WO2015115631A1 - Multi-layer non-oriented polyolefin film - Google Patents

Multi-layer non-oriented polyolefin film Download PDF

Info

Publication number
WO2015115631A1
WO2015115631A1 PCT/JP2015/052786 JP2015052786W WO2015115631A1 WO 2015115631 A1 WO2015115631 A1 WO 2015115631A1 JP 2015052786 W JP2015052786 W JP 2015052786W WO 2015115631 A1 WO2015115631 A1 WO 2015115631A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multilayer film
weight
lldpe
polyolefin
Prior art date
Application number
PCT/JP2015/052786
Other languages
French (fr)
Japanese (ja)
Inventor
直彦 倉本
三輪 和弘
健二 勘田
陽介 村越
佐藤 豪一
Original Assignee
サン・トックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サン・トックス株式会社 filed Critical サン・トックス株式会社
Priority to KR1020167020398A priority Critical patent/KR20160114603A/en
Priority to CN201580003420.8A priority patent/CN105848896B/en
Publication of WO2015115631A1 publication Critical patent/WO2015115631A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/75Printability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for

Definitions

  • the present invention relates to a polyolefin-based unstretched multilayer film used for fusing sealing. More specifically, the present invention relates to a polyolefin-based unstretched multilayer film that has a strong fusing seal strength, little variation, excellent optical characteristics and antistatic effects, and is suitably used for fusing seal applications.
  • Polyolefin film is widely used as a material for packaging various products. Although various forms are known as a form of packaging, bag-shaped packaging materials are frequently used. As a technique for processing a packaging material into a bag shape, a bag making method using a fusing seal is widely used. Bag making by fusing sealing is a method in which, for example, the ends of two films or two folded films are cut simultaneously with a heated fusing blade and simultaneously welded to form a bag.
  • the polyolefin film to which the fusing seal is applied is a non-stretched polyolefin because there is little difference in the fusing seal strength between the MD direction and the TD direction, and a constant fusing seal strength can be obtained even if the fusing seal is performed in any direction.
  • System films are widely used.
  • an unstretched polyolefin film is inferior in film strength, for example, when compared with, for example, a biaxially stretched polyolefin film.
  • attempts have been made to overcome the above-mentioned drawbacks by multilayering the film see JP-A-2-141238 and JP-A-62-44447).
  • JP-A-2-141238 relates to a multilayer film comprising three layers including a blend layer of polyethylene and propylene resin
  • JP-A-62-44447 relates to a multilayer film composed of three layers of propylene resins having different compositions.
  • problems such as blocking between films and whitening of the film due to aging occur, although a certain improvement in strength is observed.
  • JP-A-62-44447 when a bag is made after corona discharge treatment for the purpose of improving printability, there is a problem that the fusing seal strength at the opening of the bag is inferior. Improvement is also required.
  • the polyolefin-based film has a property of generating static electricity by friction and peeling, it is widely practiced to add an antistatic agent to the film in order to prevent static electricity.
  • the object of the present invention is to maintain the advantage of the polyolefin-based unstretched film that there is little difference in the fusing seal strength between the MD direction and the TD direction, while being excellent in optical characteristics and fusing seal strength, and to reduce the blend amount of the antistatic agent
  • An object of the present invention is to provide a polyolefin-based unstretched film that can exhibit an excellent antistatic effect even in a small amount and can be suitably applied to a fusing seal.
  • Each of the A layer and the C layer is formed from a polypropylene resin containing 50% by weight or more of a propylene-ethylene random copolymer polymerized using a metallocene catalyst, B layer Long chain branched LLDPE 15-75 wt%, 25 to 85% by weight of LLDPE (excluding the above-mentioned long chain branched LLDPE), and 30% by weight or less of the propylene propylene resin, provided that the total of the long chain branched LLDPE, LLDPE and polypropylene resin is 100% by weight
  • the long chain branched LLDPE has the following conditions (1) to (3): (1) The ratio Mw / Mn of the weight average molecular weight
  • the amount of amorphous components measured by the temperature rising elution fractionation method is 1 to 4% by weight.
  • the number of branches having 8 or more carbon atoms measured by 13 C-NMR is 1.5 to 5.0 per 1,000 carbon atoms. Is achieved by the multilayer film, characterized in that it is used for fusing and sealing applications.
  • the polyolefin-based multilayer film of the present invention is a multilayer film in which an outermost layer A layer, an intermediate layer B layer and an outermost layer C layer are laminated in this order.
  • the outermost layers A and C are each formed from a polypropylene resin containing 50 wt% or more of a propylene-ethylene random copolymer polymerized using a metallocene catalyst. Is done.
  • the A layer and the C layer may be composed of only a propylene-ethylene random copolymer (metallocene propylene-ethylene copolymer) polymerized using a metallocene catalyst, and the range is 50% by weight or less.
  • the composition of the polypropylene resin for forming the A layer and the polypropylene resin for forming the C layer may be the same or different.
  • the metallocene propylene-ethylene copolymer is a random-type propylene-ethylene copolymer polymerized using a metallocene catalyst. The use of this metallocene-based propylene-ethylene copolymer is preferable in that the resulting multilayer film exhibits a high degree of blocking resistance and exhibits excellent optical properties when formed into a multilayer film.
  • the metallocene-based catalyst is a catalyst comprising a metallocene-type transition metal compound having at least one, preferably two, substituted or unsubstituted cyclopentadienyl ligands and a promoter.
  • a metallocene-type transition metal compound having at least one, preferably two, substituted or unsubstituted cyclopentadienyl ligands and a promoter.
  • the cocatalyst include organoaluminum compounds; complexes of organoboron compounds and cations; ion-exchange silicates and the like, and one or more selected from these can be used.
  • the metallocene catalyst may be supported on a suitable inorganic substance. Metallocene catalysts are already known in the art, and those skilled in the art can appropriately select and use an appropriate metallocene catalyst according to the purpose.
  • the metallocene propylene-ethylene copolymer has a molecular weight distribution Mw / Mn represented by a ratio of a weight average molecular weight Mw in terms of polystyrene and a number average molecular weight Mn measured by gel permeation chromatography of 1.5 to 3. 5 is preferable.
  • the value of Mw / Mn is more preferably 1.8 to 3.2, still more preferably 2.0 to 3.0. If Mw / Mn of the metallocene-based propylene-ethylene copolymer is less than 1.5, the melt tension becomes too low, so that the film forming property is inferior.
  • Mw / Mn is 3.5 or less from the viewpoint of securing blocking resistance when a multilayer film is formed and securing optical properties in the multilayer film and the composite film.
  • the metallocene propylene-ethylene copolymer preferably has a Mw of 450,000 to 100,000, more preferably 400,000 to 200,000.
  • the metallocene propylene-ethylene copolymer preferably has a melt flow rate MFR of 1 to 30 g / 10 minutes measured at 230 ° C. under a load of 2.16 kg in accordance with JIS K 7210. This value is more preferably 5 to 15 g / 10 min.
  • the melt viscosity is too high, and thus the pressure in the film forming machine (for example, an extruder) becomes excessively high during the production of the multilayer film, and the productivity may decrease. Further, it may cause poor appearance such as non-uniform film thickness and melt fracture.
  • the MFR exceeds 30 g / 10 min, the outer layer may have a non-uniform film thickness due to an excessive difference in melt viscosity with the intermediate layer resin. In addition to this, the blocking resistance when a multilayer film is formed may be impaired.
  • the metallocene propylene-ethylene copolymer preferably has a melting point of 120 to 145 ° C, more preferably 120 to 140 ° C, and still more preferably 120 to 135 ° C.
  • a metallocene propylene-ethylene copolymer exhibiting a melting point at a temperature within this range is preferred in that it provides an excellent balance between heat resistance when producing a multilayer film and transparency when formed into a multilayer film.
  • the melting point refers to the peak top temperature (Tm) of the maximum endothermic peak in the differential scanning calorimeter (DSC) chart (the same applies hereinafter).
  • the content ratio of ethylene units in the metallocene propylene-ethylene copolymer is preferably 1 to 10 mol%, more preferably 2 to 5 mol%. By setting the content ratio of the ethylene unit within this range, the resulting multilayer film can exhibit excellent blocking resistance without impairing transparency, which is preferable.
  • Other resins that can be used with the metallocene propylene-ethylene copolymer as described above to form the A layer and the C layer of the polyolefin-based multilayer film of the present invention include, for example, a metallocene propylene-ethylene copolymer. Mention may be made of polypropylene resins other than polymers (polypropylene resin (a)).
  • the polypropylene resin (a) preferably has a melting point in the range of 120 to 170 ° C., and has a melt flow rate MFR of 1 to 30 g measured at 230 ° C. and a load of 2.16 kg in accordance with JIS K 7210. It is preferably in the range of / 10 minutes.
  • Examples of the polypropylene resin (a) include a homopolymer of propylene and a copolymer of propylene and a copolymer component.
  • the copolymer component for example, ethylene and ⁇ -olefin are preferable, and specifically, for example, ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene. 4-methyl-1-pentene can be used, and one or more selected from these can be used.
  • the proportion of the copolymer component in this polypropylene resin is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 3 mol% or less.
  • the polypropylene resin for forming the A layer and the C layer of the polyolefin multilayer film of the present invention contains the metallocene propylene-ethylene copolymer as an essential resin, and optionally includes a polypropylene resin (a).
  • a polypropylene resin
  • those generally used as additives for resins may be further contained as optional additives.
  • optional additives include heat stabilizers, processing stabilizers, lubricants, nucleating agents, antifogging agents, antiblocking agents, antioxidants, ultraviolet absorbers, and pigments.
  • These optional additives may be added by a method of directly blending with any of the resins constituting the polypropylene resin for forming the A layer and the C layer, or a master containing these additives in a high concentration. You may add by the method of mix
  • the base resin for the masterbatch the metallocene propylene-ethylene copolymer and the polypropylene resin (a) when used can be used.
  • the layers A and C of the polyolefin-based multilayer film of the present invention are made of a polypropylene resin containing 50% by weight or more of the metallocene propylene-ethylene copolymer as described above, where the total of polypropylene resins is 100% by weight. It is formed.
  • a polypropylene resin containing a metallocene propylene-ethylene copolymer at such a ratio excellent transparency, excellent image clarity, etc. can be ensured in the resulting multilayer film.
  • This value is preferably 55 to 95% by weight, more preferably 60 to 90% by weight.
  • the polypropylene resin for forming the A layer and the C layer of the polyolefin multilayer film of the present invention comprises only the metallocene propylene-ethylene copolymer and the polypropylene resin (a), and other types of resins are used. It is preferable not to contain.
  • the content of the optional additive in the polypropylene resin for forming the A layer and the C layer is preferably 5 parts by weight or less with respect to 100 parts by weight in total of the polypropylene resin, and 3 parts by weight or less. Preferably there is. However, it is preferable that the polypropylene resin for forming the A layer and the C layer does not contain an antistatic agent.
  • ⁇ B layer> B layer which is an intermediate layer of the polyolefin-based multilayer film of the present invention
  • Long chain branched LLDPE 15-75 wt%, LLDPE (excluding the above-mentioned long-chain branched LLDPE) is 25 to 85% by weight
  • a polypropylene resin is 30% by weight or less
  • a polyolefin resin containing an antistatic agent is 100% by weight.
  • the long-chain branched LLDPE is a low-density polyethylene having a branch, and is common to LLDPE (linear low-density polyethylene, described later) and LDPE (low-density polyethylene) in the prior art.
  • LLDPE linear low-density polyethylene
  • LDPE low-density polyethylene
  • the long-chain branched LLDPE in the present invention differs from the LLDPE and LDPE in the prior art in at least Mw / Mn, the amount of non-crystalline components and the content of long-chain branches. That is, the long-chain branched LLDPE in the present invention satisfies all of the following conditions (1) to (3).
  • the ratio Mw / Mn (molecular weight distribution) of polystyrene-equivalent weight average molecular weight Mw and number average molecular weight Mn measured by gel permeation chromatography is 7.5 to 15.0.
  • the amount of amorphous components measured by the temperature rising elution fractionation method is 1 to 4% by weight.
  • the number of branches having 8 or more carbon atoms measured by 13 C-NMR is 1.5 to 5.0 per 1,000 carbon atoms.
  • the long-chain branched LLDPE in the present invention has a ratio Mw / Mn (molecular weight distribution) of a weight average molecular weight Mw and a number average molecular weight Mn in terms of polystyrene measured by gel permeation chromatography (GPC) of 7.5 to 15.0. It is. This value is preferably 8.5 to 14.5, and more preferably 9.5 to 13.5.
  • GPC gel permeation chromatography
  • the long-chain branched LLDPE in the present invention has a polystyrene-equivalent weight average molecular weight Mw measured by GPC of preferably 80,000 to 150,000, and more preferably 90,000 to 140,000.
