WO2016076039A1 - Optical film manufacturing method and daylighting film - Google Patents

Optical film manufacturing method and daylighting film Download PDF

Info

Publication number
WO2016076039A1
WO2016076039A1 PCT/JP2015/078351 JP2015078351W WO2016076039A1 WO 2016076039 A1 WO2016076039 A1 WO 2016076039A1 JP 2015078351 W JP2015078351 W JP 2015078351W WO 2016076039 A1 WO2016076039 A1 WO 2016076039A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
transparent
layers
foamable
Prior art date
Application number
PCT/JP2015/078351
Other languages
French (fr)
Japanese (ja)
Inventor
和也 藤岡
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016076039A1 publication Critical patent/WO2016076039A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to an optical film manufacturing method and a daylighting film manufactured by the manufacturing method.
  • daylighting also called daylighting or daylighting
  • sunlight is introduced into a room in order to adjust the environment such as the brightness of the room indoors.
  • it is desired to more efficiently introduce sunlight into a room and reduce the use of artificial lighting during the daytime.
  • an optical member that can change the traveling direction of light by optical action such as light refraction, diffraction, or reflection is attached to a window, etc., and sunlight is efficiently introduced into the room to improve indoor brightness.
  • Various attempts have been made to achieve this.
  • it has been proposed to reduce light and darkness in the room by scattering light introduced into the room.
  • a transparent plastic plate having a plurality of slits extending in the horizontal direction, and a processed surface of the slit having irregularities for scattering light is configured to transmit light.
  • a daylighting sheet including a light transmitting portion in which a concave portion is formed and a light scattering portion configured to scatter light and filled in the concave portion is proposed.
  • optical members are installed in, for example, a window of a house, and the sunlight incident from the outside through the window is reflected, scattered, and collected.
  • a plurality of slits are formed in the plastic plate by CO 2 or excimer laser processing.
  • a light roll is disposed between the mold roll and the base material after disposing the mold roll provided with irregularities so as to face the base material.
  • the mold roll is rotated while supplying the composition constituting the film, and the uneven shape of the mold roll is transferred to the light transmission portion. Thereafter, the concave portion of the light transmission part is filled with the composition constituting the light scattering part.
  • an object of the present invention is to provide an optical film manufacturing method capable of improving productivity while being a simple method, and a daylighting film manufactured by the manufacturing method.
  • a plurality of transparent layers capable of transmitting light and a plurality of light scattering layers capable of light scattering are laminated in the thickness direction of each of the plurality of transparent layers
  • Production of an optical film comprising: a preparation step of preparing a substantially cylindrical laminated body extending; and a cutting step of continuously cutting a side layer of the laminated body by rotating the laminated body about an axis. Is the method.
  • the laminated body is rotated about the axis, and the side layer of the laminated body By continuously cutting, an optical film in which each of the plurality of transparent layers and the plurality of light scattering layers is continuous in the stacking direction (thickness direction of the transparent layer) can be produced.
  • the transparent layer and the light scattering layer are laminated in the laminating direction (transparent layer of the transparent layer) by a simple method of cutting the side layer of the laminate.
  • An optical film continuous in the thickness direction) can be continuously produced. As a result, the productivity of the optical film can be improved.
  • the present invention includes the method for producing an optical film according to [1], wherein the plurality of light scattering layers are capable of light scattering.
  • each of the plurality of light scattering layers is an uneven surface disposed on at least one surface of each of the plurality of transparent layers, and the preparation step includes the uneven surface.
  • the uneven surface disposed on at least one surface of the transparent layer is configured as a light scattering layer, an optical film that can scatter light reliably while having a simple configuration is manufactured. Can do.
  • manufacturing cost material cost
  • the present invention further includes a pasting step of pasting a support body on a side surface of the laminate along the thickness direction between the preparatory step and the cutting step.
  • the plurality of transparent layers are laminated so that the uneven surface and the transparent layer facing the uneven surface are in direct contact with each other, and in the cutting step, the side surface of the laminate on which the support is attached.
  • the concavo-convex surface and the transparent layer facing the concavo-convex surface are in direct contact with each other without interposing the adhesive layer. That is, the laminate is formed without using an adhesive. Therefore, the manufacturing cost (material cost) can be reliably reduced as compared with the case where an adhesive is used for forming the laminate.
  • the transparent layers adjacent to each other in the thickness direction May peel apart from each other.
  • the transparent layers adjacent to each other in the thickness direction are formed even if no adhesive layer is provided. It can suppress that it peels and separates from each other.
  • the support is in the form of a sheet, and is configured as a support roll by being wound.
  • the support drawn out from the support roll is The laminate to which the support is attached by being attached to the side surface of the laminate and rotating the support roll about the axis while rotating the laminate about the axis in the cutting step.
  • disconnecting the side layer of a body is included.
  • the support roll is rotated about the axis, and the laminate is rotated about the axis. Then, the side layer of the laminate to which the support is attached is continuously cut. Thereby, the optical film which has a support body can be manufactured continuously. Therefore, the productivity of the optical film having the support can be further improved.
  • the present invention includes the method for producing an optical film according to the above [2], wherein each of the plurality of light scattering layers is a porous layer having a plurality of pores therein.
  • the light scattering layer is a porous layer, it is possible to manufacture an optical film that can scatter light reliably with a simple configuration.
  • the present invention forms the laminate by alternately laminating each of the plurality of transparent layers and each of the plurality of porous layers. 6].
  • the manufacturing method of the optical film as described in 6] is included.
  • the transparent layer and the porous layer are alternately laminated to form a laminate, so that the transparent layer and the porous layer are stacked in the stacking direction (the thickness direction of the transparent layer). ) Can be produced alternately.
  • Such an optical film can scatter light efficiently.
  • the present invention includes, in the preparation step, laminating each of the plurality of transparent layers and each of the plurality of porous layers so as to be in direct contact with each other.
  • the method for producing an optical film according to the above [7], which is pressed from both sides in the direction and heated to 30 ° C. or higher and 180 ° C. or lower is included.
  • the transparent layer and the porous layer are in direct contact with each other without interposing the adhesive layer. That is, the laminate is formed without using an adhesive. Therefore, the manufacturing cost (material cost) can be reduced as compared with the case where an adhesive is used to form the laminate.
  • the transparent layer and porous layer which mutually adjoin the thickness direction can be thermocompression-bonded, and in a cutting process
  • the transparent layer and the porous layer adjacent to each other can be prevented from being separated from each other and separated.
  • each of the plurality of light scattering layers is a foamable layer made of a foamable foamable material and capable of light scattering by foaming, and the foamable layer is foamed.
  • the foam layer capable of scattering light is formed by foaming the foamable layer, an optical film capable of reliably scattering light can be manufactured.
  • the foaming step is performed after the cutting step, and in the cutting step, the side layer of the laminate is continuously cut to cut out a cutting film, and in the foaming step
  • the foam layer when the foamable layer is foamed before the cutting step, that is, in the laminate, the foam layer may be peeled off from the layer adjacent to the foam layer (foam layer or transparent layer).
  • the foamable layer is foamed after the cutting step, that is, in the cutting film, so that the foam layer is adjacent to the foam layer (foam layer or transparent layer). It can suppress that it peels from.
  • the preparing step includes a first step of preparing a plurality of unit films including the transparent layer and the foamable layer disposed on the one surface in the thickness direction of the transparent layer, Including the second step of laminating the plurality of unit films in the thickness direction to form the laminate, which includes the method for producing an optical film according to the above [9] or [10]. .
  • a plurality of unit films each having a transparent layer and a foamable layer are laminated to form a laminated body. Therefore, a plurality of transparent layers and a plurality of foamable layers are laminated to form a laminated body. As compared with the case of forming the film, the preparation process can be facilitated.
  • each of the plurality of transparent layers and each of the plurality of foamable layers are disposed so as to be adjacent to each other in the thickness direction,
  • positioned between the said mutually adjacent transparent layer and foamable layer is included.
  • the adjacent transparent layer and the foamable layer are bonded to each other by the pressure-sensitive adhesive layer. Therefore, in the cutting step, the adjacent transparent layer and the foamable layer are separated and separated. Can be suppressed.
  • the present invention includes the method for producing an optical film according to the above [12], wherein the unit film further includes the pressure-sensitive adhesive layer disposed on one surface in the thickness direction of the foamable layer. It is out.
  • a plurality of unit films each including a transparent layer, a foamable layer, and an adhesive layer are laminated to form a laminate, so that the laminate can include an adhesive layer.
  • the preparation process can be facilitated.
  • the present invention is a daylighting film manufactured by the method for manufacturing an optical film according to any one of [1] to [13] above.
  • productivity can be improved while being a simple method.
  • Drawing 1 is an explanatory view for explaining the process of cutting out a transparent layer from the processing sheet concerning a 1st embodiment of the manufacturing method of the optical film of the present invention.
  • FIG. 2 is a perspective view of the transparent layer shown in FIG.
  • FIG. 3 is an explanatory diagram for explaining a process in which the side layer of the laminate is cut after the support is attached to the side of the laminate formed by laminating the transparent layers shown in FIG. is there.
  • FIG. 4 is an explanatory diagram for explaining a process in which the side layer of the laminate is continuously cut after the support drawn from the support roll is attached to the side of the laminate shown in FIG. It is.
  • FIG. 5 is a perspective view of a daylighting film cut out from the laminate shown in FIG. FIG.
  • FIG. 6 is an explanatory diagram for explaining a state in which the daylighting film shown in FIG. 5 is attached to the glass window.
  • FIG. 7 is a perspective view of a transparent layer and a light scattering layer according to the second embodiment of the method for producing an optical film of the present invention.
  • FIG. 8 is an explanatory diagram for explaining a process of cutting the side layer of the laminate formed by laminating the transparent layer and the light scattering layer shown in FIG.
  • FIG. 9 is a perspective view of a daylighting film cut out from the laminate shown in FIG.
  • FIG. 10 is an explanatory diagram for explaining a state in which the daylighting film shown in FIG. 9 is attached to the glass window.
  • FIG. 10 is an explanatory diagram for explaining a state in which the daylighting film shown in FIG. 9 is attached to the glass window.
  • FIG. 11 is an explanatory diagram for explaining the preparation of a processed sheet according to the third embodiment of the method for producing an optical film of the present invention.
  • 12 is a perspective view of a unit film cut out from the processed sheet shown in FIG.
  • FIG. 13 is an explanatory diagram for explaining a process in which the side layer of the laminate formed by laminating the unit films shown in FIG. 12 is cut.
  • FIG. 14 is an explanatory diagram for explaining a process in which the foamable layer of the cutting film shown in FIG. 13 is foamed to become a foam layer.
  • First Embodiment In the method for producing an optical film of the present invention, as shown in FIGS. 1 to 3, first, a plurality of transparent layers 1 are prepared (prepared).
  • the transparent layer 1 is configured to transmit light, and is preferably formed of a transparent organic material from the viewpoint of ease of processing.
  • the transparent organic material examples include known resin materials.
  • the resin material include polyester (for example, polyethylene terephthalate (PET)), polyolefin (for example, polyethylene (PE), polypropylene (PP)). , Polycarbonate (PC), polyvinyl chloride, acrylic resin, polystyrene (PS), epoxy resin, silicone resin, fluorine resin, urethane resin, cellulose, polyvinyl butyral, ethylene vinyl acetate copolymer (EVA), and the like.
  • PET polyethylene terephthalate
  • PE polyolefin
  • PP polypropylene
  • PC Polycarbonate
  • PC polyvinyl chloride
  • acrylic resin acrylic resin
  • PS polystyrene
  • PS polystyrene
  • EVA ethylene vinyl acetate copolymer
  • polyester and polyvinyl chloride are preferable, and polyvinyl chloride is more preferable.
  • Such organic materials may be used alone or in combination of two or more.
  • the relative refractive index of such an organic material is, for example, 1.3 or more, preferably 1.4 or more, for example, 1.8 or less, preferably 1.65 or less with respect to the refractive index of air. .
  • the refractive index can be measured with a prism coupler.
  • Such a transparent layer 1 is formed in a substantially circular shape when viewed from the thickness direction, and has an uneven surface 3 as an example of a light scattering layer capable of light scattering.
  • the concavo-convex surface 3 is arranged on at least one surface of the transparent layer 1, that is, at least one of the both surfaces in the thickness direction of the transparent layer 1 (one surface in the thickness direction and / or the other surface in the thickness direction), Preferably, it is disposed on at least the other surface in the thickness direction of the transparent layer 1, more preferably on both surfaces in the thickness direction of the transparent layer 1.
  • the uneven surface 3 may be a part of the end surface in the thickness direction of the transparent layer 1, it is preferably spread over the whole from the viewpoint of light scattering.
  • the uneven surface 3 is disposed on the other surface in the thickness direction of the transparent layer 1 and is formed over the entire other surface in the thickness direction of the transparent layer 1.
  • the shape of the recess 3 ⁇ / b> A on the uneven surface 3 is not particularly limited, and is, for example, a substantially arc shape, a substantially cone shape (for example, a cone or a pyramid), a substantially frustum shape (for example, A truncated cone and a truncated cone).
  • the recess 3A of the uneven surface 3 has a substantially semicircular arc shape.
  • Such a concavo-convex surface 3 is formed by a known embossing process, for example, as will be described in detail later.
  • the density of the concave portions 3A of the uneven surface 3 is, for example, 50 pieces / cm 2 or more, preferably 500 pieces / cm 2 or more, for example, 5 million pieces / cm 2 or less, preferably 500,000 pieces / cm 2 or less. is there.
  • the thickness of the transparent layer 1 can be appropriately changed depending on the purpose of use, but is, for example, 20 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, for example, 10 mm or less.
  • the thickness is preferably 1 mm or less, and more preferably 500 ⁇ m or less.
  • the diameter of the transparent layer 1 is appropriately changed depending on the purpose of use and the like, but is, for example, 10 cm or more, for example, 100 cm or less, and preferably 50 cm or less from the viewpoint of workability.
  • Each of the plurality of transparent layers 1 is formed in substantially the same size.
  • the light transmittance of the transparent layer 1 is, for example, 80% or more, preferably 85% with respect to light having a wavelength of 440 to 600 nm when the thickness of the transparent layer 1 is 100 ⁇ m. As mentioned above, More preferably, it is 90% or more, for example, 98% or less.
  • a processed sheet 4 made of the organic material described above is prepared, and at least one surface of the processed sheet 4 is uneven by known embossing. After forming the surface 3, the substantially circular transparent layer 1 is cut out from the processed sheet 4.
  • a processed sheet 4 having both flat surfaces in the thickness direction is prepared.
  • a pair of emboss rolls having an uneven shape on the peripheral surface is prepared, and the processed sheet 4 is sandwiched between the pair of emboss rolls. And a pair of embossing rolls are rotated. Thereby, the uneven surface 3 is formed on both sides in the thickness direction of the processed sheet 4.
  • the uneven surface 3 is formed only on any surface in the thickness direction of the transparent layer 1, an emboss roll having an uneven shape on the peripheral surface, and an elastic roll (for example, a rubber roll) having a smooth peripheral surface Prepare. And the processed sheet 4 whose thickness direction both surfaces are flat surfaces is supplied so that it may be pinched
  • a commercially available product (generally called an embossed film, a satin film or the like) can be used. Okamoto)).
  • the substantially circular transparent layer 1 is cut out from the processed sheet 4 having the uneven surface 3.
  • the processed sheet 4 may be formed large so that the plurality of transparent layers 1 can be cut out, and a plurality of the transparent layers 1 may be cut out from the processed sheet 4.
  • the transparent layer 1 may be cut out from the processed sheet 4 one by one.
  • the processed sheet 4 is long and continuous in a predetermined direction so that the plurality of transparent layers 1 can be cut out.
  • a method of forming a flat strip and cutting out a plurality of transparent layers 1 from the processed sheet 4 can be mentioned.
  • the processed sheet 4 when the processed sheet 4 is formed in a long and flat strip shape, the processed sheet 4 preferably has flexibility and is wound in a roll shape. And the some transparent layer 1 is cut out from the part pulled out from the roll-shaped processed sheet 4.
  • FIG. 1
  • Examples of a method for cutting out the transparent layer 1 from the processed sheet 4 include known processing methods such as cutting and punching.
  • the transparent layer 1 having the uneven surface 3 is processed into a plurality of, for example, 300 or more, preferably 500 or more, more preferably 1000 or more, for example, 60000 or less, preferably 10,000 or less. Cut out from sheet 4.
  • each of the plurality of transparent layers 1 having the concavo-convex surface 3 is laminated in the thickness direction of the transparent layer 1 to prepare (preparation) a substantially cylindrical laminate 2 extending in the thickness direction. (Preparation process). That is, the thickness direction of the transparent layer 1 and the lamination direction of the laminate 2 are the same direction.
  • a plurality of transparent layers 1 are laminated so that their outer peripheral edges coincide with each other when projected in the lamination direction.
  • an adhesive layer may be provided between the transparent layers 1 adjacent to each other in the stacking direction, or an adhesive layer may not be provided.
  • Examples of the adhesive that forms such an adhesive layer include known adhesives or pressure-sensitive adhesives such as epoxy, silicone, acrylic, and ultraviolet curable types.
  • the adhesive preferably transmits light.
  • the thickness of the adhesive layer is, for example, 20 nm or more, preferably 50 nm or more, for example, 100 ⁇ m or less, preferably 10 ⁇ m or less.
  • Such an adhesive layer is preferably not provided between the transparent layers 1 adjacent to each other in the stacking direction from the viewpoint of material cost.
  • the uneven surface 3 of the transparent layer 1 on one side in the stacking direction is in direct contact with the transparent layer 1 on the other side in the stacking direction. That is, the uneven surface 3 and the transparent layer 1 facing the uneven surface 3 are in direct contact with each other.
  • the columnar laminate 2 extending in the lamination direction is prepared.
  • the laminated body 2 is hold
  • a plurality of transparent layers 1 parts excluding the uneven surface 3
  • a plurality of uneven surfaces 3 are stacked so as to alternate in the stacking direction.
  • the number of the transparent layers 1 is omitted for convenience, and the stacked body 2 is described as being composed of 6 transparent layers 1, but actually, the stacked body 2 is For example, 300 to 60000 sheets, preferably 500 to 30000 sheets, and more preferably 1000 to 10,000 transparent layers 1 are laminated.
  • the height (stacking direction length) of the laminate 2 is, for example, 1 cm or more, preferably 5 cm or more, more preferably 40 cm or more, for example, 200 cm or less, preferably 100 cm or less.
  • a support 6 is attached to the side surface 5 (surface extending along the lamination direction) of the laminate 2 so as to be along the lamination direction (thickness direction of the transparent layer 1) (sticking step).
  • the support 6 has a sheet shape and includes a base material 7 and an adhesive layer 8 provided on one surface of the base material 7.
  • the support 6 is illustrated as a single layer for convenience.
  • the substrate 7 examples include a substrate such as a PET film, a fluorine-based polymer (for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer). And low adhesive substrates made of nonpolar polymers (for example, olefinic resins such as polyethylene and polypropylene). It is preferable that such a base material 7 is comprised so that light may permeate
  • a fluorine-based polymer for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer.
  • low adhesive substrates made of nonpolar polymers
  • a low adhesive base material made of a nonpolar polymer is preferable, and a low adhesive base material made of polypropylene is more preferable.
  • a release treatment layer with a release treatment agent is appropriately provided on the surface of the base material 7 depending on the production method and the usage mode.
  • the peeling force of the base material 7 by a peeling process layer is adjusted suitably.
  • the thickness of the base material 7 can be appropriately changed according to the purpose of use, but is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the light transmittance of the substrate 7 is, for example, 85% or more, preferably 90% or more, and more preferably 92% with respect to light having a wavelength of 440 to 600 nm when the thickness of the substrate 7 is 50 ⁇ m. % Or more, for example, 98% or less.
  • Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 8 include known pressure-sensitive adhesives such as an epoxy-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, and an ultraviolet curable pressure-sensitive adhesive.
  • the pressure-sensitive adhesive preferably transmits light.
  • the adhesion layer 8 can also be comprised from a well-known double-sided adhesive tape.
  • Such an adhesive layer 8 is formed in a thin layer on the entire surface of one surface of the substrate 7, and the thickness thereof is, for example, 1 ⁇ m or more, preferably in a state where the support 6 is attached to the laminate 2. Is 5 ⁇ m or more, for example, 100 ⁇ m or less, preferably 40 ⁇ m or less.
  • the support layer 6 does not require the adhesive layer 8.
  • the laminated body 2 is pressed from both sides in the laminating direction as necessary. The laminated body 2 is held.
  • the pressure from one side (the other side) in the stacking direction with respect to the stacked body 2 is, for example, 0.01 MPa or more, preferably 0.1 MPa or more, for example, 10 MPa or less, preferably 5 MPa or less. is there.
  • the support 6 is continuously attached to the laminate 2 using, for example, a touch roll so that the adhesive layer 8 of the support 6 adheres to the side surface 5 of the laminate 2.
  • the support body 6 is affixed on the side surface 5 of the laminated body 2 along the lamination direction.
  • the substantially cylindrical laminated body 2 is rotated about the axis to continuously cut the side layer 9 of the laminated body 2 (cutting step).
  • the cutting blade 11 is disposed along the stacking direction, and the stacked body 2 is rotated around its axis, and the side layer 9 is cut out from the stacked body 2 like a wig.
  • the daylighting film 20 as an example of the optical film is cut out from the laminate 2.
  • the manufacturing method of the optical film of this invention includes the sticking process, the side layer 9 of the laminated body 2 to which the support body 6 was affixed is cut
  • the daylighting film 20 includes a film main body 21 and a support 6 as shown in FIG.
  • the film body 21 is a side layer 9 cut out from the laminate 2, and is formed in a thin film shape.
  • the film main body 21 includes a plurality of transparent layers 1 having an uneven surface 3.
  • the plurality of transparent layers 1 are arranged so as to be continuous in the laminating direction (the surface direction orthogonal to the thickness direction as the film main body 21), and the plurality of uneven surfaces 3 are arranged in the laminating direction (film main body). 21 in the direction of the surface 21) and are arranged in parallel at equal intervals (for the thickness of the transparent layer 1).
  • Each of the plurality of uneven surfaces 3 extends so as to be orthogonal to the stacking direction (the surface direction of the film body 21).
  • air is slightly present at the boundary 22 between the transparent layers 1 adjacent to each other in the stacking direction to form an air layer 23.
  • the air layer 23 is a region between the uneven surface 3 of the transparent layer 1 on one side in the stacking direction and the one surface of the transparent layer 1 on the other side in the stacking direction.
  • the interface between the layer 1 and the air layer 23 has a shape corresponding to the uneven surface 3.
  • the thickness of the film body 21 can be appropriately set depending on the purpose of use, but is, for example, 20 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, for example, 10 4 ⁇ m or less, preferably 2 ⁇ 10 3 ⁇ m. Hereinafter, it is more preferably 500 ⁇ m or less, particularly preferably 300 ⁇ m or less.
  • the thickness of the film main body 21 can be appropriately adjusted by the arrangement and angle of the cutting blade 11 with respect to the laminate 2 when the laminate 2 is cut.
  • the manufacturing method of the optical film of this invention includes the sticking process
  • the cutting device 13 includes a rotating shaft 14, a pair of holding members 15, and a cutting blade 11.
  • the rotary shaft 14 has a substantially cylindrical shape and is configured to be rotatable around the axis.
  • a long and flat belt-like support 6 is wound around the rotating shaft 14.
  • the long and flat belt-like support 6 is wound around the rotary shaft 14 in a spiral manner so that the adhesive layer 8 is positioned on the inner side in the radial direction of the rotary shaft 14 with respect to the base material 7.
  • the support 6 is configured as a support roll 16 centered on the rotation shaft 14.
  • the support 6 is disposed adjacent to the radial direction of the rotating shaft 14, and the adhesive layer 8 and the base material 7 are sequentially and repeatedly disposed.
  • the peeling process layer is provided in the surface on the opposite side to the adhesion layer 8 in the base material 7.
  • FIG. Therefore, in the radial direction of the rotating shaft 14, between the adjacent support bodies 6, specifically, the adhesive layer 8 of the support body 6 disposed on the radially outer side and the base of the support body 6 disposed on the radially inner side.
  • a release treatment layer is interposed between the material 7.
  • the pair of holding members 15 are arranged with respect to the support roll 16 with an interval in the radial direction of the support roll 16.
  • Each of the pair of holding members 15 has a substantially disk shape, and is configured to be rotatable about its axis.
  • the pair of holding members 15 are arranged at intervals in the axial direction of the holding member 15. And a pair of holding member 15 is holding the laminated body 2 by pinching
  • each holding member 15 is arrange
  • the cutting blade 11 is disposed along the stacking direction with respect to the side surface 5 of the stacked body 2 held by the pair of holding members 15, and the tip of the cutting blade 11 is placed on the side surface 5 of the stacked body 2. In contact.
  • the cutting blade 11 maintains the state in which the tip of the cutting blade 11 is in contact with the side surface 5 of the laminated body 2 as the diameter of the laminated body 2 decreases as the cutting process progresses. It is configured to approach.
  • the support body 6 pulled out from the support body roll 16 is held by the pair of holding members 15. Affixing to the side surface 5 (applying step).
  • the support 6 is drawn toward the tangential direction of the laminate 2 such that the adhesive layer 8 of the drawn support 6 adheres to the side surface 5 of the laminate 2, and the central angle in the laminate 2 is For example, it is attached to the side surface 5 of the laminate 2 in the range of 90 ° to 270 °, preferably in the range of 120 ° to 240 °.
  • the pair of holding members 15 are rotationally driven in the counterclockwise direction when viewed from the front side in FIG. 4 by a driving force from a driving source such as a motor provided in the cutting device 13.
  • a driving source such as a motor provided in the cutting device 13.
  • the laminate 2 held by the pair of holding members 15 rotates about the axis, and the support roll 16 is driven about the axis of the rotating shaft 14.
  • the side layer 9 of the laminate 2 to which the support 6 is attached is continuously cut out by the cutting blade 11 like wig peeling (cutting step).
  • a long and flat strip-shaped daylighting film 20 is prepared continuously from the laminate 2 and the support roll 16.
  • an adhesive layer 24 is provided on the surface of the daylighting film 20 on the side opposite to the support 6 of the film main body 21.
  • the daylighting film 20 includes an adhesive layer 24 in addition to the film body 21 and the support 6.
  • the adhesive layer 24 is formed by applying an adhesive or a pressure-sensitive adhesive to the surface of the film body 21 opposite to the support 6.
  • the adhesive or pressure-sensitive adhesive examples include known adhesives or pressure-sensitive adhesives such as epoxy-based, silicone-based, acrylic, and ultraviolet curable types.
  • the adhesive or pressure-sensitive adhesive preferably transmits light.
  • a daylighting film 20 manufacturing method as shown in FIG. 3, a plurality of transparent layers 1 having uneven surfaces 3 are laminated to form a substantially cylindrical laminate 2.
  • the side layer 9 of the laminated body 2 is continuously cut by rotating around the center.
  • the lighting film 20 in which the some transparent layer 1 which has the uneven surface 3 continues in the lamination direction (thickness direction of the transparent layer 1) is manufactured.
  • the transparent layer 1 having the uneven surface 3 is laminated in the lamination direction (The daylighting film 20 continuous in the thickness direction of the transparent layer 1 can be continuously produced. As a result, the productivity of the daylighting film 20 can be improved.
  • the manufacturing method of such a lighting film 20 can manufacture the lighting film 20 simply and efficiently, and can be used suitably as an industrial manufacturing method of the lighting film 20.
  • the uneven surface 3 can scatter light as shown in FIG. Therefore, the manufacturing process can be simplified.
  • the uneven surface 3 is disposed on at least one surface of the transparent layer 1 (that is, one surface in the stacking direction and / or the other surface in the stacking direction). Therefore, it is possible to manufacture the daylighting film 20 that can scatter light reliably with a simple configuration. In addition, since it is not necessary to separately prepare a layer for scattering light, manufacturing cost (material cost) can be reduced.
  • the uneven surface 3 and the transparent layer 1 facing the uneven surface 3 are in direct contact with each other without an adhesive layer interposed therebetween. That is, the laminate 2 is formed without using an adhesive. Therefore, it is possible to reduce the manufacturing cost (material cost) compared to the case where an adhesive is used for forming the laminate 2.
  • the transparent layers 1 adjacent to each other in the thickness direction can be connected to each other even if no adhesive layer is provided. It can suppress peeling and falling apart.
  • the support body roll 16 is made centering on an axis line. While rotating, the laminated body 2 is rotated centering
  • the lighting film 20 manufactured in this way is attached to, for example, the inner surface of the glass window 26 in a building such as a house 25 as shown in FIG. Moreover, you may attach so that it may be contained as an inner layer of a multilayer glass or a laminated glass.
  • the daylighting film 20 is cut into a shape and size corresponding to the attachment location.
  • Examples of the method for cutting the daylighting film 20 include known processing methods such as cutting and punching.
  • the daylighting film 20 is attached to the inner side surface of the glass window 26 so that, for example, the stacking direction (the surface direction of the film body 21) is along the vertical direction.
  • the daylighting film 20 includes the adhesive layer 24, the adhesive layer 24 is adhered to the inner surface of the glass window 26.
  • the daylighting film 20 is attached to the inner surface of the glass window 26.
  • the substrate 7 of the support 6 is held on the film body 21 without being peeled off. Therefore, it is not necessary to provide a release treatment layer on the surface of the base material 7 on the adhesive layer 8 side.
  • the other portion of the light L2 enters the transparent layer 1 and then enters the boundary 22 (more specifically, the air layer 23) of the transparent layers 1 adjacent to each other in the vertical direction. It is reflected and scattered and introduced into the house 25.
  • the daylight can be efficiently taken and the brightness of the entire house 25 can be improved efficiently.
  • the uneven surface 3 is formed over the whole thickness direction end surface of the transparent layer 1, as shown in FIG. 2, it is not limited to this,
  • the thickness direction end surface of the transparent layer 1 is You may form in only one part.
  • the area of the concavo-convex surface 3 is, for example, 10% or more, preferably 50% or more, for example, 100% or less, preferably 80% or less, with respect to the end surface in the thickness direction of the transparent layer 1.
  • the side surface layer 9 of the laminated body 2 is cut out ( Cutting step), without being limited thereto, the side layer 9 of the laminate 2 may be cut out without attaching the support 6 to the side 5 of the laminate 2. That is, the manufacturing method of the optical film of this invention does not need to include a sticking process.
  • the preparation step an adhesive layer is provided between the transparent layers 1 adjacent to each other in the stacking direction among the plurality of transparent layers 1.
  • the laminated body 2 in which a plurality of transparent layers 1 and a plurality of adhesive layers are alternately arranged in the lamination direction is prepared (preparation step).
  • the daylighting film 20 which consists only of the film main body 21 is prepared by cutting out the side surface layer 9 of the laminated body 2 as mentioned above (cutting process).
  • the adhesive layer 24 is provided in the surface on the opposite side to the support body 6 of the film main body 21, it is not limited to this,
  • the adhesive layer 24 is as follows. It does not have to be provided in the daylighting film 20.
  • the base material 7 of the support 6 is peeled off, and the exposed adhesive layer 8 is adhered to the inner surface of the glass window 26. That is, since the base material 7 is removed from the lighting film 20, it may transmit light or may not transmit light. Further, a release treatment layer is provided on the surface of the base material 7 on the adhesive layer 8 side.
  • the laminate 2 is formed by laminating a plurality of transparent layers 1 having an uneven surface 3, but in the second embodiment, the laminate 35 is a figure. 7 and FIG. 8, a plurality of transparent layers 1 and a plurality of light scattering layers 31 are formed by being laminated.
  • each of the plurality of transparent layers 1 does not have the uneven surface 3. That is, each of both end surfaces in the thickness direction of the transparent layer 1 is a flat surface.
  • the transparent layer 1 is preferably formed from an ethylene vinyl acetate copolymer (EVA).
  • the light transmittance of such a transparent layer 1 is, for example, 80% or more, preferably 90% or more, more preferably, with respect to light having a wavelength of 440 to 600 nm when the thickness of the transparent layer 1 is 100 ⁇ m. 92% or more, for example, 98% or less.
  • a first processed sheet 33 made of the above-described organic material and having flat surfaces in the thickness direction is prepared.
  • the substantially circular transparent layer 1 is cut out from the sheet 33.
  • the first processed sheet 33 a commercially available product can be used, and examples thereof include EVASAFE (manufactured by Bridgestone), Ultra Pale (manufactured by Sanvik), and the like.
  • the method similar to the method of cutting out the transparent layer 1 from the processed sheet 4 is mentioned, for example, Preferably, it is a long and flat strip-shaped 1st processed sheet.
  • a plurality of transparent layers for example, 100 sheets or more, preferably 300 sheets or more, more preferably 400 sheets or more, for example, 30000 sheets or less, preferably 5000 sheets or less, more preferably 600 sheets. Thereafter, the first processed sheet 33 is cut out.
  • Each of the plurality of light scattering layers 31 is a layer capable of light scattering as shown in FIG.
  • Examples of the light scattering layer 31 include a particle-containing layer and a porous layer.
  • the particle-containing layer is formed of, for example, a matrix resin in which fine particles are dispersed, and the light scattering property is controlled by the refractive index difference between the fine particles and the matrix resin and the state of the fine particles.
  • the matrix resin examples include the transparent organic materials described above, and preferably include an acrylic resin, a urethane resin, a polyolefin, and a polyester. Such matrix resins may be used alone or in combination of two or more.
  • fine particles examples include silica, barium sulfate, polystyrene, polyolefin, and the like, and preferably silica. Such fine particles may be used alone or in combination of two or more.
  • the porous layer is formed from, for example, a matrix resin having a large number of pores inside.
  • the matrix resin examples include the transparent organic materials described above, preferably polyester, acrylic resin, polyethylene, polypropylene, and more preferably polyethylene terephthalate (PET). Such matrix resins may be used alone or in combination of two or more.
  • Examples of a method for preparing such a matrix resin in a porous layer include known porosification methods such as a foaming method, a stretching method, a phase separation method, and a fusion method, and preferably a phase separation method. It is done.
  • the porosity of the porous layer is, for example, 10% by volume or more, preferably 30% by volume or more, for example, 80% by volume or less, preferably 70% by volume or less.
  • the porosity can be calculated from (bulk volume of porous layer ⁇ matrix resin volume) / bulk volume of porous layer ⁇ 100.
  • the light scattering layer 31 is a porous layer.
  • the thickness of the light scattering layer 31 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the ratio of the thickness of the light scattering layer 31 to the thickness of the transparent layer 1 is, for example, 2/1 or more, preferably 1/1 or more, for example, 1/5 or less, preferably 1/10 or less.
  • a second processed sheet 34 made of the matrix resin described above and having both flat surfaces in the thickness direction is prepared.
  • a substantially circular light scattering layer 31 is cut out from the processed sheet 34.
  • the above-described fine particles are dispersed in the second processed sheet 34.
  • the second processed sheet 34 commercially available products (generally, diffusion sheets)
  • an opt saver manufactured by Kimoto
  • Kimoto an opt saver
  • the second processed sheet 34 when the light-scattering layer 31 is a porous layer, many pores are formed in the second processed sheet 34.
  • a commercially available product can be used, For example, Lumirror EA3S (manufactured by Toray Industries, Inc.), Sunmap (manufactured by Nitto Denko Corporation) and the like can be mentioned.
  • the method similar to the method of cutting out the light-scattering layer 31 from the processed sheet 4 is mentioned, for example, Preferably, it is long and flat strip-like 2nd.
  • the processed sheet 34 is wound into a roll shape, and a plurality of light scattering layers 31 are cut out from a portion drawn from the rolled second processed sheet 34.
  • the light scattering layer 31 has a plurality of, for example, 100 or more, preferably 300 or more, more preferably 400 or more, for example, 30000 or less, preferably 5000 or less, and more preferably 600. From the second processed sheet 34, the number of sheets is cut out.
  • each of the plurality of transparent layers 1 and each of the plurality of light scattering layers 31 are alternately stacked to prepare a stacked body 35 (preparation step).
  • each of the plurality of transparent layers 1 and each of the plurality of light scattering layers 31 are alternately stacked so that their outer peripheral edges coincide with each other when projected in the stacking direction.
  • the adhesive layer described above may be provided between the transparent layer 1 and the light scattering layer 31 adjacent to each other in the stacking direction, or the adhesive layer may not be provided. From the viewpoint of cost, it is preferable not to provide an adhesive layer.
  • the adhesive layer is not provided on the stacked body 35, the transparent layer 1 and the light scattering layer 31 that are adjacent to each other in the stacked body 35 are in direct contact with each other.
  • the cylindrical laminate 35 extending in the stacking direction is prepared.
  • each of the transparent layer 1 and the light scattering layer 31 is, for example, 100 to 30000, preferably 300 to 5000, and more preferably 400. It is formed by stacking up to 600 sheets.
  • the height of the stacked body 35 (the length in the stacking direction) is the same as the height of the stacked body 2, for example.
  • thermocompression bonding heating press
  • the laminated body 35 is pressed and heated from both sides in the laminating direction.
  • the pressure from one side (the other side) in the stacking direction with respect to the stacked body 35 is, for example, 0.1 MPa or more, preferably 0.5 MPa or more, for example, 50 MPa or less, preferably 5 MPa or less.
  • the temperature is, for example, 30 ° C. or higher, preferably 50 ° C. or higher, for example, 180 ° C. or lower, preferably 150 ° C. or lower.
  • the thermocompression bonding time is, for example, 1 minute or more, preferably 5 minutes or more, for example, 180 minutes or less, preferably 60 minutes or less.
  • the light scattering layer 31 is fused to the adjacent transparent layer 1.
  • the substantially cylindrical laminate 35 is rotated about the axis to continuously cut the side layer 36 of the laminate 35 (cutting step).
  • the cutting blade 11 is arranged along the stacking direction, and the stacked body 35 is rotated about its axis, and the side layer 36 is cut out from the stacked body 35 like a wig.
  • the daylighting film 40 as an example of the optical film is cut out from the laminate 35.
  • the daylighting film 40 is a side layer 36 cut out from the laminated body 35 and is formed in a thin film shape.
  • the daylighting film 40 includes a plurality of transparent layers 1 and a plurality of light scattering layers 31, and the transparent layer 1, the light scattering layer 31, and the stacking direction (the surface direction orthogonal to the thickness direction as the daylighting film 40) However, they are sequentially and repeatedly arranged so as to be continuous.
  • the plurality of light scattering layers 31 are arranged in parallel at equal intervals (the thickness of the transparent layer 1) in the stacking direction, and the light scattering layers 31 are orthogonal to the stacking direction. It extends.
  • the thickness of the daylighting film 40 is, for example, the same as the thickness of the film body 21 described above. Moreover, said adhesive layer 24 can also be provided in the one surface of the lighting film 40 as needed.
  • the light scattering layer 31 is a porous layer, it is possible to manufacture a daylighting film 40 that can scatter light reliably with a simple configuration. .
  • the transparent layer 1 and the light scattering layer 31 are alternately stacked to form the stacked body 35, so that the transparent layer 1 and the light scattering layer 31 are formed. It is possible to manufacture a daylighting film 40 in which (porous layer) is alternately arranged in the stacking direction (thickness direction of the transparent layer 1). Such a daylighting film 40 can scatter light efficiently.
  • the transparent layer 1 and the light scattering layer 31 are in direct contact with each other without an adhesive layer. That is, the laminated body 35 is formed without using an adhesive. Therefore, the manufacturing cost (material cost) can be reduced as compared with the case where an adhesive is used to form the stacked body 35.
  • the laminate 35 is pressed from both sides in the thickness direction and heated to 30 ° C. or more and 180 ° C. or less, so that the transparent layer 1 and the light scattering layer 31 (porous layer) adjacent to each other in the thickness direction are bonded by thermocompression bonding. In the cutting step, it can be suppressed that the transparent layer 1 and the light scattering layer 31 (porous layer) adjacent to each other are separated from each other and separated.
  • the daylighting film 40 manufactured in this way is attached to, for example, the inner surface of the glass window 26 in a building such as a house 25 in the same manner as the daylighting film 20 of the first embodiment. .
  • the other part of the light L2 is scattered by being incident on the light scattering layer 31 and then being reflected by the pores 41 (or fine particles 41) in the light scattering layer 31. And introduced into the house 25.
  • the daylight can be efficiently taken and the brightness of the entire house 25 can be improved efficiently.
  • the laminated body 35 can also be prepared by preparing a plurality of unit films in which the transparent layer 1 and the light scattering layer 31 are laminated together and laminating them.
  • the laminated body 35 is subjected to thermocompression bonding (heating press) as necessary in the preparation step.
  • thermocompression bonding heating press
  • the present invention is not limited to this, and the laminated body 35 is thermocompression bonded. It does not have to be done.
  • an adhesive layer is provided between the transparent layer 1 and the light scattering layer 31 that are adjacent to each other in the laminating direction.
  • the transparent layer 1 and the light scattering layer 31 that are adjacent to each other in the stacking direction are bonded together by the adhesive layer.
  • the transparent layer 1, the light scattering layer 31, and the adhesive layer are sequentially and repeatedly arranged so as to be continuous in the stacking direction.
  • a daylighting film 40 is prepared.
  • the laminate 2 is formed by laminating a plurality of transparent layers 1 having uneven surfaces 3, but in the third embodiment, the laminate 46 is a figure. 12 and FIG. 13, the unit film 47 including the transparent layer 1 and the foamable layer 45 is formed by laminating a plurality.
  • a plurality of unit films 47 including the transparent layer 1 and the foamable layer 45 are prepared (prepared) (first step).
  • the transparent layer 1 does not have the uneven surface 3. That is, each of the thickness direction both surfaces of the transparent layer 1 is a flat surface.
  • the transparent layer 1 is preferably made of polyester, more preferably polyethylene terephthalate (PET).
  • the foamable layer 45 is disposed on one surface in the thickness direction of the transparent layer 1.
  • the foamable layer 45 is made of a foamable material that can be foamed, and can be scattered by foaming.
  • the foamable material contains, for example, an adhesive and a foaming agent.
  • adhesives examples include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, polyester adhesives, polyamide adhesives, urethane adhesives, fluorine adhesives, and styrene.
  • -Diene block copolymer-based pressure-sensitive adhesives examples include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, polyester adhesives, polyamide adhesives, urethane adhesives, fluorine adhesives, and styrene.
  • -Diene block copolymer-based pressure-sensitive adhesives examples include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, polyester adhesives, polyamide adhesives, urethane adhesives, fluorine adhesives, and styrene.
  • -Diene block copolymer-based pressure-sensitive adhesives examples include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, polyester adhesives, polyamide adhesives, urethane adhesives,
  • an acrylic pressure-sensitive adhesive and a rubber-based pressure-sensitive adhesive preferably an acrylic pressure-sensitive adhesive.
  • the relative refractive index of the pressure-sensitive adhesive contained in such a foamable material is, for example, 1.30 or more, preferably 1.40 or more, for example, 1.65 or less, preferably with respect to the refractive index of air. 1.60 or less.
  • the refractive index can be measured with a prism coupler.
  • foaming agent examples include thermally expandable microspheres, inorganic foaming agents (for example, ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, etc.), organic foaming agents (for example, azodicarbonamide, 4,4′-oxybis). (Benzenesulfonyl hydrazide), p-toluylenesulfonyl semicarbazide and the like), preferably, thermally expandable microspheres.
  • inorganic foaming agents for example, ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, etc.
  • organic foaming agents for example, azodicarbonamide, 4,4′-oxybis.
  • Benzenesulfonyl hydrazide Benzenesulfonyl hydrazide
  • p-toluylenesulfonyl semicarbazide preferably, thermally expandable microspheres.
  • the thermally expandable microsphere is a microencapsulated foaming agent, and includes, for example, a shell constituting an elastic outer shell and an inclusion inside the shell.
  • Examples of the material forming the shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
  • the inclusion is a substance that expands by gasification upon heating, and examples thereof include isobutane, propane, and pentane.
  • Such heat-expandable microspheres can be produced by a known method such as a coacervation method or an interfacial polymerization method.
  • thermally expandable microsphere a commercially available product can be used, and examples include Matsumoto Microsphere (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.).
  • the content of the foaming agent is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, for example, 50 parts by mass or less, preferably 30 parts by mass or less with respect to 100 parts by weight of the adhesive of the foamable material. is there.
  • the foamable material may be a polymer component such as an adhesive component (base polymer), a plasticizer, a crosslinking agent, a tackifier, a pigment, a dye, a filler, an anti-aging agent, a conductive material, an antistatic agent, etc. These additives can also be included as appropriate.
  • the thickness of the foamable layer 45 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the ratio of the thickness of the foamable layer 45 to the thickness of the transparent layer 1 is, for example, 2/1 or more, preferably 1/1 or more, for example, 1/5 or less, preferably 1/10 or less.
  • the unit film 47 includes an adhesive layer 48 as necessary, as shown in FIG. Note that the unit film 47 according to the third embodiment includes an adhesive layer 48.
  • the pressure-sensitive adhesive layer 48 is disposed on one surface of the unit film 47 in the thickness direction of the foamable layer 45.
  • Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 48 include the same pressure-sensitive adhesive as the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 8, and preferably a light-transmitting pressure-sensitive adhesive. Moreover, the adhesive layer 48 can also be comprised from a well-known double-sided adhesive tape.
  • pressure-sensitive adhesive layers 48 double-sided pressure-sensitive adhesive tapes are preferable, and base-material-less double-sided pressure-sensitive adhesive tapes are more preferable.
  • the thickness of the pressure-sensitive adhesive layer 48 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the ratio of the thickness of the pressure-sensitive adhesive layer 48 to the thickness of the transparent layer 1 is, for example, 2/1 or more, preferably 1/1 or more, 1/5 or less, preferably 1/10 or less.
  • the light transmittance of the pressure-sensitive adhesive layer 48 is, for example, 80% or more, preferably 90% or more, more preferably, with respect to light having a wavelength of 440 to 600 nm when the thickness of the pressure-sensitive adhesive layer 48 is 100 ⁇ m. 95% or more, for example, 98% or less.
  • the relative refractive index of the pressure-sensitive adhesive layer 48 is, for example, 1.30 or more, preferably 1.40 or more, for example, 1.65 or less, preferably 1.60 or less with respect to the refractive index of air. is there.
  • the refractive index can be measured with a prism coupler.
  • a processed sheet 49 including the transparent layer 1 and the foamable layer 45 and, if necessary, further including an adhesive layer 48 is prepared. Then, the substantially circular transparent layer 1 is cut out from the processed sheet 49.
  • the processed sheet 49 may be formed large so that a plurality of unit films 47 can be cut out, and a plurality of unit films 47 may be cut out from the processed sheet 49.
  • the processed sheets 49 may be cut out from the processed sheets 49 one by one.
  • a foamable layer 45 is formed on the surface of the transparent layer 1 by a known film forming method (for example, a wet process, a dry process, etc.), and foaming is possible if necessary.
  • a method for forming the pressure-sensitive adhesive layer 48 on the surface of the layer 45, a foamable sheet 45 including a foamable layer 45 and a pair of transparent layers 1 sandwiching the foamable layer 45 are prepared.
  • a method of sticking the pressure-sensitive adhesive layer 48 to the exposed foamable layer 45, if necessary, except for one transparent layer 1 of the pair of transparent layers 1 may be mentioned.
  • a method of attaching the adhesive layer 48 to the exposed foamable layer 45 can be mentioned. . And as shown in FIG. 11, this method is preferably carried out continuously by the sheet manufacturing apparatus 51 in a roll-to-roll manner.
  • the sheet manufacturing apparatus 51 includes a first rotating shaft 52, a second rotating shaft 53, a winding shaft 54, and a plurality (three) of rollers 55.
  • the first rotating shaft 52 has a substantially cylindrical shape and is configured to be rotatable around the axis. As described later, the foamable sheet 50 is wound around the first rotating shaft 52.
  • the second rotating shaft 53 is arranged at an upper right side with respect to the first rotating shaft 52 in FIG.
  • the second rotating shaft 53 has a substantially cylindrical shape extending in the same direction as the first rotating shaft 52, and is configured to be rotatable around the axis. As will be described later, an adhesive sheet 65 including an adhesive layer 48 is wound around the second rotating shaft 53.
  • the take-up shaft 54 is disposed on the right side with a space from the first rotation shaft 52, and is disposed on the lower right side with a space from the second rotation shaft 53. Yes.
  • the winding shaft 54 has a substantially cylindrical shape extending in the same direction as the first rotation shaft 52, and is configured to be rotatable around the axis. Although the winding shaft 54 will be described later, the prepared processed sheet 49 is wound thereon.
  • Each of the plurality of rollers 55 extends in the same direction as the first rotating shaft 52 and is appropriately disposed at a predetermined position.
  • the long and flat strip-like foamable sheet 50 is wound around the first rotating shaft 52 in a spiral shape.
  • the foamable sheet 50 is configured as a foamed sheet roll 56 centered on the first rotation shaft 52.
  • the foamable sheet 50 includes a foamable layer 45 and a pair of transparent layers 1 that sandwich the foamable layer 45 in the thickness direction.
  • Such a foamable sheet 50 may be a commercially available product, such as Riva Alpha No 3196 (single-sided adhesive type, manufactured by Nitto Denko Corporation).
  • the foamable sheet 50 is disposed adjacent to the radial direction of the first rotation shaft 52.
  • the foamable sheet 50 includes a release treatment layer interposed between the radially outer transparent layer 1 and the foamable layer 45.
  • a long and flat strip-shaped adhesive sheet 65 is wound around the second rotating shaft 53 in a spiral shape. Accordingly, the adhesive sheet 65 is configured as an adhesive sheet roll 57 centered on the second rotation shaft 53.
  • the pressure-sensitive adhesive sheet 65 includes a pressure-sensitive adhesive layer 48 and a separator 66 disposed on one surface of the pressure-sensitive adhesive layer 48.
  • a release treatment layer is provided on both surfaces of the separator 66.
  • the pressure-sensitive adhesive sheet 65 such as Luciax CS9862US (manufactured by Nitto Denko Corporation), HJ-9150W (manufactured by Nitto Denko Corporation), and the like.
  • the pressure-sensitive adhesive sheet 65 is arranged adjacent to each other in the radial direction of the second rotation shaft 53, the pressure-sensitive adhesive layer 48 is arranged on the outer side in the radial direction, and the separator 66 is arranged on the inner side in the radial direction. Yes.
  • the foamable sheet 50 is pulled out from the foamed sheet roll 56 and the radially outer transparent layer 1 is peeled from the foamable sheet 50.
  • the pressure-sensitive adhesive sheet 65 is pulled out from the pressure-sensitive adhesive sheet roll 57, and the pressure-sensitive adhesive layer 48 of the pressure-sensitive adhesive sheet 65 is exposed to the exposed foamable layer 45 of the foamable sheet 50 (the surface opposite to the transparent layer 1 in the foamable layer 45). Paste. As a result, a long and flat belt-like processed sheet 49 is prepared.
  • the end portion of the processed sheet 49 is fixed to the take-up shaft 54, and the take-up shaft 54 is rotated in the clockwise direction when viewed from the front side of the sheet of FIG. Then, the processed sheet 49 is wound around the winding shaft 54 and wound around the winding shaft 54 in a spiral shape to form a roll.
  • a method of cutting out the unit film 47 from such a processed sheet 49 for example, the same method as the method of cutting out the transparent layer 1 from the processed sheet 4 can be mentioned.
  • the same method as the method of cutting out the transparent layer 1 from the processed sheet 4 can be mentioned.
  • FIG. A method of cutting out a plurality of unit films 47 from a portion drawn from the sheet 49 can be mentioned.
  • a plurality of unit films 47 for example, 300 sheets or more, preferably 500 sheets or more, more preferably 1000 sheets or more, for example, 60000 sheets or less, preferably 10,000 sheets or less, are cut out from the processed sheet 49.
  • the separator 66 is peeled from each of the plurality of unit films 47 (see FIG. 11).
  • a plurality of unit films 47 are laminated in the thickness direction to prepare a laminate 46 (second step).
  • a plurality of unit films 47 are laminated in the laminating direction so that the transparent layer 1 and the foamable layer 45 are adjacent to each other in the laminating direction (via an adhesive layer 48 if necessary). Moreover, when the unit film 47 has the adhesive layer 48, the laminated body 46 has the adhesive layer 48 arrange
  • the cylindrical laminated body 46 extending in the laminating direction is prepared.
  • the laminated body 46 is described as six unit films 47, but actually, the laminated body 46 is, for example, 300 to 60000 sheets, preferably 500 to 30000 sheets, more preferably 500 to 10,000 unit films 47 are laminated.
  • the height (length in the stacking direction) of the stacked body 46 is the same as the height of the stacked body 2, for example.
  • the laminated body 46 is thermocompression-bonded (hot press) under the same conditions as the thermocompression-bonding conditions as necessary.
  • the substantially cylindrical laminated body 46 is rotated about the axis to continuously cut the side layer 58 of the laminated body 46 (cutting step).
  • the cutting blade 11 is arranged along the stacking direction, and the stacked body 46 is rotated around its axis, and the side layer 58 is cut out from the stacked body 46 like a wig.
  • the cutting film 60 is cut out from the laminated body 46 by the above.
  • the cutting film 60 is a side layer 58 cut out from the laminated body 46 and is formed in a thin film shape. As shown in FIG. 14, the cutting film 60 includes a plurality of transparent layers 1 and a plurality of foamable layers 45, and further includes a plurality of adhesive layers 48 as necessary. And the transparent layer 1, the foamable layer 45, and the adhesive layer 48 are sequentially repeated so that they may continue in the lamination direction (the surface direction orthogonal to the thickness direction as the cutting film 60).
  • the plurality of foamable layers 45 are arranged in parallel at equal intervals (the thickness of the transparent layer 1 and the pressure-sensitive adhesive layer 48) from each other in the stacking direction. Extending so as to be orthogonal.
  • the thickness of the cutting film 60 is the same as the thickness of the film body 21, for example.
  • said adhesive layer 24 can also be provided in the one surface of the lighting film 40 as needed.
  • the foamable layer 45 included in the cutting film 60 is foamed to obtain a foam layer 61 capable of scattering light (foaming step).
  • the cutting film 60 is heated by a heating device.
  • heating device examples include known heating devices such as an oven, a hot plate, a hot air dryer, a near infrared lamp, and preferably an oven.
  • the heating temperature is not less than the foaming start temperature of the foaming agent contained in the foamable layer 45 and is, for example, 90 ° C. or more, preferably 100 ° C. or more, for example, 250 ° C. or less, preferably 170 ° C. or less.
  • the heating time is, for example, 5 seconds or more, preferably 10 seconds or more, for example, 15 minutes or less, preferably 10 minutes or less.
  • the foaming agent in the foamable layer 45 is foamed, and the foamable layer 45 becomes a foam layer 61 having pores 62 inside.
  • the volume expansion ratio of the foam layer 61 is, for example, 1.1 times or more, preferably 5 times or more, for example, 50 times or less, preferably 30 times or less.
  • the porosity of the foam layer 61 (ratio of voids in the porous layer) is, for example, 10% by volume or more, preferably 30% by volume or more, for example, 90% by volume or less, preferably 80% by volume or less.
  • the thickness of the foam layer 61 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, for example, 100 ⁇ m or less, preferably 80 ⁇ m or less.
  • the ratio of the thickness of the foam layer 61 to the thickness of the transparent layer 1 is, for example, 2/1 or more, preferably 1/1 or more, for example, 1/2 or less, preferably 1/4 or less.
  • the foamable layer 45 in the cutting film 60 becomes the foam layer 61, and the daylighting film 63 is prepared.
  • the daylighting film 63 includes a plurality of transparent layers 1 and a plurality of foam layers 61, and further includes a plurality of adhesive layers 48 as necessary.
  • the transparent layer 1, the foam layer 61, and the pressure-sensitive adhesive layer 48 are sequentially and repeatedly arranged so that they are continuous in the stacking direction (the surface direction orthogonal to the thickness direction as the cutting film 60).
  • the foamable layer 45 is foamed to form the foam layer 61 capable of scattering light, so that an optical film that can scatter light reliably can be manufactured. .
  • the foamable layer 45 included in the cutting film 60 is foamed. Therefore, it can suppress that the foam layer 61 peels from the transparent layer 1 or the adhesive layer 48 which adjoins the foam layer 61 mutually.
  • a plurality of unit films 47 each including the transparent layer 1 and the foamable layer 45 are laminated to form a laminate 46, so that each of the plurality of transparent layers 1 and the plurality of foamable layers 45 is formed.
  • the preparation process can be facilitated.
  • the transparent layer 1 and the foamable layer 45 that are adjacent to each other are bonded by the adhesive layer 48, so that the transparent layer 1 and the foamable layer that are adjacent to each other can be foamed in the cutting step. It can suppress that the layer 45 peels and separates.
  • a plurality of unit films 47 each including the transparent layer 1, the foamable layer 45, and the pressure-sensitive adhesive layer 48 are laminated to form a laminated body 46. While the agent layer 48 can be provided, the preparation process can be facilitated.
  • the daylighting film 63 manufactured in this way is attached to, for example, the inner surface of the glass window 26 in a building such as the house 25 in the same manner as in the first and second embodiments (see FIG. 10).
  • the daylight can be efficiently taken, and the brightness of the entire house 25 can be improved efficiently.
  • a plurality of unit films 47 in which the transparent layer 1 and the foamable layer 45 are integrally laminated are prepared, and the laminate 46 is obtained by laminating them.
  • the laminated body 46 can also be prepared by preparing each of the transparent layer 1 and the foamable layer 45 separately and laminating them.
  • the foaming step is performed after the cutting step, but the foaming step can be performed before the cutting step and after the preparation step.
  • the foamable layer 45 included in the laminated body 46 is foamed to become the foam layer 61.
  • the unit film 47 includes an adhesive layer 48 in addition to the transparent layer 1 and the foamable layer 45, but the unit film 47 includes an adhesive layer 48. Instead, it may consist only of the transparent layer 1 and the foamable layer 45. In this case, it is preferable to form the pressure-sensitive adhesive layer 48 between the unit films 47 adjacent to each other in the stacking direction when the plurality of unit films 47 are stacked in the preparation step.
  • the daylighting film includes the adhesive layer 24, but the present invention is not limited thereto, and the daylighting film includes the adhesive layer 24. It does not have to be provided.
  • an adhesive or a pressure-sensitive adhesive is applied to the inner surface of the glass window 26 to form an adhesive layer 24, and a lighting film is attached to the adhesive layer 24.
  • Example 1 A satin type polyvinyl chloride film (processed sheet, manufactured by Okamoto Co., Ltd., satin clear # 320) having a thickness of 100 ⁇ m was punched into a circular shape with a diameter of 25 cm to produce 1000 circular transparent layers. Each of both surfaces in the thickness direction of each transparent layer was formed as an uneven surface. The relative refractive index of the polyvinyl chloride film with respect to air was 1.54.
  • the laminated body was hold
  • the laminate was 25 cm in diameter ⁇ height (length in the stacking direction) 100 mm (100 ⁇ m ⁇ 1000 sheets).
  • the laminate was held by a pair of holding members 15 so as to be sandwiched from both sides in the lamination direction, and the transparent support was wound around the rotating shaft 14 to constitute a support roll.
  • the transparent support had a polypropylene film (base material) having a thickness of 40 ⁇ m and an acrylic pressure-sensitive adhesive layer (adhesion layer) having a thickness of 30 ⁇ m.
  • the acrylic pressure-sensitive adhesive layer was formed on one side of the polypropylene film, and a release treatment layer with a release treatment agent was provided on the other side of the polypropylene film.
  • the tip of the cutting blade 11 is in contact with the side surface of the laminated body.
  • the cutting blade 11 was arrange
  • the support pulled out from the support roll is drawn toward the tangential direction of the laminate so that the adhesive layer adheres to the side of the laminate, and on the side of the laminate in the range of the central angle of 240 ° in the laminate. Affixed (applying step).
  • the pair of holding members 15 were driven to rotate counterclockwise by a motor (not shown) of the cutting device 13 when viewed from one axial direction of the holding member 15 (front side in FIG. 8). .
  • the laminated body held by the pair of holding members 15 was rotated about the axis, and the support roll was driven about the axis of the rotating shaft 14.
  • Luciax CS9862US manufactured by Nitto Denko Corporation
  • adheresive was applied to the surface (cut surface) opposite to the transparent support of the film body to form an adhesive layer.
  • a long and flat strip-shaped daylighting film was prepared which was provided with a film body, a transparent support and an adhesive layer.
  • the plurality of transparent layers were continuously arranged in the laminating direction (the surface direction of the film body).
  • the film body had a thickness of 250 ⁇ m.
  • the daylighting film was appropriately cut according to the size of the glass window to be attached.
  • a daylighting film having a rectangular shape in a plan view having a long side of 78 cm and a short side of 10.8 cm was obtained.
  • Example 2 A 300 ⁇ m thick EVA film (first processed sheet, manufactured by Bridgestone Corporation) was punched into a circular shape with a diameter of 25 cm to produce 500 circular transparent layers. Each of both surfaces in the thickness direction of each transparent layer was formed as a flat surface. The relative refractive index of the ethylene vinyl acetate copolymer film with respect to air was 1.54.
  • porous PET film having a thickness of 40 ⁇ m (second processed sheet, manufactured by Toray Industries Inc., Lumirror EA3S) was punched into a circular shape having a diameter of 25 cm, and 500 circular porous layers were produced.
  • the relative refractive index of PET with respect to air was 1.60.
  • the laminated body had a diameter of 25 cm ⁇ a height (a stacking direction length) of 170 mm (300 ⁇ m ⁇ 500 sheets + 40 ⁇ m ⁇ 500 sheets).
  • the cutting blade 11 was arranged along the stacking direction of the laminate, and the tip of the cutting blade 11 was brought into contact with the side surface of the laminate. And the laminated body was rotationally driven clockwise as seen from one side of the lamination direction.
  • the side layer of the laminate was continuously cut out like a wig to obtain a film body (side layer of the laminate) (cutting step).
  • Luciax CS9862US manufactured by Nitto Denko Corporation
  • adheresive was applied to one of the surfaces of the film body to form an adhesive layer.
  • a long and flat strip-shaped daylighting film having a film body and an adhesive layer was prepared.
  • the plurality of transparent layers and the plurality of porous layers were continuously arranged so as to alternate with each other in the stacking direction (the surface direction of the film main body).
  • the film body had a thickness of 300 ⁇ m.
  • the daylighting film was appropriately cut according to the size of the glass window to be attached.
  • a daylighting film having a rectangular shape in a plan view having a long side of 78 cm and a short side of 10.8 cm was obtained.
  • Example 3 A long and flat strip-like foamable sheet (Riva Alpha No. 3196, manufactured by Nitto Denko Corporation) and a long and flat strip-shaped adhesive sheet (Luciax CS9862US, manufactured by Nitto Denko Corporation) were prepared.
  • the foamable sheet was provided with a foamable layer and a pair of transparent layers sandwiching the foamable layer.
  • the transparent layer of the foamable sheet was formed from PET and had a thickness of 100 ⁇ m.
  • the foamable layer 45 contained an acrylic pressure-sensitive adhesive and thermally expandable microspheres, and the thickness thereof was 40 ⁇ m.
  • the pressure-sensitive adhesive sheet was provided with a pressure-sensitive adhesive layer and a separator.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet was a substrate-less double-sided pressure-sensitive adhesive tape, and the thickness thereof was 50 ⁇ m.
  • the foamable sheet was wound around the first rotating shaft 52 to form a foamed sheet roll
  • the adhesive sheet was wound around the second rotating shaft 53 to form an adhesive sheet roll.
  • a release treatment layer with a release treatment agent was provided between the transparent layer on the radially outer side of the foamable sheet and the foamable layer.
  • the peeling process layer was provided in both surfaces of the separator of the adhesive sheet.
  • the foamable sheet was pulled out from the foamed sheet roll, and the radially outer transparent layer was peeled from the foamable sheet.
  • the adhesive sheet was pulled out from the adhesive sheet roll, and the adhesive layer was affixed on the foamable layer which the foamable sheet exposed. Thereby, a long and flat strip-shaped processed sheet was prepared.
  • the end of the processed sheet was fixed to the take-up shaft 54, and the take-up shaft 54 was rotated in the clockwise direction when viewed from the front side of the sheet of FIG.
  • the processed sheet was wound around the winding shaft 54 in a spiral shape to form a roll.
  • the laminate was pressure-bonded for 3 minutes using a compression molding machine under conditions of room temperature and 1 MPa.
  • the laminate had a diameter of 25 cm ⁇ a height (a length in the lamination direction) of 95 mm.
  • the cutting blade 11 was disposed along the stacking direction of the laminate, and the tip of the cutting blade 11 was brought into contact with the side surface of the laminate. And the laminated body was rotationally driven clockwise as seen from one side of the lamination direction.
  • the side layer of the laminate was continuously cut out like a wig to obtain a cutting film (side layer of the laminate) (cutting step).
  • the thickness of the cutting film was 150 ⁇ m.
  • the cutting film was heated in an oven at 100 ° C. for 1 minute to foam the foamable layer in the cutting film to obtain a foam layer.
  • the thickness of the foam layer was 60 ⁇ m.
  • the transparent layer, the foam layer, and the pressure-sensitive adhesive layer were continuously arranged so as to be sequentially repeated in the laminating direction (the surface direction of the daylighting film).
  • Luciax CS9862US manufactured by Nitto Denko Corporation
  • adheresive was applied to one surface of the daylighting film to form an adhesive layer.
  • the daylighting film was appropriately cut according to the size of the glass window to be attached.
  • a daylighting film having a rectangular shape in a plan view having a long side of 78 cm and a short side of 10.8 cm was obtained.
  • the method for producing an optical film of the present invention is used, for example, for producing a daylighting film used for daylighting of a building.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

