactured by the same method as in the first embodiment, and is used by being attached to the glass window 44 of the house 43, for example.
 そして、透明部9の第1面9Aおよび第2面9Bのそれぞれ(つまり、空隙部10)が厚み方向に対して傾斜しているので、簡易な構成でありながら、家屋43に導入される光の角度を適宜調整することができ、家屋43内における明るさ(光)の分布を、適宜制御することができる。 Since each of the first surface 9A and the second surface 9B (that is, the gap portion 10) of the transparent portion 9 is inclined with respect to the thickness direction, the light introduced into the house 43 while having a simple configuration. Can be adjusted as appropriate, and the distribution of brightness (light) in the house 43 can be appropriately controlled.
 また、このような第3実施形態によっても、第1実施形態および第2実施形態と同様の作用効果を奏することができる。 Also, the third embodiment can provide the same operational effects as those of the first embodiment and the second embodiment.
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明は、それらに限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited thereto. Specific numerical values such as blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. The upper limit value (numerical value defined as “less than” or “less than”) or lower limit value (number defined as “greater than” or “exceeded”) may be substituted. it can.
  実施例1
 採光層に対する透明部の体積割合、および、透明部に対する空隙部の縦方向寸法比率の反射効率(反射光強度L/入射光強度L)への影響を確認するために、下記条件下のシミュレーションによる解析を実施した。なお、シミュレーションには、Lighttools(光学シミュレーションソフト、Optical Research Associates社製)を用いた。また、本解析では、図10に示す採光フィルムモデルについてシミュレーションした。つまり、採光フィルムモデルは、採光層のみからなる。
Example 1
In order to confirm the influence on the reflection efficiency (reflected light intensity L r / incident light intensity L i ) of the volume ratio of the transparent part with respect to the daylighting layer and the vertical dimension ratio of the void to the transparent part, Simulation analysis was performed. For the simulation, Lighttools (optical simulation software, manufactured by Optical Research Associates) was used. In this analysis, the lighting film model shown in FIG. 10 was simulated. That is, the daylighting film model consists of only the daylighting layer.
 その結果を、表1および図11に示す。
<条件>
 透明部9の材料:アクリル樹脂
 透明部9の縦方向寸法L1:200μm
 透明部9(空隙部10)の厚み方向寸法L2:200μm
 採光層2に対する、複数の透明部9の体積割合:97.6体積%
 空隙部10の材料:空気
 空隙部10の縦方向寸法L3:5μm
 採光層2に対する、複数の空隙部10の体積割合:2.4体積%
 入射角度θ1:30°~80°の範囲で10°ずつ変化
 黒体放射(本数7500本)
  実施例2
 空隙部10の縦方向寸法L3を1μmに変更した点以外は、実施例1と同様にして、シミュレーションを実施した。
The results are shown in Table 1 and FIG.
<Conditions>
Material of transparent part 9: Acrylic resin Vertical dimension L1: 200 μm of transparent part 9
Thickness direction dimension L2 of transparent part 9 (gap part 10): 200 μm
Volume ratio of the plurality of transparent portions 9 with respect to the daylighting layer 2: 97.6% by volume
Material of air gap 10: Air Vertical dimension L3 of air gap 10: 5 μm
Volume ratio of the plurality of gaps 10 to the daylighting layer 2: 2.4% by volume
Incident angle θ1: Change by 10 ° in the range of 30 ° -80 ° Blackbody radiation (7500)
Example 2
A simulation was carried out in the same manner as in Example 1 except that the vertical dimension L3 of the gap 10 was changed to 1 μm.
 なお、採光層2に対する、複数の透明部9の体積割合は、99.5体積%であり、採光層2に対する、複数の空隙部10の体積割合は、0.5体積%であった。 The volume ratio of the plurality of transparent portions 9 to the daylighting layer 2 was 99.5% by volume, and the volume ratio of the plurality of gaps 10 to the daylighting layer 2 was 0.5% by volume.
  比較例1
 空隙部10の縦方向寸法L3を50μmに変更した点以外は、実施例1と同様にして、シミュレーションを実施した。
Comparative Example 1
A simulation was performed in the same manner as in Example 1 except that the vertical dimension L3 of the gap 10 was changed to 50 μm.