  • the long-chain branched LLDPE in the present invention has an amorphous component amount of 1 to 4% by weight measured by a temperature rising elution fractionation method.
  • a temperature rising elution fractionation method a solution obtained by dissolving a polymer sample in a predetermined solvent at a high temperature is supplied to a TREF (Temperature Rising Elution Fractionation) column, and then cooled to precipitate and adsorb the polymer sample in the column.
  • TREF Tempoture Rising Elution Fractionation
  • the column temperature is gradually raised and the eluted fraction is analyzed.
  • the supply of the solvent is started, and the fraction eluted during the period in which the column temperature is maintained at 0 ° C. is used as an amorphous component. Is evaluated as the amount of non-crystalline component.
  • the amount of the amorphous component of the long chain branched LLDPE is preferably 1.5 to 3.0% by weight.
  • Such a temperature rising elution fractionation method can be performed, for example, using an appropriate temperature rising elution fractionation (TREF) apparatus such as a special TREF apparatus manufactured by Senshu Kagaku Co., Ltd.
  • TEZ temperature rising elution fractionation
  • the long-chain branched LLDPE having the crystallinity as described above it is possible to obtain the advantage of ensuring the blocking resistance and the back feeling (elasticity) of the multilayer film of the present invention.
  • the number of branches having 8 or more carbon atoms measured by 13 C-NMR is 1.5 to 5.0 per 1,000 carbon atoms. This value is preferably 2.0 to 5.0, and more preferably 2.5 to 4.5.
  • the multilayer film of the present invention can stably exhibit high fusing seal strength regardless of the surrounding environment (for example, temperature, humidity, etc.) at the fusing seal. This is preferable.
  • LLDPE in the prior art is dominant when the number of carbon atoms in the branch is 6 or less, and even if there are branches having 8 or more carbon atoms, the amount is small, usually 1 or less per 1,000 carbon atoms. And stays at most 2 or less.
  • LDPE has more than 5.0 branches per 10,000 carbon atoms in the measurement of 13 C-NMR. Therefore, the long-chain branched LLDPE (B1) in the present invention can be distinguished from LLDPE and LDPE in the prior art by the amount of branching having 8 or more carbon atoms measured by 13 C-NMR. The following describes how the content of the long chain branching of the long chain branching LLDPE in the present invention is measured.
  • C 8 branch (1-decene structure) is considered as a branch of long chain branch LLDPE
  • C 6 branch (1-octene structure) is considered as a branch of LLDPE in the prior art.
  • second and third chemical shift of each methylene carbon of the branched end is in a C 8 branched and C 6 branched, than differs as in Table 1 below.
  • Solvent Mixed solvent of trichlorobenzene / heavy benzene (75/25% by volume) Sample concentration: 80 mg / 2.5 mL solution Measurement mode: 1H-complete decoupling Measurement temperature: 120 ° C. Pulse width: 90 degree pulse Pulse repetition time: 9 seconds Integration number: 9,000 times
  • the long-chain branched LLDPE in the present invention as described above may be synthesized by any method as long as it satisfies the above requirements.
  • it can be produced by a method using a known Ziegler-Natta catalyst, preferably with an appropriate donor compound; a method using a Phillips catalyst; a method using a metallocene catalyst.
  • the method using a metallocene catalyst is preferable in that a polymer having the above characteristics can be easily obtained.
  • the same metallocene catalyst as described above for the metallocene catalyst for synthesizing the metallocene propylene-ethylene copolymer can be used.
  • the LLDPE is an LLDPE other than the above long-chain branched LLDPE, and it is sufficient to use the LLDPE in the prior art.
  • This LLDPE is preferably a copolymer of ethylene and an ⁇ -olefin other than ethylene.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 3 to 12 carbon atoms, specifically, for example, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1- Pentene, 1-decene, 1-dodecene and the like;
  • the polystyrene-equivalent molecular weight distribution Mw / Mn measured by GPC is preferably 1.5 to 5.0
  • the amount of non-crystalline components measured by the temperature rising elution fractionation method is preferably 1 to 5% by weight, and the number of branches having 8 or more carbon atoms measured by 13 C-NMR is 1 per 1,000 carbon atoms.
  • the number is preferably not more than 1, and more preferably not more than 2.
  • the measurement method of these parameters is the same as in the case of long-chain branched LLDPE.
  • the MFR measured at 190 ° C. and a load of 2.16 kg in accordance with JIS K 7210 is preferably 0.5 to 20 g / 10 min.
  • Such LLDPE can be obtained by a known method. For example, it can be synthesized by a chromium catalyst alone or a catalyst system using a chromium catalyst and a Ziegler-Natta catalyst in combination.
  • polypropylene resin examples include metallocene propylene-ethylene copolymers and polypropylene resins (a) used to form the A layer and the C layer, and one kind selected from these. The above can be preferably used.
  • the polyolefin resin used for forming the layer B in the polyolefin multilayer film of the present invention contains the long chain branched LLDPE, LLDPE and polypropylene resin as described above, but within the range not impairing the effects of the present invention. In addition to these, other resins may be contained. Examples of other resins that can be used here include polyethylene resins other than those described above.
  • the polyolefin resin used for forming the B layer in the multilayer film of the present invention does not contain other resins other than the long-chain branched LLDPE, LLDPE, and the polypropylene resin.
  • the polyolefin resin used for forming the B layer in the polyolefin multilayer film of the present invention contains an antistatic agent.
  • the antistatic agent used herein include ester compounds, amine compounds, amide compounds, fatty acids, aliphatic alcohols, and the like, and preferably one or more selected from these are preferably used. Can do.
  • the ester compound is preferably a fatty acid ester of glycerin, specifically, for example, glycerin monolaurate, glycerin monomyristate, glycerin monopalmitate, glycerin monostearate, glycerin monobehenate, glycerin monooleate, glycerin mono- Monoglycerol fatty acid esters such as dilaurate, glycerol mono-dipalmylate, glycerol mono-distearate, glycerol mono-dibehenate, glycerol mono-diolate, glycerol di-trioleate, glycerol di-tristearate; Diglycerin fatty acid esters such as diglycerin laurate, diglyceryl stearate, diglycerin oleate, diglycerin caprylate; Examples thereof include polyglycerin fatty acid esters such as tetraglycerin ste
  • Examples of the amine compounds include lauryl diethanolamine, myristyl diethanolamine, palmityl diethanolamine, stearyl diethanolamine, oleyl diethanolamine, linol diethanolamine, linolenic ethanolamine, stearol diethanolamine, stearyl diethanolamine monostearate, stearyl diethanolamine distearate, stearyl diethanolamine monomethylene.
  • stearyl diethanolamine monopalmitate, palmityl diethanolamine monopalmitate, N, N-bis (2-hydroxyethyl) fatty amine, and the like can be used, and one or more selected from these can be used. it can.
  • amide compounds examples include myristyl diethanolamide, palmityl diethanolamide, stearyl diethanolamide, oleyl diethanolamide, arachidyl diethanolamide, etc., and one or more selected from these may be used. Can do.
  • fatty acid examples include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachin And acid, gadrenic acid, behenic acid, erucic acid, lignoceric acid, ceracoleic acid, serotic acid, montanic acid, melissic acid, celloplastic acid, ricinoleic acid, 12-hydroxystearin, and the like.
  • One or more can be used.
  • the fatty acid it is preferable to use a higher fatty acid having 14 to 20 carbon atoms.
  • the aliphatic alcohol include stearyl alcohol and oleyl alcohol, and one or more selected from these can be used.
  • the antistatic agent in the present invention it is preferable to use an ester compound and an amine compound of the above in combination, Use only ester compounds and amine compounds, or ester compounds and amine compounds, It is preferable to use a mixture of at least one selected from the group consisting of fatty acids and aliphatic alcohols.
  • the antistatic agent may be added by a method of directly blending with any of the resins constituting the polyolefin resin for forming the B layer, or may be blended as a master batch containing these additives in a high concentration. You may add by a method.
  • As the base resin for the master batch it is preferable to use one of the resins constituting the polyolefin resin.
  • the polyolefin-based resin for forming the B layer of the polyolefin-based multilayer film of the present invention is a range that does not impair the effects of the present invention. Furthermore, you may contain.
  • optional additives include heat stabilizers, processing stabilizers, lubricants, nucleating agents, antifogging agents, antiblocking agents, antioxidants, ultraviolet absorbers, and pigments. These optional additives may be added by a method of directly blending with any of the resins constituting the polypropylene resin for forming the B layer, or blended as a masterbatch containing these additives at a high concentration. You may add by the method of doing.
  • each component in polyolefin resin for forming layer B The content of each resin in the polyolefin resin for forming the B layer of the polyolefin multilayer film of the present invention is as follows, with the total of the long chain branched LLDPE, LLDPE and polypropylene resin being 100% by weight. is there.
  • Long-chain branched LLDPE 15 to 75% by weight, preferably 20 to 70% by weight LLDPE: 25 to 85% by weight, preferably 30 to 80% by weight Polypropylene resin: 30% by weight or less, preferably 20% by weight or less
  • the content of the antistatic agent in the polyolefin resin for forming the B layer is preferably 0.1 to 3.0 parts by weight with respect to a total of 100 parts by weight of the long-chain branched LLDPE, LLDPE and the polypropylene resin.
  • the effect of adding an antistatic agent is great. That is, when compared with the prior art polyolefin film, When the same amount of antistatic agent is blended, the resulting antistatic effect is greater, A smaller amount of antistatic agent is sufficient to obtain the same level of antistatic effect.
  • the amount of the antistatic agent in the polyolefin resin for forming the B layer is, for example, 0.7 parts by weight or less, preferably 0.6 parts by weight or less, a good antistatic effect can be obtained. Can do.
  • the content of the optional additive in the polyolefin-based resin for forming the B layer is preferably 5 parts by weight or less with respect to 100 parts by weight of the total of the long-chain branched LLDPE, LLDPE and the polypropylene-based resin. More preferably, it is at most parts.
  • ⁇ Thickness of each layer in polyolefin-based unstretched multilayer film> The A to C layers in the polyolefin-based multilayer film of the present invention are each formed from the resin as described above.
  • the total thickness of the polyolefin-based multilayer film of the present invention is preferably 20 to 200 ⁇ m, and more preferably 30 to 150 ⁇ m, from the viewpoints of practicality as a package and suitability for a fusing sealer.
  • the ratio of the thickness of the B layer to the total thickness of the polyolefin-based multilayer film of the present invention is preferably 30 to 80% from the viewpoint of the balance between physical properties such as impact resistance and optical properties, and is preferably 33 to 70%. % Is more preferable.
  • ⁇ Method for producing polyolefin-based unstretched multilayer film> The polyolefin-based unstretched multilayer film of the present invention can be produced by any method as long as the method does not substantially involve stretching.
  • substantially without stretching does not mean that even a slight orientation occurs in the film manufacturing process, but means that the film does not go through an explicit stretching process. To do. Therefore, for example, when an extrusion process under the conditions normally employed is employed, it is allowed that some orientation occurs in the extrusion direction.
  • an appropriate method such as an extrusion method or a casting method can be employed. Since all the resins constituting each layer of the multilayer film of the present invention have an appropriate MFR and are highly compatible with a melt-type film forming machine, it is possible to adopt the extrusion method of the above. This is preferable in that the effect can be maximized.
  • the multilayer film of the present invention has a multilayer structure composed of three layers A to C.
  • a known method such as a co-extrusion method or an in-line laminating method can be employed.
  • the coextrusion method include a multi-manifold method and a feed block method. Of these, the coextrusion method is preferably used because the thickness of each layer can be controlled uniformly in the width direction.
  • the multilayer film of the present invention is scheduled to be melt-sealed and applied as a melt-sealed bag. Therefore, printing may be performed on the outermost layer surface in order to clearly indicate the origin of the product or to develop a design effect.
  • surface treatment may be performed inline or offline on the outermost layer surface (the surface of the A layer or the C layer) for the purpose of improving the affinity or adhesion with the printing ink. Examples of the surface treatment include corona discharge treatment and flame (flame) treatment.
  • a fusing seal bag can be produced.
  • a fusing seal bag can be manufactured by a well-known method using a commercially available side welder (fusing machine).
  • the fusing conditions recommended when producing a fusing seal bag using the multilayer film of the present invention are, for example, as follows. Seal blade temperature: 260 ⁇ 360 °C Bag making speed: 60-180 shots / minute
  • this strip sample it opened 180 degree
  • As the tensile tester Shimadzu Corporation model number: AG500 was used, the test was conducted at a tensile speed of 100 mm / min, and the strength when the fusing seal part broke was determined as fusing seal strength (unit: N / 15 mm). It was. According to the above procedure, 30 fusing seal bags were measured, and the maximum value, minimum value, and variation (difference between the maximum value and the minimum value) were examined.
