WO2015118778A1 - デシカント空調システム及びデシカント空調システムの制御方法 - Google Patents

デシカント空調システム及びデシカント空調システムの制御方法 Download PDF

Info

Publication number
WO2015118778A1
WO2015118778A1 PCT/JP2014/083250 JP2014083250W WO2015118778A1 WO 2015118778 A1 WO2015118778 A1 WO 2015118778A1 JP 2014083250 W JP2014083250 W JP 2014083250W WO 2015118778 A1 WO2015118778 A1 WO 2015118778A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
desiccant
conditioning system
damper
state
Prior art date
Application number
PCT/JP2014/083250
Other languages
English (en)
French (fr)
Inventor
彰悟 吉良
山下 孝
松雄 神谷
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2015118778A1 publication Critical patent/WO2015118778A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel

Definitions

  • the present invention relates to a desiccant air conditioning system that performs dehumidification and a technology of a control method for the desiccant air conditioning system.
  • Patent Documents 1 and 2 describe a low-temperature regeneration desiccant air conditioner that switches a supply air path according to the humidity and temperature of the outside air.
  • Patent Documents 1 and 2 switch the control mode (cooling mode or heating mode) only by enthalpy. For this reason, since the techniques described in Patent Documents 1 and 2 perform dehumidification even when the humidity of the outside air is sufficiently low, there is a problem that efficient dehumidification is not performed. Furthermore, the techniques described in Patent Documents 1 and 2 also have a problem that control according to the indoor state is not performed.
  • the present invention has been made in view of such a background, and an object of the present invention is to perform efficient dehumidification.
  • the present invention is characterized in that the air volume in the air supply fan of the internal air conditioner is determined based on information on the indoor state.
  • FIG. (1) which shows the path
  • FIG. (2) which shows the path
  • FIG. (The 3) which shows the path
  • FIG. (The 4) which shows the path
  • the 1 which shows the state transition of the air which concerns on this embodiment.
  • FIG. (2) which shows the state transition of the air which concerns on this embodiment.
  • FIG. (The 3) which shows the state transition of the air which concerns on this embodiment.
  • FIG. (The 4) which shows the state transition of the air which concerns on this embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a desiccant air conditioning system according to the present embodiment.
  • the desiccant air conditioning system 1a includes a desiccant external air conditioner 10, an internal air conditioner 20, a control device (control means) 30a, and a refrigerator 40.
  • the right side of the page is the indoor side
  • the left side of the page is the outdoor side.
  • the desiccant air conditioner 10 is mainly for dehumidifying the outside air, and includes a first air supply fan 14, a total heat exchanger 11, a first cooling coil 12, a desiccant rotor 13, and the like.
  • outdoor air is referred to as “outside air”
  • air passing through the desiccant air conditioning system 1a is referred to as “air”.
  • a first air supply fan 14, a total heat exchanger 11, a first cooling coil 12, and a desiccant rotor 13 are installed in this order from the outdoor side.
  • the desiccant air conditioner 10 also has a main air path 17 a that passes through the first air supply fan 14, the total heat exchanger 11, the first cooling coil 12, and the desiccant rotor 13.
  • the desiccant air conditioner 10 has a first bypass path 17b that is connected to the main path 17a at the rear stage of the first air supply fan 14 and the rear stage of the total heat exchanger 11, and bypasses the total heat exchanger 11. is doing.
  • the desiccant air conditioner 10 includes a second bypass path 17 c that is connected to the main path 17 a at the rear stage of the first cooling coil 12 and the rear stage of the desiccant rotor 13 and bypasses the desiccant rotor 13.
  • the desiccant air conditioner 10 has an exhaust fan 15 for exhausting indoor air. After the indoor air passes through the exhaust fan 15, it is exhausted to the outdoors via the desiccant rotor 13 and the total heat exchanger 11.
  • the first air supply fan 14 and the exhaust fan 15 are driven by inverters 61 and 62, respectively.
  • the total heat exchanger 11 is made of paper or the like, and exchanges heat and moisture between air passing through itself and exhaust.
  • a refrigerator 40 is connected to the first cooling coil 12.
  • the first cooling coil 12 performs sensible heat treatment by lowering the temperature of the passing air, but mainly performs latent heat treatment, that is, moisture removal.
  • the 1st cooling coil 12 performs heat exchange with distribution
  • the desiccant rotor 13 has a disk shape and has a dehumidifying agent or desiccant such as lithium chloride, silica gel, or zeolite.
  • the desiccant rotor 13 can be rotated around a central axis by a rotation motor (not shown). By this rotation, the desiccant rotor 13 circulates and passes through the dehumidification area and the regeneration area.
  • a relatively high humidity air is supplied from the first cooling coil 12 to the dehumidifying area.
  • relatively dry (low humidity) air is supplied from the room to the regeneration area via the exhaust fan 15.
  • the desiccant rotor 13 absorbs the humidity of the outside air that could not be dehumidified by the total heat exchanger 11 and the first cooling coil 12 in the dehumidifying area. Further, the desiccant rotor 13 is dehumidified by releasing moisture from the dehumidifier or the desiccant by the relatively dry (low humidity) air supplied from the room via the exhaust fan 15 in the regeneration area. The agent or desiccant can absorb moisture again.
  • a first damper 16 a that switches between blocking and passing air to the total heat exchanger 11 is provided in the front stage of the total heat exchanger 11.
  • the main path 17 a is provided with a third damper 16 c that adjusts the flow rate of air to the desiccant rotor 13 in front of the desiccant rotor 13.
  • the first bypass path 17b is provided with a second damper 16b for switching between blocking and passing of air in the first bypass path 17b.
  • the second bypass path 17c is provided with a fourth damper 16d that adjusts the air flow rate in the second bypass path 17c. Note that the first damper 16a and the second damper 16b are, in principle, only “fully open” or “fully closed”, but the opening degree of the third damper 16c and the fourth damper 16d can be adjusted.
  • the internal air conditioner 20 is mainly for cooling the air dehumidified by the desiccant external air conditioner 10 and supplying the air to the room.
  • a second cooling coil 21 and a second air supply fan (air supply fan) 22 are provided. have. Although it is preferable to arrange the second cooling coil 21 and the second air supply fan 22 in the order from the desiccant air conditioner 10 in order of proximity, they may not be arranged in this order.
  • a refrigerator 40 is connected to the second cooling coil 21.
  • the second cooling coil 21 mainly performs sensible heat treatment of the passing air.
  • the air supplied to the second cooling coil 21 is a mixture of part of the indoor air (return air) and low-humidity air supplied from the desiccant external air conditioner 10.
  • the second air supply fan 22 is driven by the inverter 63 and supplies the air cooled by the second cooling coil 21 into the room.
  • thermometer 51 A thermometer 51, a first hygrometer 52, and the like are installed outdoors, and a second hygrometer 53 for calculating absolute humidity and a thermometer (or a dew point meter) not shown are installed at the outlet of the first cooling coil 12. Has been.
  • the control device 30a Based on information obtained from the thermometer 51, the first hygrometer 52, the second hygrometer 53, a thermometer, a hygrometer (not shown) installed indoors, etc., the control device 30a It controls the opening / closing and opening of the fourth damper 16d, and is a PLC (Programmable Logic Controller) or the like. The input / output information of the control device 30a is indicated by a fine dashed arrow. Further, the control device 30a controls the inverters 61 to 63 in the first air supply fan 14, the second air supply fan 22, and the exhaust fan 15 based on the indoor state value 71, whereby the first air supply fan 14, The rotational speeds of the second air supply fan 22 and the exhaust fan 15 are controlled. The indoor state value 71 will be described later.
  • FIG. 2 is a diagram illustrating a configuration example of the control device of the desiccant air conditioning system according to the present embodiment.
  • the control device 30a includes a memory 310, a CPU (Central Processing Unit) 320, and a storage device 330.
  • the program stored in the storage device 330 is expanded in the memory 310 and executed by the CPU 320, whereby the processing unit 311a, the acquisition unit 312 that configures the processing unit 311a, the calculation unit 313, the determination unit 314, and damper control
  • the unit 315 and the inverter control unit 316 are embodied.
  • the acquisition unit 312 acquires information from the thermometer 51, the first hygrometer 52, the second hygrometer 53, and the like.
  • the calculation unit 313 calculates various values necessary for controlling the desiccant air conditioning system 1a.
  • the determination unit 314 performs various determinations in the control of the desiccant air conditioning system 1a.
  • the damper control unit 315 controls the opening / closing and opening of the first damper 16a to the fourth damper 16d according to the result of the determination unit 314.
  • the inverter control unit 316 controls the inverters 61 to 63 in the first air supply fan 14, the second air supply fan 22, and the exhaust fan 15 based on the indoor state value 71.
  • FIG. 3 is a flowchart showing a processing procedure of air volume control in the control device of the desiccant air conditioning system according to the present embodiment.
  • the acquisition unit 312 of the control device 30a acquires the indoor state value 71, which is information with which the sensible heat and latent heat loads can be estimated (S201), and based on the indoor state value 71 acquired by the calculation unit 313 as necessary.
  • an indoor condition value which is information for estimating the load amount of sensible heat and latent heat, is calculated (S202).
  • the indoor state value 71 is, for example, the number of computers operating indoors, and the indoor condition value is the number of indoors calculated based on the number of computers operating.
  • the calculation unit 313 of the control device 30a multiplies the number of people in the room condition value by a preset constant value “required outside air intake amount per person (m 3 / (h ⁇ person)”. Thus, the outside air intake amount is calculated (S203).
  • the calculation unit 313 of the control device 30a calculates the sensible heat load per person (W / person) generated by a person in the room and the person-generated sensible heat load (W) that is the product of the number of persons in the room. calculate. Furthermore, the calculation unit 313 calculates a device-generated sensible heat load (W) that is a product of the sensible heat load (W / m 2 ) per unit floor area due to lighting, an outlet, and the like and the floor area.
  • the sensible heat load per person and the sensible heat load per unit floor area are preset constant values.
  • the calculation part 313 of the control apparatus 30a calculates the sensible heat load amount (W) which the desiccant air conditioning system 1a should process by adding a human generation