An optical film manufacturing method includes: a preparation step for laminating a plurality of transparent layers and a plurality of light-scattering layers in the thickness direction of the plurality of transparent layers to prepare a substantially columnar shaped laminate extending in the thickness direction, the transparent layers being capable of transmitting light and the light-scattering layers being capable of scattering light; and a cutting step for continuously cutting the side surface layer of the laminate while rotating the laminate about the axial line thereof.

Description

光学フィルムの製造方法および採光フィルムOptical film manufacturing method and daylighting film
 本発明は、光学フィルムの製造方法、および、その製造方法により製造される採光フィルムに関する。 The present invention relates to an optical film manufacturing method and a daylighting film manufactured by the manufacturing method.
 従来より、建築物の室内の明るさなどの環境を調整するために、太陽光を室内に導入すること、いわゆる、採光(太陽光照明、昼光照明とも呼ばれる。)が知られている。しかるに、近年、環境負荷低減の観点から、より効率的に太陽光を室内に導入し、日中における人工照明の利用を低減することが望まれている。 Conventionally, so-called daylighting (also called daylighting or daylighting) is known in which sunlight is introduced into a room in order to adjust the environment such as the brightness of the room indoors. However, in recent years, from the viewpoint of reducing the environmental load, it is desired to more efficiently introduce sunlight into a room and reduce the use of artificial lighting during the daytime.
 そこで、光の屈折、回折または反射などの光学的作用により、光の進行方向を変更可能な光学部材を、窓などに取り付け、太陽光を室内に効率的に導入し、室内の明るさの向上を図ることが種々検討されている。このような光学部材において、室内に導入する光を散乱させて、室内における明暗を低減することが提案されている。 Therefore, an optical member that can change the traveling direction of light by optical action such as light refraction, diffraction, or reflection is attached to a window, etc., and sunlight is efficiently introduced into the room to improve indoor brightness. Various attempts have been made to achieve this. In such an optical member, it has been proposed to reduce light and darkness in the room by scattering light introduced into the room.
 例えば、水平方向に延びる複数のスリットが形成され、スリットの加工面が光を散乱するための凹凸を有する透明なプラスチック板(例えば、特許文献1参照)、光を透過するように構成され、複数の凹部が形成されている光透過部と、光を散乱するように構成され、凹部に充填される光散乱部とを備える採光シートが提案されている(例えば、特許文献2参照)。 For example, a transparent plastic plate having a plurality of slits extending in the horizontal direction, and a processed surface of the slit having irregularities for scattering light (see, for example, Patent Document 1) is configured to transmit light. There has been proposed a daylighting sheet including a light transmitting portion in which a concave portion is formed and a light scattering portion configured to scatter light and filled in the concave portion (see, for example, Patent Document 2).
 そして、それら光学部材は、例えば、家屋などの窓に設置され、窓を介して室外から入射した太陽光を、反射するとともに散乱させて、採光する。 These optical members are installed in, for example, a window of a house, and the sunlight incident from the outside through the window is reflected, scattered, and collected.
特開2000-268610号公報JP 2000-268610 A 特開2014-126708号公報JP 2014-126708 A
 しかるに、特許文献1に記載のプラスチック板、および、特許文献2に記載の採光シートは、工業的な製造の観点からすると、生産性が低いという不具合がある。 However, the plastic plate described in Patent Document 1 and the daylighting sheet described in Patent Document 2 have a problem of low productivity from the viewpoint of industrial production.
 具体的には、特許文献1に記載のプラスチック板を製造するには、COまたはエキシマレーザー加工法により、プラスチック板に複数のスリットを形成する。 Specifically, in order to manufacture the plastic plate described in Patent Document 1, a plurality of slits are formed in the plastic plate by CO 2 or excimer laser processing.
 しかし、このようなプラスチック板の製造方法は、枚葉方式(バッチ方式)であるので、生産性の向上を図るには限度があり、工業的な製造には適さない。 However, since the method for producing such a plastic plate is a single wafer method (batch method), there is a limit in improving productivity, and it is not suitable for industrial production.
 また、特許文献2に記載の採光シートを製造するには、凹凸が設けられた金型ロールを、基材と対向するように配置した後、金型ロールと基材との間に光透過部を構成する組成物を供給しながら、金型ロールを回転させて、金型ロールの凹凸形状を光透過部に転写する。その後、光透過部の凹部に、光散乱部を構成する組成物を充填する。 Moreover, in order to manufacture the daylighting sheet described in Patent Document 2, a light roll is disposed between the mold roll and the base material after disposing the mold roll provided with irregularities so as to face the base material. The mold roll is rotated while supplying the composition constituting the film, and the uneven shape of the mold roll is transferred to the light transmission portion. Thereafter, the concave portion of the light transmission part is filled with the composition constituting the light scattering part.
 しかし、このような採光シートの製造方法では、凹凸形状が形成された光透過部を調製した後、その光透過部の凹部に、光散乱部を構成する組成物を充填する必要があるので、生産性の向上を図るには限度がある。 However, in such a method for manufacturing a daylighting sheet, after preparing a light transmissive portion having a concavo-convex shape, it is necessary to fill the concave portion of the light transmissive portion with a composition constituting the light scattering portion. There are limits to improving productivity.
 そこで、本発明の目的は、簡易な方法でありながら、生産性の向上を図ることができる光学フィルムの製造方法、および、その製造方法により製造される採光フィルムを提供することにある。 Therefore, an object of the present invention is to provide an optical film manufacturing method capable of improving productivity while being a simple method, and a daylighting film manufactured by the manufacturing method.
 [1]本発明は、光を透過可能な複数の透明層、および、光散乱可能となりうる複数の光散乱層を、前記複数の透明層のそれぞれの厚み方向に積層して、前記厚み方向に延びる略円柱状の積層体を準備する準備工程と、前記積層体を軸線を中心として回転させて、前記積層体の側面層を連続的に切断する切断工程とを含んでいる、光学フィルムの製造方法である。 [1] In the present invention, a plurality of transparent layers capable of transmitting light and a plurality of light scattering layers capable of light scattering are laminated in the thickness direction of each of the plurality of transparent layers, Production of an optical film, comprising: a preparation step of preparing a substantially cylindrical laminated body extending; and a cutting step of continuously cutting a side layer of the laminated body by rotating the laminated body about an axis. Is the method.
 このような方法によれば、複数の透明層および複数の光散乱層を積層して、略円柱状の積層体を形成した後、積層体を軸線を中心として回転させて、積層体の側面層を連続的に切断することにより、複数の透明層および複数の光散乱層のそれぞれが、積層方向(透明層の厚み方向)に連続する光学フィルムを製造することができる。 According to such a method, after laminating a plurality of transparent layers and a plurality of light scattering layers to form a substantially cylindrical laminated body, the laminated body is rotated about the axis, and the side layer of the laminated body By continuously cutting, an optical film in which each of the plurality of transparent layers and the plurality of light scattering layers is continuous in the stacking direction (thickness direction of the transparent layer) can be produced.
 つまり、複数の透明層および複数の光散乱層を積層して積層体を形成した後、積層体の側面層を切断するという簡易な方法により、透明層および光散乱層が積層方向(透明層の厚み方向)に連続する光学フィルムを、連続的に製造することができる。その結果、光学フィルムの生産性の向上を図ることができる。 That is, after forming a laminate by laminating a plurality of transparent layers and a plurality of light scattering layers, the transparent layer and the light scattering layer are laminated in the laminating direction (transparent layer of the transparent layer) by a simple method of cutting the side layer of the laminate. An optical film continuous in the thickness direction) can be continuously produced. As a result, the productivity of the optical film can be improved.
 [2]また、本発明は、前記複数の光散乱層は、光散乱可能である、上記[1]に記載の光学フィルムの製造方法を含んでいる。 [2] Further, the present invention includes the method for producing an optical film according to [1], wherein the plurality of light scattering layers are capable of light scattering.
 このような方法によれば、光散乱層がすでに光散乱可能であるので、光散乱層を光散乱可能とするための工程が必要なく、製造工程の簡略化を図ることができる。 According to such a method, since the light scattering layer is already capable of light scattering, a process for making the light scattering layer capable of light scattering is unnecessary, and the manufacturing process can be simplified.
 [3]また、本発明は、前記複数の光散乱層のそれぞれは、前記複数の透明層のそれぞれの少なくとも一方面に配置される凹凸面であり、前記準備工程において、前記凹凸面を有する前記複数の透明層のそれぞれを、前記厚み方向に積層して、前記積層体を形成する、上記[2]に記載の光学フィルムの製造方法を含んでいる。 [3] Further, in the present invention, each of the plurality of light scattering layers is an uneven surface disposed on at least one surface of each of the plurality of transparent layers, and the preparation step includes the uneven surface. The method for producing an optical film according to [2] above, wherein each of the plurality of transparent layers is laminated in the thickness direction to form the laminate.
 このような方法によれば、透明層の少なくとも一方面に配置される凹凸面が、光散乱層として構成されるので、簡易な構成でありながら、光を確実に散乱できる光学フィルムを製造することができる。また、光を散乱させるための層を別途準備する必要がないので、製造コスト(材料コスト)の低減を図ることができる。 According to such a method, since the uneven surface disposed on at least one surface of the transparent layer is configured as a light scattering layer, an optical film that can scatter light reliably while having a simple configuration is manufactured. Can do. In addition, since it is not necessary to separately prepare a layer for scattering light, manufacturing cost (material cost) can be reduced.
 [4]また、本発明は、前記準備工程と前記切断工程との間において、支持体を、前記積層体の側面に前記厚み方向に沿うように貼り付ける貼付工程をさらに備え、前記準備工程において、前記凹凸面と、前記凹凸面と向かい合う前記透明層とが互いに直接接触するように、前記複数の透明層を積層し、前記切断工程において、前記支持体が貼り付けられた前記積層体の側面層を連続的に切断する、上記[3]に記載の光学フィルムの製造方法を含んでいる。 [4] Further, the present invention further includes a pasting step of pasting a support body on a side surface of the laminate along the thickness direction between the preparatory step and the cutting step. The plurality of transparent layers are laminated so that the uneven surface and the transparent layer facing the uneven surface are in direct contact with each other, and in the cutting step, the side surface of the laminate on which the support is attached The manufacturing method of the optical film as described in said [3] which cut | disconnects a layer continuously is included.
 このような方法によれば、積層体において、凹凸面と、凹凸面と向かい合う透明層とが、接着剤層を介することなく、互いに直接接触している。つまり、接着剤を使用することなく、積層体が形成されている。そのため、積層体の形成に接着剤が使用される場合と比較して、製造コスト(材料コスト)の低減を確実に図ることができる。 According to such a method, in the laminate, the concavo-convex surface and the transparent layer facing the concavo-convex surface are in direct contact with each other without interposing the adhesive layer. That is, the laminate is formed without using an adhesive. Therefore, the manufacturing cost (material cost) can be reliably reduced as compared with the case where an adhesive is used for forming the laminate.
 しかし、積層体において、凹凸面と、凹凸面と向かい合う透明層とが、直接接触している場合、切断工程において、積層体の側面層を連続的に切断すると、厚み方向に互いに隣接する透明層が互いに剥離してバラバラになる場合がある。 However, in the laminate, when the uneven surface and the transparent layer facing the uneven surface are in direct contact, in the cutting step, when the side layers of the laminate are continuously cut, the transparent layers adjacent to each other in the thickness direction May peel apart from each other.
 この点、上記の方法では、積層体に支持体が貼り付けられた後、積層体の側面層が切断されるので、接着剤層が設けられていなくとも、厚み方向に互いに隣接する透明層が互いに剥離してバラバラになることを抑制できる。 In this respect, in the above method, since the side layer of the laminate is cut after the support is attached to the laminate, the transparent layers adjacent to each other in the thickness direction are formed even if no adhesive layer is provided. It can suppress that it peels and separates from each other.
 そのため、製造コスト(材料コスト)の低減を図ることができながら、切断工程において、複数の透明層がバラバラになることを抑制できる。 Therefore, it is possible to prevent the plurality of transparent layers from being separated in the cutting process while reducing the manufacturing cost (material cost).
 [5]また、本発明は、前記支持体は、シート状であり、巻回されることにより支持体ロールとして構成され、前記貼付工程において、前記支持体ロールから引き出された前記支持体が、前記積層体の側面に貼り付けられ、前記切断工程において、前記支持体ロールを軸線を中心として回転させるとともに、前記積層体を軸線を中心として回転させて、前記支持体が貼り付けられた前記積層体の側面層を連続的に切断して、前記支持体に支持される前記切削フィルムを切り出す、上記[4]に記載の光学フィルムの製造方法を含んでいる。 [5] Further, in the present invention, the support is in the form of a sheet, and is configured as a support roll by being wound. In the pasting step, the support drawn out from the support roll is The laminate to which the support is attached by being attached to the side surface of the laminate and rotating the support roll about the axis while rotating the laminate about the axis in the cutting step. The manufacturing method of the optical film as described in said [4] which cut | disconnects the cutting film supported by the said support body continuously by cut | disconnecting the side layer of a body is included.
 このような方法によれば、支持体ロールから引き出された支持体が、積層体の側面に貼り付けられた後、支持体ロールを軸線を中心として回転させるとともに、積層体を軸線を中心として回転させて、支持体が貼り付けられた積層体の側面層を連続的に切断する。これによって、支持体を有する光学フィルムを連続的に製造することができる。そのため、支持体を有する光学フィルムの生産性のさらなる向上を図ることができる。 According to such a method, after the support pulled out from the support roll is attached to the side surface of the laminate, the support roll is rotated about the axis, and the laminate is rotated about the axis. Then, the side layer of the laminate to which the support is attached is continuously cut. Thereby, the optical film which has a support body can be manufactured continuously. Therefore, the productivity of the optical film having the support can be further improved.
 [6]また、本発明は、前記複数の光散乱層のそれぞれは、内部に複数の気孔を有する多孔質層である、上記[2]に記載の光学フィルムの製造方法を含んでいる。 [6] Further, the present invention includes the method for producing an optical film according to the above [2], wherein each of the plurality of light scattering layers is a porous layer having a plurality of pores therein.
 このような方法によれば、光散乱層が多孔質層であるので、簡易な構成でありながら、光を確実に散乱できる光学フィルムを製造することができる。 According to such a method, since the light scattering layer is a porous layer, it is possible to manufacture an optical film that can scatter light reliably with a simple configuration.
 [7]また、本発明は、前記準備工程において、前記複数の透明層のそれぞれと、前記複数の多孔質層のそれぞれとを、交互に積層することにより、前記積層体を形成する、上記[6]に記載の光学フィルムの製造方法を含んでいる。 [7] Further, in the preparation step, the present invention forms the laminate by alternately laminating each of the plurality of transparent layers and each of the plurality of porous layers. 6]. The manufacturing method of the optical film as described in 6] is included.
 このような方法によれば、準備工程において、透明層と多孔質層とを交互に積層して、積層体を形成するので、透明層と多孔質層とが、積層方向(透明層の厚み方向)に交互に配置される光学フィルムを製造することができる。このような光学フィルムは、効率よく光を散乱させることができる。 According to such a method, in the preparation step, the transparent layer and the porous layer are alternately laminated to form a laminate, so that the transparent layer and the porous layer are stacked in the stacking direction (the thickness direction of the transparent layer). ) Can be produced alternately. Such an optical film can scatter light efficiently.
 [8]また、本発明は、前記準備工程において、前記複数の透明層のそれぞれと、前記複数の多孔質層のそれぞれとを、互いに直接接触するように積層し、前記積層体を、前記厚み方向の両側から押圧するとともに、30℃以上180℃以下に加熱する、上記[7]に記載の光学フィルムの製造方法を含んでいる。 [8] Further, in the preparation step, the present invention includes, in the preparation step, laminating each of the plurality of transparent layers and each of the plurality of porous layers so as to be in direct contact with each other. The method for producing an optical film according to the above [7], which is pressed from both sides in the direction and heated to 30 ° C. or higher and 180 ° C. or lower is included.
 このような方法によれば、積層体において、透明層と多孔質層とが、接着剤層を介することなく、互いに直接接触している。つまり、接着剤を使用することなく、積層体が形成されている。そのため、積層体の形成に接着剤が使用される場合と比較して、製造コスト(材料コスト)の低減を図ることができる。 According to such a method, in the laminate, the transparent layer and the porous layer are in direct contact with each other without interposing the adhesive layer. That is, the laminate is formed without using an adhesive. Therefore, the manufacturing cost (material cost) can be reduced as compared with the case where an adhesive is used to form the laminate.
 そして、積層体を、厚み方向の両側から押圧するとともに、30℃以上180℃以下に加熱するので、厚み方向に互いに隣接する透明層および多孔質層を、熱圧着させることができ、切断工程において、互いに隣接する透明層および多孔質層が互いに剥離してバラバラになることを抑制できる。 And while pressing a laminated body from the thickness direction both sides and heating to 30 degreeC or more and 180 degrees C or less, the transparent layer and porous layer which mutually adjoin the thickness direction can be thermocompression-bonded, and in a cutting process The transparent layer and the porous layer adjacent to each other can be prevented from being separated from each other and separated.
 [9]また、本発明は、前記複数の光散乱層のそれぞれは、発泡可能な発泡性材料からなり、発泡することにより光散乱可能となる発泡可能層であり、前記発泡可能層を発泡させて、光散乱可能な発泡体層とする発泡工程をさらに含んでいる、上記[1]に記載の光学フィルムの製造方法を含んでいる。 [9] Further, according to the present invention, each of the plurality of light scattering layers is a foamable layer made of a foamable foamable material and capable of light scattering by foaming, and the foamable layer is foamed. The method for producing an optical film according to the above [1], further comprising a foaming step for forming a light-scatterable foam layer.
 このような方法によれば、発泡可能層を発泡させることにより、光散乱可能な発泡体層を形成するので、光を確実に散乱できる光学フィルムを製造することができる。 According to such a method, since the foam layer capable of scattering light is formed by foaming the foamable layer, an optical film capable of reliably scattering light can be manufactured.
 [10]また、本発明は、前記発泡工程は、前記切断工程の後に実施され、前記切断工程において、前記積層体の側面層を連続的に切断して、切削フィルムを切り出し、前記発泡工程において、前記切削フィルムに含まれる前記発泡可能層を発泡させる、上記[9]に記載の光学フィルムの製造方法を含んでいる。 [10] Further, in the present invention, the foaming step is performed after the cutting step, and in the cutting step, the side layer of the laminate is continuously cut to cut out a cutting film, and in the foaming step The method for producing an optical film according to the above [9], wherein the foamable layer contained in the cutting film is foamed.
 しかるに、切断工程の前つまり積層体において、発泡可能層を発泡すると、発泡体層が、その発泡体層と互いに隣り合う層(発泡体層または透明層)から剥離してしまう場合がある。 However, when the foamable layer is foamed before the cutting step, that is, in the laminate, the foam layer may be peeled off from the layer adjacent to the foam layer (foam layer or transparent layer).
 この点、上記の方法によれば、切断工程の後つまり切削フィルムにおいて、発泡可能層が発泡されるので、発泡体層が、その発泡体層と互いに隣り合う層(発泡体層または透明層)から剥離してしまうことを抑制できる。 In this regard, according to the above method, the foamable layer is foamed after the cutting step, that is, in the cutting film, so that the foam layer is adjacent to the foam layer (foam layer or transparent layer). It can suppress that it peels from.
 [11]また、本発明は、前記準備工程は、前記透明層、および、前記透明層の前記厚み方向一方面に配置される前記発泡可能層を備える単位フィルムを複数準備する第1工程と、前記複数の単位フィルムを、前記厚み方向に積層して、前記積層体を形成する第2工程とを含んでいる、上記[9]または[10]に記載の光学フィルムの製造方法を含んでいる。 [11] Further, in the present invention, the preparing step includes a first step of preparing a plurality of unit films including the transparent layer and the foamable layer disposed on the one surface in the thickness direction of the transparent layer, Including the second step of laminating the plurality of unit films in the thickness direction to form the laminate, which includes the method for producing an optical film according to the above [9] or [10]. .
 このような方法によれば、透明層および発泡可能層を備える単位フィルムを、複数積層して積層体を形成するので、複数の透明層および複数の発泡可能層のそれぞれを積層して、積層体を形成する場合と比較して、準備工程の円滑化を図ることができる。 According to such a method, a plurality of unit films each having a transparent layer and a foamable layer are laminated to form a laminated body. Therefore, a plurality of transparent layers and a plurality of foamable layers are laminated to form a laminated body. As compared with the case of forming the film, the preparation process can be facilitated.
 [12]また、本発明は、前記積層体において、前記複数の透明層のそれぞれと、前記複数の発泡可能層のそれぞれとは、前記厚み方向に互いに隣り合うように配置され、前記積層体は、前記互いに隣り合う透明層と発泡可能層との間に配置される粘着剤層を有している、上記[11]に記載の光学フィルムの製造方法を含んでいる。 [12] Also, in the laminated body according to the present invention, each of the plurality of transparent layers and each of the plurality of foamable layers are disposed so as to be adjacent to each other in the thickness direction, The manufacturing method of the optical film as described in said [11] which has an adhesive layer arrange | positioned between the said mutually adjacent transparent layer and foamable layer is included.
 このような方法によれば、積層体において、互いに隣り合う透明層および発泡可能層が粘着剤層により接着されているので、切断工程において、互いに隣り合う透明層および発泡可能層が剥離してバラバラになることを抑制できる。 According to such a method, in the laminate, the adjacent transparent layer and the foamable layer are bonded to each other by the pressure-sensitive adhesive layer. Therefore, in the cutting step, the adjacent transparent layer and the foamable layer are separated and separated. Can be suppressed.
 [13]また、本発明は、前記単位フィルムは、前記発泡可能層の前記厚み方向一方面に配置される前記粘着剤層をさらに備える、上記[12]に記載の光学フィルムの製造方法を含んでいる。 [13] Further, the present invention includes the method for producing an optical film according to the above [12], wherein the unit film further includes the pressure-sensitive adhesive layer disposed on one surface in the thickness direction of the foamable layer. It is out.
 このような方法によれば、準備工程において、透明層、発泡可能層および粘着剤層を備える単位フィルムを、複数積層して積層体を形成するので、積層体が粘着剤層を備えることができながら、準備工程の円滑化を図ることができる。 According to such a method, in the preparation step, a plurality of unit films each including a transparent layer, a foamable layer, and an adhesive layer are laminated to form a laminate, so that the laminate can include an adhesive layer. However, the preparation process can be facilitated.
 [14]本発明は、上記[1]~[13]のいずれか一項に記載の光学フィルムの製造方法により製造される、採光フィルムである。 [14] The present invention is a daylighting film manufactured by the method for manufacturing an optical film according to any one of [1] to [13] above.
 このような構成によれば、製造コストの低減を図ることができながら、簡易かつ効率的に製造できる。 According to such a configuration, it is possible to easily and efficiently manufacture while reducing the manufacturing cost.
 本発明の光学フィルムの製造方法によれば、簡易な方法でありながら、生産性の向上を図ることができる。 According to the method for producing an optical film of the present invention, productivity can be improved while being a simple method.
図1は、本発明の光学フィルムの製造方法の第1実施形態に係る加工シートから、透明層を切り出す工程を説明するための説明図である。Drawing 1 is an explanatory view for explaining the process of cutting out a transparent layer from the processing sheet concerning a 1st embodiment of the manufacturing method of the optical film of the present invention. 図2は、図1に示す透明層の斜視図である。FIG. 2 is a perspective view of the transparent layer shown in FIG. 図3は、図2に示す透明層が積層されて形成される積層体の側面に、支持体が貼り付けられた後、積層体の側面層が切断される工程を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining a process in which the side layer of the laminate is cut after the support is attached to the side of the laminate formed by laminating the transparent layers shown in FIG. is there. 図4は、図3に示す積層体の側面に、支持体ロールから引き出された支持体が貼り付けられた後、積層体の側面層が連続的に切断される工程を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a process in which the side layer of the laminate is continuously cut after the support drawn from the support roll is attached to the side of the laminate shown in FIG. It is. 図5は、図4に示す積層体から切り出される採光フィルムの斜視図である。FIG. 5 is a perspective view of a daylighting film cut out from the laminate shown in FIG. 図6は、図5に示す採光フィルムがガラス窓に取り付けられた状態を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining a state in which the daylighting film shown in FIG. 5 is attached to the glass window. 図7は、本発明の光学フィルムの製造方法の第2実施形態に係る透明層および光散乱層の斜視図である。FIG. 7 is a perspective view of a transparent layer and a light scattering layer according to the second embodiment of the method for producing an optical film of the present invention. 図8は、図7に示す透明層および光散乱層が積層されて形成される積層体の側面層が切断される工程を説明するための説明図である。FIG. 8 is an explanatory diagram for explaining a process of cutting the side layer of the laminate formed by laminating the transparent layer and the light scattering layer shown in FIG. 図9は、図8に示す積層体から切り出される採光フィルムの斜視図である。FIG. 9 is a perspective view of a daylighting film cut out from the laminate shown in FIG. 図10は、図9に示す採光フィルムがガラス窓に取り付けられた状態を説明するための説明図である。FIG. 10 is an explanatory diagram for explaining a state in which the daylighting film shown in FIG. 9 is attached to the glass window. 図11は、本発明の光学フィルムの製造方法の第3実施形態に係る加工シートの調製を説明するための説明図である。FIG. 11 is an explanatory diagram for explaining the preparation of a processed sheet according to the third embodiment of the method for producing an optical film of the present invention. 図12は、図11に示す加工シートから切り出される単位フィルムの斜視図である。12 is a perspective view of a unit film cut out from the processed sheet shown in FIG. 図13は、図12に示す単位フィルムが積層されて形成される積層体の側面層が切断される工程を説明するための説明図である。FIG. 13 is an explanatory diagram for explaining a process in which the side layer of the laminate formed by laminating the unit films shown in FIG. 12 is cut. 図14は、図13に示す切削フィルムの発泡可能層が、発泡されて発泡体層となる工程を説明するための説明図である。FIG. 14 is an explanatory diagram for explaining a process in which the foamable layer of the cutting film shown in FIG. 13 is foamed to become a foam layer.
1.第1実施形態
 本発明の光学フィルムの製造方法では、図1~図3に示すように、まず、複数の透明層1を調製(準備)する。
1. First Embodiment In the method for producing an optical film of the present invention, as shown in FIGS. 1 to 3, first, a plurality of transparent layers 1 are prepared (prepared).
 透明層1は、図2に示すように、光を透過するように構成されており、加工の容易性の観点から好ましくは、透明の有機材料から形成されている。 As shown in FIG. 2, the transparent layer 1 is configured to transmit light, and is preferably formed of a transparent organic material from the viewpoint of ease of processing.
 透明の有機材料としては、例えば、公知の樹脂材料などが挙げられ、樹脂材料としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレート(PET))、ポリオレフィン(例えば、ポリエチレン(PE)、ポリプロピレン(PP))、ポリカーボネート(PC)、ポリ塩化ビニル、アクリル樹脂、ポリスチレン(PS)、エポキシ樹脂、シリコーン樹脂、フッ素樹脂、ウレタン樹脂、セルロース、ポリビニルブチラール、エチレン酢酸ビニル共重合体(EVA)などが挙げられる。 Examples of the transparent organic material include known resin materials. Examples of the resin material include polyester (for example, polyethylene terephthalate (PET)), polyolefin (for example, polyethylene (PE), polypropylene (PP)). , Polycarbonate (PC), polyvinyl chloride, acrylic resin, polystyrene (PS), epoxy resin, silicone resin, fluorine resin, urethane resin, cellulose, polyvinyl butyral, ethylene vinyl acetate copolymer (EVA), and the like.
 このような透明の有機材料のなかでは、好ましくは、ポリエステルおよびポリ塩化ビニルが挙げられ、さらに好ましくは、ポリ塩化ビニルが挙げられる。このような有機材料は、単独で使用してもよく、2種以上併用することもできる。 Among such transparent organic materials, polyester and polyvinyl chloride are preferable, and polyvinyl chloride is more preferable. Such organic materials may be used alone or in combination of two or more.
 このような有機材料の相対屈折率は、空気の屈折率に対して、例えば、1.3以上、好ましくは、1.4以上、例えば、1.8以下、好ましくは、1.65以下である。なお、屈折率は、プリズムカプラにより測定することができる。 The relative refractive index of such an organic material is, for example, 1.3 or more, preferably 1.4 or more, for example, 1.8 or less, preferably 1.65 or less with respect to the refractive index of air. . The refractive index can be measured with a prism coupler.
 このような透明層1は、厚み方向から見て略円形状に形成されており、光散乱可能な光散乱層の一例としての凹凸面3を有している。 Such a transparent layer 1 is formed in a substantially circular shape when viewed from the thickness direction, and has an uneven surface 3 as an example of a light scattering layer capable of light scattering.