  • Example 1 Manufacture of multilayer film> From a total of three extruders, one single-screw extruder with a screw diameter of 75 mm for the intermediate layer (B layer) and two single-screw extruders with a screw diameter of 50 mm for both outer layers (A layer and C layer) Resin was supplied to each extruder as follows using the three-type three-layer T-die film forming apparatus.
  • This multilayer film had a three-layer structure, the total thickness was 50 ⁇ m, and the three-layer thickness structure was an A layer of about 10 ⁇ m, a B layer of about 30 ⁇ m, and a C layer of about 10 ⁇ m.
  • the multilayer film in this state was aged at 40 ° C. for 24 hours to obtain a multilayer film that had not been subjected to double-sided corona treatment.
  • the multilayer film obtained above was subjected to corona discharge treatment so that the wetting index of the surface on the A layer side of the multilayer film obtained was 42 mN / m, and further aged for 24 hours at 40 ° C. A film was obtained.
  • the evaluations (1) to (5) were performed using these two types of multilayer films.
  • the evaluation results are shown in Table 4.
  • Examples 2 to 16 and Comparative Examples 1 to 15 In Example 1 above, a multilayer film was produced in the same manner as in Example 1 except that the type and amount of resin supplied to the extruder for each layer and the thickness of each layer were as shown in Table 3. And evaluated each.
  • the evaluation results are shown in Table 4.
  • the abbreviation of each component in the said Table 3 has the following meaning, respectively.
  • the polyolefin-based unstretched multilayer film of the present invention can be suitably used for fusing and sealing applications.
  • the fusing seal bag manufactured from the film has high fusing seal strength, little variation in the sealing strength, excellent contents visibility, and is hardly charged. Further, even when the polyolefin-based unstretched multilayer film of the present invention is subjected to, for example, corona discharge treatment, the strength of the gusset portion is not impaired. It is also possible. Therefore, the fusing seal bag manufactured from the polyolefin-based unstretched multilayer film of the present invention is a package of shampoo, hair conditioner, body soap, detergent, etc. for refilling; a package of clothing; a package of documents and cards It can be used for applications such as body.

Abstract

 Provided is a multi-layer non-oriented polyolefin film having a high fusion-sealing strength and minimal variation therein, outstanding optical properties such as haze, luster and image sharpness, and exhibiting an excellent anti-static effect, even with a minimal quantity of anti-static agent contained. This multilayer non-oriented polyolefin film comprises a layer A which is the outermost layer, a layer B which is an intermediate layer, and a layer C which is the outermost layer, laminated in that order, and characterized in that layer A and layer C are respectively formed from a polypropylene resin containing a propylene-ethylene random copolymer obtained by polymerization using a metallocene catalyst; layer B is formed from a polyolefin resin containing long-chain branched LLDPE, LLDPE, polypropylene resin and an anti-static agent, and that the film is used in fusion-sealing applications.

Description

ポリオレフィン系無延伸多層フィルムPolyolefin-based unstretched multilayer film
 本発明は、溶断シール用途に用いられるポリオレフィン系無延伸多層フィルムに関する。詳しくは、溶断シール強度が強く、そのバラツキが少ないとともに、光学特性および帯電防止効果にも優れ、溶断シール用途に好適に用いられるポリオレフィン系無延伸多層フィルムに関する。 The present invention relates to a polyolefin-based unstretched multilayer film used for fusing sealing. More specifically, the present invention relates to a polyolefin-based unstretched multilayer film that has a strong fusing seal strength, little variation, excellent optical characteristics and antistatic effects, and is suitably used for fusing seal applications.
 ポリオレフィン系フィルムは、各種製品を包装する材料として広く利用されている。
 包装の形態としては種々の形態が知られているが、袋状の包装材料が多用されている。包装材料を袋状に加工する技術としては、溶断シールによる製袋方法が広く利用されている。溶断シールによる製袋は、例えば2枚のフィルムまたは2つ折りにしたフィルムの端部を、加熱した溶断刃によって切断すると同時に溶着し、連続的に製袋を行う方法である。
 溶断シールを適用するポリオレフィン系フィルムとしては、MD方向とTD方向の溶断シール強度の差が少なく、溶断シールを任意の方向に行っても一定の溶断シール強度が得られることから、無延伸のポリオレフィン系フィルムが広く用いられている。
 古くには、無延伸のポリオレフィン系フィルムは、例えば二軸延伸のポリオレフィン系フィルムと比較した場合に、例えばフィルム強度などに劣ることが指摘されていた。しかしながら、フィルムを多層化することにより上記の欠点を克服する試みがなされている(特開平2−141238号公報および特開昭62−44447号公報参照)。特開平2−141238号公報は、ポリエチレンとプロピレン系樹脂とのブレンド層を含む3層からなる多層フィルムに関し;
特開昭62−44447号公報は、組成の異なるプロピレン系樹脂の3層からなる多層フィルムに関する。しかし、特開平2−141238号公報の技術によると、強度の点では確かに一定の向上が見られるものの、フィルム同士のブロッキング、経時変化によるフィルムの白化といった問題が起こると指摘されており;
特開昭62−44447号公報の技術によると、印刷性の向上などの目的でコロナ放電処理を施した後に製袋した場合、袋の開口部における溶断シール強度に劣るとの問題があり、いずれも改善が要求されている。
 ところで、ポリオレフィン系フィルムは摩擦および剥離によって静電気を生じる性質を有するから、静電気防止のためにフィルム中に帯電防止剤を配合することが広く行われている。
Polyolefin film is widely used as a material for packaging various products.
Although various forms are known as a form of packaging, bag-shaped packaging materials are frequently used. As a technique for processing a packaging material into a bag shape, a bag making method using a fusing seal is widely used. Bag making by fusing sealing is a method in which, for example, the ends of two films or two folded films are cut simultaneously with a heated fusing blade and simultaneously welded to form a bag.
The polyolefin film to which the fusing seal is applied is a non-stretched polyolefin because there is little difference in the fusing seal strength between the MD direction and the TD direction, and a constant fusing seal strength can be obtained even if the fusing seal is performed in any direction. System films are widely used.
In the past, it has been pointed out that an unstretched polyolefin film is inferior in film strength, for example, when compared with, for example, a biaxially stretched polyolefin film. However, attempts have been made to overcome the above-mentioned drawbacks by multilayering the film (see JP-A-2-141238 and JP-A-62-44447). JP-A-2-141238 relates to a multilayer film comprising three layers including a blend layer of polyethylene and propylene resin;
JP-A-62-44447 relates to a multilayer film composed of three layers of propylene resins having different compositions. However, according to the technique of Japanese Patent Laid-Open No. 2-141238, it is pointed out that problems such as blocking between films and whitening of the film due to aging occur, although a certain improvement in strength is observed.
According to the technique of JP-A-62-44447, when a bag is made after corona discharge treatment for the purpose of improving printability, there is a problem that the fusing seal strength at the opening of the bag is inferior. Improvement is also required.
By the way, since the polyolefin-based film has a property of generating static electricity by friction and peeling, it is widely practiced to add an antistatic agent to the film in order to prevent static electricity.
 無延伸のポリオレフィン系多層フィルムを溶断シール用途に適用する場合、以下の難点があることが明らかとなっている。
(1)透明性、ヘーズ、写像性(像鮮明度)などの光学特性に劣ること、
(2)溶断シール強度が不十分であること、
(3)帯電防止剤を配合した場合に、ロールなどの加工機に汚れを来たし、爾後の加工品に汚染が生じること、など。
 本発明は、以上のような現状を打開しようとしてなされたものである。
 従って本発明の目的は、MD方向とTD方向の溶断シール強度の差が少ないというポリオレフィン系無延伸フィルムの利点を維持しながら、光学特性および溶断シール強度に優れ、且つ帯電防止剤の配合量を少量とした場合でも優れた帯電防止効果を発現することができ、溶断シール用途に好適に適用することの可能なポリオレフィン系の無延伸フィルムを提供することである。
 本発明によれば、本発明の上記目的および利点は、
最外層であるA層、中間層であるB層および最外層であるC層がこの順に積層したポリオレフィン系無延伸多層フィルムであって、
 A層およびC層が、それぞれ、メタロセン系触媒を用いて重合されたプロピレン−エチレンランダム共重合体を50重量%以上含有するポリプロピレン系樹脂から形成され、
 B層が、
 長鎖分岐LLDPE15~75重量%、
 LLDPE(ただし、上記の長鎖分岐LLDPEを除く。)25~85重量%、および
 ポロプロピレン系樹脂30重量%以下、ただし前記長鎖分岐LLDPE、LLDPEおよびポリプロピレン系樹脂の合計は100重量%である、ならびに
帯電防止剤
を含有するポリオレフィン系樹脂から形成され、さらに、
 前記長鎖分岐LLDPEは、下記の条件(1)~(3)
 (1)ゲルパーミエーションクロマトグラフィーによって測定したポリスチレン換算の重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが7.5~15.0である、
 (2)昇温溶出分別法によって測定した非結晶成分量が1~4重量%である、
および
 (3)13C−NMRによって測定した炭素数8以上の分岐の数が、炭素原子1,000個あたり1.5~5.0個である、
のすべてを満足し、そして
 溶断シール用途に用いられることを特徴とする、前記多層フィルムによって達成される。
When an unstretched polyolefin-based multilayer film is applied to a fusing seal, it has been found that there are the following difficulties.
(1) Inferior optical properties such as transparency, haze, image clarity (image clarity),
(2) Fusing seal strength is insufficient,
(3) When an antistatic agent is blended, a processing machine such as a roll is soiled, and the processed product after the wrinkle is contaminated.
The present invention has been made in order to overcome the above situation.
Therefore, the object of the present invention is to maintain the advantage of the polyolefin-based unstretched film that there is little difference in the fusing seal strength between the MD direction and the TD direction, while being excellent in optical characteristics and fusing seal strength, and to reduce the blend amount of the antistatic agent An object of the present invention is to provide a polyolefin-based unstretched film that can exhibit an excellent antistatic effect even in a small amount and can be suitably applied to a fusing seal.
According to the present invention, the above objects and advantages of the present invention are:
A polyolefin-based unstretched multilayer film in which an outermost layer A layer, an intermediate layer B layer and an outermost layer C layer are laminated in this order,
Each of the A layer and the C layer is formed from a polypropylene resin containing 50% by weight or more of a propylene-ethylene random copolymer polymerized using a metallocene catalyst,
B layer
Long chain branched LLDPE 15-75 wt%,
25 to 85% by weight of LLDPE (excluding the above-mentioned long chain branched LLDPE), and 30% by weight or less of the propylene propylene resin, provided that the total of the long chain branched LLDPE, LLDPE and polypropylene resin is 100% by weight As well as a polyolefin-based resin containing an antistatic agent,
The long chain branched LLDPE has the following conditions (1) to (3):
(1) The ratio Mw / Mn of the weight average molecular weight Mw in terms of polystyrene and the number average molecular weight Mn measured by gel permeation chromatography is 7.5 to 15.0.
(2) The amount of amorphous components measured by the temperature rising elution fractionation method is 1 to 4% by weight.
And (3) The number of branches having 8 or more carbon atoms measured by 13 C-NMR is 1.5 to 5.0 per 1,000 carbon atoms.
Is achieved by the multilayer film, characterized in that it is used for fusing and sealing applications.