 なお、採光層2に対する、複数の透明部9の体積割合は、80.0体積%であり、採光層2に対する、複数の空隙部10の体積割合は、20.0体積%であった。 The volume ratio of the plurality of transparent portions 9 to the daylighting layer 2 was 80.0% by volume, and the volume ratio of the plurality of gaps 10 to the daylighting layer 2 was 20.0% by volume.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  実施例3~7
 図12に示すように、空隙部(透明部の第1面および第2面)の傾斜角度θ2の、反射光の出射角度θ3への影響を確認するために、各実施例において、表2に示す傾斜角度θ2、かつ、下記条件下のシミュレーションによる解析を実施した。
Examples 3-7
As shown in FIG. 12, in order to confirm the influence of the inclination angle θ2 of the gap portion (the first surface and the second surface of the transparent portion) on the emission angle θ3 of the reflected light, Table 2 The analysis by the simulation under the inclination angle θ2 shown and the following conditions was performed.
 なお、シミュレーションには、Lighttools(光学シミュレーションソフト、Optical Research Associates社製)を用いた。また、本解析では、図12に示す採光フィルムモデルについてシミュレーションした。つまり、採光フィルムモデルは、採光層のみからなる。 In addition, Lighttools (Optical simulation software, the product made by Optical Research Associates) was used for the simulation. In this analysis, the lighting film model shown in FIG. 12 was simulated. That is, the daylighting film model consists of only the daylighting layer.
 その結果を、表2に示す。
<条件>
 透明部9の材料:アクリル樹脂
 透明部9の縦方向寸法L1:100μm
 透明部9(空隙部10)の厚み方向寸法L2:150μm
 採光層2に対する、複数の透明部9の体積割合:99.0体積%
 空隙部10の材料:空気
 空隙部10の縦方向寸法L3:1μm
 採光層2に対する、複数の空隙部10の体積割合:1.0体積%
 入射角度θ1:50°
 黒体放射(本数7500本)
The results are shown in Table 2.
<Conditions>
Material of transparent part 9: acrylic resin Vertical dimension L1 of transparent part 9: 100 μm
Thickness direction dimension L2 of transparent part 9 (gap part 10): 150 μm
Volume ratio of the plurality of transparent portions 9 with respect to the daylighting layer 2: 99.0% by volume
Material of void 10: Air Vertical dimension L3 of void 10: 1 μm
Volume ratio of the plurality of gaps 10 to the daylighting layer 2: 1.0% by volume
Incident angle θ1: 50 °
Blackbody radiation (7500)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  実施例8
 厚み65μmの無延伸ポリプロピレンフィルム(加工シート、OJK社製、商品名:SOP5T)を、直径25cmの円形状に打ち抜き加工して、600枚の円形状の透明フィルムを作製した。なお、透明フィルムの厚み方向両面のそれぞれは、略平坦面であり、空気に対するポリプロピレンフィルムフィルムの相対屈折率は、1.48であった。
Example 8
An unstretched polypropylene film (processed sheet, manufactured by OJK, trade name: SOP5T) having a thickness of 65 μm was punched into a circular shape having a diameter of 25 cm, thereby producing 600 circular transparent films. In addition, each of the thickness direction both surfaces of the transparent film was a substantially flat surface, and the relative refractive index of the polypropylene film film with respect to air was 1.48.
 次いで、600枚の円形状の透明フィルムを、各透明フィルム間に接着剤を用いることなく、積層した後、積層方向の両側から圧力(5MPa)をかけて円柱形状に保持して、積層体を調製した。積層体は、直径25cm×高さ(積層方向長さ)39mm(65μm×600)であった。 Next, after laminating 600 circular transparent films without using an adhesive between the transparent films, the laminate was held in a cylindrical shape by applying pressure (5 MPa) from both sides in the laminating direction. Prepared. The laminate had a diameter of 25 cm × a height (a length in the stacking direction) of 39 mm (65 μm × 600).
 次いで、積層体および支持体を、図6に示す製造ユニット28にセットした。 Next, the laminate and the support were set in the production unit 28 shown in FIG.