 凹凸面3は、透明層1の少なくとも一方面、つまり、透明層1の厚み方向の両面のうち、少なくともいずれかの面(厚み方向一方面および/または厚み方向他方面)に配置されており、好ましくは、少なくとも透明層1の厚み方向他方面、さらに好ましくは、透明層1の厚み方向両面に配置されている。また、凹凸面3は、透明層1の厚み方向端面において、一部であってもよいが、光の散乱性の観点から好ましくは、全体にわたって広がっている。 The concavo-convex surface 3 is arranged on at least one surface of the transparent layer 1, that is, at least one of the both surfaces in the thickness direction of the transparent layer 1 (one surface in the thickness direction and / or the other surface in the thickness direction), Preferably, it is disposed on at least the other surface in the thickness direction of the transparent layer 1, more preferably on both surfaces in the thickness direction of the transparent layer 1. Moreover, although the uneven surface 3 may be a part of the end surface in the thickness direction of the transparent layer 1, it is preferably spread over the whole from the viewpoint of light scattering.
 第1実施形態において、凹凸面3は、透明層1の厚み方向他方面に配置されており、透明層1の厚み方向他方面全体にわたって形成されている。 In the first embodiment, the uneven surface 3 is disposed on the other surface in the thickness direction of the transparent layer 1 and is formed over the entire other surface in the thickness direction of the transparent layer 1.
 凹凸面3における凹部3Aの形状としては、図6に示すように、特に制限されず、例えば、略円弧形状、略錐体形状(例えば、円錐体、角錐体)、略錐台形状(例えば、円錐台、角錐台)などが挙げられる。なお、第1実施形態において、凹凸面3の凹部3Aは、略半円弧形状を有している。 As shown in FIG. 6, the shape of the recess 3 </ b> A on the uneven surface 3 is not particularly limited, and is, for example, a substantially arc shape, a substantially cone shape (for example, a cone or a pyramid), a substantially frustum shape (for example, A truncated cone and a truncated cone). In the first embodiment, the recess 3A of the uneven surface 3 has a substantially semicircular arc shape.
 このような凹凸面3は、詳しくは後述するが、例えば、公知のエンボス加工により形成される。 Such a concavo-convex surface 3 is formed by a known embossing process, for example, as will be described in detail later.
 凹凸面3の凹部3Aの密度は、例えば、50個/cm以上、好ましくは、500個/cm以上、例えば、500万個/cm以下、好ましくは、50万個/cm以下である。 The density of the concave portions 3A of the uneven surface 3 is, for example, 50 pieces / cm 2 or more, preferably 500 pieces / cm 2 or more, for example, 5 million pieces / cm 2 or less, preferably 500,000 pieces / cm 2 or less. is there.
 このような透明層1の厚みは、図2に示すように、使用目的などに応じて適宜変更できるが、例えば、20μm以上、好ましくは、50μm以上、さらに好ましくは、100μm以上、例えば、10mm以下、好ましくは、1mm以下、さらに好ましくは、500μm以下である。 As shown in FIG. 2, the thickness of the transparent layer 1 can be appropriately changed depending on the purpose of use, but is, for example, 20 μm or more, preferably 50 μm or more, more preferably 100 μm or more, for example, 10 mm or less. The thickness is preferably 1 mm or less, and more preferably 500 μm or less.
 また、透明層1の直径は、使用目的などに応じて適宜変更されるが、例えば、10cm以上、例えば、100cm以下、加工性の観点から好ましくは、50cm以下である。なお、複数の透明層1のそれぞれは、略同一サイズに形成される。 Further, the diameter of the transparent layer 1 is appropriately changed depending on the purpose of use and the like, but is, for example, 10 cm or more, for example, 100 cm or less, and preferably 50 cm or less from the viewpoint of workability. Each of the plurality of transparent layers 1 is formed in substantially the same size.
 また、透明層1(凹凸面3を含む)の光透過率は、透明層1の厚みが100μmの場合に、波長440~600nmの光に対して、例えば、80%以上、好ましくは、85%以上、さらに好ましくは、90%以上であり、例えば、98%以下である。 The light transmittance of the transparent layer 1 (including the uneven surface 3) is, for example, 80% or more, preferably 85% with respect to light having a wavelength of 440 to 600 nm when the thickness of the transparent layer 1 is 100 μm. As mentioned above, More preferably, it is 90% or more, for example, 98% or less.
 このような透明層1を複数調製するには、例えば、図1に示すように、上記した有機材料からなる加工シート4を準備し、加工シート4の少なくとも一方面に、公知のエンボス加工により凹凸面3を形成した後、その加工シート4から略円形状の透明層1を切り出す。 In order to prepare a plurality of such transparent layers 1, for example, as shown in FIG. 1, a processed sheet 4 made of the organic material described above is prepared, and at least one surface of the processed sheet 4 is uneven by known embossing. After forming the surface 3, the substantially circular transparent layer 1 is cut out from the processed sheet 4.
 詳しくは、まず、厚み方向両面が平坦面である加工シート4を準備する。そして、凹凸面3が透明層1の厚み方向両面に形成される場合、周面に凹凸形状を有するエンボスロールを1対準備して、その加工シート4を、1対のエンボスロールの間に挟まれるように供給し、1対のエンボスロールを回転させる。これにより、加工シート4の厚み方向両面に凹凸面3が形成される。 Specifically, first, a processed sheet 4 having both flat surfaces in the thickness direction is prepared. When the uneven surface 3 is formed on both surfaces in the thickness direction of the transparent layer 1, a pair of emboss rolls having an uneven shape on the peripheral surface is prepared, and the processed sheet 4 is sandwiched between the pair of emboss rolls. And a pair of embossing rolls are rotated. Thereby, the uneven surface 3 is formed on both sides in the thickness direction of the processed sheet 4.
 一方、凹凸面3が透明層1の厚み方向のいずれかの面にのみ形成される場合、周面に凹凸形状を有するエンボスロールと、周面が平滑面である弾性ロール(例えば、ゴムロール)とを準備する。そして、厚み方向両面が平坦面である加工シート4を、エンボスロールと弾性ロールとの間に挟まれるように供給し、エンボスロールおよび弾性ロールを回転させる。これにより、加工シート4の厚み方向いずれかの面にのみ凹凸面3が形成される。 On the other hand, when the uneven surface 3 is formed only on any surface in the thickness direction of the transparent layer 1, an emboss roll having an uneven shape on the peripheral surface, and an elastic roll (for example, a rubber roll) having a smooth peripheral surface Prepare. And the processed sheet 4 whose thickness direction both surfaces are flat surfaces is supplied so that it may be pinched | interposed between an embossing roll and an elastic roll, and an embossing roll and an elastic roll are rotated. Thereby, the uneven surface 3 is formed only on one surface in the thickness direction of the processed sheet 4.
 凹凸面3を有する加工シート4としては、市販品(一般に、エンボスフィルム、梨地フィルムなどと呼ばれる。)を用いることができ、例えば、PVC梨地クリア#320(オカモト社製)、エマソフト3C梨地クリア(オカモト社製)などが挙げられる。 As the processed sheet 4 having the concavo-convex surface 3, a commercially available product (generally called an embossed film, a satin film or the like) can be used. Okamoto)).
 次いで、凹凸面3を有する加工シート4から、略円形状の透明層1を切り出す。この場合、加工シート4を、複数の透明層1が切り出し可能となるように大きく形成し、その加工シート4から透明層1を複数切り出してもよく、加工シート4を複数枚調製して、各加工シート4から1枚ずつ透明層1を切り出してもよい。 Next, the substantially circular transparent layer 1 is cut out from the processed sheet 4 having the uneven surface 3. In this case, the processed sheet 4 may be formed large so that the plurality of transparent layers 1 can be cut out, and a plurality of the transparent layers 1 may be cut out from the processed sheet 4. The transparent layer 1 may be cut out from the processed sheet 4 one by one.
 このような透明層1を複数調製する方法のなかでは、製造コストの観点から好ましくは、加工シート4を、複数の透明層1の切り出しが可能となるように、所定方向に連続する長尺かつ平帯状に形成し、その加工シート4から透明層1を複数切り出す方法が挙げられる。 Among the methods for preparing a plurality of such transparent layers 1, preferably from the viewpoint of manufacturing cost, the processed sheet 4 is long and continuous in a predetermined direction so that the plurality of transparent layers 1 can be cut out. A method of forming a flat strip and cutting out a plurality of transparent layers 1 from the processed sheet 4 can be mentioned.
 また、加工シート4が長尺かつ平帯状に形成される場合、加工シート4は、好ましくは、可撓性を有しており、ロール状に巻回される。そして、複数の透明層1は、ロール状の加工シート4から引き出された部分から切り出される。 Further, when the processed sheet 4 is formed in a long and flat strip shape, the processed sheet 4 preferably has flexibility and is wound in a roll shape. And the some transparent layer 1 is cut out from the part pulled out from the roll-shaped processed sheet 4. FIG.
 加工シート4から透明層1を切り出す方法としては、例えば、裁断、打ち抜きなどの公知の加工方法が挙げられる。 Examples of a method for cutting out the transparent layer 1 from the processed sheet 4 include known processing methods such as cutting and punching.
 そして、凹凸面3を有する透明層1を、複数枚、例えば、300枚以上、好ましくは、500枚以上、さらに好ましくは、1000枚以上、例えば、60000枚以下、好ましくは、10000枚以下、加工シート4から切り出す。 The transparent layer 1 having the uneven surface 3 is processed into a plurality of, for example, 300 or more, preferably 500 or more, more preferably 1000 or more, for example, 60000 or less, preferably 10,000 or less. Cut out from sheet 4.
 次いで、図3に示すように、凹凸面3を有する複数の透明層1のそれぞれを、透明層1の厚み方向に積層して、厚み方向に延びる略円柱形状の積層体2を調製(準備)する(準備工程)。つまり、透明層1の厚み方向と、積層体2の積層方向とは同一方向である。 Next, as shown in FIG. 3, each of the plurality of transparent layers 1 having the concavo-convex surface 3 is laminated in the thickness direction of the transparent layer 1 to prepare (preparation) a substantially cylindrical laminate 2 extending in the thickness direction. (Preparation process). That is, the thickness direction of the transparent layer 1 and the lamination direction of the laminate 2 are the same direction.
 より具体的には、複数の透明層1を、積層方向に投影したときに、それらの外周端縁が互いに一致するように積層する。 More specifically, a plurality of transparent layers 1 are laminated so that their outer peripheral edges coincide with each other when projected in the lamination direction.
 このとき、複数の透明層1のうち、積層方向に互いに隣り合う透明層1の間に、接着剤層を設けてもよく、接着剤層を設けなくてもよい。 At this time, among the plurality of transparent layers 1, an adhesive layer may be provided between the transparent layers 1 adjacent to each other in the stacking direction, or an adhesive layer may not be provided.
 このような接着剤層を形成する接着剤としては、例えば、エポキシ系、シリコーン系、アクリル系、紫外線硬化型などの公知の接着剤または粘着剤が挙げられる。また、接着剤は、光を透過することが好ましい。 Examples of the adhesive that forms such an adhesive layer include known adhesives or pressure-sensitive adhesives such as epoxy, silicone, acrylic, and ultraviolet curable types. The adhesive preferably transmits light.
 接着剤層の厚みは、例えば、20nm以上、好ましくは、50nm以上、例えば、100μm以下、好ましくは、10μm以下である。 The thickness of the adhesive layer is, for example, 20 nm or more, preferably 50 nm or more, for example, 100 μm or less, preferably 10 μm or less.
 このような接着剤層は、材料コストの観点から、積層方向に互いに隣り合う透明層1の間に設けないことが好ましい。この場合、積層体2の互いに隣り合う透明層1において、積層方向一方側の透明層1の凹凸面3が、積層方向他方側の透明層1と直接接触する。つまり、凹凸面3と、凹凸面3と向かい合う透明層1とは、互いに直接接触する。 Such an adhesive layer is preferably not provided between the transparent layers 1 adjacent to each other in the stacking direction from the viewpoint of material cost. In this case, in the transparent layers 1 adjacent to each other in the laminate 2, the uneven surface 3 of the transparent layer 1 on one side in the stacking direction is in direct contact with the transparent layer 1 on the other side in the stacking direction. That is, the uneven surface 3 and the transparent layer 1 facing the uneven surface 3 are in direct contact with each other.
 以上により、積層方向に延びる円柱状の積層体2が調製される。なお、積層体2は、必要により、積層方向の両側から押圧されることにより、円柱状に保持される。 Thus, the columnar laminate 2 extending in the lamination direction is prepared. In addition, the laminated body 2 is hold | maintained in a column shape by pressing from the both sides of a lamination direction as needed.
 このような積層体2において、複数の透明層1(凹凸面3を除く部分)と、複数の凹凸面3とが、積層方向に交互となるように積層されている。 In such a laminate 2, a plurality of transparent layers 1 (parts excluding the uneven surface 3) and a plurality of uneven surfaces 3 are stacked so as to alternate in the stacking direction.
 なお、図3では、便宜上、複数の透明層1の枚数が省略されており、積層体2が6枚の透明層1からなるように記載しているが、実際には、積層体2は、例えば、300枚~60000枚、好ましくは、500枚~30000枚、さらに好ましくは、1000枚~10000枚の透明層1が積層されて形成されている。 In FIG. 3, the number of the transparent layers 1 is omitted for convenience, and the stacked body 2 is described as being composed of 6 transparent layers 1, but actually, the stacked body 2 is For example, 300 to 60000 sheets, preferably 500 to 30000 sheets, and more preferably 1000 to 10,000 transparent layers 1 are laminated.
 積層体2の高さ(積層方向長さ)は、例えば、1cm以上、好ましくは、5cm以上、さらに好ましくは、40cm以上、例えば、200cm以下、好ましくは、100cm以下である。 The height (stacking direction length) of the laminate 2 is, for example, 1 cm or more, preferably 5 cm or more, more preferably 40 cm or more, for example, 200 cm or less, preferably 100 cm or less.
 次いで、必要により、積層体2の側面5(積層方向に沿って延びる表面)に、積層方向(透明層1の厚み方向)に沿うように支持体6を貼り付ける(貼付工程)。 Next, if necessary, a support 6 is attached to the side surface 5 (surface extending along the lamination direction) of the laminate 2 so as to be along the lamination direction (thickness direction of the transparent layer 1) (sticking step).
 支持体6は、図5に示すように、シート状であって、基材7と、基材7の一方面に設けられる粘着層8とを備えている。なお、図3および図4では、便宜上、支持体6を一層として記載している。 As shown in FIG. 5, the support 6 has a sheet shape and includes a base material 7 and an adhesive layer 8 provided on one surface of the base material 7. In FIGS. 3 and 4, the support 6 is illustrated as a single layer for convenience.
 基材7としては、例えば、PETフィルムなどの基材、フッ素系ポリマー(例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、クロロフルオロエチレン-フッ化ビニリデン共重合体など)からなる低接着性基材、無極性ポリマー(例えば、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂など)からなる低接着性基材などが挙げられる。このような基材7は、採光フィルム20(後述)の使用態様の自由度の観点から、光を透過するように構成されていることが好ましい。 Examples of the substrate 7 include a substrate such as a PET film, a fluorine-based polymer (for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer). And low adhesive substrates made of nonpolar polymers (for example, olefinic resins such as polyethylene and polypropylene). It is preferable that such a base material 7 is comprised so that light may permeate | transmit from a viewpoint of the freedom degree of the usage condition of the lighting film 20 (after-mentioned).
 このような基材7のなかでは、好ましくは、無極性ポリマーからなる低接着性基材が挙げられ、さらに好ましくは、ポリプロピレンからなる低接着性基材が挙げられる。 Among such base materials 7, a low adhesive base material made of a nonpolar polymer is preferable, and a low adhesive base material made of polypropylene is more preferable.
 また、このような基材7の表面には、製造方法および使用態様により、適宜、剥離処理剤による剥離処理層が設けられる。剥離処理層による基材7の剥離力は、適宜調整される。 Further, a release treatment layer with a release treatment agent is appropriately provided on the surface of the base material 7 depending on the production method and the usage mode. The peeling force of the base material 7 by a peeling process layer is adjusted suitably.
 このような基材7の厚みは、使用目的などに応じて適宜変更できるが、例えば、10μm以上、好ましくは、30μm以上、例えば、100μm以下、好ましくは、50μm以下である。 The thickness of the base material 7 can be appropriately changed according to the purpose of use, but is, for example, 10 μm or more, preferably 30 μm or more, for example, 100 μm or less, preferably 50 μm or less.
 また、基材7の光透過率は、基材7の厚みが50μmの場合に、波長440~600nmの光に対して、例えば、85%以上、好ましくは、90%以上、さらに好ましくは、92%以上であり、例えば、98%以下である。 The light transmittance of the substrate 7 is, for example, 85% or more, preferably 90% or more, and more preferably 92% with respect to light having a wavelength of 440 to 600 nm when the thickness of the substrate 7 is 50 μm. % Or more, for example, 98% or less.
 粘着層8を形成する粘着剤としては、例えば、エポキシ系粘着剤、シリコーン系粘着剤、アクリル系粘着剤、紫外線硬化型粘着剤などの公知の粘着剤が挙げられる。また、粘着剤は、光を透過することが好ましい。また、粘着層8は、公知の両面粘着テープから構成することもできる。 Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 8 include known pressure-sensitive adhesives such as an epoxy-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, and an ultraviolet curable pressure-sensitive adhesive. The pressure-sensitive adhesive preferably transmits light. Moreover, the adhesion layer 8 can also be comprised from a well-known double-sided adhesive tape.
 このような粘着層8は、基材7の一方面の全面に薄層状に形成されており、その厚みは、支持体6が積層体2に貼り付けられた状態において、例えば、1μm以上、好ましくは、5μm以上、例えば、100μm以下、好ましくは、40μm以下である。 Such an adhesive layer 8 is formed in a thin layer on the entire surface of one surface of the substrate 7, and the thickness thereof is, for example, 1 μm or more, preferably in a state where the support 6 is attached to the laminate 2. Is 5 μm or more, for example, 100 μm or less, preferably 40 μm or less.
 なお、基材7自体に粘着性がある場合は、支持体6において粘着層8は不要である。 If the substrate 7 itself is sticky, the support layer 6 does not require the adhesive layer 8.
 このような支持体6を、図3に示すように、積層体2の側面5に積層方向に沿うように貼り付けるには、必要により、積層体2に対して積層方向の両側から加圧して、積層体2を保持する。 As shown in FIG. 3, in order to affix such a support body 6 to the side surface 5 of the laminated body 2 along the laminating direction, the laminated body 2 is pressed from both sides in the laminating direction as necessary. The laminated body 2 is held.
 加圧条件としては、積層体2に対する積層方向の一方側(他方側)からの圧力が、例えば、0.01MPa以上、好ましくは、0.1MPa以上、例えば、10MPa以下、好ましくは、5MPa以下である。 As the pressurizing condition, the pressure from one side (the other side) in the stacking direction with respect to the stacked body 2 is, for example, 0.01 MPa or more, preferably 0.1 MPa or more, for example, 10 MPa or less, preferably 5 MPa or less. is there.
 そして、支持体6の粘着層8が積層体2の側面5に粘着するように、例えば、タッチロールなどを使用して、支持体6を積層体2に連続的に貼り付ける。 Then, the support 6 is continuously attached to the laminate 2 using, for example, a touch roll so that the adhesive layer 8 of the support 6 adheres to the side surface 5 of the laminate 2.
 以上により、支持体6が、積層体2の側面5に積層方向に沿って貼り付けられる。 By the above, the support body 6 is affixed on the side surface 5 of the laminated body 2 along the lamination direction.
 次いで、略円柱形状の積層体2を軸線を中心として回転させて、積層体2の側面層9を連続的に切断する(切断工程)。 Next, the substantially cylindrical laminated body 2 is rotated about the axis to continuously cut the side layer 9 of the laminated body 2 (cutting step).
 より具体的には、切削刃11を積層方向に沿うように配置するとともに、積層体2を、その軸線を中心として回転させ、積層体2から側面層9をかつら剥きのように切り出す。 More specifically, the cutting blade 11 is disposed along the stacking direction, and the stacked body 2 is rotated around its axis, and the side layer 9 is cut out from the stacked body 2 like a wig.
 以上によって、光学フィルムの一例としての採光フィルム20が積層体2から切り出される。 As described above, the daylighting film 20 as an example of the optical film is cut out from the laminate 2.
 なお、本発明の光学フィルムの製造方法が貼付工程を含んでいる場合、切断工程において、支持体6が貼り付けられた積層体2の側面層9が連続的に切断される。 In addition, when the manufacturing method of the optical film of this invention includes the sticking process, the side layer 9 of the laminated body 2 to which the support body 6 was affixed is cut | disconnected continuously in a cutting process.
 そのため、採光フィルム20は、図5に示すように、フィルム本体21と、支持体6とを備えている。 Therefore, the daylighting film 20 includes a film main body 21 and a support 6 as shown in FIG.
 フィルム本体21は、積層体2から切り出された側面層9であって、薄膜状に形成されている。フィルム本体21は、凹凸面3を有する透明層1を、複数備えている。フィルム本体21において、複数の透明層1は、積層方向(フィルム本体21としては厚み方向と直交する面方向)に連続するように配置されており、複数の凹凸面3は、積層方向(フィルム本体21の面方向)に互いに等間隔(透明層1の厚み分)を隔てて並列配置されている。複数の凹凸面3のそれぞれは、積層方向(フィルム本体21の面方向)に対して直交するように延びている。 The film body 21 is a side layer 9 cut out from the laminate 2, and is formed in a thin film shape. The film main body 21 includes a plurality of transparent layers 1 having an uneven surface 3. In the film main body 21, the plurality of transparent layers 1 are arranged so as to be continuous in the laminating direction (the surface direction orthogonal to the thickness direction as the film main body 21), and the plurality of uneven surfaces 3 are arranged in the laminating direction (film main body). 21 in the direction of the surface 21) and are arranged in parallel at equal intervals (for the thickness of the transparent layer 1). Each of the plurality of uneven surfaces 3 extends so as to be orthogonal to the stacking direction (the surface direction of the film body 21).
 また、フィルム本体21において、積層方向に互いに隣り合う透明層1の境界22には、僅かに空気が介在しており、空気層23を形成している。空気層23は、具体的には、積層方向一方側の透明層1の凹凸面3と、積層方向他方側の透明層1の一方面との間の領域であるので、積層方向一方側の透明層1と空気層23との界面は、凹凸面3に対応した形状を有している。 Further, in the film body 21, air is slightly present at the boundary 22 between the transparent layers 1 adjacent to each other in the stacking direction to form an air layer 23. Specifically, the air layer 23 is a region between the uneven surface 3 of the transparent layer 1 on one side in the stacking direction and the one surface of the transparent layer 1 on the other side in the stacking direction. The interface between the layer 1 and the air layer 23 has a shape corresponding to the uneven surface 3.
 また、フィルム本体21の厚みは、利用目的により適宜設定できるが、例えば、20μm以上、好ましくは、50μm以上、さらに好ましくは、100μm以上、例えば、10μm以下、好ましくは、2×10μm以下、さらに好ましくは、500μm以下、とりわけ好ましくは、300μm以下である。なお、フィルム本体21の厚みは、積層体2を切断する際の、積層体2に対する切削刃11の配置および角度などにより適宜調整できる。 The thickness of the film body 21 can be appropriately set depending on the purpose of use, but is, for example, 20 μm or more, preferably 50 μm or more, more preferably 100 μm or more, for example, 10 4 μm or less, preferably 2 × 10 3 μm. Hereinafter, it is more preferably 500 μm or less, particularly preferably 300 μm or less. In addition, the thickness of the film main body 21 can be appropriately adjusted by the arrangement and angle of the cutting blade 11 with respect to the laminate 2 when the laminate 2 is cut.
 また、本発明の光学フィルムの製造方法が、貼付工程を含んでいる場合、上記の貼付工程および切断工程は、図4に示すように、切削装置13により連続的に実施することが好ましい。 Moreover, when the manufacturing method of the optical film of this invention includes the sticking process, it is preferable to implement said sticking process and a cutting process continuously with the cutting device 13, as shown in FIG.
 切削装置13は、回転軸14と、1対の保持部材15と、切削刃11とを備えている。 The cutting device 13 includes a rotating shaft 14, a pair of holding members 15, and a cutting blade 11.
 回転軸14は、略円柱形状であり、その軸線を中心として回転可能に構成されている。回転軸14には、長尺かつ平帯状の支持体6が巻回される。詳しくは、長尺かつ平帯状の支持体6は、粘着層8が基材7に対して回転軸14の径方向内側に位置するように、回転軸14に渦巻き状に巻回される。これによって、支持体6は、回転軸14を中心とする支持体ロール16として構成される。 The rotary shaft 14 has a substantially cylindrical shape and is configured to be rotatable around the axis. A long and flat belt-like support 6 is wound around the rotating shaft 14. Specifically, the long and flat belt-like support 6 is wound around the rotary shaft 14 in a spiral manner so that the adhesive layer 8 is positioned on the inner side in the radial direction of the rotary shaft 14 with respect to the base material 7. Thus, the support 6 is configured as a support roll 16 centered on the rotation shaft 14.
 支持体ロール16では、回転軸14の径方向において、支持体6が隣接するように配置され、粘着層8と基材7とが順次繰り返して配置されている。 In the support roll 16, the support 6 is disposed adjacent to the radial direction of the rotating shaft 14, and the adhesive layer 8 and the base material 7 are sequentially and repeatedly disposed.
 なお、支持体6が支持体ロール16として構成される場合、基材7における粘着層8と反対側の表面には剥離処理層が設けられる。そのため、回転軸14の径方向において、互いに隣り合う支持体6の間、詳しくは、径方向外側に配置される支持体6の粘着層8と、径方向内側に配置される支持体6の基材7との間には、剥離処理層が介在される。 In addition, when the support body 6 is comprised as the support body roll 16, the peeling process layer is provided in the surface on the opposite side to the adhesion layer 8 in the base material 7. FIG. Therefore, in the radial direction of the rotating shaft 14, between the adjacent support bodies 6, specifically, the adhesive layer 8 of the support body 6 disposed on the radially outer side and the base of the support body 6 disposed on the radially inner side. A release treatment layer is interposed between the material 7.
 1対の保持部材15は、支持体ロール16に対して、支持体ロール16の径方向に間隔を空けて配置されている。1対の保持部材15のそれぞれは、略円板形状であり、その軸線を中心として回転可能に構成されている。 The pair of holding members 15 are arranged with respect to the support roll 16 with an interval in the radial direction of the support roll 16. Each of the pair of holding members 15 has a substantially disk shape, and is configured to be rotatable about its axis.
 また、1対の保持部材15は、保持部材15の軸線方向に互いに間隔を空けて配置されている。そして、1対の保持部材15は、略円柱形状の積層体2を積層方向の両側から上記の圧力で挟むことにより、積層体2を保持している。なお、各保持部材15は、積層体2を保持した状態において、積層体2と軸線が一致するように配置される。 Further, the pair of holding members 15 are arranged at intervals in the axial direction of the holding member 15. And a pair of holding member 15 is holding the laminated body 2 by pinching | interposing the substantially cylindrical laminated body 2 with said pressure from the both sides of the lamination direction. In addition, each holding member 15 is arrange | positioned so that the laminated body 2 and an axis line may correspond in the state which hold | maintained the laminated body 2. FIG.
 切削刃11は、1対の保持部材15に保持される積層体2の側面5に対して、積層方向に沿うように配置されており、切削刃11の先端が、積層体2の側面5に接触している。 The cutting blade 11 is disposed along the stacking direction with respect to the side surface 5 of the stacked body 2 held by the pair of holding members 15, and the tip of the cutting blade 11 is placed on the side surface 5 of the stacked body 2. In contact.
 また、切削刃11は、切断工程の進行により積層体2の径が小さくなるに伴って、切削刃11の先端が積層体2の側面5に接触した状態を維持したまま、積層体2の軸線に近づくように構成されている。 In addition, the cutting blade 11 maintains the state in which the tip of the cutting blade 11 is in contact with the side surface 5 of the laminated body 2 as the diameter of the laminated body 2 decreases as the cutting process progresses. It is configured to approach.
 このような切削装置13により、貼付工程および切断工程を連続的に実施するには、まず、支持体ロール16から引き出した支持体6を、1対の保持部材15に保持される積層体2の側面5に貼り付ける(貼付工程)。 In order to continuously perform the pasting process and the cutting process with such a cutting device 13, first, the support body 6 pulled out from the support body roll 16 is held by the pair of holding members 15. Affixing to the side surface 5 (applying step).
 より詳しくは、引き出された支持体6の粘着層8が積層体2の側面5に粘着するように、支持体6を積層体2の接線方向に向かって引き回し、積層体2における中心角が、例えば、90°~270°の範囲、好ましくは、120°~240°の範囲の積層体2の側面5に貼り付ける。 More specifically, the support 6 is drawn toward the tangential direction of the laminate 2 such that the adhesive layer 8 of the drawn support 6 adheres to the side surface 5 of the laminate 2, and the central angle in the laminate 2 is For example, it is attached to the side surface 5 of the laminate 2 in the range of 90 ° to 270 °, preferably in the range of 120 ° to 240 °.
 次いで、1対の保持部材15が、切削装置13が備えるモータなどの駆動源からの駆動力により、図4における紙面手前側から見て反時計回り方向に回転駆動する。 Next, the pair of holding members 15 are rotationally driven in the counterclockwise direction when viewed from the front side in FIG. 4 by a driving force from a driving source such as a motor provided in the cutting device 13.
 そうすると、1対の保持部材15に保持される積層体2が、軸線を中心として回転するとともに、支持体ロール16が回転軸14の軸線を中心として従動する。 Then, the laminate 2 held by the pair of holding members 15 rotates about the axis, and the support roll 16 is driven about the axis of the rotating shaft 14.
 これによって、支持体6が貼り付けられた積層体2の側面層9が、切削刃11によって、かつら剥きのように連続的に切り出される(切断工程)。 Thereby, the side layer 9 of the laminate 2 to which the support 6 is attached is continuously cut out by the cutting blade 11 like wig peeling (cutting step).
 以上によって、積層体2および支持体ロール16から連続的に、長尺かつ平帯状の採光フィルム20が調製される。 Thus, a long and flat strip-shaped daylighting film 20 is prepared continuously from the laminate 2 and the support roll 16.
 また、図5に示すように、必要により、採光フィルム20における、フィルム本体21の支持体6と反対側の面に、貼着層24を設ける。この場合、採光フィルム20は、フィルム本体21および支持体6に加え、貼着層24を備えている。 Further, as shown in FIG. 5, if necessary, an adhesive layer 24 is provided on the surface of the daylighting film 20 on the side opposite to the support 6 of the film main body 21. In this case, the daylighting film 20 includes an adhesive layer 24 in addition to the film body 21 and the support 6.
 貼着層24は、接着剤または粘着剤を、フィルム本体21の支持体6と反対側の面に塗布することにより形成される。 The adhesive layer 24 is formed by applying an adhesive or a pressure-sensitive adhesive to the surface of the film body 21 opposite to the support 6.