 本発明のポリオレフィン系多層フィルムは、最外層であるA層、中間層であるB層および最外層であるC層がこの順に積層した多層フィルムである。
<A層およびC層>
 本発明のポリオレフィン系多層フィルムにおいて両最外層であるA層およびC層は、それぞれ、メタロセン系触媒を用いて重合されたプロピレン−エチレンランダム共重合体を50重量%以上含有するポリプロピレン系樹脂から形成される。このA層およびC層は、メタロセン系触媒を用いて重合されたプロピレン−エチレンランダム共重合体(メタロセン系プロピレン−エチレン共重合体)のみから構成されていてもいいし、50重量%以下の範囲であればその他の樹脂を含有していてもよい。
 なお、A層を形成するためのポリプロピレン系樹脂と、C層を形成するためのポリプロピレン系樹脂とは、その組成が同一であってもよいし、相違していてもよい。
[メタロセン系プロピレン−エチレン共重合体]
 上記メタロセン系プロピレン−エチレン共重合体は、メタロセン系触媒を用いて重合されたランダム型のプロピレン−エチレン共重合体である。このメタロセン系プロピレン−エチレン共重合体の使用により、得られる多層フィルムが高度の耐ブロッキング性を示し、しかも多層フィルムとしたときに優れた光学特性を示すこととなる点で、好ましい。
 メタロセン系触媒は、置換または無置換のシクロペンタジエニル配位子を少なくとも1個、好ましくは2個有するメタロセン型遷移金属化合物と、助触媒と、からなる触媒である。上記助触媒としては、例えば有機アルミニウム化合物;有機ホウ素化合物と陽イオンとの錯体;イオン交換性ケイ酸塩などを挙げることができ、これらのうちから選択される1種以上を使用することができる。メタロセン系触媒は、適当な無機物質に担持されていてもよい。メタロセン系触媒は、当業界において既に公知であり、当業者は適当なメタロセン触媒をその目的に応じて適宜選択して用いることができる。
 上記メタロセン系プロピレン−エチレン共重合体は、ゲルパーミエーションクロマトグラフィーによって測定したポリスチレン換算の重量平均分子量Mwと数平均分子量Mnとの比で表される分子量分布Mw/Mnが1.5~3.5であることが好ましい。Mw/Mnの値は、より好ましくは1.8~3.2であり、さらに好ましくは2.0~3.0である。メタロセン系プロピレン−エチレン共重合体のMw/Mnが1.5よりも小さいと溶融張力が過小となるため、製膜性に劣ることとなる。一方で多層フィルムとしたときの耐ブロッキング性を確保し、多層フィルムおよび複合フィルムにおける光学的特性を確保する観点から、Mw/Mnは3.5以下とすることが好ましい。上記メタロセン系プロピレン−エチレン共重合体は、そのMwが45万~10万であることが好ましく、40万~20万であることがより好ましい。
 上記メタロセン系プロピレン−エチレン共重合体は、JIS K 7210に準拠して230℃において荷重2.16kgにて測定したメルトフローレートMFRが1~30g/10分であることが好ましい。この値は5~15g/10分であることがより好ましい。MFRが1g/10分より小さいと溶融粘度が高すぎるから、多層フィルムの製造時に製膜機(例えば押出機)内の圧力が過度に高くなり、生産性が低下する場合がある。さらに、膜厚不均一、メルトフラクチャーなどの外観不良を引き起こす場合がある。一方でMFRが30g/10分を超えると、中間層の樹脂との溶融粘度差が過大になることに起因して外層の膜厚が不均一となる場合がある。これ以外にも、多層フィルムとしたときの耐ブロッキング性が損なわれる場合がある。
 上記メタロセン系プロピレン−エチレン共重合体は、融点が120~145℃であることが好ましく、120~140℃であることがより好ましく、120~135℃であることがさらに好ましい。この範囲の温度に融点を示すメタロセン系プロピレン−エチレン共重合体は、多層フィルムを製造する際の耐熱性と、多層フィルムにしたときの透明性と、のバランスに優れることとなる点で好ましい。なおこの融点は、示差走査熱量計(DSC)チャートにおける最大吸熱ピークのピークトップ温度(Tm)をいう(本明細書において以下同じ。)。
 上記メタロセン系プロピレン−エチレン共重合体におけるエチレン単位の含有割合は、好ましくは1~10mol%であり、より好ましくは2~5mol%である。エチレン単位の含有割合をこの範囲に設定することにより、得られる多層フィルムにおいて、透明性を損なわずに優れた耐ブロッキング性を発現することが可能となり、好ましい。
[その他の樹脂]
 本発明のポリオレフィン系多層フィルムのA層およびC層を形成するために、上記のようなメタロセン系プロピレン−エチレン共重合体とともに使用することのできるその他の樹脂としては、例えばメタロセン系プロピレン−エチレン共重合体以外のポリプロピレン系樹脂(ポリプロピレン系樹脂(a))を挙げることができる。このポリプロピレン系樹脂(a)は、その融点が120~170℃の範囲にあることが好ましく、JIS K 7210に準拠して230℃において荷重2.16kgにて測定したメルトフローレートMFRが1~30g/10分の範囲にあることが好ましい。
 上記ポリプロピレン系樹脂(a)としては、プロピレンの単独重合体、プロピレンと共重合成分との共重合体を挙げることができる。この共重合成分としては、例えばエチレンおよびα−オレフィンが好ましく、具体的には例えばエチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、4−メチル−1−ペンテンなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。このポリプロピレン系樹脂における共重合成分の割合は、10mol%以下とすることが好ましく、5mol%以下とすることがより好ましく、3mol%以下とすることがさらに好ましい。
[任意成分]
 本発明のポリオレフィン系多層フィルムのA層およびC層を形成するためのポリプロピレン系樹脂は、上記メタロセン系プロピレン−エチレン共重合体を必須の樹脂として含有し、任意的にポリプロピレン系樹脂(a)を含有するが、本発明の効果を阻害しない範囲で、これら以外に、樹脂の添加剤として一般に使用されているものを任意添加剤としてさらに含有していてもよい。このような任意添加剤としては、例えば熱安定剤、加工安定剤、滑剤、増核剤、防曇剤、アンチブロッキング剤、酸化防止剤、紫外線吸収剤、顔料などを挙げることができる。
 これら任意添加剤は、A層およびC層を形成するためのポリプロピレン系樹脂を構成する樹脂のいずれかに直接配合する方法によって添加してもよく、あるいはこれらの添加剤を高濃度で含有するマスターバッチとして配合する方法によって添加してもよい。マスターバッチのベース樹脂としては、上記のメタロセン系プロピレン−エチレン共重合体および使用する場合にはポリプロピレン系樹脂(a)を用いることができる。
[A層およびC層を形成するためのポリプロピレン系樹脂における各成分の使用割合]
 本発明のポリオレフィン系多層フィルムのA層およびC層は、上記のようなメタロセン系プロピレン−エチレン共重合体を、ポリプロピレン系樹脂の合計を100重量%として、50重量%以上含有するポリプロピレン系樹脂から形成される。このような割合でメタロセン系プロピレン−エチレン共重合体を含有するポリプロピレン系樹脂を使用することにより、得られる多層フィルムにおいて、優れた透明性、優れた写像性などを確保することができる。この値は、好ましくは55~95重量%であり、より好ましくは60~90重量%である。
 本発明のポリオレフィン系多層フィルムのA層およびC層を形成するためのポリプロピレン系樹脂は、上記メタロセン系プロピレン−エチレン共重合体およびポリプロピレン系樹脂(a)のみからなり、これら以外の種類の樹脂を含有しないことが好ましい。
 A層およびC層を形成するためのポリプロピレン系樹脂における上記任意添加剤の含有量は、ポリプロピレン系樹脂の合計100重量部に対して、5重量部以下であることが好ましく、3重量部以下であることが好ましい。ただし、A層およびC層を形成するためのポリプロピレン系樹脂は、帯電防止剤を含有しないことが好ましい。
<B層>
 本発明のポリオレフィン系多層フィルムの中間層であるB層は、
 長鎖分岐LLDPE15~75重量%、
 LLDPE(ただし、上記の長鎖分岐LLDPEを除く。)25~85重量%、および
 ポロプロピレン系樹脂30重量%以下、ならびに
帯電防止剤
を含有するポリオレフィン系樹脂から形成される。ここで、上記長鎖分岐LLDPE、LLDPEおよびポリプロピレン系樹脂の合計は100重量%である。
[長鎖分岐LLDPE]
 上記長鎖分岐LLDPEは、分岐を有する低密度ポリエチレンである点で、従来技術におけるLLDPE(直鎖状低密度ポリエチレン、後述)およびLDPE(低密度ポリエチレン)と共通する。しかし本発明における長鎖分岐LLDPEは、少なくともMw/Mn、非結晶性成分量および長鎖分岐の含有量において、従来技術におけるLLDPEおよびLDPEとは異なる。すなわち、本発明における長鎖分岐LLDPEは、以下の条件(1)~(3)のすべてを満足する。
 (1)ゲルパーミエーションクロマトグラフィーによって測定したポリスチレン換算の重量平均分子量Mwと数平均分子量Mnとの比Mw/Mn(分子量分布)が7.5~15.0である、
 (2)昇温溶出分別法によって測定した非結晶成分量が1~4重量%である、
および
 (3)13C−NMRによって測定した炭素数8以上の分岐の数が、炭素原子1,000個あたり1.5~5.0個である。
 本発明における長鎖分岐LLDPEは、ゲルパーミエーションクロマトグラフィー(GPC)によって測定したポリスチレン換算の重量平均分子量Mwと数平均分子量Mnとの比Mw/Mn(分子量分布)が7.5~15.0である。この値は、好ましくは8.5~14.5であり、より好ましくは9.5~13.5である。このような分子量分布を有するLLDPEを使用することにより、本発明の多層フィルムは、帯電防止剤の配合量を少量とした場合でも優れた帯電防止効果を発現することとなり、また該多層フィルムを溶断シールしたときに、溶断シール強度が高いとともにそのバラツキが少ないとの利点を得ることができる。
 本発明における長鎖分岐LLDPEは、GPCによって測定したポリスチレン換算の重量平均分子量Mwが、80,000~150,000であることが好ましく、90,000~140,000であることがより好ましい。
 本発明における長鎖分岐LLDPEは、昇温溶出分別法によって測定した非結晶性成分量が1~4重量%である。
 昇温溶出分別法は、重合体試料を所定の溶媒中に高温で溶解した溶液をTREF(Temperature Rising Elution Fractionation)カラムに供給し、次いで冷却して該カラム中に重合体試料を析出・吸着させた後、カラムを徐々に昇温して、溶出する留分を分析する方法である。本発明においては、試料供給後のカラムを0℃まで冷却した後に溶媒の供給を開始し、カラム温度を0℃に維持している期間中に溶出する留分を非結晶成分として、該留分の全留分に対する割合を非結晶性成分量として評価する。長鎖分岐LLDPEの非結晶性成分量は、好ましくは1.5~3.0重量%である。
 このような昇温溶出分別法は、例えば、(株)センシュー科学製のTREF装置特型などの適宜の昇温溶出分別(TREF)装置を用いて行うことができる。
 上記のような結晶性を有する長鎖分岐LLDPEを使用することにより、本発明の多層フィルムの耐ブロッキング性および腰感(弾性)を確保するとの利点を得ることができる。
 本発明における長鎖分岐LLDPEは、13C−NMRによって測定した炭素数8以上の分岐の数が、炭素原子1,000個あたり1.5~5.0個である。この値は好ましくは2.0~5.0個であり、より好ましくは2.5~4.5個である。このような長鎖分岐を有するLLDPEを使用することにより、本発明の多層フィルムは、溶断シール時の周囲環境(例えば温度、湿度など)にかかわらずに安定して高い溶断シール強度を発現することができ、好ましい。
 従来技術におけるLLDPEは、分岐の炭素数は6以下の場合が支配的であり、炭素数8以上の分岐が存在したとしてもその量は少なく、炭素原子1,000個あたり、通常は1個以下であり、多くとも2個以下にとどまる。
 一方、LDPEは、13C−NMRの測定上、炭素数8以上の分岐の数が炭素原子10000個あたり5.0個よりも多い。
 従って本発明における長鎖分岐LLDPE(B1)は、13C−NMRによって測定される炭素数8以上の分岐の量によって、従来技術におけるLLDPEおよびLDPEと区別することができる。
 本発明における長鎖分岐LLDPEの長鎖分岐の含有量がどのように測定されるかについて以下に説明する。ここで、長鎖分岐LLDPEの分岐としてC分岐(1−デセン構造)を、従来技術におけるLLDPEの分岐としてC分岐(1−オクテン構造)を、それぞれ考えることにする。
 ポリエチレンの主鎖に存在するメチレン炭素は、13C−NMR上、化学シフトδ=30ppmに観察される。分岐末端のメチル炭素は、C分岐およびC分岐の双方とも、化学シフトδ=14.06ppmに現れる。ところが、分岐末端から2番目および3番目の各メチレン炭素の化学シフトは、C分岐とC分岐とで、下記第1表のように相違するのである。
Figure JPOXMLDOC01-appb-T000001
 本発明では、このうちの分岐末端から2番目のメチレン炭素に着目し、その化学シフトによって分岐の炭素数が8以上であるか否かを判別する。
 実際の計算にあたっては、化学シフトδ=22.87ppmに現れるピークの面積の、主鎖のメチレン炭素に帰属される化学シフトδ=30ppmに現れるピークの面積に対する相対値を評価することとなる。
 上記のような13C−NMRの測定は、例えば日本電子(株)製の型式「JNM−ECS400」などの適宜の核磁気共鳴分析装置を用いて、以下の条件で行うことができる。
 溶媒:トリクロロベンゼン/重ベンゼンの混合溶媒(75/25容量%)
 試料濃度:80mg/2.5mL溶液
 測定モード:1H−完全デカップリング
 測定温度:120℃
 パルス幅:90度パルス
 パルス繰返し時間:9秒
 積算回数:9,000回
 本発明における長鎖分岐の含有量は、
分岐の末端から2番目の炭素(化学シフトδ=22.87ppm)のピーク面積を、
重合体鎖を構成するメチレン炭素(化学シフトδ=30ppm)のピーク面積を1,000とした場合の相対値として表される。単位は(個/1,000C)である。
 参考のため、下記の第2表に、代表的なポリエチレンについて上記の各種パラメーターを比較した。
Figure JPOXMLDOC01-appb-T000002