  • the sensible heat load to be processed is the amount of heat generated in the room to be subjected to the sensible heat treatment in order to keep the room temperature at the set temperature.
  • the calculation unit 313 of the control device 30a calculates the supply air volume by the following equation (1) (S205).
  • “3600” is unit conversion from second to time (s / h).
  • “Cp” is a constant pressure specific heat ( ⁇ 1006 J / (kg ⁇ K))
  • is an air density ( ⁇ 1.2 kg / m 3 )
  • “ ⁇ t” is a supply air blowing temperature and an indoor temperature. (° C).
  • the inverter control unit 316 of the control device 30a controls the inverters 61 to 63 in the first supply fan 14, the second supply fan 22, and the exhaust fan 15 based on the calculated supply air volume (S206).
  • the inverter control unit 316 controls the inverter 61 that drives the first air supply fan 14 based on the outside air intake amount calculated in step S203.
  • the inverter control unit 316 controls the inverter 63 that drives the second air supply fan 22 based on the air supply air amount calculated in step S205.
  • the inverter control unit 316 controls the inverter 62 that drives the exhaust fan 15 based on the outside air intake amount calculated in step S203.
  • FIG. 4 shows an example of the relationship between the number of people in the room and the outside air volume, the supply air volume, and the return air volume when the latent heat load in the room is large.
  • the horizontal axis represents the number of people in the room
  • the vertical axis represents the air volume.
  • Reference numeral 1602 denotes a line indicating the supply air volume, which is the air volume of the second supply fan 22.
  • Reference numeral 1603 is a line indicating the return air volume.
  • Each plot is a calculated value by simulation.
  • the unit of the outside air volume is converted to “m 3 / h”.
  • the influence of heat generated by a device such as an indoor computer is not considered.
  • a line 1611 is the number of persons set at the time of designing the desiccant air conditioning system 1a.
  • the increase amount of the supply air volume accompanying the increase in the number of persons becomes more gradual than the increase amount of the outside air volume. Therefore, the return air volume (line 1603), which is the difference between the supply air volume (line 1602) and the outside air volume (line 1601), decreases as the number of people in the room increases.
  • FIG. 5 is a flowchart showing a processing procedure of path control in the control device according to the present embodiment.
  • 6 to 9 are diagrams showing air paths in the desiccant air conditioning system according to the present embodiment. 6 to 9 are the same as those in FIG. 1, and the description of each element is omitted.
  • the process shown in FIG. 5 is performed in parallel with the process shown in FIG.
  • the calculation unit 313 of the control device 30a uses the information acquired by the acquisition unit 312 from the thermometer 51, the first hygrometer 52, an indoor thermometer (not shown), and a hygrometer.
  • enthalpy of outside air is referred to as outside air enthalpy
  • return air enthalpy is referred to as return air enthalpy.
  • the calculation unit 313 of the control device 30a calculates the absolute humidity of the outside air (outside air absolute humidity) from the humidity information and temperature information obtained by the acquisition unit 312 from the thermometer 51 and the first hygrometer 52. (S102).
  • the absolute humidity of the outside air is referred to as the outside air absolute humidity.
  • the determination unit 314 of the control device 30a determines whether or not the outdoor air absolute humidity is higher than the absolute humidity required at the outlet of the desiccant external air conditioner 10 (hereinafter referred to as the required absolute humidity) (S111).
  • the required absolute humidity is a value that is input and set in advance in the control device 30a manually. If the outside absolute humidity is equal to or lower than the required absolute humidity in step S111 (S111 ⁇ No), the damper control unit 315 of the control device 30a closes the first damper 16a and the third damper 16c, and the second damper 16b and the fourth damper. 16d is opened (S112), and the processing unit 311a ends the process.
  • the damper control unit 315 fully closes the third damper 16c and fully opens the fourth damper 16d.
  • the air is sent in the order of the first bypass path 17b ⁇ the first cooling coil 12 ⁇ the second bypass path 17c, as indicated by the thick arrow in FIG. That is, when the outside air absolute humidity is equal to or lower than the required absolute humidity, it is not necessary to dehumidify the outside air, so that air does not pass through the total heat exchanger 11 and the desiccant rotor 13.
  • the first cooling coil 12 mainly has a role of lowering the temperature of the air.
  • step S111 When the outside absolute humidity is higher than the required absolute humidity in step S111 (S111 ⁇ Yes), the determination unit 314 of the control device 30a determines whether the outside air enthalpy is lower than the return air enthalpy (S121).
  • step S121 when the outside air enthalpy is equal to or greater than the return air enthalpy (S121 ⁇ No), the damper control unit 315 of the control device 30a opens the first damper 16a and the third damper 16c, and the second damper 16b and the fourth damper 16d. Is closed (S122), and the processing unit 311a ends the processing. At this time, the damper control unit 315 fully opens the third damper 16c and fully closes the fourth damper 16d.
  • the air is sent in the order of the total heat exchanger 11 ⁇ the first cooling coil 12 ⁇ the desiccant rotor 13 as indicated by the thick arrows in FIG. That is, in the case of “No” in step S121, since the absolute humidity and enthalpy of the outside air are high, the control device 30a is sufficient to use the total heat exchanger 11, the first cooling coil 12, and the desiccant rotor 13. Dehumidify.
  • the determination unit 314 of the control device 30a determines that the outside air absolute humidity is the absolute humidity at the outlet of the first cooling coil 12 during the rated operation (cooling coil outlet). It is determined whether it is lower than (absolute humidity) (S131).
  • the cooling coil outlet absolute humidity may be a value acquired from the second hygrometer 53 when the first cooling coil 12 is performing a rated operation, or may be a value input and set in advance in the control device 30a by manual input. Good.
  • the absolute humidity at the outlet of the first cooling coil 12 is a boundary condition because the dehumidifying ability of the desiccant rotor 13 is the boundary condition. In other words, in order to use the dehumidifying capacity of the desiccant rotor 13 as a boundary condition, the absolute humidity at the outlet of the first cooling coil 12 is used as the boundary condition.
  • step S131 when the outside absolute humidity is equal to or higher than the cooling coil outlet absolute humidity (S131 ⁇ No), the damper control unit 315 of the control device 30a closes the first damper 16a and the fourth damper 16d, and the second damper 16b and the third damper 16b.
  • the damper 16c is opened (S132).
  • the processing unit 311a ends the process.
  • the damper control unit 315 fully opens the third damper 16c and fully closes the fourth damper 16d.
  • the air is sent in the order of the first bypass path 17b ⁇ the first cooling coil 12 ⁇ the desiccant rotor 13 as indicated by the thick arrow in FIG. That is, in the case of “No” in step S131, the control device 30a performs dehumidification using the first cooling coil 12 and the desiccant rotor 13 without using the total heat exchanger 11.
  • step S131 when the outside air absolute humidity is lower than the cooling coil outlet absolute humidity (S131 ⁇ Yes), the damper control unit 315 of the control device 30a closes the first damper 16a, opens the second damper 16b, opens the third damper 16c, The fourth damper 16d is opened at a predetermined opening (S141), and the processing unit 311a ends the processing.
  • the air is sent in the order of the first bypass path 17b ⁇ the first cooling coil 12 ⁇ the desiccant rotor 13 and the second bypass path 17c, as indicated by the thick arrows in FIG.
  • the amount of air passing through the desiccant rotor 13 and the second bypass path 17c becomes a predetermined flow rate according to the opening degree of the third damper 16c and the fourth damper 16d.
  • the damper control unit 315 decreases the opening of the third damper 16c and increases the opening of the fourth damper 16d.
  • the damper control unit 315 increases the opening of the third damper 16c and decreases the opening of the fourth damper 16d.
  • the air is mixed with the return air from the room at the outlet of the desiccant air conditioner 10, and then the temperature is lowered by sensible heat treatment in the second cooling coil 21. Supplied indoors.
  • FIG. 10 is a diagram showing the division of regions according to the state of the outside air in the desiccant air conditioning system of the present embodiment in the air diagram. Since each axis and each line in FIG. 10 conform to a general air diagram, description thereof is omitted.
  • the “dry bulb temperature” on the horizontal axis in the air diagrams of FIGS. 10 to 14 is the “temperature” in the present embodiment.
  • the air state is divided into regions 801 to 804 by lines L1 to L3.
  • the line L1 is a line indicating the absolute humidity (required absolute humidity) preset by the administrator.
  • a point 811 is a point indicating the state of return air
  • a line L2 including the point 811 is a line indicating an isoenthalpy (return air enthalpy) with the return air
  • a line L3 is a line indicating the absolute humidity at the outlet of the first cooling coil 12 during the rated operation (cooling coil outlet absolute humidity).
  • a region where the absolute humidity is equal to or lower than the absolute humidity indicated by the line L1 is referred to as a region 801.
  • a region where the absolute humidity is higher than the absolute humidity indicated by the line L1 and the enthalpy is equal to or higher than the enthalpy indicated by the line L2 is referred to as a region 802.
  • a region where the enthalpy is lower than the enthalpy indicated by the line L2 and the absolute humidity is equal to or higher than the absolute humidity indicated by the line L3 is referred to as a region 803.
  • a region where the enthalpy is lower than the enthalpy indicated by the line L2, the absolute humidity is lower than the absolute humidity indicated by L3, and is higher than the absolute humidity indicated by the line L1, is referred to as a region 804.
  • FIG. 11 is a state transition diagram illustrating a case where the state of the outside air is in the region indicated by region 801, and corresponds to the case where “No” is determined in step S111 of FIG.
  • the air is sent in the order of the first bypass path 17b ⁇ the first cooling coil 12 ⁇ the second bypass path 17c, as indicated by the thick arrow in FIG. .
  • the air transitions from a point 901 to a point 902 because the temperature can be lowered. In this case, only the sensible heat treatment is performed in the first cooling coil 12.
  • the air is mixed with the return air in the state of the point 903 (the same state as the point 811 in FIG. 10) to be in the state of the point 904. Further, the temperature of the air is lowered by the second cooling coil 21 in the internal air conditioner 20 to a state of a point 905, and the air is supplied into the room. That is, only the sensible heat treatment is performed in the second cooling coil 21.
  • the desiccant air conditioning system 1a does not use the total heat exchanger 11 and the desiccant rotor 13, thereby reducing pressure loss and eliminating unnecessary energy loss.