 具体的には、積層体を1対の保持部材33に積層方向の両側から挟むように保持させるとともに、支持体を回転軸32に巻回して支持体ロールとして構成した。 Specifically, the laminate was held by a pair of holding members 33 so as to be sandwiched from both sides in the lamination direction, and the support was wound around the rotating shaft 32 to constitute a support roll.
 このとき、1対の保持部材31は、積層体を積層方向の両側から上記の圧力(5MPa)で挟んでいた。また、支持体は、厚み50μmのPETフィルム(基材)と、厚み50μmのアクリル系粘着剤層(粘着剤層)とを有していた。アクリル系粘着剤層は、PETフィルムの一方面に形成されており、PETフィルムの他方面には、剥離処理剤による剥離処理層が設けられていた。なお、空気に対するPETフィルムの相対屈折率は、1.60であった。 At this time, the pair of holding members 31 sandwiched the laminated body from both sides in the laminating direction at the pressure (5 MPa). Further, the support had a PET film (base material) having a thickness of 50 μm and an acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) having a thickness of 50 μm. The acrylic pressure-sensitive adhesive layer was formed on one side of the PET film, and a release treatment layer with a release treatment agent was provided on the other side of the PET film. The relative refractive index of the PET film with respect to air was 1.60.
 また、積層体が1対の保持部材31に保持された状態において、積層体の側面には、切削刃34の先端が接触していた。なお、切削刃34は、積層体の積層方向に沿うように配置されていた。 Further, in a state where the laminated body is held by the pair of holding members 31, the tip of the cutting blade 34 is in contact with the side surface of the laminated body. In addition, the cutting blade 34 was arrange | positioned along the lamination direction of a laminated body.
 そして、支持体ロールから引き出した支持体を、粘着剤層が積層体の側面に粘着するように、積層体の接線方向に向かって引き回し、積層体における中心角240°の範囲の積層体の側面に貼り付けた。 Then, the support pulled out from the support roll is drawn toward the tangential direction of the laminate so that the adhesive layer adheres to the side of the laminate, and the side of the laminate in the range of the central angle of 240 ° in the laminate Pasted on.
 続いて、1対の保持部材31を、製造ユニット28のモータ(図示せず)により、保持部材31の軸線方向一方(図6の紙面手前側)から見て反時計回り方向に回転駆動させた。 Subsequently, the pair of holding members 31 were driven to rotate counterclockwise as viewed from one axial direction of the holding member 31 (front side in FIG. 6) by a motor (not shown) of the manufacturing unit 28. .
 そうすると、1対の保持部材31に保持される積層体が、軸線を中心として回転するとともに、支持体ロールが回転軸32の軸線を中心として従動した。 Then, the laminated body held by the pair of holding members 31 was rotated about the axis, and the support roll was driven about the axis of the rotating shaft 32.
 これにより、支持体が貼り付けられた積層体の側面層が、かつら剥きのように連続的に切り出され、支持体に支持された採光層を得た。 Thereby, the side layer of the laminate to which the support was attached was continuously cut out like a wig, and a daylighting layer supported by the support was obtained.
 次いで、剥離体ロールから、剥離体を引き出し、採光層における支持体と反対の面(切削面)に、剥離体を貼り付けた。 Next, the release body was pulled out from the release body roll, and the release body was attached to the surface (cut surface) opposite to the support in the daylighting layer.
 以上により、採光層、支持体および剥離体を備え、長尺かつ平帯形状の採光フィルムを調製し、その採光フィルムを巻取軸39に巻き取った。 As described above, a long and flat strip-shaped daylighting film including a daylighting layer, a support and a release body was prepared, and the daylighting film was wound around the winding shaft 39.
 採光フィルムの採光層は、複数の透明部および複数の空隙部を有しており、複数の透明部および複数の空隙部は、積層方向(採光層の縦方向)に互いに交互となるように連続して配置されていた。なお、採光層の厚みは、200μmであった。 The daylighting layer of the daylighting film has a plurality of transparent portions and a plurality of gap portions, and the plurality of transparent portions and the plurality of gap portions are continuous so as to alternate with each other in the stacking direction (vertical direction of the daylighting layer). Was arranged. The daylighting layer had a thickness of 200 μm.