 上記のような本発明における長鎖分岐LLDPEは、上記の要件を満たすものである限り、どのような方法によって合成されたものであってもよい。例えば公知のチーグラー・ナッタ触媒を、好ましくは適当なドナー化合物とともに用いる方法;フィリップス触媒を用いる方法;メタロセン系触媒を用いる方法などにより製造することができる。これらのうち、メタロセン系触媒を用いる方法によることが、上記の特性を有する重合体を容易に得られる点で好ましい。この場合のメタロセン系触媒は、メタロセン系プロピレン−エチレン共重合体を合成するためのメタロセン系触媒について上記したのと同じものを使用することができる。
[LLDPE]
 上記LLDPEは、上記の長鎖分岐LLDPE以外のLLDPEであり、従来技術におけるLLDPEを使用すれば足りる。
 このLLDPEを、上記の長鎖分岐LLDPEと峻別するために、例えば以下のパラメーターを例示することができる。
 このLLDPEは、エチレンと、エチレン以外のα−オレフィンとの共重合体であることが好ましい。この場合のα−オレフィンとしては、炭素数3~12のα−オレフィンが好ましく、具体的には例えばプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、1−デセン、1−ドデセンなどを挙げることができる;
 GPCによって測定したポリスチレン換算の分子量分布Mw/Mnは、1.5~5.0であることが好ましく、
 昇温溶出分別法によって測定した非結晶成分量が1~5重量%であることが好ましく、そして
 13C−NMRによって測定した炭素数8以上の分岐の数が、炭素原子1,000個あたり1個以下であることが好ましく、2個以下であることがより好ましい。これらのパラメーターの測定方法は、長鎖分岐LLDPEの場合と同様である。
 上記LLDPEについて、JIS K 7210に準拠して190℃において荷重2.16kgにて測定したMFRは、0.5~20g/10分であることが好ましい。
 このようなLLDPEは、公知の方法によって得ることができる。例えばクロム系触媒単独、またはクロム系触媒とチーグラー・ナッタ系触媒とを併用する触媒系により、合成することができる。
[ポリプロピレン系樹脂]
 上記ポリプロピレン系樹脂としては、A層およびC層を形成するために用いられるメタロセン系プロピレン−エチレン共重合体、ポリプロピレン系樹脂(a)などを挙げることができ、これらのうちから選択される1種以上を好ましく使用することができる。
[その他の樹脂]
 本発明のポリオレフィン系多層フィルムにおけるB層を形成するために用いられるポリオレフィン系樹脂は、上記のような長鎖分岐LLDPE、LLDPEおよびポリプロピレン系樹脂を含有するが、本発明の効果を損なわない範囲で、これら以外にその他の樹脂を含有していてもよい。
 ここで使用できるその他の樹脂としては、例えば上記した以外のポリエチレン系樹脂などを挙げることができる。
 本発明の多層フィルムにおけるB層を形成するために用いられるポリオレフィン系樹脂は、長鎖分岐LLDPE、LLDPEおよびポリプロピレン系樹脂以外のその他の樹脂を含有しないことが好ましい。
[帯電防止剤]
 本発明のポリオレフィン系多層フィルムにおけるB層を形成するために用いられるポリオレフィン系樹脂は、帯電防止剤を含有する。
 ここで使用される帯電防止剤としては、例えばエステル化合物、アミン系化合物、アミド系化合物、脂肪酸、脂肪族アルコールなどを挙げることができ、これらのうちから選択される1種以上を好ましく使用することができる。
 上記エステル化合物としては、グリセリンの脂肪酸エステルが好ましく、具体的には例えばグリセリンモノラウレート、グリセリンモノミリステート、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンモノベヘネート、グリセリンモノオレート、グリセリンモノ・ジラウレート、グリセリンモノ・ジパルミレート、グリセリンモノ・ジステアレート、グリセリンモノ・ジベヘネート、グリセリンモノ・ジオレート、グリセリンジ・トリオレート、グリセリンジ・トリステアレートなどのモノグリセリン脂肪酸エステル;
ジグリセリンラウレート、ジグリセリンステアレート、ジグリセリンオレート、ジグリセリンカプリレートなどのジグリセリン脂肪酸エステル;
テトラグリセリンステアレート、テトラグリセリンオレート、ヘキサグリセリンステアレート、デカグリセリンステアレートなどのポリグリセリン脂肪酸エステルなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。
 上記アミン系化合物としては、例えばラウリルジエタノールアミン、ミリスチルジエタノールアミン、パルミチルジエタノールアミン、ステアリルジエタノールアミン、オレイルジエタノールアミン、リノールジエタノールアミン、リノレンジエタノールアミン、ステアロールジエタノールアミン、ステアリルジエタノールアミンモノステアレート、ステアリルジエタノールアミンジステアレート、ステアリルジエタノールアミンモノミリステート、ステアリルジエタノールアミンモノパルミテート、パルミチルジエタノールアミンモノパルミテート、N,N−ビス(2−ヒドロキシエチル)脂肪アミンなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。
 上記アミド系化合物としては、例えばミリスチルジエタノールアミド、パルミチルジエタノールアミド、ステアリルジエタノールアミド、オレイルジエタノールアミド、アラキジルジエタノールアミドなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。
 上記脂肪酸としては、例えば酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキン酸、ガドレン酸、ベヘニン酸、エルカ酸、リグノセリン酸、セラコレイン酸、セロチン酸、モンタン酸、メリシン酸、セロプラスチン酸、リシノレイン酸、12−ヒドロキシステアリンなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。脂肪酸としては、炭素数14~20の高級脂肪酸を使用することが好ましい。
 上記脂肪族アルコールとしては、例えばステアリルアルコール、オレイルアルコールなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。
 本発明における帯電防止剤としては、上記のうちのエステル化合物およびアミン化合物を併用することが好ましく、
エステル化合物およびアミン化合物のみを使用するか、あるいは
エステル化合物およびアミン化合物と、
脂肪酸および脂肪族アルコールよりなる群から選択される少なくとも1種と
を混合して用いることが好ましい。
 帯電防止剤は、B層を形成するためのポリオレフィン系樹脂を構成する樹脂のいずれかに直接配合する方法によって添加してもよく、あるいはこれらの添加剤を高濃度で含有するマスターバッチとして配合する方法によって添加してもよい。マスターバッチのベース樹脂としては、ポリオレフィン系樹脂を構成する樹脂のいずれかを用いることが好ましい。
[任意成分]
 本発明のポリオレフィン系多層フィルムのB層を形成するためのポリオレフィン系樹脂は、本発明の効果を阻害しない範囲で、これら以外に、樹脂の添加剤として一般に使用されているものを任意添加剤としてさらに含有していてもよい。このような任意添加剤としては、例えば熱安定剤、加工安定剤、滑剤、増核剤、防曇剤、アンチブロッキング剤、酸化防止剤、紫外線吸収剤、顔料などを挙げることができる。
 これら任意添加剤は、B層を形成するためのポリプロピレン系樹脂を構成する樹脂のいずれかに直接配合する方法によって添加してもよく、あるいはこれらの添加剤を高濃度で含有するマスターバッチとして配合する方法によって添加してもよい。
[B層を形成するためのポリオレフィン系樹脂における各成分の使用割合]
 本発明のポリオレフィン系多層フィルムのB層を形成するためのポリオレフィン系樹脂における各樹脂の含有量は、長鎖分岐LLDPE、LLDPEおよびポリプロピレン系樹脂の合計を100重量%として、それぞれ、以下のとおりである。
 長鎖分岐LLDPE:15~75重量%、好ましくは20~70重量%
 LLDPE:25~85重量%、好ましくは30~80重量%
 ポリプロピレン系樹脂:30重量%以下、好ましくは20重量%以下
 長鎖分岐LLDPEおよびLLDPEの含有量を上記の範囲とすることにより、溶断シール強度と透明性とのバランスに優れる多層フィルムを得ることができる。
 B層を形成するためのポリオレフィン系樹脂における帯電防止剤の含有量は、長鎖分岐LLDPE、LLDPEおよびポリプロピレン系樹脂の合計100重量部に対して、好ましくは0.1~3.0重量部であり、より好ましくは0.1~2.0重量部であり、0.1~1.0重量部であることがさらに好ましい。
 本発明においては、帯電防止剤の添加効果が大きい。すなわち、従来技術のポリオレフィン系フィルムと比較した場合に、
同じ量の帯電防止剤を配合すると得られる帯電防止効果がより大きく、
同じ程度の帯電防止効果を得るにはより少ない量の帯電防止剤で足りることとなる。本発明においては、B層を形成するためのポリオレフィン系樹脂における帯電防止剤の量を、例えば0.7重量部以下、好ましくは0.6重量部以下としても、良好な帯電防止効果を得ることができる。
 B層を形成するためのポリオレフィン系樹脂における任意添加剤の含有量は、長鎖分岐LLDPE、LLDPEおよびポリプロピレン系樹脂の合計100重量部に対して、5重量部以下であることが好ましく、3重量部以下であることがさらに好ましい。
<ポリオレフィン系無延伸多層フィルムにおける各層の厚み>
 本発明のポリオレフィン系多層フィルムにおけるA~C層は、それぞれ、上記のような樹脂から形成される。
 本発明のポリオレフィン系多層フィルムの全体の厚みは、包装体としての実用性、溶断シール機への適性などの観点から、20~200μmであることが好ましく、30~150μmであることがより好ましい。
 本発明のポリオレフィン系多層フィルムの全体の厚みに占めるB層の厚みの割合は、耐衝撃性などの物性と光学特性とのバランスの観点から、30~80%であることが好ましく、33~70%であることがより好ましい。
<ポリオレフィン系無延伸多層フィルムの製造方法>
 本発明のポリオレフィン系無延伸多層フィルムは、実質的に延伸を伴わない方法であれば任意の方法によって製造することができる。ここで、「実質的に延伸を伴わない」とは、フィルムの製造過程においてごくわずかの配向が生ずることまでもが禁止される趣旨ではなく、フィルムが明示的な延伸工程を経由しないことを意味する。従って、例えば通常採用される条件下の押出工程を採用した場合に押出方向に若干の配向が生ずることは許容される。
 本発明の多層フィルムを製造する方法としては、例えば押出法、キャスト法などの適宜の方法を採用することができる。本発明の多層フィルムの各層を構成する樹脂は、いずれも適度のMFRを有し、溶融型の製膜機に対する適合性が高いから、上記のうちの押出法を採用することが、本発明の効果を最大限に発現できる点で好ましい。押出法のダイとしては、Tダイ、環状ダイなどを使用することができる。しかしながら、層の厚みを精密にコントロールして、優れた光学的特性を得る観点からは、環状ダイを使用することは好ましくなく、Tダイなどを使用することが好ましい。
 本発明の多層フィルムは、A~C層の3層からなる多層構造を有する。フィルムを多層化する方法としては、例えば共押出法、インラインラミネート法などの公知の方法を採用することができる。上記共押出法としては、例えばマルチマニホールド法、フィードブロック法などを挙げることができる。これらのうち共押出法を採用することが、各層の厚みを幅方向で均一にコントロールすることが可能である面で好ましい。
 本発明の多層フィルムは、これを溶断シールして溶断シール袋として適用することが予定されている。従って、最外層表面に製品の出所の明示あるいは意匠的効果の発現のために、印刷が施されることがある。このような場合に、印刷インクとの親和性ないし密着性を向上する目的で、最外層表面(A層またはC層の表面)上に、インラインまたはオフラインで表面処理を施してもよい。この表面処理としては、例えばコロナ放電処理、フレーム(火焔)処理などを挙げることができる。
<溶断シール袋>
 上記のようなポリオレフィン系無延伸多層フィルムを用いて、溶断シール袋を製造することができる。
 溶断シール袋は、市販のサイドウェルダー(溶断機)を用いて、公知の方法によって製造することができる。本発明の多層フィルムを用いて溶断シール袋を製造する際に推奨される溶断条件は、例えば以下のとおりである。
 シール刃温度:260~360℃
 製袋速度:60~180ショット/分
The polyolefin-based multilayer film of the present invention is a multilayer film in which an outermost layer A layer, an intermediate layer B layer and an outermost layer C layer are laminated in this order.
<A layer and C layer>
In the polyolefin multilayer film of the present invention, the outermost layers A and C are each formed from a polypropylene resin containing 50 wt% or more of a propylene-ethylene random copolymer polymerized using a metallocene catalyst. Is done. The A layer and the C layer may be composed of only a propylene-ethylene random copolymer (metallocene propylene-ethylene copolymer) polymerized using a metallocene catalyst, and the range is 50% by weight or less. If so, it may contain other resins.
The composition of the polypropylene resin for forming the A layer and the polypropylene resin for forming the C layer may be the same or different.