 接着剤または粘着剤としては、例えば、エポキシ系、シリコーン系、アクリル系、紫外線硬化型などの公知の接着剤または粘着剤が挙げられる。また、接着剤または粘着剤は、光を透過することが好ましい。 Examples of the adhesive or pressure-sensitive adhesive include known adhesives or pressure-sensitive adhesives such as epoxy-based, silicone-based, acrylic, and ultraviolet curable types. The adhesive or pressure-sensitive adhesive preferably transmits light.
 このような採光フィルム20の製造方法では、図3に示すように、凹凸面3を有する透明層1を複数積層して、略円柱状の積層体2を形成した後、積層体2を軸線を中心として回転させて、積層体2の側面層9を連続的に切断する。これにより、凹凸面3を有する複数の透明層1が、積層方向(透明層1の厚み方向)に連続する採光フィルム20が製造される。 In such a daylighting film 20 manufacturing method, as shown in FIG. 3, a plurality of transparent layers 1 having uneven surfaces 3 are laminated to form a substantially cylindrical laminate 2. The side layer 9 of the laminated body 2 is continuously cut by rotating around the center. Thereby, the lighting film 20 in which the some transparent layer 1 which has the uneven surface 3 continues in the lamination direction (thickness direction of the transparent layer 1) is manufactured.
 つまり、凹凸面3を有する透明層1を積層して積層体2を形成した後、積層体2の側面層9を切断するという簡易な方法により、凹凸面3を有する透明層1が積層方向(透明層1の厚み方向)に連続する採光フィルム20を、連続的に製造することができる。その結果、採光フィルム20の生産性の向上を図ることができる。 That is, after forming the laminated body 2 by laminating the transparent layer 1 having the uneven surface 3, the transparent layer 1 having the uneven surface 3 is laminated in the lamination direction ( The daylighting film 20 continuous in the thickness direction of the transparent layer 1 can be continuously produced. As a result, the productivity of the daylighting film 20 can be improved.
 よって、このような採光フィルム20の製造方法は、採光フィルム20を簡易かつ効率的に製造でき、採光フィルム20の工業的な製造方法として、好適に用いることができる。 Therefore, the manufacturing method of such a lighting film 20 can manufacture the lighting film 20 simply and efficiently, and can be used suitably as an industrial manufacturing method of the lighting film 20.
 また、凹凸面3は、図6に示すように、光散乱可能である。そのため、製造工程の簡略化を図ることができる。 Further, the uneven surface 3 can scatter light as shown in FIG. Therefore, the manufacturing process can be simplified.
 凹凸面3は、透明層1の少なくとも一方面(つまり、積層方向一方面および/または積層方向他方面)に配置されている。そのため、簡易な構成でありながら、光を確実に散乱できる採光フィルム20を製造することができる。また、光を散乱させるための層を別途準備する必要がないので、製造コスト(材料コスト)の低減を図ることができる。 The uneven surface 3 is disposed on at least one surface of the transparent layer 1 (that is, one surface in the stacking direction and / or the other surface in the stacking direction). Therefore, it is possible to manufacture the daylighting film 20 that can scatter light reliably with a simple configuration. In addition, since it is not necessary to separately prepare a layer for scattering light, manufacturing cost (material cost) can be reduced.
 図3に示すように、積層体2において、凹凸面3と、凹凸面3と向かい合う透明層1とは、接着剤層を介することなく、互いに直接接触している。つまり、接着剤を使用することなく、積層体2が形成されている。そのため、積層体2の形成に接着剤が使用される場合と比較して、製造コスト(材料コスト)の低減を図ることができる。 As shown in FIG. 3, in the laminate 2, the uneven surface 3 and the transparent layer 1 facing the uneven surface 3 are in direct contact with each other without an adhesive layer interposed therebetween. That is, the laminate 2 is formed without using an adhesive. Therefore, it is possible to reduce the manufacturing cost (material cost) compared to the case where an adhesive is used for forming the laminate 2.
 また、積層体2に支持体6が貼り付けられた後、積層体2の側面層9が切断されるので、接着剤層が設けられていなくとも、厚み方向に互いに隣接する透明層1が互いに剥離してバラバラになることを抑制できる。 Moreover, since the side surface layer 9 of the laminated body 2 is cut after the support 6 is bonded to the laminated body 2, the transparent layers 1 adjacent to each other in the thickness direction can be connected to each other even if no adhesive layer is provided. It can suppress peeling and falling apart.
 そのため、製造コスト(材料コスト)の低減を図ることができながら、切断工程において、複数の透明層1がバラバラになることを抑制できる。 Therefore, it is possible to prevent the plurality of transparent layers 1 from being separated in the cutting process while reducing the manufacturing cost (material cost).
 また、第1実施形態では、図4に示すように、支持体ロール16から引き出された支持体6が、積層体2の側面5に貼り付けられた後、支持体ロール16を軸線を中心として回転させるとともに、積層体2を軸線を中心として回転させて、支持体6が貼り付けられた積層体2の側面層9を連続的に切断する。これによって、支持体6を有する採光フィルム20を連続的に製造することができる。その結果、支持体6を有する採光フィルム20の生産性のさらなる向上を図ることができる。 Moreover, in 1st Embodiment, as shown in FIG. 4, after the support body 6 pulled out from the support body roll 16 is affixed on the side surface 5 of the laminated body 2, the support body roll 16 is made centering on an axis line. While rotating, the laminated body 2 is rotated centering | focusing on an axis line, and the side surface layer 9 of the laminated body 2 to which the support body 6 was affixed is cut | disconnected continuously. Thereby, the daylighting film 20 having the support 6 can be continuously manufactured. As a result, the productivity of the daylighting film 20 having the support 6 can be further improved.
 このように製造された採光フィルム20は、図6に示すように、家屋25などの建築物において、例えば、ガラス窓26の内側面に取り付けられる。また、複層ガラスや合わせガラスの内層として含まれるように取り付けてもよい。 The lighting film 20 manufactured in this way is attached to, for example, the inner surface of the glass window 26 in a building such as a house 25 as shown in FIG. Moreover, you may attach so that it may be contained as an inner layer of a multilayer glass or a laminated glass.
 採光フィルム20をガラス窓26などに取り付けるには、まず、採光フィルム20を、取り付け箇所に対応する形状およびサイズにカットする。採光フィルム20をカットする方法としては、例えば、裁断、打ち抜きなどの公知の加工方法が挙げられる。 In order to attach the daylighting film 20 to the glass window 26 or the like, first, the daylighting film 20 is cut into a shape and size corresponding to the attachment location. Examples of the method for cutting the daylighting film 20 include known processing methods such as cutting and punching.
 次いで、採光フィルム20を、例えば、積層方向(フィルム本体21の面方向)が鉛直方向に沿うように、ガラス窓26の内側面に貼り付ける。採光フィルム20が貼着層24を備える場合、貼着層24をガラス窓26の内側面に貼着させる。これにより、採光フィルム20がガラス窓26の内側面に取り付けられる。この場合、支持体6の基材7は、剥がされることなく、フィルム本体21に保持されている。そのため、基材7における粘着層8側の表面には、剥離処理層を設けなくてもよい。 Next, the daylighting film 20 is attached to the inner side surface of the glass window 26 so that, for example, the stacking direction (the surface direction of the film body 21) is along the vertical direction. When the daylighting film 20 includes the adhesive layer 24, the adhesive layer 24 is adhered to the inner surface of the glass window 26. Thereby, the daylighting film 20 is attached to the inner surface of the glass window 26. In this case, the substrate 7 of the support 6 is held on the film body 21 without being peeled off. Therefore, it is not necessary to provide a release treatment layer on the surface of the base material 7 on the adhesive layer 8 side.
 このように採光フィルム20がガラス窓26に取り付けられると、ガラス窓26を介して、屋外から入射する光L(例えば、太陽光)のうち、一部の光L1は、透明層1を透過して、家屋25の床部27に向かって進行する。 When the daylighting film 20 is thus attached to the glass window 26, a part of the light L <b> 1 out of the light L (for example, sunlight) incident from the outside through the glass window 26 passes through the transparent layer 1. And proceed toward the floor 27 of the house 25.
 一方、屋外から入射する光Lのうち、他の部分の光L2は、透明層1に入射した後、鉛直方向に互いに隣接する透明層1の境界22(より具体的には空気層23)に反射されるとともに散乱されて、家屋25内に導入される。 On the other hand, among the light L incident from the outside, the other portion of the light L2 enters the transparent layer 1 and then enters the boundary 22 (more specifically, the air layer 23) of the transparent layers 1 adjacent to each other in the vertical direction. It is reflected and scattered and introduced into the house 25.
 そのため、採光フィルム20によれば、効率的に採光することができ、家屋25内全体の明るさを効率よく向上させることができる。 Therefore, according to the daylighting film 20, the daylight can be efficiently taken and the brightness of the entire house 25 can be improved efficiently.
 また、第1実施形態において、凹凸面3は、図2に示すように、透明層1の厚み方向端面の全体にわたって形成されているが、これに限定されず、透明層1の厚み方向端面の一部分のみに形成されていてもよい。この場合、凹凸面3の面積は、透明層1の厚み方向端面に対して、例えば、10%以上、好ましくは、50%以上、例えば、100%以下、好ましくは、80%以下である。 Moreover, in 1st Embodiment, although the uneven surface 3 is formed over the whole thickness direction end surface of the transparent layer 1, as shown in FIG. 2, it is not limited to this, The thickness direction end surface of the transparent layer 1 is You may form in only one part. In this case, the area of the concavo-convex surface 3 is, for example, 10% or more, preferably 50% or more, for example, 100% or less, preferably 80% or less, with respect to the end surface in the thickness direction of the transparent layer 1.
 また、第1実施形態では、図3に示すように、積層体2の側面5に支持体6が貼り付けられた後(貼付工程)、積層体2の側面層9が切り出されているが(切断工程)、これに限定されず、積層体2の側面5に支持体6を貼り付けることなく、積層体2の側面層9を切り出してもよい。つまり、本発明の光学フィルムの製造方法は、貼付工程を含まなくてもよい。 Moreover, in 1st Embodiment, as shown in FIG. 3, after the support body 6 is affixed on the side surface 5 of the laminated body 2 (attachment process), the side surface layer 9 of the laminated body 2 is cut out ( Cutting step), without being limited thereto, the side layer 9 of the laminate 2 may be cut out without attaching the support 6 to the side 5 of the laminate 2. That is, the manufacturing method of the optical film of this invention does not need to include a sticking process.
 この場合、準備工程において、複数の透明層1のうち、積層方向に互いに隣り合う透明層1の間に、接着剤層を設ける。これによって、複数の透明層1と、複数の接着剤層とが、積層方向に交互に配置される積層体2が調製される(準備工程)。そして、その積層体2の側面層9を、上記のように切り出すこと(切断工程)により、フィルム本体21のみからなる採光フィルム20が調製される。 In this case, in the preparation step, an adhesive layer is provided between the transparent layers 1 adjacent to each other in the stacking direction among the plurality of transparent layers 1. Thereby, the laminated body 2 in which a plurality of transparent layers 1 and a plurality of adhesive layers are alternately arranged in the lamination direction is prepared (preparation step). And the daylighting film 20 which consists only of the film main body 21 is prepared by cutting out the side surface layer 9 of the laminated body 2 as mentioned above (cutting process).
 また、第1実施形態において、図5に示すように、フィルム本体21の支持体6と反対側の面に貼着層24を設けているが、これに限定されず、貼着層24は、採光フィルム20において設けなくてもよい。 Moreover, in 1st Embodiment, as shown in FIG. 5, although the adhesive layer 24 is provided in the surface on the opposite side to the support body 6 of the film main body 21, it is not limited to this, The adhesive layer 24 is as follows. It does not have to be provided in the daylighting film 20.
 この場合、採光フィルム20をガラス窓26の内側面に貼り付けるときに、支持体6の基材7を剥がし、露出した粘着層8をガラス窓26の内側面に粘着させる。つまり、基材7は、採光フィルム20から取り除かれるので、光を透過してもよく、光を透過しなくともよい。また、基材7における粘着層8側の表面には、剥離処理層が設けられる。 In this case, when the daylighting film 20 is attached to the inner surface of the glass window 26, the base material 7 of the support 6 is peeled off, and the exposed adhesive layer 8 is adhered to the inner surface of the glass window 26. That is, since the base material 7 is removed from the lighting film 20, it may transmit light or may not transmit light. Further, a release treatment layer is provided on the surface of the base material 7 on the adhesive layer 8 side.
 このような変形例においても、上記した第1実施形態と同様の作用効果を奏することができる。
2.第2実施形態
 次に、図7~図10を参照して、本発明の光学フィルムの製造方法の第2実施形態について説明する。なお、第2実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
Also in such a modification, the same operational effects as those of the first embodiment described above can be achieved.
2. Second Embodiment Next, a second embodiment of the method for producing an optical film of the present invention will be described with reference to FIGS. In the second embodiment, the same reference numerals are given to the same members as those in the first embodiment, and the description thereof is omitted.
 第1実施形態では、図3に示すように、積層体2は、凹凸面3を有する透明層1が複数積層されることにより形成されたが、第2実施形態では、積層体35は、図7および図8に示すように、複数の透明層1と、複数の光散乱層31とが、積層されることにより形成される。 In the first embodiment, as shown in FIG. 3, the laminate 2 is formed by laminating a plurality of transparent layers 1 having an uneven surface 3, but in the second embodiment, the laminate 35 is a figure. 7 and FIG. 8, a plurality of transparent layers 1 and a plurality of light scattering layers 31 are formed by being laminated.
 そのため、第2実施形態では、まず、透明層1および光散乱層31のそれぞれを、複数調製する。 Therefore, in the second embodiment, first, a plurality of transparent layers 1 and light scattering layers 31 are prepared.
 第2実施形態において、複数の透明層1のそれぞれは、凹凸面3を有していない。つまり、透明層1の厚み方向両端面のそれぞれは、平坦面である。また、透明層1は、好ましくは、エチレン酢酸ビニル共重合体(EVA)から形成されている。 In the second embodiment, each of the plurality of transparent layers 1 does not have the uneven surface 3. That is, each of both end surfaces in the thickness direction of the transparent layer 1 is a flat surface. The transparent layer 1 is preferably formed from an ethylene vinyl acetate copolymer (EVA).
 このような透明層1の光透過率は、透明層1の厚みが100μmの場合に、波長440~600nmの光に対して、例えば、80%以上、好ましくは、90%以上、さらに好ましくは、92%以上であり、例えば、98%以下である。 The light transmittance of such a transparent layer 1 is, for example, 80% or more, preferably 90% or more, more preferably, with respect to light having a wavelength of 440 to 600 nm when the thickness of the transparent layer 1 is 100 μm. 92% or more, for example, 98% or less.
 このような透明層1を複数調製するには、例えば、図1に示すように、上記した有機材料からなり、厚み方向両面が平坦面である第1加工シート33を準備し、その第1加工シート33から略円形状の透明層1を切り出す。 In order to prepare a plurality of such transparent layers 1, for example, as shown in FIG. 1, a first processed sheet 33 made of the above-described organic material and having flat surfaces in the thickness direction is prepared. The substantially circular transparent layer 1 is cut out from the sheet 33.
 このような第1加工シート33としては、市販品を用いることができ、例えば、EVASAFE(ブリジストン社製)、Ultara Peal(サンビック社製)などが挙げられる。 As the first processed sheet 33, a commercially available product can be used, and examples thereof include EVASAFE (manufactured by Bridgestone), Ultra Pale (manufactured by Sanvik), and the like.
 また、第1加工シート33から透明層1を切り出す方法としては、例えば、加工シート4から透明層1を切り出す方法と同様の方法が挙げられ、好ましくは、長尺かつ平帯状の第1加工シート33をロール状に巻回して、ロール状の第1加工シート33から引き出さした部分から、透明層1を複数切り出す方法が挙げられる。 Moreover, as a method of cutting out the transparent layer 1 from the 1st processed sheet 33, the method similar to the method of cutting out the transparent layer 1 from the processed sheet 4 is mentioned, for example, Preferably, it is a long and flat strip-shaped 1st processed sheet. There is a method in which a plurality of transparent layers 1 are cut out from a portion wound around the roll 33 and drawn out from the roll-shaped first processed sheet 33.
 そして、透明層1を、複数枚、例えば、100枚以上、好ましくは、300枚以上、さらに好ましくは、400枚以上、例えば、30000枚以下、好ましくは、5000枚以下、さらに好ましくは、600枚以下、第1加工シート33から切り出す。 Then, a plurality of transparent layers 1, for example, 100 sheets or more, preferably 300 sheets or more, more preferably 400 sheets or more, for example, 30000 sheets or less, preferably 5000 sheets or less, more preferably 600 sheets. Thereafter, the first processed sheet 33 is cut out.
 複数の光散乱層31のそれぞれは、図7に示すように、光散乱可能な層である。光散乱層31としては、例えば、粒子含有層や、多孔質層が挙げられる。 Each of the plurality of light scattering layers 31 is a layer capable of light scattering as shown in FIG. Examples of the light scattering layer 31 include a particle-containing layer and a porous layer.
 粒子含有層は、例えば、微細粒子が分散されたマトリックス樹脂から形成されており、微細粒子とマトリックス樹脂との屈折率差や、微細粒子の状態によって、光の散乱性が制御される。 The particle-containing layer is formed of, for example, a matrix resin in which fine particles are dispersed, and the light scattering property is controlled by the refractive index difference between the fine particles and the matrix resin and the state of the fine particles.
 マトリックス樹脂としては、例えば、上記した透明の有機材料が挙げられ、好ましくは、アクリル樹脂、ウレタン樹脂、ポリオレフィン、ポリエステルなどが挙げられる。このようなマトリックス樹脂は、単独で使用してもよく、2種以上併用することもできる。 Examples of the matrix resin include the transparent organic materials described above, and preferably include an acrylic resin, a urethane resin, a polyolefin, and a polyester. Such matrix resins may be used alone or in combination of two or more.
 微細粒子としては、例えば、シリカ、硫酸バリウム、ポリスチレン、ポリオレフィンなどが挙げられ、好ましくは、シリカが挙げられる。このような微細粒子は、単独で使用してもよく、2種以上併用することもできる。 Examples of the fine particles include silica, barium sulfate, polystyrene, polyolefin, and the like, and preferably silica. Such fine particles may be used alone or in combination of two or more.
 多孔質層は、例えば、内部に多数の気孔を有するマトリックス樹脂から形成されている。 The porous layer is formed from, for example, a matrix resin having a large number of pores inside.
 マトリックス樹脂としては、例えば、上記した透明の有機材料が挙げられ、好ましくは、ポリエステル、アクリル樹脂、ポリエチレン、ポリプロピレン、さらに好ましくは、ポリエチレンテレフタレート(PET)が挙げられる。このようなマトリックス樹脂は、単独で使用してもよく、2種以上併用することもできる。 Examples of the matrix resin include the transparent organic materials described above, preferably polyester, acrylic resin, polyethylene, polypropylene, and more preferably polyethylene terephthalate (PET). Such matrix resins may be used alone or in combination of two or more.
 このようなマトリックス樹脂を多孔質層に調製する方法としては、例えば、発泡法、延伸法、相分離法、融着法などの公知の多孔化方法が挙げられ、好ましくは、相分離法が挙げられる。 Examples of a method for preparing such a matrix resin in a porous layer include known porosification methods such as a foaming method, a stretching method, a phase separation method, and a fusion method, and preferably a phase separation method. It is done.
 多孔質層の空隙率(多孔質層における空隙の割合)は、例えば、10体積%以上、好ましくは、30体積%以上、例えば、80体積%以下、好ましくは、70体積%以下である。なお、空隙率は、(多孔質層のかさ体積-マトリックス樹脂体積)/多孔質層のかさ体積×100により算出することができる。 The porosity of the porous layer (ratio of voids in the porous layer) is, for example, 10% by volume or more, preferably 30% by volume or more, for example, 80% by volume or less, preferably 70% by volume or less. The porosity can be calculated from (bulk volume of porous layer−matrix resin volume) / bulk volume of porous layer × 100.
 このような光散乱層31のなかでは、好ましくは、多孔質層が挙げられる。なお、第2実施形態では、光散乱層31は、多孔質層である。 Among such light scattering layers 31, a porous layer is preferable. In the second embodiment, the light scattering layer 31 is a porous layer.
 光散乱層31の厚みは、例えば、10μm以上、好ましくは、20μm以上、例えば、200μm以下、好ましくは、100μm以下である。 The thickness of the light scattering layer 31 is, for example, 10 μm or more, preferably 20 μm or more, for example, 200 μm or less, preferably 100 μm or less.
 また、透明層1の厚みに対する、光散乱層31の厚みの比率(光散乱層31の厚み/透明層1の厚み)は、例えば、2/1以上、好ましくは、1/1以上、例えば、1/5以下、好ましくは、1/10以下である。 The ratio of the thickness of the light scattering layer 31 to the thickness of the transparent layer 1 (thickness of the light scattering layer 31 / thickness of the transparent layer 1) is, for example, 2/1 or more, preferably 1/1 or more, for example, 1/5 or less, preferably 1/10 or less.
 このような光散乱層31を複数調製するには、例えば、図1に示すように、上記したマトリックス樹脂からなり、厚み方向両面が平坦面である第2加工シート34を準備し、その第2加工シート34から略円形状の光散乱層31を切り出す。 In order to prepare a plurality of such light scattering layers 31, for example, as shown in FIG. 1, a second processed sheet 34 made of the matrix resin described above and having both flat surfaces in the thickness direction is prepared. A substantially circular light scattering layer 31 is cut out from the processed sheet 34.
 なお、光散乱層31が粒子含有層である場合、第2加工シート34には、上記の微細粒子が分散されており、このような第2加工シート34としては、市販品(一般に、拡散シートなどと呼ばれる。)を用いることができ、例えば、オプトセーバー(きもと社製)などが挙げられる。 When the light scattering layer 31 is a particle-containing layer, the above-described fine particles are dispersed in the second processed sheet 34. As the second processed sheet 34, commercially available products (generally, diffusion sheets) For example, an opt saver (manufactured by Kimoto) may be used.
 また、光散乱層31が多孔質層である場合、第2加工シート34には、多数の気孔が形成されており、このような第2加工シート34としては、市販品を用いることができ、例えば、ルミラーEA3S(東レ社製)、サンマップ(日東電工社製)などが挙げられる。 Moreover, when the light-scattering layer 31 is a porous layer, many pores are formed in the second processed sheet 34. As such a second processed sheet 34, a commercially available product can be used, For example, Lumirror EA3S (manufactured by Toray Industries, Inc.), Sunmap (manufactured by Nitto Denko Corporation) and the like can be mentioned.
 また、第2加工シート34から光散乱層31を切り出す方法としては、例えば、加工シート4から光散乱層31を切り出す方法と同様の方法が挙げられ、好ましくは、長尺かつ平帯状の第2加工シート34をロール状に巻回して、ロール状の第2加工シート34から引き出した部分から、光散乱層31を複数切り出す方法が挙げられる。 Moreover, as a method of cutting out the light-scattering layer 31 from the 2nd processed sheet 34, the method similar to the method of cutting out the light-scattering layer 31 from the processed sheet 4 is mentioned, for example, Preferably, it is long and flat strip-like 2nd. There is a method in which the processed sheet 34 is wound into a roll shape, and a plurality of light scattering layers 31 are cut out from a portion drawn from the rolled second processed sheet 34.
 そして、光散乱層31を、複数枚、例えば、100枚以上、好ましくは、300枚以上、さらに好ましくは、400枚以上、例えば、30000枚以下、好ましくは、5000枚以下、さらに好ましくは、600枚以下、第2加工シート34から切り出す。 The light scattering layer 31 has a plurality of, for example, 100 or more, preferably 300 or more, more preferably 400 or more, for example, 30000 or less, preferably 5000 or less, and more preferably 600. From the second processed sheet 34, the number of sheets is cut out.
 次いで、図8に示すように、複数の透明層1のそれぞれと、複数の光散乱層31(多孔質層)のそれぞれとを、交互に積層して、積層体35を調製する(準備工程)。 Next, as shown in FIG. 8, each of the plurality of transparent layers 1 and each of the plurality of light scattering layers 31 (porous layers) are alternately stacked to prepare a stacked body 35 (preparation step). .
 より具体的には、複数の透明層1のそれぞれと、複数の光散乱層31のそれぞれとを、積層方向に投影したときにそれらの外周端縁が互いに一致するように、交互に積層する。 More specifically, each of the plurality of transparent layers 1 and each of the plurality of light scattering layers 31 are alternately stacked so that their outer peripheral edges coincide with each other when projected in the stacking direction.
 このとき、積層体35において、積層方向に互いに隣り合う透明層1と光散乱層31との間に、上記した接着剤層を設けてもよく、接着剤層を設けなくてもよいが、材料コストの観点から、接着剤層を設けないことが好ましい。積層体35に接着剤層を設けない場合、積層体35において、互いに隣り合う透明層1と光散乱層31とは、互いに直接接触する。 At this time, in the stacked body 35, the adhesive layer described above may be provided between the transparent layer 1 and the light scattering layer 31 adjacent to each other in the stacking direction, or the adhesive layer may not be provided. From the viewpoint of cost, it is preferable not to provide an adhesive layer. When the adhesive layer is not provided on the stacked body 35, the transparent layer 1 and the light scattering layer 31 that are adjacent to each other in the stacked body 35 are in direct contact with each other.
 以上により、積層方向に延びる円柱状の積層体35が調製される。 As described above, the cylindrical laminate 35 extending in the stacking direction is prepared.
 なお、図8では、便宜上、透明層1および光散乱層31のそれぞれの枚数が省略されており、積層体35が、透明層1および光散乱層31のそれぞれが、6枚ずつからなるように記載しているが、実際には、積層体35は、透明層1および光散乱層31のそれぞれが、例えば、100枚~30000枚、好ましくは、300枚~5000枚、さらに好ましくは、400枚~600枚ずつ積層されて形成されている。 In FIG. 8, for the sake of convenience, the numbers of the transparent layers 1 and the light scattering layers 31 are omitted, and the laminate 35 is composed of six transparent layers 1 and six light scattering layers 31 each. In practice, however, in the laminate 35, each of the transparent layer 1 and the light scattering layer 31 is, for example, 100 to 30000, preferably 300 to 5000, and more preferably 400. It is formed by stacking up to 600 sheets.
 積層体35の高さ(積層方向長さ)は、例えば、積層体2の高さと同様である。 The height of the stacked body 35 (the length in the stacking direction) is the same as the height of the stacked body 2, for example.
 次いで、積層体35は、必要により、熱圧着(加熱プレス)される。 Next, the laminated body 35 is subjected to thermocompression bonding (heating press) as necessary.
 より具体的には、積層体35を、積層方向の両側から押圧するとともに、加熱する。 More specifically, the laminated body 35 is pressed and heated from both sides in the laminating direction.
 熱圧着の条件としては、積層体35に対する積層方向の一方側(他方側)からの圧力が、例えば、0.1MPa以上、好ましくは、0.5MPa以上、例えば、50MPa以下、好ましくは、5MPa以下であり、温度が、例えば、30℃以上、好ましくは、50℃以上、例えば、180℃以下、好ましくは、150℃以下である。また、熱圧着の時間は、例えば、1分以上、好ましくは、5分以上、例えば、180分以下、好ましくは、60分以下である。 As conditions for thermocompression bonding, the pressure from one side (the other side) in the stacking direction with respect to the stacked body 35 is, for example, 0.1 MPa or more, preferably 0.5 MPa or more, for example, 50 MPa or less, preferably 5 MPa or less. The temperature is, for example, 30 ° C. or higher, preferably 50 ° C. or higher, for example, 180 ° C. or lower, preferably 150 ° C. or lower. The thermocompression bonding time is, for example, 1 minute or more, preferably 5 minutes or more, for example, 180 minutes or less, preferably 60 minutes or less.
 これによって、積層体35において、光散乱層31が、隣接する透明層1に融着する。 Thereby, in the laminate 35, the light scattering layer 31 is fused to the adjacent transparent layer 1.
 次いで、略円柱形状の積層体35を軸線を中心として回転させて、積層体35の側面層36を連続的に切断する(切断工程)。 Next, the substantially cylindrical laminate 35 is rotated about the axis to continuously cut the side layer 36 of the laminate 35 (cutting step).
 より具体的には、切削刃11を積層方向に沿うように配置するとともに、積層体35を、その軸線を中心として回転させ、積層体35から側面層36をかつら剥きのように切り出す。 More specifically, the cutting blade 11 is arranged along the stacking direction, and the stacked body 35 is rotated about its axis, and the side layer 36 is cut out from the stacked body 35 like a wig.
 以上によって、光学フィルムの一例としての採光フィルム40が積層体35から切り出される。 Thus, the daylighting film 40 as an example of the optical film is cut out from the laminate 35.
 採光フィルム40は、図9に示すように、積層体35から切り出された側面層36であって、薄膜状に形成されている。採光フィルム40は、複数の透明層1および複数の光散乱層31を有しており、積層方向(採光フィルム40としては厚み方向と直交する面方向)において、透明層1と光散乱層31とが、連続するように順次繰り返して配置されている。 As shown in FIG. 9, the daylighting film 40 is a side layer 36 cut out from the laminated body 35 and is formed in a thin film shape. The daylighting film 40 includes a plurality of transparent layers 1 and a plurality of light scattering layers 31, and the transparent layer 1, the light scattering layer 31, and the stacking direction (the surface direction orthogonal to the thickness direction as the daylighting film 40) However, they are sequentially and repeatedly arranged so as to be continuous.
 また、複数の光散乱層31は、積層方向において、互いに等間隔(透明層1の厚み分)を隔てて並列配置されており、各光散乱層31は、積層方向に対して直交するように延びている。 The plurality of light scattering layers 31 are arranged in parallel at equal intervals (the thickness of the transparent layer 1) in the stacking direction, and the light scattering layers 31 are orthogonal to the stacking direction. It extends.
 また、採光フィルム40の厚みは、例えば、上記のフィルム本体21の厚みと同様である。また、必要により、採光フィルム40の一方面に、上記の貼着層24を設けることもできる。 The thickness of the daylighting film 40 is, for example, the same as the thickness of the film body 21 described above. Moreover, said adhesive layer 24 can also be provided in the one surface of the lighting film 40 as needed.
 このような第2実施形態では、図10に示すように、光散乱層31が多孔質層であるので、簡易な構成でありながら、光を確実に散乱できる採光フィルム40を製造することができる。 In such a second embodiment, as shown in FIG. 10, since the light scattering layer 31 is a porous layer, it is possible to manufacture a daylighting film 40 that can scatter light reliably with a simple configuration. .
 また、準備工程において、図8に示すように、透明層1と光散乱層31(多孔質層)とを交互に積層して、積層体35を形成するので、透明層1と光散乱層31(多孔質層)とが、積層方向(透明層1の厚み方向)に交互に配置される採光フィルム40を製造することができる。このような採光フィルム40は、効率よく光を散乱させることができる。 Further, in the preparation step, as shown in FIG. 8, the transparent layer 1 and the light scattering layer 31 (porous layer) are alternately stacked to form the stacked body 35, so that the transparent layer 1 and the light scattering layer 31 are formed. It is possible to manufacture a daylighting film 40 in which (porous layer) is alternately arranged in the stacking direction (thickness direction of the transparent layer 1). Such a daylighting film 40 can scatter light efficiently.