  • FIG. 12 is a state transition diagram illustrating a case where the state of the outside air is in the region indicated by region 802, which corresponds to the case where “No” is determined in step S121 of FIG.
  • the air is sent in the order of the total heat exchanger 11 ⁇ the first cooling coil 12 ⁇ the desiccant rotor 13 as shown by the thick arrow in FIG.
  • the temperature of the air is lowered by the total heat exchanger 11, and the air transitions to the state of the point 1002. Further, the air is further lowered in temperature and absolute humidity by the first cooling coil 12, and transitions to the state of the point 1003.
  • the absolute humidity is further lowered, and the state transitions to the state of the point 1004.
  • the temperature of the point 1004 after passing through the desiccant rotor 13 is higher than the temperature of the point 1003.
  • the air is mixed with the return air in the state of the point 1005 (the same state as the point 811 in FIG. 10) and becomes the state of the point 1006. Further, the temperature of the air is lowered by the second cooling coil 21 in the internal air conditioner 20 to a state of a point 1007, and the air is supplied into the room. That is, only the sensible heat treatment is performed in the second cooling coil 21.
  • the desiccant air conditioning system 1a performs dehumidification by the total heat exchanger 11, the cooling coil 12, and the desiccant rotor 13 when the enthalpy and absolute humidity of the outside air are sufficiently high.
  • the desiccant air conditioning system 1a does not lower the temperature of the first cooling coil 12 more than necessary, it is possible to set the chilled water temperature higher than in the case of only ordinary cooling and dehumidification.
  • COP Coefficient Of Performance
  • FIG. 13 is a state transition diagram showing a case where the state of the outside air is in the region indicated by region 803, and corresponds to the case where “No” is determined in step S131 of FIG.
  • the air is sent in the order of the first bypass path 17b ⁇ the first cooling coil 12 ⁇ the desiccant rotor 13 as indicated by the thick arrow in FIG.
  • the air is lowered in temperature and absolute humidity by the first cooling coil 12, and transitions to the state of the point 1102.
  • the absolute humidity is further lowered, and the state transitions to the state of the point 1103.
  • the temperature of the point 1103 after passing through the desiccant rotor 13 is higher than the temperature of the point 1102.
  • the air is mixed with the return air in the state of the point 1104 (the same state as the point 811 in FIG. 10) and becomes the state of the point 1105. Further, the temperature of the air is lowered by the second cooling coil 21 in the internal air conditioner 20 to a state of a point 1106, and the air is supplied into the room. That is, only the sensible heat treatment is performed in the second cooling coil 21.
  • the indoor enthalpy is higher than the enthalpy of the outside air. Therefore, if the enthalpy is replaced by the total heat exchanger 11, the enthalpy of the air rises, and the enthalpy lowering process that is not necessary originally becomes necessary. As shown in FIG. 8, since air does not pass through the total heat exchanger 11, unnecessary enthalpy lowering processing can be avoided, and the efficiency of the desiccant air conditioning system 1a can be improved.
  • FIG. 14 is a state transition diagram illustrating a case where the state of the outside air is in the region indicated by region 804, and corresponds to the case where “Yes” is determined in step S131 of FIG.
  • the air flows from the first bypass path 17b ⁇ the first cooling coil 12 ⁇ the desiccant rotor 13 and the second bypass path 17c, as indicated by the thick arrows in FIG. Sent in the order.
  • a part of the air passes through the desiccant rotor 13 and the rest passes through the second bypass path 17c.
  • the temperature of the air is lowered by the first cooling coil 12, and the air transitions to the state of the point 1202. Note that only the sensible heat treatment is performed in the first cooling coil 12.
  • the air is mixed with the return air in the state of the point 1205 (the same state as the point 811 in FIG. 10) to be in the state of the point 1206. Further, the temperature of the air is lowered by the second cooling coil 21 in the internal air conditioner 20 to a state of a point 1207, and the air is supplied into the room. That is, only the sensible heat treatment is performed in the second cooling coil 21.
  • the absolute humidity of the outside air is relatively low.
  • the air is allowed to pass through the desiccant rotor 13
  • by not allowing all the air to pass through the desiccant rotor 13 it is possible to avoid excessive dehumidification, reduce the pressure loss, and enable an energy efficient operation.
  • the desiccant air conditioning system 1a of the present embodiment can operate the second air supply fan 22 in accordance with the indoor state. By doing in this way, also in desiccant air-conditioning system 1a, it becomes possible to operate efficiently according to the state of a room. Furthermore, by determining the supply air volume using the equation (1), it is possible to determine the appropriate supply air volume more accurately. Then, by using the indoor sensible heat and latent heat load, for example, the number of people in the room as the indoor conditions, it is possible to operate the appropriate desiccant air conditioning system 1a according to the number of people in the room.
  • the control device 30a in the desiccant air conditioning system 1a controls the air passing through the main path 17a, the first bypass path 17b, and the second bypass path 17c in accordance with the enthalpy and absolute humidity of the outside air. . By doing in this way, control of the efficient desiccant air conditioning system 1a according to the enthalpy and humidity of outside air is attained.
  • control device 30a of the desiccant air conditioning system 1a allows the air to flow when the absolute humidity of the outside air is lower than the absolute humidity required for the outlet of the desiccant external air conditioner 10 (that is, the outlet of the desiccant rotor 13).
  • the first damper 16a, the second damper 16b, the third damper 16c, and the fourth damper 16d are controlled so as to bypass the total heat exchanger 11 and the desiccant rotor 13.
  • the control device 30a performs control so that the total heat exchanger 11 and the desiccant rotor 13 are not used, so that useless energy loss can be eliminated.
  • control device 30a of the desiccant air conditioning system 1a has a higher absolute humidity of the outside air than the absolute humidity required for the outlet of the desiccant air conditioner 10 (that is, the outlet of the desiccant rotor 13), and the enthalpy of the outside air.
  • the first damper 16a, the second damper 16b, the third damper 16c, and the fourth damper 16d are controlled so that the air passes through the total heat exchanger 11 and the desiccant rotor 13.
  • the enthalpy and the absolute humidity are in a high state. Therefore, it is necessary to perform sufficient dehumidification.
  • the temperature of the first cooling coil 12 is not lowered more than necessary by the controller 30a performing dehumidification by the total heat exchanger 11 and the desiccant rotor 13. Accordingly, the COP of the refrigerator 40 that is cooling the first cooling coil 12 can be improved.
  • control device 30a of the desiccant air conditioning system 1a has a higher absolute humidity of the outside air than the absolute humidity required for the outlet of the desiccant external air conditioner 10 (that is, the outlet of the desiccant rotor 13), and the enthalpy of the outside air. Is lower than the return air enthalpy and the absolute humidity of the outside air is higher than the absolute humidity at the outlet of the first cooling coil 12 during rated operation, the air bypasses the total heat exchanger 11 and passes through the desiccant rotor 13.
  • the first damper 16a, the second damper 16b, the third damper 16c, and the fourth damper 16d are controlled.
  • control apparatus 30a of the desiccant air conditioning system 1a which concerns on this embodiment is higher than the absolute humidity requested
  • the first damper 16a, the second damper 16b, the third damper 16c, and the fourth damper 16d are controlled to pass through.
  • the absolute humidity of the outside air is relatively low. In such a case, if all the air is allowed to pass through the desiccant rotor 13, there is a possibility that the air has a lower humidity than necessary. In the present embodiment, when the outside air is in such a state, it is possible to avoid excessive dehumidification by not allowing all the air to pass through the desiccant rotor 13.
  • control device 30a of the desiccant air conditioning system 1a has a higher absolute humidity of the outside air than the absolute humidity required for the outlet of the desiccant air conditioner 10 (that is, the outlet of the desiccant rotor 13), and the enthalpy of the outside air. Is lower than the return air enthalpy and the absolute humidity of the outside air is lower than the absolute humidity at the outlet of the first cooling coil 12 during rated operation, the higher the absolute humidity of the outside air, the more the amount of air passing through the desiccant rotor 13 Thus, the first damper 16a, the second damper 16b, the third damper 16c, and the fourth damper 16d are controlled.
  • control device 30a sets the first damper 16a, the second damper 16b, the third damper 16c, and the fourth damper 16d so that the amount of air passing through the second bypass path 17c increases as the absolute humidity of the outside air decreases. Control.
  • the desiccant air-conditioning system 1a which concerns on this embodiment can perform the dehumidification of a preferable state, making it possible to avoid the dehumidification more than necessary.
  • the state of the outside air is controlled by dividing the areas 801 to 804 by enthalpy and absolute humidity. However, these areas are further divided by temperature (dry bulb temperature) and relative humidity. Also good. By doing in this way, it can respond to a finer weather condition.
  • the air supply amount of the second air supply fan 22 is calculated based on the number of people in the room and the amount of heat generated by the device.
  • the present invention is not limited to this, and it is calculated in consideration of humidity and the like. Also good.
  • the calculation of the number of people in the room may be performed by a scale or the like installed on the floor.
  • the control device 30a may hold data in which a computer used by an individual is associated with the weight of the individual.
  • the calculation unit 313 of the control device 30a calculates the heat generation amount of the person from the computer that is turned on and the weight of the person using the computer, and the desiccant air conditioning system based on the heat generation amount.
  • the sensible heat load to be processed by 1a may be calculated.
  • the desiccant air conditioner 10 may be an external air conditioner that does not have the desiccant rotor 13.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • Each of the above-described configurations, functions, units 311a, 312 to 316, storage device 330, and the like may be realized by hardware by designing a part or all of them, for example, with an integrated circuit. Further, as shown in FIG. 2, the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor such as the CPU 320.
  • control lines and information lines are those that are considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)