  実施例9
 無延伸ポリプロピレンフィルム(加工シート)に、予めエンボス加工したこと以外は、実施例8と同様にして、採光フィルムを調製した。なお、各透明フィルムの厚み方向両面のそれぞれは、凹凸面として形成されていた。
Example 9
A daylighting film was prepared in the same manner as in Example 8, except that an unstretched polypropylene film (processed sheet) was previously embossed. In addition, each of the thickness direction both surfaces of each transparent film was formed as an uneven surface.
  実施例10
 無延伸ポリプロピレンフィルム(加工シート)を、厚み100μmのポリ塩化ビニルフィルム(加工シート、タツノ化学社製、商品名:Nクリア)に変更したこと以外は、実施例8と同様にして、採光フィルムを調製した。
Example 10
A daylighting film was obtained in the same manner as in Example 8, except that the unstretched polypropylene film (processed sheet) was changed to a 100 μm-thick polyvinyl chloride film (processed sheet, manufactured by Tatsuno Chemical Co., Ltd., trade name: N clear). Prepared.
 なお、各透明フィルムの厚み方向両面のそれぞれは、凹凸面として形成され、ポリ塩化ビニルフィルムの相対屈折率は、1.54であった。 In addition, each of the thickness direction both surfaces of each transparent film was formed as an uneven surface, and the relative refractive index of the polyvinyl chloride film was 1.54.
  実施例11
 支持体を、厚み50μmのアクリル樹脂フィルム(基材)と、厚み50μmのアクリル系粘着剤層(粘着剤層)とを備える支持体に変更したこと以外は、実施例10と同様にして、採光フィルムを調製した。なお、空気に対するアクリル樹脂フィルムの相対屈折率は、1.50であった。
Example 11
In the same manner as in Example 10, except that the support was changed to a support having an acrylic resin film (base material) having a thickness of 50 μm and an acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) having a thickness of 50 μm, the daylighting was performed. A film was prepared. The relative refractive index of the acrylic resin film with respect to air was 1.50.
  実施例12
 支持体を、厚み50μmのPETフィルム(基材)と、厚み50μmのアクリル系粘着剤層(粘着剤層)とを備え、PETフィルム(基材)に、厚み10μmのハードコート層および、厚み1μm未満の反射防止層が設けられる支持体に変更したこと以外は、実施例10と同様にして、採光フィルムを調製した。
Example 12
The support includes a PET film (base material) having a thickness of 50 μm and an acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) having a thickness of 50 μm. The hard coat layer having a thickness of 10 μm and a thickness of 1 μm are provided on the PET film (base material). A daylighting film was prepared in the same manner as in Example 10 except that the support was provided with less than the antireflection layer.
 なお、空気に対する、PETフィルムの相対屈折率は、1.60であり、ハードコート層の相対屈折率は、1.53であり、反射防止層の相対屈折率は、1.38であった。 The relative refractive index of the PET film with respect to air was 1.60, the relative refractive index of the hard coat layer was 1.53, and the relative refractive index of the antireflection layer was 1.38.
 また、ハードコート層は、(メタ)アクリロイル基を有するウレタン樹脂またはポリエステル樹脂を含有しており、反射防止層は、中空球状の酸化ケイ素粒子を含有する紫外線硬化型アクリル樹脂から形成されていた。 Further, the hard coat layer contained a urethane resin or polyester resin having a (meth) acryloyl group, and the antireflection layer was formed from an ultraviolet curable acrylic resin containing hollow spherical silicon oxide particles.
  (評価)
 <天井面照度の測定>
 実施例8および9の採光フィルムについて、天井面照度を、下記のように測定した。
(Evaluation)
<Measurement of ceiling surface illumination>
For the daylighting films of Examples 8 and 9, the ceiling surface illuminance was measured as follows.
 図13Aに示すように、透明のガラス窓92が設置される壁部91と、床部93と、天井部94とを備える部屋90を準備した。なお、ガラス窓92は、一辺14cmの正方形状であり、ガラス窓92の厚みは、3mmであった。また、ガラス窓92の上端部と、天井部94の下面との間の距離Hは、4cmであった。 As shown in FIG. 13A, a room 90 including a wall portion 91 on which a transparent glass window 92 is installed, a floor portion 93, and a ceiling portion 94 was prepared. The glass window 92 had a square shape with a side of 14 cm, and the thickness of the glass window 92 was 3 mm. Moreover, the distance H between the upper end part of the glass window 92 and the lower surface of the ceiling part 94 was 4 cm.