 また、図8に示すように、積層体35において、透明層1と光散乱層31(多孔質層)とが、接着剤層を介することなく、互いに直接接触している。つまり、接着剤を使用することなく、積層体35が形成されている。そのため、積層体35の形成に接着剤が使用される場合と比較して、製造コスト(材料コスト)の低減を図ることができる。 Further, as shown in FIG. 8, in the laminate 35, the transparent layer 1 and the light scattering layer 31 (porous layer) are in direct contact with each other without an adhesive layer. That is, the laminated body 35 is formed without using an adhesive. Therefore, the manufacturing cost (material cost) can be reduced as compared with the case where an adhesive is used to form the stacked body 35.
 そして、積層体35を、厚み方向の両側から押圧するとともに、30℃以上180℃以下に加熱するので、厚み方向に互いに隣接する透明層1および光散乱層31(多孔質層)を、熱圧着させることができ、切断工程において、互いに隣接する透明層1および光散乱層31(多孔質層)が互いに剥離してバラバラになることを抑制できる。 The laminate 35 is pressed from both sides in the thickness direction and heated to 30 ° C. or more and 180 ° C. or less, so that the transparent layer 1 and the light scattering layer 31 (porous layer) adjacent to each other in the thickness direction are bonded by thermocompression bonding. In the cutting step, it can be suppressed that the transparent layer 1 and the light scattering layer 31 (porous layer) adjacent to each other are separated from each other and separated.
 また、このような第2実施形態においても、上記した第1実施形態と同様の作用効果を奏することができる。 Also in the second embodiment, the same operational effects as those of the first embodiment described above can be achieved.
 このように製造された採光フィルム40は、図10に示すように、第1実施形態の採光フィルム20と同様にして、家屋25などの建築物において、例えば、ガラス窓26の内側面に取り付けられる。 As shown in FIG. 10, the daylighting film 40 manufactured in this way is attached to, for example, the inner surface of the glass window 26 in a building such as a house 25 in the same manner as the daylighting film 20 of the first embodiment. .
 そして、採光フィルム40がガラス窓26に取り付けられると、ガラス窓26を介して、屋外から入射する光L(例えば、太陽光)のうち、一部の光L1は、透明層1を透過して、家屋25の床部27に向かって進行する。 Then, when the daylighting film 40 is attached to the glass window 26, a part of the light L 1 out of the light L (for example, sunlight) incident from the outside through the glass window 26 passes through the transparent layer 1. , Proceed toward the floor 27 of the house 25.
 一方、屋外から入射する光Lのうち、他の部分の光L2は、光散乱層31に入射した後、光散乱層31内の気孔41(あるいは、微粒子41)に反射されることにより散乱されて、家屋25内に導入される。 On the other hand, of the light L incident from the outside, the other part of the light L2 is scattered by being incident on the light scattering layer 31 and then being reflected by the pores 41 (or fine particles 41) in the light scattering layer 31. And introduced into the house 25.
 そのため、採光フィルム40によれば、効率的に採光することができ、家屋25内全体の明るさを効率よく向上させることができる。 Therefore, according to the daylighting film 40, the daylight can be efficiently taken and the brightness of the entire house 25 can be improved efficiently.
 また、第2実施形態では、図7に示すように、透明層1および光散乱層31のそれぞれを、別々に複数準備して、それらを積層することにより、積層体35を調製したが、これに限定されず、透明層1と光散乱層31とが一体として積層される単位フィルムを、複数準備して、それらを積層することにより、積層体35を調製することもできる。 Moreover, in 2nd Embodiment, as shown in FIG. 7, although the transparent body 1 and each of the light-scattering layer 31 prepared several separately and laminated | stacked them, the laminated body 35 was prepared, However, the laminate 35 can also be prepared by preparing a plurality of unit films in which the transparent layer 1 and the light scattering layer 31 are laminated together and laminating them.
 また、第2実施形態では、図8に示すように、積層体35は、準備工程において、必要により、熱圧着(加熱プレス)されるが、これに限定されず、積層体35は、熱圧着されなくてもよい。 In the second embodiment, as shown in FIG. 8, the laminated body 35 is subjected to thermocompression bonding (heating press) as necessary in the preparation step. However, the present invention is not limited to this, and the laminated body 35 is thermocompression bonded. It does not have to be done.
 この場合、積層体35において、積層方向に互いに隣り合う透明層1と光散乱層31との間に、接着剤層を設ける。これによって、積層方向に互いに隣り合う透明層1と光散乱層31とが、接着剤層により接着される。そして、その積層体35の側面層36を、上記のように切り出すこと(切断工程)により、透明層1、光散乱層31および接着剤層が、積層方向に連続するように順次繰り返して配置される採光フィルム40が調製される。 In this case, in the laminated body 35, an adhesive layer is provided between the transparent layer 1 and the light scattering layer 31 that are adjacent to each other in the laminating direction. As a result, the transparent layer 1 and the light scattering layer 31 that are adjacent to each other in the stacking direction are bonded together by the adhesive layer. Then, by cutting out the side layer 36 of the laminate 35 as described above (cutting step), the transparent layer 1, the light scattering layer 31, and the adhesive layer are sequentially and repeatedly arranged so as to be continuous in the stacking direction. A daylighting film 40 is prepared.
 このような変形例においても、上記した第2実施形態と同様の作用効果を奏することができる。
3.第3実施形態
 次に、図11~図14を参照して、本発明の光学フィルムの製造方法の第3実施形態について説明する。なお、第3実施形態では、上記した第1実施形態および第2実施形態と同様の部材には同様の符号を付し、その説明を省略する。
Even in such a modification, the same operational effects as those of the above-described second embodiment can be obtained.
3. Third Embodiment Next, a third embodiment of the method for producing an optical film of the present invention will be described with reference to FIGS. Note that in the third embodiment, members similar to those in the first embodiment and second embodiment described above are given the same reference numerals, and descriptions thereof are omitted.
 第1実施形態では、図3に示すように、積層体2は、凹凸面3を有する透明層1が複数積層されることにより形成されたが、第3実施形態では、積層体46は、図12および図13に示すように、透明層1と発泡可能層45とを備える単位フィルム47が、複数積層されることにより形成される。 In the first embodiment, as shown in FIG. 3, the laminate 2 is formed by laminating a plurality of transparent layers 1 having uneven surfaces 3, but in the third embodiment, the laminate 46 is a figure. 12 and FIG. 13, the unit film 47 including the transparent layer 1 and the foamable layer 45 is formed by laminating a plurality.
 そのため、第3実施形態では、まず、透明層1および発泡可能層45を備える単位フィルム47を、複数調製(準備)する(第1工程)。 Therefore, in the third embodiment, first, a plurality of unit films 47 including the transparent layer 1 and the foamable layer 45 are prepared (prepared) (first step).
 第3実施形態において、透明層1は、凹凸面3を有していない。つまり、透明層1の厚み方向両面のそれぞれは、平坦面である。また、透明層1は、好ましくは、ポリエステル、さらに好ましくは、ポリエチレンテレフタレート(PET)から形成されている。 In the third embodiment, the transparent layer 1 does not have the uneven surface 3. That is, each of the thickness direction both surfaces of the transparent layer 1 is a flat surface. The transparent layer 1 is preferably made of polyester, more preferably polyethylene terephthalate (PET).
 発泡可能層45は、透明層1の厚み方向一方面に配置されている。発泡可能層45は、発泡可能な発泡性材料からなり、発泡することにより光散乱可能となる。 The foamable layer 45 is disposed on one surface in the thickness direction of the transparent layer 1. The foamable layer 45 is made of a foamable material that can be foamed, and can be scattered by foaming.
 発泡性材料は、例えば、粘着剤と、発泡剤とを含有している。 The foamable material contains, for example, an adhesive and a foaming agent.
 粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、フッ素系粘着剤、スチレン-ジエンブロック共重合体系粘着剤、放射線硬化型粘着剤(またはエネルギー線硬化型粘着剤)などが挙げられる。このような粘着剤は、単独で使用してもよく、2種以上併用することもできる。 Examples of adhesives include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, polyester adhesives, polyamide adhesives, urethane adhesives, fluorine adhesives, and styrene. -Diene block copolymer-based pressure-sensitive adhesives, radiation-curable pressure-sensitive adhesives (or energy beam-curable pressure-sensitive adhesives), and the like. Such pressure-sensitive adhesives may be used alone or in combination of two or more.
 このような粘着剤のなかでは、好ましくは、アクリル系粘着剤およびゴム系粘着剤、さらに好ましくは、アクリル系粘着剤が挙げられる。 Among these pressure-sensitive adhesives, preferably, an acrylic pressure-sensitive adhesive and a rubber-based pressure-sensitive adhesive, more preferably an acrylic pressure-sensitive adhesive.
 このような発泡性材料が含有する粘着剤の相対屈折率は、空気の屈折率に対して、例えば、1.30以上、好ましくは、1.40以上、例えば、1.65以下、好ましくは、1.60以下である。なお、屈折率は、プリズムカプラにより測定することができる。 The relative refractive index of the pressure-sensitive adhesive contained in such a foamable material is, for example, 1.30 or more, preferably 1.40 or more, for example, 1.65 or less, preferably with respect to the refractive index of air. 1.60 or less. The refractive index can be measured with a prism coupler.
 発泡剤としては、例えば、熱膨張性微小球、無機系発泡剤(例えば、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウムなど)、有機系発泡剤(例えば、アゾジカルボンアミド、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、p-トルイレンスルホニルセミカルバジドなど)などが挙げられ、好ましくは、熱膨張性微小球が挙げられる。 Examples of the foaming agent include thermally expandable microspheres, inorganic foaming agents (for example, ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, etc.), organic foaming agents (for example, azodicarbonamide, 4,4′-oxybis). (Benzenesulfonyl hydrazide), p-toluylenesulfonyl semicarbazide and the like), preferably, thermally expandable microspheres.
 熱膨張性微小球は、マイクロカプセル化されている発泡剤であって、例えば、弾性を有する外殻を構成するシェルと、そのシェルに内方される内包物とを備えている。 The thermally expandable microsphere is a microencapsulated foaming agent, and includes, for example, a shell constituting an elastic outer shell and an inclusion inside the shell.
 シェルを形成する材料としては、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホンなどが挙げられる。 Examples of the material forming the shell include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone.
 内包物は、加熱によりガス化し膨張する物質であって、例えば、イソブタン、プロパン、ペンタンなどが挙げられる。 The inclusion is a substance that expands by gasification upon heating, and examples thereof include isobutane, propane, and pentane.
 このような熱膨張性微小球は、例えば、コアセルベーション法や、界面重合法などの公知の方法により製造できる。 Such heat-expandable microspheres can be produced by a known method such as a coacervation method or an interfacial polymerization method.
 また、熱膨張性微小球としては、市販品を用いることができ、例えば、マツモトマイクロスフェアー(松本油脂製薬社製)などが挙げられる。 In addition, as the thermally expandable microsphere, a commercially available product can be used, and examples include Matsumoto Microsphere (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.).
 発泡剤の含有割合は、発泡性材料の粘着剤100重量部に対して、例えば、5質量部以上、好ましくは、10質量部以上、例えば、50質量部以下、好ましくは、30質量部以下である。 The content of the foaming agent is, for example, 5 parts by mass or more, preferably 10 parts by mass or more, for example, 50 parts by mass or less, preferably 30 parts by mass or less with respect to 100 parts by weight of the adhesive of the foamable material. is there.
 なお、発泡性材料は、必要により、粘着性成分(ベースポリマー)などのポリマー成分、可塑剤、架橋剤、粘着付与剤、顔料、染料、充填剤、老化防止剤、導電材、帯電防止剤などの添加剤を適宜含むこともできる。 If necessary, the foamable material may be a polymer component such as an adhesive component (base polymer), a plasticizer, a crosslinking agent, a tackifier, a pigment, a dye, a filler, an anti-aging agent, a conductive material, an antistatic agent, etc. These additives can also be included as appropriate.
 発泡可能層45の厚みは、例えば、5μm以上、好ましくは、10μm以上、例えば、100μm以下、好ましくは、50μm以下である。 The thickness of the foamable layer 45 is, for example, 5 μm or more, preferably 10 μm or more, for example, 100 μm or less, preferably 50 μm or less.
 また、透明層1の厚みに対する、発泡可能層45の厚みの比率(発泡可能層45の厚み/透明層1の厚み)は、例えば、2/1以上、好ましくは、1/1以上、例えば、1/5以下、好ましくは、1/10以下である。 The ratio of the thickness of the foamable layer 45 to the thickness of the transparent layer 1 (thickness of the foamable layer 45 / thickness of the transparent layer 1) is, for example, 2/1 or more, preferably 1/1 or more, for example, 1/5 or less, preferably 1/10 or less.
 また、単位フィルム47は、図12に示すように、必要により、粘着剤層48を備えている。なお、第3実施形態に係る単位フィルム47は、粘着剤層48を備えている。 Further, the unit film 47 includes an adhesive layer 48 as necessary, as shown in FIG. Note that the unit film 47 according to the third embodiment includes an adhesive layer 48.
 粘着剤層48は、単位フィルム47において、発泡可能層45の厚み方向一方面に配置される。 The pressure-sensitive adhesive layer 48 is disposed on one surface of the unit film 47 in the thickness direction of the foamable layer 45.
 粘着剤層48を形成する粘着剤としては、例えば、粘着層8を形成する粘着剤と同様の粘着剤が挙げられ、好ましくは、光を透過する粘着剤が挙げられる。また、粘着剤層48は、公知の両面粘着テープから構成することもできる。 Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 48 include the same pressure-sensitive adhesive as the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 8, and preferably a light-transmitting pressure-sensitive adhesive. Moreover, the adhesive layer 48 can also be comprised from a well-known double-sided adhesive tape.
 このような粘着剤層48のなかでは、好ましくは、両面粘着テープ、さらに好ましくは、基材レスの両面粘着テープが挙げられる。 Among such pressure-sensitive adhesive layers 48, double-sided pressure-sensitive adhesive tapes are preferable, and base-material-less double-sided pressure-sensitive adhesive tapes are more preferable.
 粘着剤層48の厚みは、例えば、10μm以上、好ましくは、20μm以上、例えば、100μm以下、好ましくは、50μm以下である。 The thickness of the pressure-sensitive adhesive layer 48 is, for example, 10 μm or more, preferably 20 μm or more, for example, 100 μm or less, preferably 50 μm or less.
 また、透明層1の厚みに対する、粘着剤層48の厚みの比率(粘着剤層48の厚み/透明層1の厚み)は、例えば、2/1以上、好ましくは、1/1以上、例えば、1/5以下、好ましくは、1/10以下である。 The ratio of the thickness of the pressure-sensitive adhesive layer 48 to the thickness of the transparent layer 1 (thickness of the pressure-sensitive adhesive layer 48 / thickness of the transparent layer 1) is, for example, 2/1 or more, preferably 1/1 or more, 1/5 or less, preferably 1/10 or less.
 また、粘着剤層48の光透過率は、粘着剤層48の厚みが100μmの場合に、波長440~600nmの光に対して、例えば、80%以上、好ましくは、90%以上、さらに好ましくは、95%以上であり、例えば、98%以下である。 The light transmittance of the pressure-sensitive adhesive layer 48 is, for example, 80% or more, preferably 90% or more, more preferably, with respect to light having a wavelength of 440 to 600 nm when the thickness of the pressure-sensitive adhesive layer 48 is 100 μm. 95% or more, for example, 98% or less.
 また、粘着剤層48の相対屈折率は、空気の屈折率に対して、例えば、1.30以上、好ましくは、1.40以上、例えば、1.65以下、好ましくは、1.60以下である。なお、屈折率は、プリズムカプラにより測定することができる。 The relative refractive index of the pressure-sensitive adhesive layer 48 is, for example, 1.30 or more, preferably 1.40 or more, for example, 1.65 or less, preferably 1.60 or less with respect to the refractive index of air. is there. The refractive index can be measured with a prism coupler.
 このような単位フィルム47を複数調製するには、図1に示すように、例えば、まず、透明層1および発泡可能層45を備え、必要により、粘着剤層48をさらに備える加工シート49を準備し、その加工シート49から略円形状の透明層1を切り出す。この場合、加工シート49を、複数の単位フィルム47が切り出し可能となるように大きく形成し、その加工シート49から単位フィルム47を複数切り出してもよく、加工シート49を複数枚調製して、各加工シート49から1枚ずつ加工シート49を切り出してもよい。 In order to prepare a plurality of such unit films 47, as shown in FIG. 1, for example, first, a processed sheet 49 including the transparent layer 1 and the foamable layer 45 and, if necessary, further including an adhesive layer 48 is prepared. Then, the substantially circular transparent layer 1 is cut out from the processed sheet 49. In this case, the processed sheet 49 may be formed large so that a plurality of unit films 47 can be cut out, and a plurality of unit films 47 may be cut out from the processed sheet 49. The processed sheets 49 may be cut out from the processed sheets 49 one by one.
 このような加工シート49の調製方法としては、例えば、公知の成膜方法(例えば、ウェットプロセス、ドライプロセスなど)で、透明層1の表面に発泡可能層45を形成し、必要により、発泡可能層45の表面に粘着剤層48を形成する方法や、発泡可能層45と、発泡可能層45を挟む1対の透明層1とを備える発泡性シート50を準備し、その発泡性シート50から、1対の透明層1のうち一方の透明層1を除き、必要により、露出した発泡可能層45に、粘着剤層48を貼りつける方法などが挙げられる。 As a method for preparing such a processed sheet 49, for example, a foamable layer 45 is formed on the surface of the transparent layer 1 by a known film forming method (for example, a wet process, a dry process, etc.), and foaming is possible if necessary. A method for forming the pressure-sensitive adhesive layer 48 on the surface of the layer 45, a foamable sheet 45 including a foamable layer 45 and a pair of transparent layers 1 sandwiching the foamable layer 45 are prepared. A method of sticking the pressure-sensitive adhesive layer 48 to the exposed foamable layer 45, if necessary, except for one transparent layer 1 of the pair of transparent layers 1 may be mentioned.
 このような加工シート49の調製方法のなかでは、好ましくは、発泡性シート50から一方の透明層1を除いた後、露出した発泡可能層45に、粘着剤層48を貼りつける方法が挙げられる。そして、この方法は、図11に示すように、好ましくは、シート製造装置51により、ロールツーロール方式で、連続的に実施される。 Among the preparation methods of such a processed sheet 49, preferably, after removing one transparent layer 1 from the foamable sheet 50, a method of attaching the adhesive layer 48 to the exposed foamable layer 45 can be mentioned. . And as shown in FIG. 11, this method is preferably carried out continuously by the sheet manufacturing apparatus 51 in a roll-to-roll manner.
 シート製造装置51は、第1回転軸52と、第2回転軸53と、巻取軸54と、複数(3つ)のローラ55とを備えている。 The sheet manufacturing apparatus 51 includes a first rotating shaft 52, a second rotating shaft 53, a winding shaft 54, and a plurality (three) of rollers 55.
 第1回転軸52は、略円柱形状であり、その軸線を中心として回転可能に構成されている。第1回転軸52には、後述するが、発泡性シート50が巻回される。 The first rotating shaft 52 has a substantially cylindrical shape and is configured to be rotatable around the axis. As described later, the foamable sheet 50 is wound around the first rotating shaft 52.
 第2回転軸53は、図11において、第1回転軸52に対して、右上側に間隔を隔てて配置されている。 The second rotating shaft 53 is arranged at an upper right side with respect to the first rotating shaft 52 in FIG.
 第2回転軸53は、第1回転軸52と同一の方向に延びる略円柱形状であり、その軸線を中心として回転可能に構成されている。第2回転軸53には、後述するが、粘着剤層48を備える粘着シート65が巻回される。 The second rotating shaft 53 has a substantially cylindrical shape extending in the same direction as the first rotating shaft 52, and is configured to be rotatable around the axis. As will be described later, an adhesive sheet 65 including an adhesive layer 48 is wound around the second rotating shaft 53.
 巻取軸54は、図11において、第1回転軸52に対して、右側に間隔を隔てて配置されており、第2回転軸53に対して、右下側に間隔を空けて配置されている。 In FIG. 11, the take-up shaft 54 is disposed on the right side with a space from the first rotation shaft 52, and is disposed on the lower right side with a space from the second rotation shaft 53. Yes.
 巻取軸54は、第1回転軸52と同一の方向に延びる略円柱形状であり、その軸線を中心として回転可能に構成されている。巻取軸54は、後述するが、調製された加工シート49が巻回される。 The winding shaft 54 has a substantially cylindrical shape extending in the same direction as the first rotation shaft 52, and is configured to be rotatable around the axis. Although the winding shaft 54 will be described later, the prepared processed sheet 49 is wound thereon.
 複数のローラ55のそれぞれは、第1回転軸52と同一の方向に延びており、所定の位置に適宜配置されている。 Each of the plurality of rollers 55 extends in the same direction as the first rotating shaft 52 and is appropriately disposed at a predetermined position.
 このようなシート製造装置51により、加工シート49を連続的に調製するには、まず、第1回転軸52に、長尺かつ平帯状の発泡性シート50を渦巻き状に巻回する。これによって、発泡性シート50は、第1回転軸52を中心とする発泡シートロール56として構成される。 In order to continuously prepare the processed sheet 49 using such a sheet manufacturing apparatus 51, first, the long and flat strip-like foamable sheet 50 is wound around the first rotating shaft 52 in a spiral shape. As a result, the foamable sheet 50 is configured as a foamed sheet roll 56 centered on the first rotation shaft 52.
 発泡性シート50は、発泡可能層45と、発泡可能層45を厚み方向に挟む1対の透明層1とを備えている。 The foamable sheet 50 includes a foamable layer 45 and a pair of transparent layers 1 that sandwich the foamable layer 45 in the thickness direction.
 このような発泡性シート50としては、市販品を用いることができ、例えば、リバアルファNo3196(片面粘着タイプ、日東電工社製)などが挙げられる。 Such a foamable sheet 50 may be a commercially available product, such as Riva Alpha No 3196 (single-sided adhesive type, manufactured by Nitto Denko Corporation).
 発泡シートロール56では、第1回転軸52の径方向において、発泡性シート50が隣接するように配置されている。なお、発泡性シート50が発泡シートロール56として構成される場合、発泡性シート50は、径方向外側の透明層1と、発泡可能層45との間に介在される剥離処理層を備える。 In the foam sheet roll 56, the foamable sheet 50 is disposed adjacent to the radial direction of the first rotation shaft 52. When the foamable sheet 50 is configured as a foamed sheet roll 56, the foamable sheet 50 includes a release treatment layer interposed between the radially outer transparent layer 1 and the foamable layer 45.
 また、第2回転軸53に、長尺かつ平帯状の粘着シート65を渦巻き状に巻回する。これによって、粘着シート65は、第2回転軸53を中心とする粘着シートロール57として構成される。 Also, a long and flat strip-shaped adhesive sheet 65 is wound around the second rotating shaft 53 in a spiral shape. Accordingly, the adhesive sheet 65 is configured as an adhesive sheet roll 57 centered on the second rotation shaft 53.
 粘着シート65は、粘着剤層48と、粘着剤層48の一方面に配置されるセパレータ66とを備えている。セパレータ66の両面には、剥離処理層が設けられている。 The pressure-sensitive adhesive sheet 65 includes a pressure-sensitive adhesive layer 48 and a separator 66 disposed on one surface of the pressure-sensitive adhesive layer 48. A release treatment layer is provided on both surfaces of the separator 66.
 このような粘着シート65としては、市販品を用いることができ、例えば、ルシアックスCS9862US(日東電工社製)、HJ-9150W(日東電工社製)などが挙げられる。 Commercially available products can be used as the pressure-sensitive adhesive sheet 65, such as Luciax CS9862US (manufactured by Nitto Denko Corporation), HJ-9150W (manufactured by Nitto Denko Corporation), and the like.
 粘着シートロール57では、第2回転軸53の径方向において、粘着シート65が隣接するように配置されており、粘着剤層48が径方向の外側、セパレータ66が径方向の内側に配置されている。 In the pressure-sensitive adhesive sheet roll 57, the pressure-sensitive adhesive sheet 65 is arranged adjacent to each other in the radial direction of the second rotation shaft 53, the pressure-sensitive adhesive layer 48 is arranged on the outer side in the radial direction, and the separator 66 is arranged on the inner side in the radial direction. Yes.
 次いで、発泡シートロール56から、発泡性シート50を引き出すとともに、その発泡性シート50から、径方向外側の透明層1を剥離する。 Next, the foamable sheet 50 is pulled out from the foamed sheet roll 56 and the radially outer transparent layer 1 is peeled from the foamable sheet 50.
 そして、粘着シートロール57から、粘着シート65を引き出し、発泡性シート50の露出した発泡可能層45(発泡可能層45における透明層1と反対側の表面)に、粘着シート65の粘着剤層48を貼りつける。これにより、長尺かつ平帯状の加工シート49が調製される。 Then, the pressure-sensitive adhesive sheet 65 is pulled out from the pressure-sensitive adhesive sheet roll 57, and the pressure-sensitive adhesive layer 48 of the pressure-sensitive adhesive sheet 65 is exposed to the exposed foamable layer 45 of the foamable sheet 50 (the surface opposite to the transparent layer 1 in the foamable layer 45). Paste. As a result, a long and flat belt-like processed sheet 49 is prepared.
 その後、加工シート49の端部を巻取軸54に固定し、巻取軸54を、図11の紙面手前側から見て時計回り方向に回転させる。すると、加工シート49が、巻取軸54に巻き取られ、巻取軸54に渦巻き状に巻回され、ロール状とされる。 Thereafter, the end portion of the processed sheet 49 is fixed to the take-up shaft 54, and the take-up shaft 54 is rotated in the clockwise direction when viewed from the front side of the sheet of FIG. Then, the processed sheet 49 is wound around the winding shaft 54 and wound around the winding shaft 54 in a spiral shape to form a roll.
 このような加工シート49から単位フィルム47を切り出す方法としては、例えば、加工シート4から透明層1を切り出す方法と同様の方法が挙げられ、好ましくは、図1に示すように、ロール状の加工シート49から引き出した部分から、単位フィルム47を複数切り出す方法が挙げられる。 As a method of cutting out the unit film 47 from such a processed sheet 49, for example, the same method as the method of cutting out the transparent layer 1 from the processed sheet 4 can be mentioned. Preferably, as shown in FIG. A method of cutting out a plurality of unit films 47 from a portion drawn from the sheet 49 can be mentioned.
 そして、単位フィルム47を、複数枚、例えば、300枚以上、好ましくは、500枚以上、さらに好ましくは、1000枚以上、例えば、60000枚以下、好ましくは、10000枚以下、加工シート49から切り出す。 Then, a plurality of unit films 47, for example, 300 sheets or more, preferably 500 sheets or more, more preferably 1000 sheets or more, for example, 60000 sheets or less, preferably 10,000 sheets or less, are cut out from the processed sheet 49.
 その後、必要により、複数の単位フィルム47のそれぞれから、セパレータ66を剥離する(図11参照)。 Then, if necessary, the separator 66 is peeled from each of the plurality of unit films 47 (see FIG. 11).
 次いで、図13に示すように、複数の単位フィルム47を、厚み方向に積層して、積層体46を調製する(第2工程)。 Next, as shown in FIG. 13, a plurality of unit films 47 are laminated in the thickness direction to prepare a laminate 46 (second step).
 より具体的には、透明層1と発泡可能層45とが、(必要により、粘着剤層48を介して、)積層方向に隣り合うように、複数の単位フィルム47を積層方向に積層する。また、単位フィルム47が粘着剤層48を有している場合、積層体46は、積層方向に隣り合う透明層1と発泡可能層45との間に配置される粘着剤層48を有している。そのため、積層方向に隣り合う透明層1と発泡可能層45とは、粘着剤層48により互いに接着されている。 More specifically, a plurality of unit films 47 are laminated in the laminating direction so that the transparent layer 1 and the foamable layer 45 are adjacent to each other in the laminating direction (via an adhesive layer 48 if necessary). Moreover, when the unit film 47 has the adhesive layer 48, the laminated body 46 has the adhesive layer 48 arrange | positioned between the transparent layer 1 and the foamable layer 45 which are adjacent to the lamination direction. Yes. Therefore, the transparent layer 1 and the foamable layer 45 adjacent in the stacking direction are bonded to each other by the pressure-sensitive adhesive layer 48.
 以上により、積層方向に延びる円柱状の積層体46が調製される。 As described above, the cylindrical laminated body 46 extending in the laminating direction is prepared.
 なお、図13では、便宜上、単位フィルム47の枚数が省略されており、積層体46が、6枚の単位フィルム47なるように記載しているが、実際には、積層体46は、例えば、300枚~60000枚、好ましくは、500枚~30000枚、さらに好ましくは、500枚~10000枚の単位フィルム47が積層されて形成されている。 In FIG. 13, for convenience, the number of unit films 47 is omitted, and the laminated body 46 is described as six unit films 47, but actually, the laminated body 46 is, for example, 300 to 60000 sheets, preferably 500 to 30000 sheets, more preferably 500 to 10,000 unit films 47 are laminated.
 積層体46の高さ(積層方向長さ)は、例えば、積層体2の高さと同様である。 The height (length in the stacking direction) of the stacked body 46 is the same as the height of the stacked body 2, for example.
 また、積層体46は、必要により、上記の熱圧着の条件と同様の条件下において、熱圧着(加熱プレス)される。 Moreover, the laminated body 46 is thermocompression-bonded (hot press) under the same conditions as the thermocompression-bonding conditions as necessary.
 次いで、略円柱形状の積層体46を軸線を中心として回転させて、積層体46の側面層58を連続的に切断する(切断工程)。 Next, the substantially cylindrical laminated body 46 is rotated about the axis to continuously cut the side layer 58 of the laminated body 46 (cutting step).
 より具体的には、切削刃11を積層方向に沿うように配置するとともに、積層体46を、その軸線を中心として回転させ、積層体46から側面層58をかつら剥きのように切り出す。 More specifically, the cutting blade 11 is arranged along the stacking direction, and the stacked body 46 is rotated around its axis, and the side layer 58 is cut out from the stacked body 46 like a wig.
 以上によって、切削フィルム60が、積層体46から切り出される。 The cutting film 60 is cut out from the laminated body 46 by the above.
 切削フィルム60は、積層体46から切り出された側面層58であって、薄膜状に形成されている。切削フィルム60は、図14に示すように、複数の透明層1および複数の発泡可能層45を備え、さらに必要により、複数の粘着剤層48を備えている。そして、透明層1、発泡可能層45および粘着剤層48は、積層方向(切削フィルム60としては厚み方向と直交する面方向)において、それらが連続するように順次繰り返して配置されている。 The cutting film 60 is a side layer 58 cut out from the laminated body 46 and is formed in a thin film shape. As shown in FIG. 14, the cutting film 60 includes a plurality of transparent layers 1 and a plurality of foamable layers 45, and further includes a plurality of adhesive layers 48 as necessary. And the transparent layer 1, the foamable layer 45, and the adhesive layer 48 are sequentially repeated so that they may continue in the lamination direction (the surface direction orthogonal to the thickness direction as the cutting film 60).