Abstract

 効率的な除湿を行うため、除湿を行うデシカント外調機(10)と、室内への給気を行う第2給気ファン(22)を有し、温度の調整を行う内調機(20)と、第2給気ファン(22)の風量制御を行う制御装置(30)と、を備え、制御装置(30)は、室内の状態に関する情報である室内状態値(71)を基に、給気風量を算出し、算出した給気風量に従って給気ファンを制御することを特徴とする。また、給気風量={デシカント空調システム(1a)が処理すべき顕熱負荷量/(定圧比熱×空気密度×給気吹出温度と室内温度との差)}によって、給気風量を決定してもよい。

Description

デシカント空調システム及びデシカント空調システムの制御方法
 本発明は、除湿を行うデシカント空調システム及びデシカント空調システムの制御方法の技術に関する。
 乾燥剤や、除湿剤を用いることで、冷媒を用いることなく除湿や、減湿を行うデシカントロータを備えているデシカント空調機がある。
 このようなデシカント空調機について、特許文献1,2に記載の技術が開示されている。特許文献1,2には、外気の湿度や、温度の状態に応じて、給気の経路を切り換える低温再生デシカント空調機が記載されている。
特開2012-145247号公報 特開2011-242117号公報
 特許文献1,2に記載の技術は、エンタルピのみで制御モード(冷房モード、暖房モード)を切り換えている。このため、特許文献1,2に記載の技術は、外気の湿度が十分に低い場合でも除湿を行ってしまうため、効率的な除湿を行っていないという課題がある。さらに、特許文献1,2に記載の技術は、室内の状態に応じた制御が行われていないという課題もある。
 このような背景に鑑みて本発明がなされたのであり、本発明は、効率的な除湿を行うことを課題とする。
 前記した課題を解決するため、本発明は、室内の状態に関する情報を基に、内調機の給気ファンにおける風量を決定することを特徴とする。
 本発明によれば、効率的な除湿を行うことができる。
本実施形態に係るデシカント空調システムの構成例を示す図である。 本実施形態に係るデシカント空調システムの制御装置の構成例を示す図である。 本実施形態に係るデシカント空調システムの制御装置における風量制御の処理手順を示すフローチャートである。 本実施形態に係る室内の人数と、外気風量、給気風量、還気風量の関係を示す図である。 本実施形態に係る制御装置における経路制御の処理手順を示すフローチャートである。 本実施形態に係るデシカント空調システムにおけるエアの経路を示す図(その1)である。 本実施形態に係るデシカント空調システムにおけるエアの経路を示す図(その2)である。 本実施形態に係るデシカント空調システムにおけるエアの経路を示す図(その3)である。 本実施形態に係るデシカント空調システムにおけるエアの経路を示す図(その4)である。 本実施形態に係るデシカント空調システムにおける外気の状態による領域の分割を示す図である。 本実施形態に係るエアの状態遷移を示す図(その1)である。 本実施形態に係るエアの状態遷移を示す図(その2)である。 本実施形態に係るエアの状態遷移を示す図(その3)である。 本実施形態に係るエアの状態遷移を示す図(その4)である。
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。
[デシカント空調システム]
 図1は、本実施形態に係るデシカント空調システムの構成例を示す図である。
 デシカント空調システム1aは、デシカント外調機10と、内調機20と、制御装置(制御手段)30aと、冷凍機40とを有している。なお、図1において、紙面右側が室内側であり、紙面左側が屋外側である。
[デシカント外調機]
 デシカント外調機10は、主に外気を除湿するためのものであり、第1給気ファン14、全熱交換器11、第1冷却コイル12、デシカントロータ13等を有している。なお、本実施形態では、屋外の空気を「外気」と称し、デシカント空調システム1a内を通過する空気を「エア」と称することとする。デシカント外調機10では、屋外側から順に、第1給気ファン14、全熱交換器11、第1冷却コイル12、デシカントロータ13が設置される。
 また、デシカント外調機10は、第1給気ファン14、全熱交換器11、第1冷却コイル12、デシカントロータ13を経由するエアのメイン経路17aを有している。そして、デシカント外調機10は、第1給気ファン14の後段と、全熱交換器11の後段とでメイン経路17aに接続し、全熱交換器11を迂回する第1バイパス経路17bを有している。さらに、デシカント外調機10は、第1冷却コイル12の後段と、デシカントロータ13の後段とでメイン経路17aに接続し、デシカントロータ13を迂回する第2バイパス経路17cを有する。
 また、デシカント外調機10は、室内の空気を排気するための排気ファン15を有している。室内の空気は、排気ファン15を介した後、デシカントロータ13、全熱交換器11を経由して屋外へ排気される。
 第1給気ファン14、排気ファン15は、それぞれインバータ61,62によって駆動される。
 全熱交換器11は、紙等からなり、自身を通過するエアと排気との間で熱及び湿気を交換する。
 第1冷却コイル12には、冷凍機40が接続されている。第1冷却コイル12は、通過するエアの温度を下げることで顕熱処理も行うが、潜熱処理、すなわち、湿気の除去を主に行うものである。具体的には、第1冷却コイル12は、冷凍機40で冷却された冷却水とエアとの間で熱交換をした熱媒(流体)を循環させることによって流通エアとの熱交換を行う。
 デシカントロータ13は、円盤状のものであり、塩化リチウムや、シリカゲルや、ゼオライトといった除湿剤又は乾燥剤を有している。デシカントロータ13は、図示しない回転モータによって中心軸を回転軸とする回転が可能である。この回転により、デシカントロータ13は、除湿エリア、再生エリアを循環して通過する。除湿エリアには、比較的高湿度のエアが第1冷却コイル12から供給されている。また、再生エリアには、比較的乾燥している(低湿度)エアが排気ファン15を介して室内から供給されている。
 デシカントロータ13は、除湿エリアにおいて、全熱交換器11と、第1冷却コイル12で除湿しきれなかった外気の湿度を吸湿する。また、デシカントロータ13は、再生エリアにおいて、排気ファン15を介して室内から供給される、比較的乾燥している(低湿度)エアによって除湿剤又は乾燥剤から水分が放出されることで、除湿剤又は乾燥剤が再び吸湿可能となる。
 メイン経路17aには、全熱交換器11へのエアの遮断・通過を切り換える第1ダンパ16aが全熱交換器11の前段に設けられている。また、メイン経路17aには、デシカントロータ13へのエアの流量を調節する第3ダンパ16cがデシカントロータ13の前段に設けられている。
 さらに、第1バイパス経路17bには、第1バイパス経路17bにおけるエアの遮断・通過を切り換える第2ダンパ16bが設けられている。そして、第2バイパス経路17cには、第2バイパス経路17cにおけるエアの流量を調節する第4ダンパ16dが設けられている。なお、第1ダンパ16a及び第2ダンパ16bは原則として「全開」もしくは「全閉」のみであるが、第3ダンパ16c及び第4ダンパ16dは開度の調節が可能である。
[内調機]
 内調機20は、主にデシカント外調機10で除湿されたエアを冷却して、室内に供給するためのものであり、第2冷却コイル21及び第2給気ファン(給気ファン)22を有している。
 デシカント外調機10から近い順に第2冷却コイル21、第2給気ファン22の順に配置されるのが好ましいが、この順に配置されなくてもよい。
 第2冷却コイル21には、冷凍機40が接続されている。第2冷却コイル21は、通過するエアの顕熱処理を主に行うものである。なお、第2冷却コイル21に供給されるエアは、室内のエアの一部(還気)と、デシカント外調機10から供給される低湿度のエアとが混合したものである。
 第2給気ファン22は、インバータ63によって駆動され、第2冷却コイル21で冷却されたエアを室内に供給する。
[各計測器]
 屋外には、温度計51、第1湿度計52等が設置され、第1冷却コイル12の出口に絶対湿度を算出するための第2湿度計53と図示しない温度計(又は露点計)が設置されている。
[制御装置]
 制御装置30aは、温度計51や、第1湿度計52や、第2湿度計53や、室内に設置された図示しない温度計、湿度計等から得られる情報を基に、第1ダンパ16a~第4ダンパ16dの開閉及び開度を制御するものでありPLC(Programmable logic controller:プログラマブルロジックコントローラ)等である。制御装置30aの入出力情報を、細かい破線矢印で示す。
 さらに、制御装置30aは、室内状態値71を基に、第1給気ファン14、第2給気ファン22、排気ファン15におけるインバータ61~63を制御することで、第1給気ファン14、第2給気ファン22、排気ファン15の回転速度を制御する。室内状態値71については、後記する。
 図2は、本実施形態に係るデシカント空調システムの制御装置の構成例を示す図である。適宜、図1を参照する。
 制御装置30aは、メモリ310、CPU(Central Processing Unit)320及び記憶装置330を有している。