[Metalocene propylene-ethylene copolymer]
The metallocene propylene-ethylene copolymer is a random-type propylene-ethylene copolymer polymerized using a metallocene catalyst. The use of this metallocene-based propylene-ethylene copolymer is preferable in that the resulting multilayer film exhibits a high degree of blocking resistance and exhibits excellent optical properties when formed into a multilayer film.
The metallocene-based catalyst is a catalyst comprising a metallocene-type transition metal compound having at least one, preferably two, substituted or unsubstituted cyclopentadienyl ligands and a promoter. Examples of the cocatalyst include organoaluminum compounds; complexes of organoboron compounds and cations; ion-exchange silicates and the like, and one or more selected from these can be used. . The metallocene catalyst may be supported on a suitable inorganic substance. Metallocene catalysts are already known in the art, and those skilled in the art can appropriately select and use an appropriate metallocene catalyst according to the purpose.
The metallocene propylene-ethylene copolymer has a molecular weight distribution Mw / Mn represented by a ratio of a weight average molecular weight Mw in terms of polystyrene and a number average molecular weight Mn measured by gel permeation chromatography of 1.5 to 3. 5 is preferable. The value of Mw / Mn is more preferably 1.8 to 3.2, still more preferably 2.0 to 3.0. If Mw / Mn of the metallocene-based propylene-ethylene copolymer is less than 1.5, the melt tension becomes too low, so that the film forming property is inferior. On the other hand, it is preferable that Mw / Mn is 3.5 or less from the viewpoint of securing blocking resistance when a multilayer film is formed and securing optical properties in the multilayer film and the composite film. The metallocene propylene-ethylene copolymer preferably has a Mw of 450,000 to 100,000, more preferably 400,000 to 200,000.
The metallocene propylene-ethylene copolymer preferably has a melt flow rate MFR of 1 to 30 g / 10 minutes measured at 230 ° C. under a load of 2.16 kg in accordance with JIS K 7210. This value is more preferably 5 to 15 g / 10 min. When the MFR is less than 1 g / 10 minutes, the melt viscosity is too high, and thus the pressure in the film forming machine (for example, an extruder) becomes excessively high during the production of the multilayer film, and the productivity may decrease. Further, it may cause poor appearance such as non-uniform film thickness and melt fracture. On the other hand, if the MFR exceeds 30 g / 10 min, the outer layer may have a non-uniform film thickness due to an excessive difference in melt viscosity with the intermediate layer resin. In addition to this, the blocking resistance when a multilayer film is formed may be impaired.
The metallocene propylene-ethylene copolymer preferably has a melting point of 120 to 145 ° C, more preferably 120 to 140 ° C, and still more preferably 120 to 135 ° C. A metallocene propylene-ethylene copolymer exhibiting a melting point at a temperature within this range is preferred in that it provides an excellent balance between heat resistance when producing a multilayer film and transparency when formed into a multilayer film. The melting point refers to the peak top temperature (Tm) of the maximum endothermic peak in the differential scanning calorimeter (DSC) chart (the same applies hereinafter).
The content ratio of ethylene units in the metallocene propylene-ethylene copolymer is preferably 1 to 10 mol%, more preferably 2 to 5 mol%. By setting the content ratio of the ethylene unit within this range, the resulting multilayer film can exhibit excellent blocking resistance without impairing transparency, which is preferable.
[Other resins]
Other resins that can be used with the metallocene propylene-ethylene copolymer as described above to form the A layer and the C layer of the polyolefin-based multilayer film of the present invention include, for example, a metallocene propylene-ethylene copolymer. Mention may be made of polypropylene resins other than polymers (polypropylene resin (a)). The polypropylene resin (a) preferably has a melting point in the range of 120 to 170 ° C., and has a melt flow rate MFR of 1 to 30 g measured at 230 ° C. and a load of 2.16 kg in accordance with JIS K 7210. It is preferably in the range of / 10 minutes.
Examples of the polypropylene resin (a) include a homopolymer of propylene and a copolymer of propylene and a copolymer component. As the copolymer component, for example, ethylene and α-olefin are preferable, and specifically, for example, ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene. 4-methyl-1-pentene can be used, and one or more selected from these can be used. The proportion of the copolymer component in this polypropylene resin is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 3 mol% or less.
[Optional ingredients]
The polypropylene resin for forming the A layer and the C layer of the polyolefin multilayer film of the present invention contains the metallocene propylene-ethylene copolymer as an essential resin, and optionally includes a polypropylene resin (a). In addition to these, as long as they do not inhibit the effects of the present invention, those generally used as additives for resins may be further contained as optional additives. Examples of such optional additives include heat stabilizers, processing stabilizers, lubricants, nucleating agents, antifogging agents, antiblocking agents, antioxidants, ultraviolet absorbers, and pigments.
These optional additives may be added by a method of directly blending with any of the resins constituting the polypropylene resin for forming the A layer and the C layer, or a master containing these additives in a high concentration. You may add by the method of mix | blending as a batch. As the base resin for the masterbatch, the metallocene propylene-ethylene copolymer and the polypropylene resin (a) when used can be used.
[Use ratio of each component in polypropylene resin for forming A layer and C layer]
The layers A and C of the polyolefin-based multilayer film of the present invention are made of a polypropylene resin containing 50% by weight or more of the metallocene propylene-ethylene copolymer as described above, where the total of polypropylene resins is 100% by weight. It is formed. By using a polypropylene resin containing a metallocene propylene-ethylene copolymer at such a ratio, excellent transparency, excellent image clarity, etc. can be ensured in the resulting multilayer film. This value is preferably 55 to 95% by weight, more preferably 60 to 90% by weight.
The polypropylene resin for forming the A layer and the C layer of the polyolefin multilayer film of the present invention comprises only the metallocene propylene-ethylene copolymer and the polypropylene resin (a), and other types of resins are used. It is preferable not to contain.
The content of the optional additive in the polypropylene resin for forming the A layer and the C layer is preferably 5 parts by weight or less with respect to 100 parts by weight in total of the polypropylene resin, and 3 parts by weight or less. Preferably there is. However, it is preferable that the polypropylene resin for forming the A layer and the C layer does not contain an antistatic agent.
<B layer>
B layer which is an intermediate layer of the polyolefin-based multilayer film of the present invention,
Long chain branched LLDPE 15-75 wt%,
LLDPE (excluding the above-mentioned long-chain branched LLDPE) is 25 to 85% by weight, and a polypropylene resin is 30% by weight or less, and a polyolefin resin containing an antistatic agent. Here, the total of the long-chain branched LLDPE, LLDPE and the polypropylene resin is 100% by weight.
[Long-chain branched LLDPE]
The long-chain branched LLDPE is a low-density polyethylene having a branch, and is common to LLDPE (linear low-density polyethylene, described later) and LDPE (low-density polyethylene) in the prior art. However, the long-chain branched LLDPE in the present invention differs from the LLDPE and LDPE in the prior art in at least Mw / Mn, the amount of non-crystalline components and the content of long-chain branches. That is, the long-chain branched LLDPE in the present invention satisfies all of the following conditions (1) to (3).
(1) The ratio Mw / Mn (molecular weight distribution) of polystyrene-equivalent weight average molecular weight Mw and number average molecular weight Mn measured by gel permeation chromatography is 7.5 to 15.0.
(2) The amount of amorphous components measured by the temperature rising elution fractionation method is 1 to 4% by weight.
And (3) The number of branches having 8 or more carbon atoms measured by 13 C-NMR is 1.5 to 5.0 per 1,000 carbon atoms.
The long-chain branched LLDPE in the present invention has a ratio Mw / Mn (molecular weight distribution) of a weight average molecular weight Mw and a number average molecular weight Mn in terms of polystyrene measured by gel permeation chromatography (GPC) of 7.5 to 15.0. It is. This value is preferably 8.5 to 14.5, and more preferably 9.5 to 13.5. By using LLDPE having such a molecular weight distribution, the multilayer film of the present invention exhibits an excellent antistatic effect even when the blending amount of the antistatic agent is small, and the multilayer film is fused. When sealing, it is possible to obtain an advantage that the fusing seal strength is high and the variation thereof is small.
The long-chain branched LLDPE in the present invention has a polystyrene-equivalent weight average molecular weight Mw measured by GPC of preferably 80,000 to 150,000, and more preferably 90,000 to 140,000.
The long-chain branched LLDPE in the present invention has an amorphous component amount of 1 to 4% by weight measured by a temperature rising elution fractionation method.
In the temperature rising elution fractionation method, a solution obtained by dissolving a polymer sample in a predetermined solvent at a high temperature is supplied to a TREF (Temperature Rising Elution Fractionation) column, and then cooled to precipitate and adsorb the polymer sample in the column. Then, the column temperature is gradually raised and the eluted fraction is analyzed. In the present invention, after the column after the sample is supplied is cooled to 0 ° C., the supply of the solvent is started, and the fraction eluted during the period in which the column temperature is maintained at 0 ° C. is used as an amorphous component. Is evaluated as the amount of non-crystalline component. The amount of the amorphous component of the long chain branched LLDPE is preferably 1.5 to 3.0% by weight.
Such a temperature rising elution fractionation method can be performed, for example, using an appropriate temperature rising elution fractionation (TREF) apparatus such as a special TREF apparatus manufactured by Senshu Kagaku Co., Ltd.
By using the long-chain branched LLDPE having the crystallinity as described above, it is possible to obtain the advantage of ensuring the blocking resistance and the back feeling (elasticity) of the multilayer film of the present invention.
In the long-chain branched LLDPE in the present invention, the number of branches having 8 or more carbon atoms measured by 13 C-NMR is 1.5 to 5.0 per 1,000 carbon atoms. This value is preferably 2.0 to 5.0, and more preferably 2.5 to 4.5. By using LLDPE having such a long chain branch, the multilayer film of the present invention can stably exhibit high fusing seal strength regardless of the surrounding environment (for example, temperature, humidity, etc.) at the fusing seal. This is preferable.
LLDPE in the prior art is dominant when the number of carbon atoms in the branch is 6 or less, and even if there are branches having 8 or more carbon atoms, the amount is small, usually 1 or less per 1,000 carbon atoms. And stays at most 2 or less.
On the other hand, LDPE has more than 5.0 branches per 10,000 carbon atoms in the measurement of 13 C-NMR.
Therefore, the long-chain branched LLDPE (B1) in the present invention can be distinguished from LLDPE and LDPE in the prior art by the amount of branching having 8 or more carbon atoms measured by 13 C-NMR.
The following describes how the content of the long chain branching of the long chain branching LLDPE in the present invention is measured. Here, C 8 branch (1-decene structure) is considered as a branch of long chain branch LLDPE, and C 6 branch (1-octene structure) is considered as a branch of LLDPE in the prior art.
Methylene carbon present in the main chain of polyethylene is observed at 13 C-NMR at a chemical shift δ = 30 ppm. Methyl carbon branched end are both of C 8 branched and C 6 branched, appearing at a chemical shift δ = 14.06ppm. However, second and third chemical shift of each methylene carbon of the branched end is in a C 8 branched and C 6 branched, than differs as in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
In the present invention, paying attention to the second methylene carbon from the branch end of these, whether or not the number of carbons in the branch is 8 or more is determined by the chemical shift.
In actual calculation, the relative value of the peak area appearing at the chemical shift δ = 22.87 ppm to the peak area appearing at the chemical shift δ = 30 ppm attributed to the methylene carbon of the main chain is evaluated.
The measurement of 13 C-NMR as described above can be performed under the following conditions using an appropriate nuclear magnetic resonance analyzer such as “JNM-ECS400” manufactured by JEOL Ltd.
Solvent: Mixed solvent of trichlorobenzene / heavy benzene (75/25% by volume)
Sample concentration: 80 mg / 2.5 mL solution Measurement mode: 1H-complete decoupling Measurement temperature: 120 ° C.
Pulse width: 90 degree pulse Pulse repetition time: 9 seconds Integration number: 9,000 times The content of long chain branching in the present invention is:
The peak area of the second carbon from the end of the C 8 branch (chemical shift δ = 22.87 ppm) is
It is expressed as a relative value when the peak area of methylene carbon (chemical shift δ = 30 ppm) constituting the polymer chain is 1,000. The unit is (pieces / 1,000 C).
For reference, the various parameters described above are compared in Table 2 below for typical polyethylenes.
Figure JPOXMLDOC01-appb-T000002
The long-chain branched LLDPE in the present invention as described above may be synthesized by any method as long as it satisfies the above requirements. For example, it can be produced by a method using a known Ziegler-Natta catalyst, preferably with an appropriate donor compound; a method using a Phillips catalyst; a method using a metallocene catalyst. Among these, the method using a metallocene catalyst is preferable in that a polymer having the above characteristics can be easily obtained. In this case, the same metallocene catalyst as described above for the metallocene catalyst for synthesizing the metallocene propylene-ethylene copolymer can be used.