 また、天井部94の下面に、照度測定ユニット95を配置した。 Also, an illuminance measurement unit 95 is arranged on the lower surface of the ceiling portion 94.
 照度測定ユニット95は、図13Bに示すように、複数(6つ)の照度計97(テイアンドデイ社製、照度UVレコーダー、商品名:TR-74Ui)が、前後方向(採光フィルムの厚み方向)に等間隔を隔てて配置される列95Aを、左右方向(採光フィルムの横方向)に等間隔を隔てて複数(3列)含んでいた。 As shown in FIG. 13B, the illuminance measuring unit 95 includes a plurality of (six) illuminance meters 97 (manufactured by T & D Co., Ltd., illuminance UV recorder, trade name: TR-74Ui) in the front-rear direction (lighting film thickness direction). A plurality (three) of rows 95A arranged at equal intervals in the left-right direction (lateral direction of the daylighting film) were included.
 また、3つの列95Aのうち、左右方向中央の列95Aは、下側から見て、ガラス窓92の左右方向中央を通過し、前後方向に沿う仮想線と重なるように配置された。 Of the three columns 95A, the column 95A at the center in the left-right direction passes through the center in the left-right direction of the glass window 92 when viewed from below, and is arranged so as to overlap with a virtual line along the front-rear direction.
 各列95Aにおいて、6つの照度計97のうち互いに隣り合う照度計97の間の前後方向間隔は、6.43cmであり、各列95Aにおける前端に配置される照度計97と、ガラス窓92との前後方向間隔は、6.43cmであった。 In each row 95A, the front-rear direction interval between the illuminance meters 97 adjacent to each other among the six illuminance meters 97 is 6.43 cm, and the illuminance meter 97 disposed at the front end in each row 95A, the glass window 92, The distance in the front-rear direction was 6.43 cm.
 また、3つの列95Aのうち、互いに隣り合う列95Aの間の左右方向の間隔は、7.5cmであった。 Moreover, the space | interval of the left-right direction between the row | line | columns 95A adjacent to each other among the three row | line | columns 95A was 7.5 cm.
 そして、部屋90外からライト96(パイフォトニクス社製、商品名:HL01W)により、ガラス窓92に対する光の入射角θ1が50°となるように、白色光を照射した。 Then, white light was irradiated from the outside of the room 90 with a light 96 (product name: HL01W, manufactured by Pyphotonics) so that the incident angle θ1 of light with respect to the glass window 92 was 50 °.
 次いで、複数の照度計97により、天井部94の下面(天井面)における照度を測定した。これにより、ガラス窓92に採光フィルム1が貼り付けられる前の基準照度[lux]が測定された。 Next, the illuminance on the lower surface (ceiling surface) of the ceiling portion 94 was measured with a plurality of illuminance meters 97. Thereby, the reference illuminance [lux] before the daylighting film 1 was attached to the glass window 92 was measured.
 次いで、各採光フィルムを、剥離ライナーを剥離した後、ガラス窓92の内側面に貼り付けた。なお、支持体は、剥がされることなく、採光層に保持された。 Next, each daylighting film was attached to the inner surface of the glass window 92 after the release liner was peeled off. The support was held on the daylighting layer without being peeled off.
 そして、部屋90外からライト96により、採光フィルム1(ガラス窓92)に対する光の入射角θ1が50°となるように、白色光を照射した。 Then, white light was irradiated from the outside of the room 90 with a light 96 so that the incident angle θ1 of light with respect to the daylighting film 1 (glass window 92) was 50 °.
 次いで、複数の照度計97により、天井部94の下面(天井面)における照度を測定した。これにより、ガラス窓92に採光フィルム1が貼り付けられた状態の測定照度[lux]が測定された。 Next, the illuminance on the lower surface (ceiling surface) of the ceiling portion 94 was measured with a plurality of illuminance meters 97. Thereby, the measurement illuminance [lux] in a state where the daylighting film 1 was attached to the glass window 92 was measured.