 メモリ310には、記憶装置330に格納されているプログラムが展開され、CPU320によって実行されることで、処理部311a、処理部311aを構成する取得部312、算出部313、判定部314、ダンパ制御部315及びインバータ制御部316が具現化している。
 取得部312は、温度計51、第1湿度計52、第2湿度計53等から情報を取得する。
 算出部313は、デシカント空調システム1aの制御を行うために必要な各種値を算出する。
 判定部314は、デシカント空調システム1aの制御における各種判定を行う。
 ダンパ制御部315は、判定部314の結果に応じて、第1ダンパ16a~第4ダンパ16dの開閉及び開度を制御する。
 インバータ制御部316は、室内状態値71を基に第1給気ファン14、第2給気ファン22、排気ファン15におけるインバータ61~63を制御する。
[フローチャート(風量制御)]
 図3は、本実施形態に係るデシカント空調システムの制御装置における風量制御の処理手順を示すフローチャートである。適宜、図1、図2を参照する。
 制御装置30aの取得部312は、顕熱及び潜熱の負荷量が推定できる情報である室内状態値71を取得し(S201)、必要に応じて、算出部313が取得した室内状態値71を基に、顕熱及び潜熱の負荷量が推定できる情報である室内条件値を算出する(S202)。室内状態値71とは、例えば、室内で稼動しているコンピュータの台数等であり、また、室内条件値とは、稼動しているコンピュータの台数に基づいて算出される室内の人数等である。
 次に、制御装置30aの算出部313は室内条件値における人数と、予め設定されている定数値である「一人当たりの必要外気取入量(m/(h・人)」とを乗算することにより、外気取入量を算出する(S203)。
 続いて、制御装置30aの算出部313は、室内にいる人により発生する1人あたりの顕熱負荷(W/人)と、室内の人数の積である人発生顕熱負荷量(W)を算出する。さらに、算出部313は、照明・コンセント等による単位床面積当たりの顕熱負荷(W/m)と、床面積との積である機器発生顕熱負荷量(W)を算出する。なお、1人あたりの顕熱負荷及び単位床面積当たりの顕熱負荷は、予め設定されている定数値である。
 そして、制御装置30aの算出部313は、人発生顕熱負荷と、機器発生顕熱負荷とを加算することによりデシカント空調システム1aが処理すべき顕熱負荷量(W)を算出する(S204)。ここで、処理すべき顕熱負荷量は、室内の温度を設定温度に保つため、顕熱処理すべき室内において発生する熱量である。
 続いて、制御装置30aの算出部313はステップS204で算出された処理すべき顕熱負荷量を基に、以下の式(1)により給気風量を算出する(S205)。
 給気風量=3600×q/(Cp×ρ×Δt)・・・(1)
 なお、式(1)において、「3600」は秒から時間への単位換算(s/h)である。また、「q」はステップS204で算出された処理すべき顕熱負荷量(W=J/s)である。さらに、「Cp」は定圧比熱(≒1006J/(kg・K))であり、「ρ」は空気密度(≒1.2kg/m)であり、「Δt」は給気吹出温度と室内温度との差(℃)である。
 制御装置30aのインバータ制御部316は、算出した給気風量に基づいて、第1給気ファン14、第2給気ファン22及び排気ファン15におけるインバータ61~63を制御する(S206)。ここで、インバータ制御部316は、ステップS203で算出された外気取入量を基に、第1給気ファン14を駆動するインバータ61を制御する。また、インバータ制御部316は、ステップS205で算出された給気風量を基に、第2給気ファン22を駆動するインバータ63を制御する。また、インバータ制御部316は、ステップS203で算出された外気取入量を基に、排気ファン15を駆動するインバータ62を制御する。
 図4に、室内の潜熱負荷が大きい場合の室内の人数と、外気風量、給気風量、還気風量の関係の一例を示す。図4において、横軸は室内の人数を示し、縦軸は風量を示している。符号1601が外気風量(=外気取入量)を示す線であり、第1給気ファン14の風量である。また、符号1602が給気風量を示す線であり、第2給気ファン22の風量である。そして、符号1603が還気風量を示す線である。また、各プロットはシミュレーションによる計算値である。なお、図4において、外気風量の単位は「m/h」に換算してある。また、図4では、室内のコンピュータ等の機器による発熱の影響は考慮していない。
 さらに、線1611はデシカント空調システム1aの設計時に設定した人数である。
 図4に示すように、室内の人数が減少すると、室内における潜熱負荷が減少するため、外気取入量(=外気風量:線1601)が減少し、また室内における顕熱負荷が減少するため、給気風量(線1602)も減少する。
 また、室内の人数が増加すると、室内における潜熱負荷、顕熱負荷共に増加するため、外気取入量(線1601)は増加し、それに伴い給気風量(線1602)も増加する。
 なお、室内の顕熱負荷が大きい図4に示すような場合には、人数の増加に伴う給気風量の増加量は、外気風量の増加量よりも緩やかになる。
 従って、給気風量(線1602)と、外気風量(線1601)との差である還気風量(線1603)は、室内の人数が増えるに従って減少していく。
[フローチャート(経路制御)]
 図5は、本実施形態に係る制御装置における経路制御の処理手順を示すフローチャートである。適宜、図1、図2を参照する。また、図6~図9は本実施形態に係るデシカント空調システムにおけるエアの経路を示す図である。なお、図6~図9における各符号は図1と同様であるので、各要素の説明を省略する。ここで、図5に示す処理は、図3に示す処理と並列に行われるものである。
 まず、制御装置30aの算出部313は、取得部312が温度計51や、第1湿度計52や、図示しない室内の温度計、湿度計から取得した情報を基に、外気のエンタルピ及び室内のエンタルピ(=還気のエンタルピ)といった各種エンタルピを算出する(S101)。以下、外気のエンタルピを外気エンタルピと称し、室内のエンタルピ(=還気のエンタルピ)を還気エンタルピと称する。
 次に、制御装置30aの算出部313は、取得部312が温度計51や、第1湿度計52から得た湿度の情報と温度情報等から、外気の絶対湿度(外気絶対湿度)を算出する(S102)。以下、外気の絶対湿度を外気絶対湿度と称する。
 続いて、制御装置30aの判定部314は、外気絶対湿度がデシカント外調機10の出口に要求される絶対湿度(以下、要求絶対湿度と称する)より高いか否かを判定する(S111)。要求絶対湿度は予め手入力で制御装置30aに入力設定されている値である。
 ステップS111で、外気絶対湿度が要求絶対湿度以下の場合(S111→No)、制御装置30aのダンパ制御部315は第1ダンパ16a及び第3ダンパ16cを閉じるとともに、第2ダンパ16b及び第4ダンパ16dを開き(S112)、処理部311aは処理を終了する。このとき、ダンパ制御部315は第3ダンパ16cを全閉とし、第4ダンパ16dを全開とする。これにより、エアは、図6における太線の矢印に示すように、第1バイパス経路17b→第1冷却コイル12→第2バイパス経路17cの順に送られる。つまり、外気絶対湿度が、要求絶対湿度以下の場合、外気を除湿する必要がないので、エアは、全熱交換器11及びデシカントロータ13を介さない。なお、この場合の第1冷却コイル12は、主にエアの温度を下げる役割を有する。
 また、ステップS111で、外気絶対湿度が要求絶対湿度より高い場合(S111→Yes)、制御装置30aの判定部314は、外気エンタルピが還気エンタルピより低いか否かを判定する(S121)。
 ステップS121で、外気エンタルピが還気エンタルピ以上の場合(S121→No)、制御装置30aのダンパ制御部315は第1ダンパ16a及び第3ダンパ16cを開くとともに、第2ダンパ16b及び第4ダンパ16dを閉じ(S122)、処理部311aは処理を終了する。このとき、ダンパ制御部315は第3ダンパ16cを全開とし、第4ダンパ16dを全閉とする。これにより、エアは、図7における太線の矢印に示すように、全熱交換器11→第1冷却コイル12→デシカントロータ13の順に送られる。つまり、ステップS121で「No」の場合は、外気の絶対湿度及びエンタルピが高い状態であるので、制御装置30aは、全熱交換器11、第1冷却コイル12及びデシカントロータ13を用いて十分な除湿を行う。
 ステップS121で、外気エンタルピが還気エンタルピより低い場合(S121→Yes)、制御装置30aの判定部314は、外気絶対湿度が定格運転時における第1冷却コイル12の出口における絶対湿度(冷却コイル出口絶対湿度)より低いか否かを判定する(S131)。冷却コイル出口絶対湿度は、第1冷却コイル12が定格運転を行っているときに第2湿度計53から取得される値でもよいし、予め手入力で制御装置30aに入力設定されている値でもよい。ここで、第1冷却コイル12の出口における絶対湿度が境界条件となっているのは、デシカントロータ13の除湿能力を境界条件とするためである。言い換えれば、デシカントロータ13の除湿能力を境界条件とするために、第1冷却コイル12の出口における絶対湿度を境界条件としている。