[LLDPE]
The LLDPE is an LLDPE other than the above long-chain branched LLDPE, and it is sufficient to use the LLDPE in the prior art.
In order to distinguish this LLDPE from the above long-chain branched LLDPE, for example, the following parameters can be exemplified.
This LLDPE is preferably a copolymer of ethylene and an α-olefin other than ethylene. In this case, the α-olefin is preferably an α-olefin having 3 to 12 carbon atoms, specifically, for example, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1- Pentene, 1-decene, 1-dodecene and the like;
The polystyrene-equivalent molecular weight distribution Mw / Mn measured by GPC is preferably 1.5 to 5.0,
The amount of non-crystalline components measured by the temperature rising elution fractionation method is preferably 1 to 5% by weight, and the number of branches having 8 or more carbon atoms measured by 13 C-NMR is 1 per 1,000 carbon atoms. The number is preferably not more than 1, and more preferably not more than 2. The measurement method of these parameters is the same as in the case of long-chain branched LLDPE.
With respect to the LLDPE, the MFR measured at 190 ° C. and a load of 2.16 kg in accordance with JIS K 7210 is preferably 0.5 to 20 g / 10 min.
Such LLDPE can be obtained by a known method. For example, it can be synthesized by a chromium catalyst alone or a catalyst system using a chromium catalyst and a Ziegler-Natta catalyst in combination.
[Polypropylene resin]
Examples of the polypropylene resin include metallocene propylene-ethylene copolymers and polypropylene resins (a) used to form the A layer and the C layer, and one kind selected from these. The above can be preferably used.
[Other resins]
The polyolefin resin used for forming the layer B in the polyolefin multilayer film of the present invention contains the long chain branched LLDPE, LLDPE and polypropylene resin as described above, but within the range not impairing the effects of the present invention. In addition to these, other resins may be contained.
Examples of other resins that can be used here include polyethylene resins other than those described above.
It is preferable that the polyolefin resin used for forming the B layer in the multilayer film of the present invention does not contain other resins other than the long-chain branched LLDPE, LLDPE, and the polypropylene resin.
[Antistatic agent]
The polyolefin resin used for forming the B layer in the polyolefin multilayer film of the present invention contains an antistatic agent.
Examples of the antistatic agent used herein include ester compounds, amine compounds, amide compounds, fatty acids, aliphatic alcohols, and the like, and preferably one or more selected from these are preferably used. Can do.
The ester compound is preferably a fatty acid ester of glycerin, specifically, for example, glycerin monolaurate, glycerin monomyristate, glycerin monopalmitate, glycerin monostearate, glycerin monobehenate, glycerin monooleate, glycerin mono- Monoglycerol fatty acid esters such as dilaurate, glycerol mono-dipalmylate, glycerol mono-distearate, glycerol mono-dibehenate, glycerol mono-diolate, glycerol di-trioleate, glycerol di-tristearate;
Diglycerin fatty acid esters such as diglycerin laurate, diglyceryl stearate, diglycerin oleate, diglycerin caprylate;
Examples thereof include polyglycerin fatty acid esters such as tetraglycerin stearate, tetraglycerin oleate, hexaglycerin stearate, decaglycerin stearate, and the like, and one or more selected from these can be used.
Examples of the amine compounds include lauryl diethanolamine, myristyl diethanolamine, palmityl diethanolamine, stearyl diethanolamine, oleyl diethanolamine, linol diethanolamine, linolenic ethanolamine, stearol diethanolamine, stearyl diethanolamine monostearate, stearyl diethanolamine distearate, stearyl diethanolamine monomethylene. State, stearyl diethanolamine monopalmitate, palmityl diethanolamine monopalmitate, N, N-bis (2-hydroxyethyl) fatty amine, and the like can be used, and one or more selected from these can be used. it can.
Examples of the amide compounds include myristyl diethanolamide, palmityl diethanolamide, stearyl diethanolamide, oleyl diethanolamide, arachidyl diethanolamide, etc., and one or more selected from these may be used. Can do.
Examples of the fatty acid include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachin And acid, gadrenic acid, behenic acid, erucic acid, lignoceric acid, ceracoleic acid, serotic acid, montanic acid, melissic acid, celloplastic acid, ricinoleic acid, 12-hydroxystearin, and the like. One or more can be used. As the fatty acid, it is preferable to use a higher fatty acid having 14 to 20 carbon atoms.
Examples of the aliphatic alcohol include stearyl alcohol and oleyl alcohol, and one or more selected from these can be used.
As the antistatic agent in the present invention, it is preferable to use an ester compound and an amine compound of the above in combination,
Use only ester compounds and amine compounds, or ester compounds and amine compounds,
It is preferable to use a mixture of at least one selected from the group consisting of fatty acids and aliphatic alcohols.
The antistatic agent may be added by a method of directly blending with any of the resins constituting the polyolefin resin for forming the B layer, or may be blended as a master batch containing these additives in a high concentration. You may add by a method. As the base resin for the master batch, it is preferable to use one of the resins constituting the polyolefin resin.
[Optional ingredients]
The polyolefin-based resin for forming the B layer of the polyolefin-based multilayer film of the present invention is a range that does not impair the effects of the present invention. Furthermore, you may contain. Examples of such optional additives include heat stabilizers, processing stabilizers, lubricants, nucleating agents, antifogging agents, antiblocking agents, antioxidants, ultraviolet absorbers, and pigments.
These optional additives may be added by a method of directly blending with any of the resins constituting the polypropylene resin for forming the B layer, or blended as a masterbatch containing these additives at a high concentration. You may add by the method of doing.
[Use ratio of each component in polyolefin resin for forming layer B]
The content of each resin in the polyolefin resin for forming the B layer of the polyolefin multilayer film of the present invention is as follows, with the total of the long chain branched LLDPE, LLDPE and polypropylene resin being 100% by weight. is there.
Long-chain branched LLDPE: 15 to 75% by weight, preferably 20 to 70% by weight
LLDPE: 25 to 85% by weight, preferably 30 to 80% by weight
Polypropylene resin: 30% by weight or less, preferably 20% by weight or less By setting the content of long-chain branched LLDPE and LLDPE in the above range, a multilayer film having an excellent balance between fusing seal strength and transparency can be obtained. it can.
The content of the antistatic agent in the polyolefin resin for forming the B layer is preferably 0.1 to 3.0 parts by weight with respect to a total of 100 parts by weight of the long-chain branched LLDPE, LLDPE and the polypropylene resin. Yes, more preferably 0.1 to 2.0 parts by weight, still more preferably 0.1 to 1.0 parts by weight.
In the present invention, the effect of adding an antistatic agent is great. That is, when compared with the prior art polyolefin film,
When the same amount of antistatic agent is blended, the resulting antistatic effect is greater,
A smaller amount of antistatic agent is sufficient to obtain the same level of antistatic effect. In the present invention, even when the amount of the antistatic agent in the polyolefin resin for forming the B layer is, for example, 0.7 parts by weight or less, preferably 0.6 parts by weight or less, a good antistatic effect can be obtained. Can do.
The content of the optional additive in the polyolefin-based resin for forming the B layer is preferably 5 parts by weight or less with respect to 100 parts by weight of the total of the long-chain branched LLDPE, LLDPE and the polypropylene-based resin. More preferably, it is at most parts.
<Thickness of each layer in polyolefin-based unstretched multilayer film>
The A to C layers in the polyolefin-based multilayer film of the present invention are each formed from the resin as described above.
The total thickness of the polyolefin-based multilayer film of the present invention is preferably 20 to 200 μm, and more preferably 30 to 150 μm, from the viewpoints of practicality as a package and suitability for a fusing sealer.
The ratio of the thickness of the B layer to the total thickness of the polyolefin-based multilayer film of the present invention is preferably 30 to 80% from the viewpoint of the balance between physical properties such as impact resistance and optical properties, and is preferably 33 to 70%. % Is more preferable.
<Method for producing polyolefin-based unstretched multilayer film>
The polyolefin-based unstretched multilayer film of the present invention can be produced by any method as long as the method does not substantially involve stretching. Here, “substantially without stretching” does not mean that even a slight orientation occurs in the film manufacturing process, but means that the film does not go through an explicit stretching process. To do. Therefore, for example, when an extrusion process under the conditions normally employed is employed, it is allowed that some orientation occurs in the extrusion direction.
As a method for producing the multilayer film of the present invention, an appropriate method such as an extrusion method or a casting method can be employed. Since all the resins constituting each layer of the multilayer film of the present invention have an appropriate MFR and are highly compatible with a melt-type film forming machine, it is possible to adopt the extrusion method of the above. This is preferable in that the effect can be maximized. As the die for the extrusion method, a T die, an annular die, or the like can be used. However, from the viewpoint of precisely controlling the thickness of the layer to obtain excellent optical characteristics, it is not preferable to use an annular die, and it is preferable to use a T die or the like.
The multilayer film of the present invention has a multilayer structure composed of three layers A to C. As a method for multilayering the film, a known method such as a co-extrusion method or an in-line laminating method can be employed. Examples of the coextrusion method include a multi-manifold method and a feed block method. Of these, the coextrusion method is preferably used because the thickness of each layer can be controlled uniformly in the width direction.
The multilayer film of the present invention is scheduled to be melt-sealed and applied as a melt-sealed bag. Therefore, printing may be performed on the outermost layer surface in order to clearly indicate the origin of the product or to develop a design effect. In such a case, surface treatment may be performed inline or offline on the outermost layer surface (the surface of the A layer or the C layer) for the purpose of improving the affinity or adhesion with the printing ink. Examples of the surface treatment include corona discharge treatment and flame (flame) treatment.
<Fusing seal bag>
Using the polyolefin-based unstretched multilayer film as described above, a fusing seal bag can be produced.
A fusing seal bag can be manufactured by a well-known method using a commercially available side welder (fusing machine). The fusing conditions recommended when producing a fusing seal bag using the multilayer film of the present invention are, for example, as follows.