 また、複数の発泡可能層45は、積層方向において、互いに等間隔(透明層1および粘着剤層48の厚み分)を隔てて並列配置されており、各発泡可能層45は、積層方向に対して直交するように延びている。 The plurality of foamable layers 45 are arranged in parallel at equal intervals (the thickness of the transparent layer 1 and the pressure-sensitive adhesive layer 48) from each other in the stacking direction. Extending so as to be orthogonal.
 また、切削フィルム60の厚みは、例えば、上記フィルム本体21の厚みと同様である。また、必要により、採光フィルム40の一方面に、上記の貼着層24を設けることもできる。 Further, the thickness of the cutting film 60 is the same as the thickness of the film body 21, for example. Moreover, said adhesive layer 24 can also be provided in the one surface of the lighting film 40 as needed.
 そして、切断工程の後、切削フィルム60に含まれる発泡可能層45を発泡させて、光散乱可能な発泡体層61とする(発泡工程)。 Then, after the cutting step, the foamable layer 45 included in the cutting film 60 is foamed to obtain a foam layer 61 capable of scattering light (foaming step).
 発泡可能層45を発泡させるには、例えば、切削フィルム60を、加熱装置により加熱する。 In order to foam the foamable layer 45, for example, the cutting film 60 is heated by a heating device.
 加熱装置としては、例えば、オーブン、ホットプレート、熱風乾燥機、近赤外線ランプなどの公知の加熱装置が挙げられ、好ましくは、オーブンが挙げられる。 Examples of the heating device include known heating devices such as an oven, a hot plate, a hot air dryer, a near infrared lamp, and preferably an oven.
 加熱温度は、発泡可能層45が含有する発泡剤の発泡開始温度以上であって、例えば、90℃以上、好ましくは、100℃以上、例えば、250℃以下、好ましくは、170℃以下である。 The heating temperature is not less than the foaming start temperature of the foaming agent contained in the foamable layer 45 and is, for example, 90 ° C. or more, preferably 100 ° C. or more, for example, 250 ° C. or less, preferably 170 ° C. or less.
 加熱時間は、例えば、5秒以上、好ましくは、10秒以上、例えば、15分以下、好ましくは、10分以下である。 The heating time is, for example, 5 seconds or more, preferably 10 seconds or more, for example, 15 minutes or less, preferably 10 minutes or less.
 これによって、発泡可能層45中の発泡剤が発泡して、発泡可能層45が、内部に気孔62を有する発泡体層61となる。 Thereby, the foaming agent in the foamable layer 45 is foamed, and the foamable layer 45 becomes a foam layer 61 having pores 62 inside.
 発泡体層61の体積発泡倍率は、例えば、1.1倍以上、好ましくは、5倍以上、例えば、50倍以下、好ましくは、30倍以下である。 The volume expansion ratio of the foam layer 61 is, for example, 1.1 times or more, preferably 5 times or more, for example, 50 times or less, preferably 30 times or less.
 発泡体層61の空隙率(多孔質層における空隙の割合)は、例えば、10体積%以上、好ましくは、30体積%以上、例えば、90体積%以下、好ましくは、80体積%以下である。 The porosity of the foam layer 61 (ratio of voids in the porous layer) is, for example, 10% by volume or more, preferably 30% by volume or more, for example, 90% by volume or less, preferably 80% by volume or less.
 発泡体層61の厚みは、例えば、10μm以上、好ましくは、20μm以上、例えば、100μm以下、好ましくは、80μm以下である。 The thickness of the foam layer 61 is, for example, 10 μm or more, preferably 20 μm or more, for example, 100 μm or less, preferably 80 μm or less.
 また、透明層1の厚みに対する、発泡体層61の厚みの比率(発泡体層61の厚み/透明層1の厚み)は、例えば、2/1以上、好ましくは、1/1以上、例えば、1/2以下、好ましくは、1/4以下である。 The ratio of the thickness of the foam layer 61 to the thickness of the transparent layer 1 (the thickness of the foam layer 61 / the thickness of the transparent layer 1) is, for example, 2/1 or more, preferably 1/1 or more, for example, 1/2 or less, preferably 1/4 or less.
 以上によって、切削フィルム60中の発泡可能層45が発泡体層61となり、採光フィルム63が調製される。 By the above, the foamable layer 45 in the cutting film 60 becomes the foam layer 61, and the daylighting film 63 is prepared.
 つまり、採光フィルム63は、複数の透明層1および複数の発泡体層61を備え、さらに必要により、複数の粘着剤層48を備えている。そして、透明層1、発泡体層61および粘着剤層48は、積層方向(切削フィルム60としては厚み方向と直交する面方向)において、それらが連続するように順次繰り返して配置されている。 That is, the daylighting film 63 includes a plurality of transparent layers 1 and a plurality of foam layers 61, and further includes a plurality of adhesive layers 48 as necessary. The transparent layer 1, the foam layer 61, and the pressure-sensitive adhesive layer 48 are sequentially and repeatedly arranged so that they are continuous in the stacking direction (the surface direction orthogonal to the thickness direction as the cutting film 60).
 第3実施形態では、図14に示すように、発泡可能層45を発泡させることにより、光散乱可能な発泡体層61を形成するので、光を確実に散乱できる光学フィルムを製造することができる。 In the third embodiment, as shown in FIG. 14, the foamable layer 45 is foamed to form the foam layer 61 capable of scattering light, so that an optical film that can scatter light reliably can be manufactured. .
 また、切断工程の後に実施される発泡工程において、切削フィルム60に含まれる発泡可能層45を発泡させる。そのため、発泡体層61が、その発泡体層61と互いに隣り合う透明層1または粘着剤層48から剥離してしまうことを抑制できる。 Further, in the foaming process performed after the cutting process, the foamable layer 45 included in the cutting film 60 is foamed. Therefore, it can suppress that the foam layer 61 peels from the transparent layer 1 or the adhesive layer 48 which adjoins the foam layer 61 mutually.
 また、図13に示すように、透明層1および発泡可能層45を備える単位フィルム47を、複数積層して積層体46を形成するので、複数の透明層1および複数の発泡可能層45のそれぞれを積層して、積層体46を形成する場合と比較して、準備工程の円滑化を図ることができる。 Further, as shown in FIG. 13, a plurality of unit films 47 each including the transparent layer 1 and the foamable layer 45 are laminated to form a laminate 46, so that each of the plurality of transparent layers 1 and the plurality of foamable layers 45 is formed. As compared with the case where the stacked body 46 is formed by stacking layers, the preparation process can be facilitated.
 また、図13に示すように、積層体46において、互いに隣り合う透明層1および発泡可能層45が粘着剤層48により接着されているので、切断工程において、互いに隣り合う透明層1および発泡可能層45が剥離してバラバラになることを抑制できる。 Further, as shown in FIG. 13, in the laminated body 46, the transparent layer 1 and the foamable layer 45 that are adjacent to each other are bonded by the adhesive layer 48, so that the transparent layer 1 and the foamable layer that are adjacent to each other can be foamed in the cutting step. It can suppress that the layer 45 peels and separates.
 また、図12に示すように、準備工程において、透明層1、発泡可能層45および粘着剤層48を備える単位フィルム47を、複数積層して積層体46を形成するので、積層体46が粘着剤層48を備えることができながら、準備工程の円滑化を図ることができる。 In addition, as shown in FIG. 12, in the preparation step, a plurality of unit films 47 each including the transparent layer 1, the foamable layer 45, and the pressure-sensitive adhesive layer 48 are laminated to form a laminated body 46. While the agent layer 48 can be provided, the preparation process can be facilitated.
 また、このような第3実施形態においても、上記した第1実施形態と同様の作用効果を奏することができる。 Also in the third embodiment, the same operational effects as those of the first embodiment described above can be achieved.
 このように製造された採光フィルム63は、第1実施形態および第2実施形態と同様に、家屋25などの建築物において、例えば、ガラス窓26の内側面に取り付けられる(図10参照)。 The daylighting film 63 manufactured in this way is attached to, for example, the inner surface of the glass window 26 in a building such as the house 25 in the same manner as in the first and second embodiments (see FIG. 10).
 そして、ガラス窓26に取り付けられた採光フィルム63に、光(例えば、太陽光)が入射すると、光は、発泡体層61において、気孔62に反射されることにより散乱されて、家屋25内に導入される(図10参照)。 When light (for example, sunlight) is incident on the daylighting film 63 attached to the glass window 26, the light is scattered by being reflected by the pores 62 in the foam layer 61, and enters the house 25. It is introduced (see FIG. 10).
 そのため、採光フィルム63によれば、効率的に採光することができ、家屋25内全体の明るさを効率よく向上させることができる。 Therefore, according to the daylighting film 63, the daylight can be efficiently taken, and the brightness of the entire house 25 can be improved efficiently.
 また、第3実施形態では、図12に示すように、透明層1と発泡可能層45とが一体として積層される単位フィルム47を複数準備して、それらを積層することにより、積層体46を調製したが、透明層1および発泡可能層45のそれぞれを、別々に複数準備して、それらを積層することにより、積層体46を調製することもできる。 In the third embodiment, as shown in FIG. 12, a plurality of unit films 47 in which the transparent layer 1 and the foamable layer 45 are integrally laminated are prepared, and the laminate 46 is obtained by laminating them. Although prepared, the laminated body 46 can also be prepared by preparing each of the transparent layer 1 and the foamable layer 45 separately and laminating them.
 また、第3実施形態では、図13に示すように、発泡工程が、切断工程の後に実施されるが、発泡工程は、切断工程の前、かつ、準備工程の後に実施することもできる。この場合、積層体46に含まれる発泡可能層45が、発泡して、発泡体層61となる。 In the third embodiment, as shown in FIG. 13, the foaming step is performed after the cutting step, but the foaming step can be performed before the cutting step and after the preparation step. In this case, the foamable layer 45 included in the laminated body 46 is foamed to become the foam layer 61.
 また、第3実施形態では、図13に示すように、単位フィルム47は、透明層1および発泡可能層45に加え、粘着剤層48を備えるが、単位フィルム47は、粘着剤層48を備えず、透明層1および発泡可能層45のみからなってもよい。この場合、準備工程において、複数の単位フィルム47を積層するときに、積層方向に互いに隣り合う単位フィルム47の間に、粘着剤層48を形成することが好ましい。 In the third embodiment, as shown in FIG. 13, the unit film 47 includes an adhesive layer 48 in addition to the transparent layer 1 and the foamable layer 45, but the unit film 47 includes an adhesive layer 48. Instead, it may consist only of the transparent layer 1 and the foamable layer 45. In this case, it is preferable to form the pressure-sensitive adhesive layer 48 between the unit films 47 adjacent to each other in the stacking direction when the plurality of unit films 47 are stacked in the preparation step.
 また、第1実施形態~第3実施形態では、図5および図9に示すように、採光フィルムが、貼着層24を備えるが、これに限定されず、採光フィルムは、貼着層24を備えていなくてもよい。この場合、ガラス窓26の内側面に、接着剤または粘着剤を塗布して、貼着層24を形成し、その貼着層24に採光フィルムを貼り付ける。 In the first to third embodiments, as shown in FIGS. 5 and 9, the daylighting film includes the adhesive layer 24, but the present invention is not limited thereto, and the daylighting film includes the adhesive layer 24. It does not have to be provided. In this case, an adhesive or a pressure-sensitive adhesive is applied to the inner surface of the glass window 26 to form an adhesive layer 24, and a lighting film is attached to the adhesive layer 24.
 このような変形例においても、上記した第1実施形態~第3実施形態と同様の作用効果を奏することができる。 Even in such a modification, the same operational effects as those of the first to third embodiments can be obtained.
 なお、これら第1実施形態~第3実施形態および変形例のそれぞれは、適宜組み合わせることができる。 Note that each of the first to third embodiments and the modified examples can be combined as appropriate.
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明は、それらに限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited thereto. Specific numerical values such as blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. The upper limit value (numerical value defined as “less than” or “less than”) or lower limit value (number defined as “greater than” or “exceeded”) may be substituted. it can.
  実施例1
 厚み100μmの梨地タイプのポリ塩化ビニルフィルム(加工シート、オカモト社製、梨地クリア#320)を、直径25cmの円形状に打ち抜き加工して、1000枚の円形状の透明層を作製した。各透明層の厚み方向両面のそれぞれは、凹凸面として形成されていた。なお、空気に対するポリ塩化ビニルフィルムの相対屈折率は、1.54であった。
Example 1
A satin type polyvinyl chloride film (processed sheet, manufactured by Okamoto Co., Ltd., satin clear # 320) having a thickness of 100 μm was punched into a circular shape with a diameter of 25 cm to produce 1000 circular transparent layers. Each of both surfaces in the thickness direction of each transparent layer was formed as an uneven surface. The relative refractive index of the polyvinyl chloride film with respect to air was 1.54.
 次いで、1000枚の透明層を、各透明層間に接着剤を用いることなく積層し、非接着状態の積層体を得た。そして、その積層体を、積層方向の両側から圧力(5MPa)をかけて円柱形状に保持した(準備工程)。積層体は、直径25cm×高さ(積層方向長さ)100mm(100μm×1000枚)であった。 Next, 1000 transparent layers were laminated without using an adhesive between the transparent layers to obtain a non-adhesive laminate. And the laminated body was hold | maintained in the column shape by applying a pressure (5 Mpa) from the both sides of the lamination direction (preparation process). The laminate was 25 cm in diameter × height (length in the stacking direction) 100 mm (100 μm × 1000 sheets).
 次いで、積層体および透明支持体を、図4に示す切削装置13にセットした。 Next, the laminate and the transparent support were set in the cutting device 13 shown in FIG.
 具体的には、積層体を1対の保持部材15に積層方向の両側から挟むように保持させるとともに、透明支持体を回転軸14に巻回して支持体ロールとして構成した。 Specifically, the laminate was held by a pair of holding members 15 so as to be sandwiched from both sides in the lamination direction, and the transparent support was wound around the rotating shaft 14 to constitute a support roll.
 このとき、1対の保持部材15は、積層体を積層方向の両側から上記の圧力(5MPa)で挟んでいた。また、透明支持体は、厚み40μmのポリプロピレンフィルム(基材)と、厚み30μmのアクリル系粘着剤層(粘着層)を有していた。アクリル系粘着剤層は、ポリプロピレンフィルムの一方面に形成されており、ポリプロピレンフィルムの他方面には、剥離処理剤による剥離処理層が設けられていた。 At this time, the pair of holding members 15 sandwiched the laminated body from both sides in the laminating direction at the pressure (5 MPa). Further, the transparent support had a polypropylene film (base material) having a thickness of 40 μm and an acrylic pressure-sensitive adhesive layer (adhesion layer) having a thickness of 30 μm. The acrylic pressure-sensitive adhesive layer was formed on one side of the polypropylene film, and a release treatment layer with a release treatment agent was provided on the other side of the polypropylene film.
 また、積層体が1対の保持部材15に保持された状態において、積層体の側面には、切削刃11の先端が接触していた。なお、切削刃11は、積層体の積層方向に沿うように配置されていた。 Further, in a state where the laminated body is held by the pair of holding members 15, the tip of the cutting blade 11 is in contact with the side surface of the laminated body. In addition, the cutting blade 11 was arrange | positioned along the lamination direction of a laminated body.
 そして、支持体ロールから引き出した支持体を、粘着層が積層体の側面に粘着するように、積層体の接線方向に向かって引き回し、積層体における中心角240°の範囲の積層体の側面に貼り付けた(貼付工程)。 Then, the support pulled out from the support roll is drawn toward the tangential direction of the laminate so that the adhesive layer adheres to the side of the laminate, and on the side of the laminate in the range of the central angle of 240 ° in the laminate. Affixed (applying step).
 続いて、1対の保持部材15を、切削装置13のモータ(図示せず)により、保持部材15の軸線方向一方(図8の紙面手前側)から見て反時計回り方向に回転駆動させた。 Subsequently, the pair of holding members 15 were driven to rotate counterclockwise by a motor (not shown) of the cutting device 13 when viewed from one axial direction of the holding member 15 (front side in FIG. 8). .
 そうすると、1対の保持部材15に保持される積層体が、軸線を中心として回転するとともに、支持体ロールが回転軸14の軸線を中心として従動した。 Then, the laminated body held by the pair of holding members 15 was rotated about the axis, and the support roll was driven about the axis of the rotating shaft 14.
 これにより、支持体が貼り付けられた積層体の側面層を、かつら剥きのように連続的に切り出し、透明支持体に支持されたフィルム本体(積層体の側面層)を得た(切断工程)。 Thereby, the side layer of the laminated body to which the support was stuck was continuously cut out like a wig, and the film main body (side layer of the laminated body) supported by the transparent support was obtained (cutting step). .
 その後、フィルム本体の透明支持体と反対の面(切削面)に、ルシアックスCS9862US(日東電工社製)(粘着剤)を塗布し、貼着層を形成した。 Thereafter, Luciax CS9862US (manufactured by Nitto Denko Corporation) (adhesive) was applied to the surface (cut surface) opposite to the transparent support of the film body to form an adhesive layer.
 以上により、フィルム本体、透明支持体および貼着層を備え、長尺かつ平帯状の採光フィルムを調製した。フィルム本体において、複数の透明層は、積層方向(フィルム本体の面方向)に連続して配置されていた。なお、フィルム本体の厚みは、250μmであった。 As described above, a long and flat strip-shaped daylighting film was prepared which was provided with a film body, a transparent support and an adhesive layer. In the film body, the plurality of transparent layers were continuously arranged in the laminating direction (the surface direction of the film body). The film body had a thickness of 250 μm.
 そして、その採光フィルムを、貼り付けられるガラス窓の寸法に合わせて、適宜カットした。これによって、具体的には、長辺78cm×短辺10.8cmの平面視長方形状の採光フィルムを得た。 Then, the daylighting film was appropriately cut according to the size of the glass window to be attached. Thus, specifically, a daylighting film having a rectangular shape in a plan view having a long side of 78 cm and a short side of 10.8 cm was obtained.
 このような採光フィルムを、図6に示すように、ガラス窓26の内側面に貼り付けて使用したところ、効率的な採光が確認された。 As shown in FIG. 6, when such a daylighting film was attached to the inner surface of the glass window 26, efficient daylighting was confirmed.
  実施例2
 厚み300μmのEVAフィルム(第1加工シート、ブリジストン社製)を、直径25cmの円形状に打ち抜き加工して、500枚の円形状の透明層を作製した。各透明層の厚み方向両面のそれぞれは、平坦面として形成されていた。なお、空気に対するエチレン酢酸ビニル共重合体フィルムの相対屈折率は、1.54であった。
Example 2
A 300 μm thick EVA film (first processed sheet, manufactured by Bridgestone Corporation) was punched into a circular shape with a diameter of 25 cm to produce 500 circular transparent layers. Each of both surfaces in the thickness direction of each transparent layer was formed as a flat surface. The relative refractive index of the ethylene vinyl acetate copolymer film with respect to air was 1.54.
 また、厚み40μmの多孔質PETフィルム(第2加工シート、東レ社製、ルミラーEA3S)を、直径25cmの円形状に打ち抜き加工して、500枚の円形状の多孔質層を作製した。なお、空気に対するPETの相対屈折率は、1.60であった。 Further, a porous PET film having a thickness of 40 μm (second processed sheet, manufactured by Toray Industries Inc., Lumirror EA3S) was punched into a circular shape having a diameter of 25 cm, and 500 circular porous layers were produced. The relative refractive index of PET with respect to air was 1.60.
 次いで、500枚の透明層、および、500枚の多孔質層を、各層間に接着剤を用いることなく、交互に積層し、非接着状態の積層体を得た。そして、その積層体を、圧縮成型機により、100℃、1MPaの条件下において、15分間加熱圧着した。これにより、透明層が隣接する多孔質層に融着して、一体型の積層体を得た(準備工程)。積層体は、直径25cm×高さ(積層方向長さ)170mm(300μm×500枚+40μm×500枚)であった。 Next, 500 transparent layers and 500 porous layers were alternately laminated without using an adhesive between the respective layers to obtain a non-adhesive laminate. And the laminated body was thermocompression-bonded for 15 minutes by the compression molding machine on conditions of 100 degreeC and 1 Mpa. As a result, the transparent layer was fused to the adjacent porous layer to obtain an integrated laminate (preparation step). The laminated body had a diameter of 25 cm × a height (a stacking direction length) of 170 mm (300 μm × 500 sheets + 40 μm × 500 sheets).
 次いで、図8に示すように、切削刃11を積層体の積層方向に沿うように配置し、切削刃11の先端を、積層体の側面に接触させた。そして、積層体を、積層方向の一方から見て時計回り方向に回転駆動させた。 Next, as shown in FIG. 8, the cutting blade 11 was arranged along the stacking direction of the laminate, and the tip of the cutting blade 11 was brought into contact with the side surface of the laminate. And the laminated body was rotationally driven clockwise as seen from one side of the lamination direction.
 これにより、積層体の側面層を、かつら剥きのように連続的に切り出し、フィルム本体(積層体の側面層)を得た(切断工程)。 Thus, the side layer of the laminate was continuously cut out like a wig to obtain a film body (side layer of the laminate) (cutting step).
 その後、フィルム本体のいずれか一方の面に、ルシアックスCS9862US(日東電工社製)(粘着剤)を塗布し、貼着層を形成した。 Thereafter, Luciax CS9862US (manufactured by Nitto Denko Corporation) (adhesive) was applied to one of the surfaces of the film body to form an adhesive layer.
 以上により、フィルム本体および貼着層を備え、長尺かつ平帯状の採光フィルムを調製した。フィルム本体において、複数の透明層および複数の多孔質層は、積層方向(フィルム本体の面方向)に互いに交互となるように連続して配置されていた。なお、フィルム本体の厚みは、300μmであった。 As described above, a long and flat strip-shaped daylighting film having a film body and an adhesive layer was prepared. In the film main body, the plurality of transparent layers and the plurality of porous layers were continuously arranged so as to alternate with each other in the stacking direction (the surface direction of the film main body). The film body had a thickness of 300 μm.
 そして、その採光フィルムを、貼り付けられるガラス窓の寸法に合わせて、適宜カットした。これによって、具体的には、長辺78cm×短辺10.8cmの平面視長方形状の採光フィルムを得た。 Then, the daylighting film was appropriately cut according to the size of the glass window to be attached. Thus, specifically, a daylighting film having a rectangular shape in a plan view having a long side of 78 cm and a short side of 10.8 cm was obtained.
 このような採光フィルムを、図10に示すように、ガラス窓26の内側面に貼り付けて使用したところ、効率的な採光が確認された。 When such a daylighting film was used by being attached to the inner surface of the glass window 26 as shown in FIG. 10, efficient daylighting was confirmed.
  実施例3
 長尺かつ平帯状の発泡性シート(リバアルファNo.3196 日東電工社製)、および、長尺かつ平帯状の粘着シート(ルシアックスCS9862US 日東電工社製)を準備した。
Example 3
A long and flat strip-like foamable sheet (Riva Alpha No. 3196, manufactured by Nitto Denko Corporation) and a long and flat strip-shaped adhesive sheet (Luciax CS9862US, manufactured by Nitto Denko Corporation) were prepared.
 なお、発泡性シートは、発泡可能層と、発泡可能層を挟む1対の透明層とを備えていた。発泡性シートの透明層は、PETから形成され、その厚みは、100μmであった。また、発泡可能層45は、アクリル系粘着剤および熱膨張性微小球を含有し、その厚みは、40μmであった。 The foamable sheet was provided with a foamable layer and a pair of transparent layers sandwiching the foamable layer. The transparent layer of the foamable sheet was formed from PET and had a thickness of 100 μm. The foamable layer 45 contained an acrylic pressure-sensitive adhesive and thermally expandable microspheres, and the thickness thereof was 40 μm.
 また、粘着シートは、粘着剤層と、セパレータとを備えていた。粘着シートの粘着剤層は、基材レスの両面粘着テープであり、その厚みは、50μmであった。 The pressure-sensitive adhesive sheet was provided with a pressure-sensitive adhesive layer and a separator. The pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet was a substrate-less double-sided pressure-sensitive adhesive tape, and the thickness thereof was 50 μm.
 次いで、発泡性シートおよび基材レス両面粘着テープを、図11に示すシート製造装置51にセットした。 Next, the foamable sheet and the substrate-less double-sided adhesive tape were set in the sheet manufacturing apparatus 51 shown in FIG.
 具体的には、発泡性シートを第1回転軸52に巻回して発泡シートロールとするとともに、粘着シートを第2回転軸53に巻回して粘着シートロールとした。なお、発泡シートロールにおいて、発泡性シートの径方向外側の透明層と発泡可能層との間には、剥離処理剤による剥離処理層が設けられていた。また、粘着シートのセパレータの両面には、剥離処理層が設けられていた。 Specifically, the foamable sheet was wound around the first rotating shaft 52 to form a foamed sheet roll, and the adhesive sheet was wound around the second rotating shaft 53 to form an adhesive sheet roll. In the foam sheet roll, a release treatment layer with a release treatment agent was provided between the transparent layer on the radially outer side of the foamable sheet and the foamable layer. Moreover, the peeling process layer was provided in both surfaces of the separator of the adhesive sheet.
 次いで、発泡シートロールから、発泡性シートを引き出すとともに、その発泡性シートから、径方向外側の透明層を剥離した。そして、粘着シートロールから、粘着シートを引き出し、発泡性シートの露出した発泡可能層に、粘着剤層を貼りつけた。これにより、長尺かつ平帯状の加工シートが調製された。 Next, the foamable sheet was pulled out from the foamed sheet roll, and the radially outer transparent layer was peeled from the foamable sheet. And the adhesive sheet was pulled out from the adhesive sheet roll, and the adhesive layer was affixed on the foamable layer which the foamable sheet exposed. Thereby, a long and flat strip-shaped processed sheet was prepared.
 その後、加工シートの端部を巻取軸54に固定し、巻取軸54を、図11の紙面手前側から見て時計回り方向に回転させた。これによって、加工シートが、巻取軸54に渦巻き状に巻き取られ、ロール状とされた。 Thereafter, the end of the processed sheet was fixed to the take-up shaft 54, and the take-up shaft 54 was rotated in the clockwise direction when viewed from the front side of the sheet of FIG. As a result, the processed sheet was wound around the winding shaft 54 in a spiral shape to form a roll.
 その後、ロール状の加工シートを引き出し、その加工シートを、直径25cmの円形状に打ち抜き加工して、500枚の円形状の単位フィルムを作製した(第1工程)。 Thereafter, a roll-shaped processed sheet was drawn out, and the processed sheet was punched into a circular shape having a diameter of 25 cm to produce 500 circular unit films (first step).
 次いで、各単位フィルムからセパレータを剥離した後、500枚の単位フィルムを積層して、積層体を得た(準備工程、第2工程)。なお、積層体において、透明層、発泡可能層および粘着剤層は、積層方向に順次繰り返して配置されていた。 Next, after separating the separator from each unit film, 500 unit films were laminated to obtain a laminate (preparation step, second step). In the laminate, the transparent layer, the foamable layer, and the pressure-sensitive adhesive layer were sequentially and repeatedly arranged in the lamination direction.
 そして、その積層体を、圧縮成型機により、室温、1MPaの条件下において、3分間圧着した。積層体は、直径25cm×高さ(積層方向長さ)95mmであった。 Then, the laminate was pressure-bonded for 3 minutes using a compression molding machine under conditions of room temperature and 1 MPa. The laminate had a diameter of 25 cm × a height (a length in the lamination direction) of 95 mm.
 次いで、図13に示すように、切削刃11を積層体の積層方向に沿うように配置し、切削刃11の先端を、積層体の側面に接触させた。そして、積層体を、積層方向の一方から見て時計回り方向に回転駆動させた。 Next, as shown in FIG. 13, the cutting blade 11 was disposed along the stacking direction of the laminate, and the tip of the cutting blade 11 was brought into contact with the side surface of the laminate. And the laminated body was rotationally driven clockwise as seen from one side of the lamination direction.
 これにより、積層体の側面層を、かつら剥きのように連続的に切り出し、切削フィルム(積層体の側面層)を得た(切断工程)。切削フィルムの厚みは、150μmであった。 Thereby, the side layer of the laminate was continuously cut out like a wig to obtain a cutting film (side layer of the laminate) (cutting step). The thickness of the cutting film was 150 μm.
 次いで、切削フィルムを、オーブンにより100℃で1分間加熱して、切削フィルム中の発泡可能層を発泡させて、発泡体層とした。発泡体層の厚みは、60μmであった。 Next, the cutting film was heated in an oven at 100 ° C. for 1 minute to foam the foamable layer in the cutting film to obtain a foam layer. The thickness of the foam layer was 60 μm.
 以上により、長尺かつ平帯状の採光フィルムを調製した。採光フィルムにおいて、透明層、発泡体層および粘着剤層は、積層方向(採光フィルムの面方向)に順次繰り返すように連続して配置されていた。 Thus, a long and flat strip-shaped daylighting film was prepared. In the daylighting film, the transparent layer, the foam layer, and the pressure-sensitive adhesive layer were continuously arranged so as to be sequentially repeated in the laminating direction (the surface direction of the daylighting film).
 その後、採光フィルムのいずれか一方の面に、ルシアックスCS9862US(日東電工社製)(粘着剤)を塗布し、貼着層を形成した。 Thereafter, Luciax CS9862US (manufactured by Nitto Denko Corporation) (adhesive) was applied to one surface of the daylighting film to form an adhesive layer.
 そして、その採光フィルムを、貼り付けられるガラス窓の寸法に合わせて、適宜カットした。これによって、具体的には、長辺78cm×短辺10.8cmの平面視長方形状の採光フィルムを得た。 Then, the daylighting film was appropriately cut according to the size of the glass window to be attached. Thus, specifically, a daylighting film having a rectangular shape in a plan view having a long side of 78 cm and a short side of 10.8 cm was obtained.
 このような採光フィルムを、図10に示すように、ガラス窓26の内側面に貼り付けて使用したところ、効率的な採光が確認された。 When such a daylighting film was used by being attached to the inner surface of the glass window 26 as shown in FIG. 10, efficient daylighting was confirmed.
 なお、上記説明は本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は後記の請求の範囲に含まれる。 Although the above description is provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed as limiting. Variations of the present invention apparent to those skilled in the art are within the scope of the following claims.
 本発明の光学フィルムの製造方法は、例えば、建築物の採光に用いられる採光フィルムの製造に用いられる。 The method for producing an optical film of the present invention is used, for example, for producing a daylighting film used for daylighting of a building.
 1   透明層
 2   積層体
 3   凹凸面
 5   積層体の側面
 6   支持体
 9   積層体の側面層
 16  支持体ロール
 20  採光フィルム
 40  採光フィルム
 45  発泡可能層
 46  積層体
 47  単位フィルム
 48  粘着剤層
 58  積層体の側面層
 60  切削フィルム
 61  発泡体層
 63  採光フィルム
DESCRIPTION OF SYMBOLS 1 Transparent layer 2 Laminated body 3 Uneven surface 5 Laminate side surface 6 Support body 9 Laminate side surface layer 16 Support body roll 20 Daylighting film 40 Daylighting film 45 Foamable layer 46 Laminate body 47 Unit film 48 Adhesive layer 58 Laminate body Side layer 60 Cutting film 61 Foam layer 63 Daylighting film