 ステップS131で、外気絶対湿度が冷却コイル出口絶対湿度以上の場合(S131→No)、制御装置30aのダンパ制御部315は第1ダンパ16a及び第4ダンパ16dを閉じ、第2ダンパ16b及び第3ダンパ16cを開く(S132)。その後、処理部311aは処理を終了する。このとき、ダンパ制御部315は第3ダンパ16cを全開とし、第4ダンパ16dを全閉とする。これにより、エアは、図8における太線の矢印に示すように、第1バイパス経路17b→第1冷却コイル12→デシカントロータ13の順に送られる。つまり、ステップS131で「No」の場合は、制御装置30aは、全熱交換器11を用いず、第1冷却コイル12、デシカントロータ13を用いて除湿を行う。
 ステップS131で、外気絶対湿度が冷却コイル出口絶対湿度より低い場合(S131→Yes)、制御装置30aのダンパ制御部315は第1ダンパ16aを閉じ、第2ダンパ16bを開き、第3ダンパ16c及び第4ダンパ16dを所定の開度で開き(S141)、処理部311aは処理を終了する。これにより、エアは図9における太線の矢印に示すように、第1バイパス経路17b→第1冷却コイル12→デシカントロータ13及び第2バイパス経路17cの順に送られる。なお、デシカントロータ13及び第2バイパス経路17cを通過するエアの量は、第3ダンパ16c及び第4ダンパ16dの開度に応じて所定の流量となる。
 例えば、外気の絶対湿度が小さいほど(要求絶対湿度に近いほど)、ダンパ制御部315は第3ダンパ16cの開度を小さくし、第4ダンパ16dの開度を大きくする。逆に、外気の絶対湿度が大きいほど(冷却コイル出口絶対湿度に近いほど)、ダンパ制御部315は第3ダンパ16cの開度を大きくし、第4ダンパ16dの開度を小さくする。
 以降、エアは、デシカント外調機10の出口において、室内からの還気と混合された後、第2冷却コイル21にて顕熱処理されることで温度を下げられ、第2給気ファン22によって室内へ供給される。
 次に、空気線図を参照して、本実施形態に係るデシカント空調システム1aの動作を説明する。
[空気線図]
 図10は、空気線図における本実施形態のデシカント空調システムにおける外気の状態による領域の分割を示す図である。
 図10における各軸、各線は一般的な空気線図に準じるため説明を省略する。なお、図10~図14の空気線図における横軸の「乾球温度」は、本実施形態における「温度」である。
 図10に示すように、空気状態は線L1~L3によって、領域801~804に分けられる。
 線L1は、管理者が予め設定しておく絶対湿度(要求絶対湿度)を示す線である。
 点811は、還気の状態を示す点であり、点811を含む線L2は、還気との等エンタルピ(還気エンタルピ)を示す線である。
 また、線L3は定格運転時における第1冷却コイル12の出口における絶対湿度(冷却コイル出口絶対湿度)を示す線である。
 そして、絶対湿度が線L1で示される絶対湿度以下の領域を領域801と称する。
 また、絶対湿度が線L1で示される絶対湿度より高く、かつ、エンタルピが線L2で示されるエンタルピ以上である領域を領域802と称する。
 続いて、エンタルピが線L2で示されるエンタルピより低く、かつ、絶対湿度が線L3で示される絶対湿度以上である領域を領域803と称する。
 さらに、エンタルピが線L2で示されるエンタルピより低く、絶対湿度がL3で示される絶対湿度より低く、かつ、線L1で示される絶対湿度より高い領域を領域804と称する。
[遷移図]
 以下、図11~図14を参照して、外気の状態が図10に示される各領域801~804であった場合において、本実施形態に係るデシカント空調システム1aにおけるエアの状態の遷移を説明する。
 なお、図11~図14における空気線図、領域801~804及び線L1~L3は図10に示すものと同一であるので、ここでの説明を省略する。
(外気が領域801の状態である場合)
 図11は、外気の状態が領域801に示す領域にある場合を示す状態遷移図であり、図5のステップS111で「No」が判定された場合に相当する。
 つまり、外気が点901で示される状態であったとすると、図6における太線の矢印に示されるように、エアは第1バイパス経路17b→第1冷却コイル12→第2バイパス経路17cの順に送られる。まず、エアは、第1冷却コイル12において、温度を下げられるため点901から点902の状態に遷移する。なお、この場合、第1冷却コイル12では、顕熱処理のみが行われる。
 そして、デシカント外調機10の出口において、エアは、点903の状態(図10の点811と同じ状態)にある還気と混合して点904の状態となる。さらに、エアは、内調機20における第2冷却コイル21によって、温度を下げられ点905の状態となって、室内に給気される。すなわち、第2冷却コイル21では顕熱処理のみが行われる。
 領域801のように、エンタルピ及び絶対湿度が十分低い場合において、除湿を行う必要がない。このような場合、本実施形態に係るデシカント空調システム1aは、全熱交換器11及びデシカントロータ13を使用しないことにより、圧力損失が低くなり無駄なエネルギロスをなくすことができる。
(外気が領域802の状態である場合)
 図12は、外気の状態が領域802に示す領域にある場合を示す状態遷移図であり、図5のステップS121で「No」が判定された場合に相当する。
 つまり、外気が点1001で示される状態であったとすると、図7における太線の矢印に示されるように、エアは全熱交換器11→第1冷却コイル12→デシカントロータ13の順に送られる。
 まず、エアは、全熱交換器11によって温度及び絶対湿度を下げられ、点1002の状態に遷移する。さらに、エアは第1冷却コイル12によって、温度及び絶対湿度をさらに下げられ、点1003の状態に遷移する。
 次に、エアはデシカントロータ13を通過することで、絶対湿度がさらに下げられ、点1004の状態に遷移する。なお、デシカントロータ13で潜熱処理される際に、凝縮熱が放出されるため、デシカントロータ13通過後の点1004の温度は、点1003の温度より高くなっている。
 そして、デシカント外調機10の出口において、エアは、点1005の状態(図10の点811と同じ状態)にある還気と混合して点1006の状態となる。さらに、エアは、内調機20における第2冷却コイル21によって温度を下げられ点1007の状態となって、室内に給気される。すなわち、第2冷却コイル21では顕熱処理のみが行われる。
 このように、本実施形態に係るデシカント空調システム1aは、外気のエンタルピ及び絶対湿度が十分高い場合、全熱交換器11、冷却コイル12及びデシカントロータ13による除湿を行う。このようにすることで、デシカント空調システム1aは、第1冷却コイル12の温度を必要以上に下げることがなくなるため、通常の冷却除湿のみの場合に比べて冷水温度を高く設定できるので冷凍機40のCOP(Coefficient Of Performance;成績係数)を向上させることができる。
(外気が領域803の状態である場合)
 図13は、外気の状態が領域803に示す領域にある場合を示す状態遷移図であり、図5のステップS131で「No」が判定された場合に相当する。
 つまり、外気が点1101で示される状態であったとすると、図8における太線の矢印に示されるように、エアは第1バイパス経路17b→第1冷却コイル12→デシカントロータ13の順に送られる。
 まず、エアは、第1冷却コイル12によって、温度及び絶対湿度を下げられ、点1102の状態に遷移する。
 次に、エアはデシカントロータ13を通過することで、絶対湿度がさらに下げられ、点1103の状態に遷移する。なお、デシカントロータ13で潜熱処理される際に、凝縮熱が放出されるため、デシカントロータ13通過後の点1103の温度は、点1102の温度より高くなっている。
 そして、デシカント外調機10の出口において、エアは、点1104の状態(図10の点811と同じ状態)にある還気と混合して点1105の状態となる。さらに、エアは、内調機20における第2冷却コイル21によって温度を下げられ点1106の状態となって、室内に給気される。すなわち、第2冷却コイル21では顕熱処理のみが行われる。
 外気が領域803の状態である場合、室内側のエンタルピが外気のエンタルピより高い状態である。従って、全熱交換器11によってエンタルピを交換してしまうと、エアのエンタルピが上昇してしまい、本来必要のないエンタルピの下降処理が必要となってしまう。図8に示すように、全熱交換器11をエアが介さないことで、不要なエンタルピの下降処理を避けることができ、デシカント空調システム1aの効率を向上させることができる。
(外気が領域804の状態である場合)
 図14は、外気の状態が領域804に示す領域にある場合を示す状態遷移図であり、図5のステップS131で「Yes」が判定された場合に相当する。
 つまり、外気が点1201で示される状態であったとすると、図9における太線の矢印に示されるように、エアは第1バイパス経路17b→第1冷却コイル12→デシカントロータ13及び第2バイパス経路17cの順に送られる。なお、前記したように、エアの一部はデシカントロータ13を通過し、残りは第2バイパス経路17cを通過する。
 まず、エアは、第1冷却コイル12によって、温度を下げられ、点1202の状態に遷移する。なお、第1冷却コイル12では、顕熱処理のみが行われる。
 次に、エアの一部はデシカントロータ13を通過することで、絶対湿度がさらに下げられ、点1203の状態に遷移する。なお、デシカントロータ13で潜熱処理される際に、凝縮熱が放出されるため、デシカントロータ13通過後の点1203の温度は、点1202の温度より高くなっている。