 そして、各照度計97における照度変化(=測定照度/基準照度)を算出した。その結果を表3に示す。 And the illuminance change (= measurement illuminance / reference illuminance) in each illuminance meter 97 was calculated. The results are shown in Table 3.
 なお、表3では、3つの列95Aのうち、左側の列95Aを左列とし、中央の列95Aを中央列とし、右側の列95Aを右列とした。また、各列における6つの照度計97を、前側(ガラス窓92側)から順に、第1照度計~第6照度計とした。 In Table 3, among the three columns 95A, the left column 95A is the left column, the center column 95A is the center column, and the right column 95A is the right column. In addition, the six illuminance meters 97 in each row were designated as a first illuminance meter to a sixth illuminance meter in order from the front side (glass window 92 side).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <透過率およびヘイズ値の測定>
 実施例10~12において得られた採光フィルムのそれぞれを、剥離ライナーを剥離した後、ガラス窓の内側面に貼り付けた。なお、支持体は、剥がされることなく、採光層に保持された。
<Measurement of transmittance and haze value>
Each of the daylighting films obtained in Examples 10 to 12 was attached to the inner surface of the glass window after peeling the release liner. The support was held on the daylighting layer without being peeled off.
 ヘイズメータ(村上色彩技術研究所社製、商品名:HR-100)により、透過率およびヘイズ値を測定した。その結果を表4に示す。 The transmittance and haze value were measured with a haze meter (trade name: HR-100, manufactured by Murakami Color Research Laboratory Co., Ltd.). The results are shown in Table 4.
 なお、表4において、PETフィルムをPETとし、アクリル樹脂フィルムをアクリル樹脂とし、PETフィルムにハードコート層および反射防止層が設けられた基材を、PET+HC+ARとする。 In Table 4, the PET film is PET, the acrylic resin film is acrylic resin, and the PET film provided with a hard coat layer and an antireflection layer is PET + HC + AR.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、上記説明は本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は後記の請求の範囲に含まれる。 Although the above description is provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed as limiting. Variations of the present invention apparent to those skilled in the art are within the scope of the following claims.
 本発明の採光フィルムは、例えば、建築物の採光に用いられる採光フィルムとして好適に用いられる。 The daylighting film of the present invention is suitably used, for example, as a daylighting film used for daylighting of buildings.
 1   採光フィルム
 2   採光層
 3   支持体
 9   透明部
 10  空隙部
DESCRIPTION OF SYMBOLS 1 Daylighting film 2 Daylighting layer 3 Support body 9 Transparent part 10 Cavity part

Claims (5)

  1.  支持層と、
     前記支持層に積層される採光層とを備え、
     前記採光層は、
      前記採光層の厚み方向に直交する第1方向に互いに間隔を空けて配置される複数の透明部と、
      前記複数の透明部のうち互いに隣り合う透明部の間に1つずつ配置される複数の空隙部とを備え、
     前記複数の空隙部のそれぞれは、前記採光層において、前記厚み方向の全体にわたって延びるとともに、前記厚み方向および前記第1方向の両方向と直交する第2方向の全体にわたって延び、
     前記採光層に対する、前記複数の透明部の体積割合は、93体積%以上であり、
     前記複数の透明部のそれぞれの前記第1方向の寸法に対する、前記複数の空隙部のそれぞれの前記第1方向の寸法の比率は、0.1以下であることを特徴とする、採光フィルム。
    A support layer;
    A daylighting layer laminated on the support layer,
    The daylighting layer is
    A plurality of transparent portions arranged at intervals in a first direction orthogonal to the thickness direction of the daylighting layer;
    A plurality of gaps arranged one by one between the transparent parts adjacent to each other among the plurality of transparent parts,
    Each of the plurality of voids extends over the entire thickness direction in the daylighting layer, and extends over the entire second direction perpendicular to both the thickness direction and the first direction.
    The volume ratio of the plurality of transparent portions to the daylighting layer is 93% by volume or more,
    The daylighting film, wherein a ratio of each dimension of the plurality of gaps in the first direction to a dimension of each of the plurality of transparent parts in the first direction is 0.1 or less.