Claims (14)

  1.  光を透過可能な複数の透明層、および、光散乱可能となりうる複数の光散乱層を、前記複数の透明層のそれぞれの厚み方向に積層して、前記厚み方向に延びる略円柱状の積層体を準備する準備工程と、
     前記積層体を軸線を中心として回転させて、前記積層体の側面層を連続的に切断する切断工程とを含んでいることを特徴とする、光学フィルムの製造方法。
    A plurality of transparent layers capable of transmitting light and a plurality of light scattering layers capable of light scattering are laminated in the thickness direction of each of the plurality of transparent layers, and the substantially cylindrical laminate extending in the thickness direction. A preparation process to prepare,
    A method for producing an optical film, comprising: a step of continuously cutting a side layer of the laminate by rotating the laminate around an axis.
  2.  前記複数の光散乱層は、光散乱可能であることを特徴とする、請求項1に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1, wherein the plurality of light scattering layers are capable of light scattering.
  3.  前記複数の光散乱層のそれぞれは、前記複数の透明層のそれぞれの少なくとも一方面に配置される凹凸面であり、
     前記準備工程において、前記凹凸面を有する前記複数の透明層のそれぞれを、前記厚み方向に積層して、前記積層体を形成することを特徴とする、請求項2に記載の光学フィルムの製造方法。
    Each of the plurality of light scattering layers is an uneven surface disposed on at least one surface of each of the plurality of transparent layers,
    3. The method for producing an optical film according to claim 2, wherein in the preparation step, each of the plurality of transparent layers having the uneven surface is laminated in the thickness direction to form the laminate. .
  4.  前記準備工程と前記切断工程との間において、支持体を、前記積層体の側面に前記厚み方向に沿うように貼り付ける貼付工程をさらに備え、
     前記準備工程において、前記凹凸面と、前記凹凸面に積層される前記透明層とが互いに直接接触するように、前記複数の透明層を積層し、
     前記切断工程において、前記支持体が貼り付けられた前記積層体の側面層を連続的に切断することを特徴とする、請求項3に記載の光学フィルムの製造方法。
    Between the preparation step and the cutting step, further comprising an attaching step of attaching a support to the side surface of the laminated body along the thickness direction,
    In the preparation step, the plurality of transparent layers are laminated so that the uneven surface and the transparent layer laminated on the uneven surface are in direct contact with each other,
    The method for producing an optical film according to claim 3, wherein in the cutting step, the side layer of the laminate to which the support is attached is continuously cut.
  5.  前記支持体は、シート状であり、巻回されることにより支持体ロールとして構成され、
     前記貼付工程において、前記支持体ロールから引き出された前記支持体が、前記積層体の側面に貼り付けられ、
     前記切断工程において、前記支持体ロールを軸線を中心として回転させるとともに、前記積層体を軸線を中心として回転させて、前記支持体が貼り付けられた前記積層体の側面層を連続的に切断することを特徴とする、請求項4に記載の光学フィルムの製造方法。
    The support is in the form of a sheet and is configured as a support roll by being wound;
    In the attaching step, the support drawn from the support roll is attached to the side surface of the laminate,
    In the cutting step, the support roll is rotated about the axis, and the laminate is rotated about the axis to continuously cut the side layer of the laminate to which the support is attached. The manufacturing method of the optical film of Claim 4 characterized by the above-mentioned.
  6.  前記複数の光散乱層のそれぞれは、内部に複数の気孔を有する多孔質層であることを特徴とする、請求項2に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 2, wherein each of the plurality of light scattering layers is a porous layer having a plurality of pores therein.
  7.  前記準備工程において、前記複数の透明層のそれぞれと、前記複数の多孔質層のそれぞれとを、交互に積層することにより、前記積層体を形成することを特徴とする、請求項6に記載の光学フィルムの製造方法。 The said preparation process WHEREIN: Each of these transparent layers and each of these porous layers are alternately laminated | stacked, The said laminated body is formed, It is characterized by the above-mentioned. Manufacturing method of optical film.
  8.  前記準備工程において、
      前記複数の透明層のそれぞれと、前記複数の多孔質層のそれぞれとを、互いに直接接触するように積層し、
      前記積層体を、前記厚み方向の両側から押圧するとともに、30℃以上180℃以下に加熱することを特徴とする、請求項7に記載の光学フィルムの製造方法。
    In the preparation step,
    Laminating each of the plurality of transparent layers and each of the plurality of porous layers so as to be in direct contact with each other;
    The method for producing an optical film according to claim 7, wherein the laminate is pressed from both sides in the thickness direction and heated to 30 ° C. or higher and 180 ° C. or lower.
  9.  前記複数の光散乱層のそれぞれは、発泡可能な発泡性材料からなり、発泡することにより光散乱可能となる発泡可能層であり、
     前記発泡可能層を発泡させて、光散乱可能な発泡体層とする発泡工程をさらに含んでいることを特徴とする、請求項1に記載の光学フィルムの製造方法。
    Each of the plurality of light scattering layers is made of a foamable foamable material, and is a foamable layer that can be scattered by foaming,
    The method for producing an optical film according to claim 1, further comprising a foaming step of foaming the foamable layer to form a light-scatterable foam layer.
  10.  前記発泡工程は、前記切断工程の後に実施され、
     前記切断工程において、前記積層体の側面層を連続的に切断して、切削フィルムを切り出し、
     前記発泡工程において、前記切削フィルムに含まれる前記発泡可能層を発泡させることを特徴とする、請求項9に記載の光学フィルムの製造方法。
    The foaming step is performed after the cutting step,
    In the cutting step, the side layer of the laminate is continuously cut to cut out a cutting film,
    The method for producing an optical film according to claim 9, wherein, in the foaming step, the foamable layer included in the cutting film is foamed.
  11.  前記準備工程は、
      前記透明層、および、前記透明層の前記厚み方向一方面に配置される前記発泡可能層を備える単位フィルムを複数準備する第1工程と、
      前記複数の単位フィルムを、前記厚み方向に積層して、前記積層体を形成する第2工程とを含んでいることを特徴とする、請求項9に記載の光学フィルムの製造方法。
    The preparation step includes
    A first step of preparing a plurality of unit films comprising the transparent layer and the foamable layer disposed on one surface in the thickness direction of the transparent layer;
    The method for producing an optical film according to claim 9, further comprising a second step of laminating the plurality of unit films in the thickness direction to form the laminate.
  12.  前記積層体において、前記複数の透明層のそれぞれと、前記複数の発泡可能層のそれぞれとは、前記厚み方向に互いに隣り合うように配置され、
     前記積層体は、前記互いに隣り合う透明層と発泡可能層との間に配置される粘着剤層を有していることを特徴とする、請求項11に記載の光学フィルムの製造方法。
    In the laminate, each of the plurality of transparent layers and each of the plurality of foamable layers are arranged to be adjacent to each other in the thickness direction,
    The said laminated body has an adhesive layer arrange | positioned between the said mutually adjacent transparent layer and foamable layer, The manufacturing method of the optical film of Claim 11 characterized by the above-mentioned.
  13.  前記単位フィルムは、前記発泡可能層の前記厚み方向一方面に配置される前記粘着剤層をさらに備えることを特徴とする、請求項12に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 12, wherein the unit film further includes the pressure-sensitive adhesive layer disposed on one surface in the thickness direction of the foamable layer.
  14.  請求項1に記載の光学フィルムの製造方法により製造されることを特徴とする、採光フィルム。 A daylighting film produced by the method for producing an optical film according to claim 1.
PCT/JP2015/078351 2014-11-12 2015-10-06 Optical film manufacturing method and daylighting film WO2016076039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014230086A JP2016095944A (en) 2014-11-12 2014-11-12 Manufacturing method of optical film, and light collection film
JP2014-230086 2014-11-12