 そして、デシカントロータ13を通過したエア(点1203)は、第2バイパス経路17cを通過したエア(状態は点1202のまま)と混合することで、点1204の状態となる。
 続いて、デシカント外調機10の出口において、エアは、点1205の状態(図10の点811と同じ状態)にある還気と混合して点1206の状態となる。さらに、エアは、内調機20における第2冷却コイル21によって温度を下げられ点1207の状態となって、室内に給気される。すなわち、第2冷却コイル21では顕熱処理のみが行われる。
 外気が領域804の状態である場合、外気の絶対湿度は比較的低い状態である。このような場合、すべてのエアをデシカントロータ13に通過させてしまうと、必要以上にエアが低湿度となってしまう可能性がある。本実施形態によれば、すべてのエアをデシカントロータ13に通過させないことにより、必要以上の除湿を避けることができ、かつ圧力損失が下げられ、エネルギ的に効率的な運転が可能となる。
[まとめ]
 本実施形態のデシカント空調システム1aは、室内の状態に応じて第2給気ファン22を動作させることができる。このようにすることで、デシカント空調システム1aにおいても、室内の状態に応じて効率的に動作させることが可能となる。
 さらに、式(1)に示す式を用いて給気風量を決定することによって、より正確に適切な給気風量を決定することが可能となる。
 そして、室内の条件として室内の顕熱及び潜熱の負荷量が推定できるもの、例えば、室内における人数を用いることで、室内の人数に応じた適切なデシカント空調システム1aの動作が可能となる。
 本実施形態に係るデシカント空調システム1aにおける制御装置30aは、外気のエンタルピ及び絶対湿度の状態に応じて、メイン経路17a、第1バイパス経路17b及び第2バイパス経路17cを通過するエアの制御を行う。このようにすることで、外気のエンタルピ及び湿度に応じた、効率的なデシカント空調システム1aの制御が可能となる。
 また、本実施形態に係るデシカント空調システム1aの制御装置30aは、外気の絶対湿度がデシカント外調機10の出口(すなわち、デシカントロータ13の出口)に要求される絶対湿度より低い場合、エアが全熱交換器11及びデシカントロータ13を迂回するよう第1ダンパ16a、第2ダンパ16b、第3ダンパ16c、第4ダンパ16dを制御する。外気がこのような状態であると、エンタルピ及び絶対湿度が十分低い状態であるので、除湿を行う必要がない。従って、外気がこのような状態であるときに、制御装置30aが全熱交換器11及びデシカントロータ13を使用しないよう制御することにより、無駄なエネルギロスをなくすことができる。
 さらに、本実施形態に係るデシカント空調システム1aの制御装置30aは、外気の絶対湿度がデシカント外調機10の出口(すなわち、デシカントロータ13の出口)に要求される絶対湿度より高く、外気のエンタルピが還気のエンタルピより高い場合、エアが全熱交換器11及びデシカントロータ13を通過するよう第1ダンパ16a、第2ダンパ16b、第3ダンパ16c、第4ダンパ16dを制御する。外気がこのような状態であると、エンタルピ及び絶対湿度が高い状態であるので、十分な除湿を行う必要がある。従って、外気がこのような状態であるときに、制御装置30aが全熱交換器11及びデシカントロータ13による除湿を行うことで、第1冷却コイル12の温度を必要以上に下げることがなくなる。従って、第1冷却コイル12を冷却している冷凍機40のCOPを向上させることができる。
 また、本実施形態に係るデシカント空調システム1aの制御装置30aは、外気の絶対湿度がデシカント外調機10の出口(すなわち、デシカントロータ13の出口)に要求される絶対湿度より高く、外気のエンタルピが還気のエンタルピより低く、外気の絶対湿度が定格運転時における第1冷却コイル12の出口の絶対湿度より高い場合、エアが全熱交換器11を迂回し、デシカントロータ13を通過するよう第1ダンパ16a、第2ダンパ16b、第3ダンパ16c、第4ダンパ16dを制御する。外気がこのような状態である場合、室内側のエンタルピが外気のエンタルピより高い状態である。従って、全熱交換器11によってエンタルピを交換してしまうと、エアのエンタルピが上昇してしまい、本来必要のないエンタルピの下降処理が必要となってしまう。本実施形態では、外気がこのような状態である場合、全熱交換器11をエアが迂回するようにすることで、不要なエンタルピの下降処理を避けることができ、デシカント空調システム1aの効率を向上させることができる。
 そして、本実施形態に係るデシカント空調システム1aの制御装置30aは、外気の絶対湿度がデシカント外調機10の出口(すなわち、デシカントロータ13の出口)に要求される絶対湿度より高く、外気のエンタルピが還気のエンタルピより低く、外気の絶対湿度が定格運転時における第1冷却コイル12の出口の絶対湿度より低い場合、エアが全熱交換器11を迂回し、エアの一部がデシカントロータ13を通過するよう第1ダンパ16a、第2ダンパ16b、第3ダンパ16c、第4ダンパ16dを制御する。外気がこのような状態である場合、外気の絶対湿度は比較的低い状態である。このような場合、すべてのエアをデシカントロータ13に通過させてしまうと、必要以上にエアが低湿度となってしまう可能性がある。本実施形態では、外気がこのような状態である場合、すべてのエアをデシカントロータ13に通過させないことにより、必要以上の除湿を避けることができる。
 さらに、本実施形態に係るデシカント空調システム1aの制御装置30aは、外気の絶対湿度がデシカント外調機10の出口(すなわち、デシカントロータ13の出口)に要求される絶対湿度より高く、外気のエンタルピが還気のエンタルピより低く、外気の絶対湿度が定格運転時における第1冷却コイル12の出口の絶対湿度より低い場合、外気の絶対湿度が高いほど、デシカントロータ13を通過するエアの量が増加するよう、第1ダンパ16a、第2ダンパ16b、第3ダンパ16c、第4ダンパ16dを制御する。また、制御装置30aは外気の絶対湿度が低いほど、第2バイパス経路17cを通過するエアの量が増加するよう、第1ダンパ16a、第2ダンパ16b、第3ダンパ16c、第4ダンパ16dを制御する。このようにすることで、本実施形態に係るデシカント空調システム1aは必要以上の除湿を避けることを可能としつつ、好ましい状態の除湿を行うことができる。
 なお、本実施形態では、エンタルピと絶対湿度とで、外気の状態を領域801~804で分けて制御しているが、これらの領域が温度(乾球温度)や、相対湿度でさらに分割されてもよい。このようにすることで、より細かい気象条件に応じることができる。
 また、本実施形態では、室内の人数や、機器の発熱量を基に第2給気ファン22の給気風量が算出されているが、これに限らず、湿度等を考慮して算出されてもよい。
 室内の人数の算出は、床に設置された重量計等によって行われてもよい。また、個人が使用するコンピュータと、該個人の体重等を対応付けたデータを制御装置30aが保持していてもよい。そして、制御装置30aの算出部313は、電源が入っているコンピュータと、そのコンピュータを使用している人の体重等から、該人の発熱量を算出し、この発熱量を基にデシカント空調システム1aが処理すべき顕熱負荷量を算出してもよい。
 あるいは、室内に設置された温度計によって測定された室内の温度を基に、制御装置30aの算出部313がデシカント空調システム1aで処理すべき顕熱負荷量を算出してもよい。
 これらのようにすることで、室内の状態に応じた制御を、より精度を高くして行うことができる。
 また、デシカント外調機10をデシカントロータ13を有さない外調機としてもよい。
 本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した各構成、機能、各部311a,312~316、記憶装置330等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図2に示すように、前記した各構成、機能等は、CPU320等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、フラッシュメモリ等の記憶装置330に格納すること以外に、HD(Hard Disk)や、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
 1a デシカント空調システム
 10  デシカント外調機
 11  全熱交換器
 12  第1冷却コイル
 13  デシカントロータ
 14  第1給気ファン
 15  排気ファン
 16a 第1ダンパ
 16b 第2ダンパ
 16c 第3ダンパ
 16d 第4ダンパ
 17a メイン経路
 17b 第1バイパス経路
 17c 第2バイパス経路
 20  内調機
 21  第2冷却コイル
 22  第2給気ファン(給気ファン)
 30a 制御装置(制御手段)
 61~63 インバータ
 71  室内状態値(室内の状態に関する情報)
 311a 処理部
 312 取得部
 313 算出部
 314 判定部
 315 ダンパ制御部
 316 インバータ制御部
 801~804 領域