  2.  前記複数の透明部のそれぞれの前記第1方向の両端面は、互いに略平行であることを特徴とする、請求項1に記載の採光フィルム。 2. The daylighting film according to claim 1, wherein both end faces of each of the plurality of transparent portions in the first direction are substantially parallel to each other.
  3.  前記複数の透明部のそれぞれの前記第1方向の両端面のうち、少なくとも一方は、凹凸形状を有していることを特徴とする、請求項1に記載の採光フィルム。 2. The daylighting film according to claim 1, wherein at least one of both end faces in the first direction of each of the plurality of transparent portions has an uneven shape.
  4.  前記複数の透明部のそれぞれの前記第1方向の端面は、前記厚み方向に対して傾斜していることを特徴とする、請求項2に記載の採光フィルム。 The daylighting film according to claim 2, wherein end faces in the first direction of the plurality of transparent portions are inclined with respect to the thickness direction.
  5.  前記支持層において、前記採光層と反対側の表面を構成する材料の屈折率が、1.35以上1.55以下であることを特徴とする、請求項1に記載の採光フィルム。 2. The daylighting film according to claim 1, wherein in the support layer, a refractive index of a material constituting a surface opposite to the daylighting layer is 1.35 or more and 1.55 or less.
PCT/JP2015/078355 2014-12-05 2015-10-06 Daylighting film WO2016088445A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-247010 2014-12-05
JP2014247010 2014-12-05
JP2015-138000 2015-07-09
JP2015138000A JP2016110986A (en) 2014-12-05 2015-07-09 Daylighting film

Publications (1)

Publication Number Publication Date
WO2016088445A1 true WO2016088445A1 (en) 2016-06-09

Family

ID=56091401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078355 WO2016088445A1 (en) 2014-12-05 2015-10-06 Daylighting film

Country Status (1)

Country Link
WO (1) WO2016088445A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817216A (en) * 1994-06-29 1996-01-19 Sanyo Electric Co Ltd Daylighting device
JP2009266794A (en) * 2007-11-29 2009-11-12 Ishikawa Kogaku Zokei Kenkyusho:Kk Solar light luminaire
JP3184075U (en) * 2013-03-21 2013-06-13 有限会社石川光学造形研究所 Solar illuminator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817216A (en) * 1994-06-29 1996-01-19 Sanyo Electric Co Ltd Daylighting device
JP2009266794A (en) * 2007-11-29 2009-11-12 Ishikawa Kogaku Zokei Kenkyusho:Kk Solar light luminaire
JP3184075U (en) * 2013-03-21 2013-06-13 有限会社石川光学造形研究所 Solar illuminator

Similar Documents

Publication Publication Date Title
US10761320B2 (en) Optical stack including a grating
JP4887093B2 (en) Daylighting film manufacturing method, daylighting film, and window including the same
US8520305B2 (en) Optical element, method of manufacturing optical element, illumination device, window member, and fitting
EP2992561B1 (en) Multi-layered solar cell device
JP2011180449A (en) Optical body and method for manufacturing the same, window material, and method for sticking optical body
TWI617872B (en) Self-powered e-paper display
CN102592715A (en) Conductive optical device, information input apparatus, and display apparatus
US9341334B2 (en) Optical film
WO2013146823A1 (en) Edge light-type backlight device and light diffusion member
KR20180127392A (en) Optical body, window and roll curtain
JPWO2020075835A1 (en) Resin sheet, image display device using it, and transfer sheet
US20200144435A1 (en) Light control film
WO2015118944A1 (en) Optical film
WO2016088445A1 (en) Daylighting film
JP2016110986A (en) Daylighting film
US20180156957A1 (en) Lightguide including laminated extraction film
EP2845725A1 (en) Method for producing optical films
JP2014222359A (en) Optical body and fabrication method of the same, window material, fitting and insolation shield device
JPS5942626B2 (en) Long polarizing film with reflective plate and method for manufacturing the same
WO2017175588A1 (en) Optical body, window material, and roll curtain
EP3147561A1 (en) Light guide panels for use outdoor and in wet areas
TW201234056A (en) Optical sheet
JP2017136723A (en) Heat insulation sheet
JP2016109861A (en) Daylighting film
JPS63319140A (en) Transparent glare protecting sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865548

Country of ref document: EP

Kind code of ref document: A1