Publications (1)

Publication Number Publication Date
WO2016076039A1 true WO2016076039A1 (en) 2016-05-19

Family

ID=55954131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078351 WO2016076039A1 (en) 2014-11-12 2015-10-06 Optical film manufacturing method and daylighting film

Country Status (2)

Country Link
JP (1) JP2016095944A (en)
WO (1) WO2016076039A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118329198A (en) * 2023-01-12 2024-07-12 华为技术有限公司 Ambient light sensing device and terminal equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174518A (en) * 1995-10-25 1997-07-08 Shinei Gohan Kogyo Kk Glued laminated wood of veneer laminated material and its manufacture
JP2002502503A (en) * 1996-02-29 2002-01-22 ミネソタ マイニング アンド マニュファクチャリング カンパニー Brightness enhancement film
JP2002248606A (en) * 2001-02-26 2002-09-03 Nichiha Corp Method and apparatus for manufacturing veneer with sheet
JP2002326204A (en) * 2001-05-07 2002-11-12 Oorisu Kk Sliced veneer decorative laminate
JP2013235233A (en) * 2012-05-09 2013-11-21 Samsung Display Co Ltd Methods of manufacturing optical sheets, organic light emitting display devices, and methods of manufacturing organic light emitting display devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174518A (en) * 1995-10-25 1997-07-08 Shinei Gohan Kogyo Kk Glued laminated wood of veneer laminated material and its manufacture
JP2002502503A (en) * 1996-02-29 2002-01-22 ミネソタ マイニング アンド マニュファクチャリング カンパニー Brightness enhancement film
JP2002248606A (en) * 2001-02-26 2002-09-03 Nichiha Corp Method and apparatus for manufacturing veneer with sheet
JP2002326204A (en) * 2001-05-07 2002-11-12 Oorisu Kk Sliced veneer decorative laminate
JP2013235233A (en) * 2012-05-09 2013-11-21 Samsung Display Co Ltd Methods of manufacturing optical sheets, organic light emitting display devices, and methods of manufacturing organic light emitting display devices

Also Published As

Publication number Publication date
JP2016095944A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
TW201620716A (en) Base for sheets for semiconductor wafer processing, sheet for semiconductor wafer processing, and method for manufacturing semiconductor device
JP2016521645A5 (en)
JP2011053673A (en) Method for manufacturing polarizing plate, and polarizing plate obtained by the method
JP2008003233A (en) Optical sheet for display and its manufacturing method
JP5976969B1 (en) Manufacturing method of polarizing plate with protective film
JP6420511B1 (en) Sheet-fed film manufacturing method
TWI271311B (en) Laminate sheet and producing methods therefor
JP2014159515A (en) Adhesive label, manufacturing method of adhesive label, and label issuance device
JPH07246767A (en) Three-dimensional image label, and formation thereof
WO2016076039A1 (en) Optical film manufacturing method and daylighting film
US9341334B2 (en) Optical film
CN101253543A (en) Optical sheet for display and manufacturing method thereof
JPH06212130A (en) Multilayer foamed pressure-sensitive adhesive tape and its production
JP2012078719A (en) Adhesive label and production method thereof
JP2016195174A (en) Method of manufacturing graphite sheet laminate, graphite sheet laminate, method of manufacturing individualized matter of graphite sheet laminate, method of manufacturing individualized matter sealing adhesive sheet of graphite sheet laminate and method of manufacturing individualized matter of graphite sheet laminate sealing adhesive sheet
JP3212765U (en) Screen protection film
US20150072160A1 (en) Method for producing optical film and daylighting film
JP2015146004A (en) optical film
JP2008015352A (en) Optical sheet and method of manufacturing the same
JP2013149919A (en) Member peeling method, member peeling device, and method of manufacturing semiconductor chip
JP2007156038A (en) Optical sheet for display
JP2016109861A (en) Daylighting film
CN114641549A (en) Adhesive delivery system
JP5394954B2 (en) Winding up the gel sheet
KR101893279B1 (en) Release sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15858736

Country of ref document: EP

Kind code of ref document: A1