Claims (4)

  1.  デシカントロータによる除湿を行うデシカント外調機と、
     室内への給気を行う給気ファンを有し、温度の調整を行う内調機と、
     前記給気ファンの風量制御を行う制御手段と、
     を備え、
     前記制御手段は、
     前記室内の状態に関する情報を基に、前記給気ファンにおける風量である給気風量を算出し、前記算出した給気風量に従って前記給気ファンを制御する
     ことを特徴とするデシカント空調システム。
  2.  前記制御手段は、
     前記室内の状態に関する情報を基に、前記デシカント空調システムが処理すべき顕熱負荷量を算出し、
     前記算出したデシカント空調システムが処理すべき顕熱負荷量を基に前記給気風量を算出する
     ことを特徴とする請求項1に記載のデシカント空調システム。
  3.  前記室内の状態は、前記室内における顕熱及び潜熱の負荷量が推定できる情報である
     ことを特徴とする請求項1に記載のデシカント空調システム。
  4.  デシカントロータによる除湿を行うデシカント外調機と、
     室内への給気を行う給気ファンを有し、温度の調整を行う内調機と、
     前記給気ファンの風量制御を行う制御手段と、
     を有するデシカント空調システムにおいて、
     前記制御手段が、
     前記室内の状態に関する情報を基に、前記給気ファンにおける風量である給気風量を算出し、前記算出した給気風量に従って前記給気ファンを制御する
     ことを特徴とするデシカント空調システムの制御方法。
PCT/JP2014/083250 2014-02-07 2014-12-16 デシカント空調システム及びデシカント空調システムの制御方法 WO2015118778A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014022669A JP2015148412A (ja) 2014-02-07 2014-02-07 デシカント空調システム及びデシカント空調システムの制御方法
JP2014-022669 2014-02-07

Publications (1)

Publication Number Publication Date
WO2015118778A1 true WO2015118778A1 (ja) 2015-08-13

Family

ID=53777594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083250 WO2015118778A1 (ja) 2014-02-07 2014-12-16 デシカント空調システム及びデシカント空調システムの制御方法

Country Status (2)

Country Link
JP (1) JP2015148412A (ja)
WO (1) WO2015118778A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6663655B2 (ja) * 2015-06-05 2020-03-13 株式会社竹中工務店 デシカント空調装置
EP3511638A4 (en) * 2016-09-12 2019-10-09 Technomirai Co., Ltd DIGITAL INTELLIGENT ENERGY SAVING SYSTEM, METHOD AND PROGRAM
JP7078375B2 (ja) * 2017-10-05 2022-05-31 高砂熱学工業株式会社 デシカントロータを用いた外気処理機及び外気処理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285353A (ja) * 1995-04-07 1996-11-01 Toshiba Corp 空気調和装置
JP2010255970A (ja) * 2009-04-28 2010-11-11 Sanyo Electric Co Ltd 外調機および外調システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285353A (ja) * 1995-04-07 1996-11-01 Toshiba Corp 空気調和装置
JP2010255970A (ja) * 2009-04-28 2010-11-11 Sanyo Electric Co Ltd 外調機および外調システム

Also Published As

Publication number Publication date
JP2015148412A (ja) 2015-08-20

Similar Documents

Publication Publication Date Title
JP5975937B2 (ja) 空気調和機
JP4169747B2 (ja) 空気調和機
JP5328951B2 (ja) 空気調和システム
KR101594422B1 (ko) 태양열 제습 냉방 시스템
JP6251311B2 (ja) 低露点乾燥室用低温再生デシカント除湿システム
JP5759808B2 (ja) サーバ室管理用の空調システムおよび空調制御方法
JP6116096B2 (ja) 除湿システム
WO2015118778A1 (ja) デシカント空調システム及びデシカント空調システムの制御方法
JP5528390B2 (ja) 空調装置、空調方法及びプログラム
WO2017183689A1 (ja) 外気処理システム、外気処理システムの制御装置及び制御方法
JP2016017674A (ja) 外気利用空調システム
JP2010096383A (ja) 空調装置
WO2015118779A1 (ja) デシカント空調システム及びデシカント空調システムの制御方法
JP7258122B2 (ja) 空気処理装置
JP6616973B2 (ja) 排熱利用型除湿システム
JP7129281B2 (ja) デシカント空調機
JP7273962B2 (ja) 空気処理装置
JP6452368B2 (ja) 燃料電池装置利用型空調システム
JP6057789B2 (ja) 空調システムおよび空調機
JP2018031517A (ja) 間接外気冷房装置および間接外気冷房装置と熱冷媒を利用した冷房装置を備えた冷房システム
JP5223721B2 (ja) 排熱利用省エネ空調設備、そのシステム、排熱利用省エネ空調方法、及び、排熱利用省エネ空調プログラム
WO2020183639A1 (ja) 制御装置及び制御方法
WO2021205584A1 (ja) 空気調和機管理装置及び空気調和機管理方法
WO2023079709A1 (ja) 空気処理システム
JP7481724B1 (ja) 空調装置、及び空調装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881940

Country of ref document: EP

Kind code of ref document: A1