Seal blade temperature: 260 ~ 360 ℃
Bag making speed: 60-180 shots / minute
 以下に実施例および比較例を挙げて本発明について説明するが、本発明はこれら実施例に限定されるものではない。
 以下の実施例および比較例における各評価は、それぞれ以下の手順によって、両面コロナ未処理である多層フィルムおよび片面コロナ処理された多層フィルムの双方について行った。
<多層フィルムの評価>
(1)ヘーズ
 透明性の指標として、日本電色工業(株)製、ヘイズメーター(型番:NDH5000)を用い、JIS K 7136に準拠してヘーズの測定を行った。
(2)光沢度
 光沢性の指標として、スガ試験機(株)製、光沢計(型番:UGV−5D)を用い、JIS K 7105に準拠して光沢度の測定を行った。この光沢度の評価は、多層フィルムのA層側の面およびC層側の面の両面についてそれぞれ行った。
(3)像鮮明度
 写像性の指標として、スガ試験機(株)製、写像性測定器(型番:ICM−1DP)を用い、JIS K 7105に準拠し、光学櫛(くし)のスリット幅を0.125mmとして像鮮明度の測定を行った。
(4)表面固有抵抗
 日本ヒュ−レット・パッカ−ド(株)製、ハイレジスタンス・メ−タ(型番:HP4339B)を用いて、A層面およびC層面について表面固有抵抗をそれぞれ測定した。試験片寸法は120mm×120mmとし、直流500Vの電圧を2分間印加した後の抵抗値を測定した。
 なお、第4表における評価結果「nE+m」は、表面固有抵抗値が「n×10Ω」であったことを示す。例えば「8E+11」とあれば、表面固有抵抗値が「8×1011Ω」であったことを示す。
(5)溶断シール強度
 キョウエイ(株)製、溶断シール機(型番:PP504AC、シール幅300mm)を用いて、320℃のシール刃温度、120ショット/分の速度で製袋を行い、溶断シール袋を得た。得られた溶断シール袋から、シール方向と垂直な方向への長さが150mm、幅が15mmの短冊状にサンプルを切り出した。ここでサンプルは、溶断シール部分が短冊形の末端に位置するように切り出した。
 この短冊サンプルにつき、溶断シール部が中央に位置するように180°開いて両端をチャックに挟み、溶断シール部を剥離するように引張試験を行った。引張試験機としては、(株)島津製作所製、型番:AG500を用い、引張速度100mm/分にて試験を行い、溶断シール部分が破断するときの強度を溶断シール強度(単位:N/15mm)とした。
 上記の手順により、溶断シール袋30枚を測定し、最大値、最小値およびばらつき(最大値と最小値との差)を調べた。
実施例1
<多層フィルムの製造>
 中間層(B層)用のスクリュー径75mmの単軸押出機が1台、両外層(A層およびC層)用のスクリュー径50mmの単軸押出機が2台の合計3台の押出機からなる3種3層構成のTダイ方式フィルム製膜装置を用い、各押出機に以下のように樹脂を供給した。
 A層用押出機;PP−1(日本ポリプロ(株)製、品番:WFX4TA、融点=126℃、MFR=7.0g/10分(230℃)、Mw/Mn=3.0)70重量部およびPP−2(日本ポリプロ(株)製、品番:FW3GT、融点=148℃、MFR=7.0g/10分(230℃)、Mw/Mn=5.3)30重量部の混合物
 B層用押出機;b−LLDPE−1(住友化学(株)製、品番:CU7004、融点=108℃、MFR=3.0g/10分(190℃)、Mw/Mn=11.9、密度=0.924g/cm、非結晶性成分=2.5重量%、長鎖分岐含有量=4.12個/1,000C)50重量部およびLLDPE−1(宇部丸善ポリエチレン(株)製、品番:2040FC、融点=118℃、MFR=3.7g/10分(190℃)、Mw/Mn=5.0、密度=0.919g/cm、非結晶性成分=0.6重量%、長鎖分岐含有量=1.31個/1,000C)50重量部の合計100重量部に対して、帯電防止剤のマスターバッチMB−Aを5重量部配合した混合物
 C層用押出機;PP−1(日本ポリプロ(株)製、品番:WFX4TA、融点=126℃、MFR=7.0g/10分(230℃)、Mw/Mn=3.0)70重量部およびPP−2(日本ポリプロ(株)製、品番:FW3GT、融点=148℃、MFR=7.0g/10分(230℃)、Mw/Mn=5.3)30重量部の混合物
 上記3つの押出機のいずれについても樹脂温度220℃、滞留時間1分、Tダイ温度230℃の条件で各Tダイより押出し、3層を合わせて25℃の冷却ロールを通して多層フィルムを得た。この多層フィルムは、3層構成であり、総厚みが50μmであり、3層の厚み構成が、A層約10μm、B層約30μm、C層約10μmであった。この状態の多層フィルムを40℃において24時間エージングすることにより、両面コロナ未処理である多層フィルムを得た。
 また、上記にて得られた多層フィルムのA層側の表面の濡れ指数が42mN/mとなるようにコロナ放電処理を施し、さらに40℃において24時間エージングすることにより、片面コロナ処理された多層フィルムを得た。
 この2種類の多層フィルムを用いて、上記(1)~(5)の評価を行った。評価結果は第4表に示した。
実施例2~16および比較例1~15
 上記実施例1において、各層用の押出機に供給する樹脂の種類および配合量、ならびに各層の厚みを、それぞれ第3表に記載のとおりとしたほかは、実施例1と同様にして多層フィルム製造し、それぞれ評価した。
 評価結果は第4表に示した。
 なお、上記第3表における各成分の略称は、それぞれ次の意味である。
<原料樹脂>
 b−LLDPE−1;住友化学(株)製、品番:CU7004
 b−LLDPE−2;住友化学(株)製、品番:GT140
 b−LLDPE−3;住友化学(株)製、品番:GH051
 LLDPE−1;宇部丸善ポリエチレン(株)製、品番:2040FC
 LLDPE−2;宇部丸善ポリエチレン(株)製、品番:1540F
 PP−1;日本ポリプロ(株)製、品番:WFX4TA(メタロセン系触媒を用いて重合されたプロピレン−エチレンランダム共重合体)
 PP−2;日本ポリプロ(株)製、品番:FW3GT
<帯電防止剤>
 A;グリセリン脂肪酸エステルおよびステアリルジエタノールアミンの混合物
 B;グリセリン脂肪酸エステル、ステアリン酸ジエタノールアミンおよびステアリルアルコールの混合物
 C;グリセリン脂肪酸エステル、N,Nビス(2−ヒドロキシエチル)脂肪アミンおよび高級脂肪酸の混合物
 上記の帯電防止剤は、いずれも、ベース樹脂としてのLLDPE−1(宇部丸善ポリエチレン(株)製、品番:2040FC、融点=118℃、MFR=3.7g/10分(190℃)、Mw/Mn=5.0、密度=0.919g/cm、非結晶性成分=0.6重量%、長鎖分岐含有量=1.31)90重量部に対して、帯電防止剤10重量部を混合してペレット化したマスターバッチとして配合した。
 押出機に供給した各樹脂は、下記の第5表に示した特性を有する樹脂である。
 「長鎖分岐」欄に示した長鎖分岐の含有量は、下記の条件下で測定した13C−NMRの結果から下記数式(1)に従って算出した、炭素原子1,000個あたりの炭素数8以上の分岐の数である。
13C−NMR測定条件]
 測定装置:日本電子(株)製、型式「JNM−ECS400」
 溶媒:トリクロロベンゼン/重ベンゼンの混合溶媒(75/25容量%)
 試料濃度:80mg/2.5mL溶液
 測定モード:1H−完全デカップリング
 測定温度:120℃
 パルス幅:90度パルス
 パルス繰返し時間:9秒
 積算回数:9,000回
 長鎖分岐含有量(個/1000C)=A÷B×1,000   (1)
(数式(1)中、Aは化学シフトδ=22.87ppmのピーク面積であり、Bは化学シフトδ=30ppmのピーク面積である。)
 非結晶成分含有量は、以下の条件下の昇温溶離分別法において、試料供給後のカラムを0℃まで冷却した後に溶媒の供給を開始し、カラム温度を0℃に維持している期間中に溶出する留分が全留分に対して占める重量割合である。
[昇温溶離分別法の実施条件]
 測定装置:(株)センシュー科学製、型番「TREF装置特型」
 カラム:内径10mm×300mm
 充填剤:クロモソルブP NAW(ジーエルサイエンス(株)製、30/60mesh)
 試料溶液濃度:5mg/mL
 試料溶液注入量:2mL
 溶媒:オルトジクロロベンゼン
 流速:1mL/min
 試料注入温度:140℃
 降温速度:5℃/h
 冷却到達温度:0℃
 冷却到達温度における維持時間:30分
 昇温速度:5℃/h
 検出器:赤外検出器
 測定波数:3.42μm
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-T000012
発明の効果
 本発明によれば、
溶断シール強度が高いとともにそのバラツキが少なく;
ヘーズ、光沢、像鮮明性などの光学特性に優れ;
帯電防止剤の配合量を少量とした場合でも優れた帯電防止効果を発現することができる、ポリオレフィン系無延伸多層フィルムが提供される。
 本発明のポリオレフィン系無延伸多層フィルムは溶断シール用途に好適に使用することができる。該フィルムから製造された溶断シール袋は、溶断シール強度が高く、該シール強度のバラツキが少なく、内容物の視認性に優れ、帯電し難い。
 また、本発明のポリオレフィン系無延伸多層フィルムに対して、例えばコロナ放電処理をした場合であっても、ガゼット部の強度が損なわれることがないから、印刷性に優れたマチ付きの溶断シール袋とすることも可能である。
 従って、本発明のポリオレフィン系無延伸多層フィルムから製造された溶断シール袋は、例えば詰替え用のシャンプー、ヘアーコンディショナー、ボディーソープ、洗剤などの包装体;衣類の包装体;書類、カード類の包装体などの用途に使用することができる。
Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to these examples.
Each evaluation in the following examples and comparative examples was performed on both the multilayer film that had not been subjected to the double-sided corona treatment and the multilayer film that had been subjected to the single-sided corona treatment by the following procedure.
<Evaluation of multilayer film>
(1) Haze As a transparency index, a haze meter (model number: NDH5000) manufactured by Nippon Denshoku Industries Co., Ltd. was used, and haze was measured based on JIS K7136.
(2) Glossiness Glossiness was measured according to JIS K 7105 using a gloss meter (model number: UGV-5D) manufactured by Suga Test Instruments Co., Ltd. as an index of glossiness. The glossiness was evaluated for both the A layer side surface and the C layer side surface of the multilayer film.
(3) Image sharpness As an index of image clarity, Suga Test Instruments Co., Ltd., image clarity measuring instrument (model number: ICM-1DP) is used, and the slit width of the optical comb is defined according to JIS K 7105. The image definition was measured at 0.125 mm.
(4) Surface resistivity The surface resistivity was measured for the A layer surface and the C layer surface using a high resistance meter (model number: HP4339B) manufactured by Nippon Hewlett-Packard Co., Ltd. The test piece size was 120 mm × 120 mm, and the resistance value after applying a DC voltage of 500 V for 2 minutes was measured.
The evaluation results of Table 4, "nE + m" indicates that the surface resistivity is "n × 10 m Ω". For example, “8E + 11” indicates that the surface specific resistance value was “8 × 10 11 Ω”.
(5) Fusing seal strength Using a fusing seal machine (model number: PP504AC, seal width 300 mm) manufactured by Kyoei Co., Ltd., bag making is performed at a seal blade temperature of 320 ° C. and a speed of 120 shots / min. Got. A sample was cut out in a strip shape having a length in the direction perpendicular to the sealing direction of 150 mm and a width of 15 mm from the obtained fusing seal bag. Here, the sample was cut out so that the fusing seal portion was located at the end of the strip shape.
About this strip sample, it opened 180 degree | times so that a fusing seal part may be located in the center, both ends were pinched | interposed into the chuck | zipper, and the tension test was done so that a fusing seal part might peel. As the tensile tester, Shimadzu Corporation model number: AG500 was used, the test was conducted at a tensile speed of 100 mm / min, and the strength when the fusing seal part broke was determined as fusing seal strength (unit: N / 15 mm). It was.
According to the above procedure, 30 fusing seal bags were measured, and the maximum value, minimum value, and variation (difference between the maximum value and the minimum value) were examined.
Example 1
<Manufacture of multilayer film>
From a total of three extruders, one single-screw extruder with a screw diameter of 75 mm for the intermediate layer (B layer) and two single-screw extruders with a screw diameter of 50 mm for both outer layers (A layer and C layer) Resin was supplied to each extruder as follows using the three-type three-layer T-die film forming apparatus.
Extruder for layer A; PP-1 (manufactured by Nippon Polypro Co., Ltd., product number: WFX4TA, melting point = 126 ° C., MFR = 7.0 g / 10 min (230 ° C.), Mw / Mn = 3.0) 70 parts by weight And PP-2 (manufactured by Nippon Polypro Co., Ltd., product number: FW3GT, melting point = 148 ° C., MFR = 7.0 g / 10 min (230 ° C.), Mw / Mn = 5.3) 30 parts by weight for layer B Extruder; b-LLDPE-1 (manufactured by Sumitomo Chemical Co., Ltd., product number: CU7004, melting point = 108 ° C., MFR = 3.0 g / 10 min (190 ° C.), Mw / Mn = 11.9, density = 0.0.0. 924 g / cm 3 , amorphous component = 2.5% by weight, long chain branch content = 4.12 / 1,000 C) and LLDPE-1 (Ube Maruzen Polyethylene Co., Ltd., product number: 2040FC) Melting point = 118 ° C., MFR = 3.7 g / 10 (190 ℃), Mw / Mn = 5.0, density = 0.919 g / cm 3, a non-crystalline component = 0.6% by weight, the long-chain branch content = 1.31 pieces / 1,000C) 50 Weight Mixer in which 5 parts by weight of antistatic agent masterbatch MB-A is blended with respect to 100 parts by weight of the total part C-layer extruder; PP-1 (manufactured by Nippon Polypro Co., Ltd., product number: WFX4TA, melting point = 126 C, MFR = 7.0 g / 10 min (230 ° C.), 70 parts by weight of Mw / Mn = 3.0 and PP-2 (manufactured by Nippon Polypro Co., Ltd., product number: FW3GT, melting point = 148 ° C., MFR = 7 0.0 g / 10 min (230 ° C.), Mw / Mn = 5.3) 30 parts by weight of mixture For all the above three extruders, the resin temperature was 220 ° C., the residence time was 1 min, and the T-die temperature was 230 ° C. Extruded from each T-die, and 3 layers were combined and cooled at 25 ° C To obtain a multi-layer film through a roll. This multilayer film had a three-layer structure, the total thickness was 50 μm, and the three-layer thickness structure was an A layer of about 10 μm, a B layer of about 30 μm, and a C layer of about 10 μm. The multilayer film in this state was aged at 40 ° C. for 24 hours to obtain a multilayer film that had not been subjected to double-sided corona treatment.
The multilayer film obtained above was subjected to corona discharge treatment so that the wetting index of the surface on the A layer side of the multilayer film obtained was 42 mN / m, and further aged for 24 hours at 40 ° C. A film was obtained.
The evaluations (1) to (5) were performed using these two types of multilayer films. The evaluation results are shown in Table 4.
Examples 2 to 16 and Comparative Examples 1 to 15
In Example 1 above, a multilayer film was produced in the same manner as in Example 1 except that the type and amount of resin supplied to the extruder for each layer and the thickness of each layer were as shown in Table 3. And evaluated each.
The evaluation results are shown in Table 4.
In addition, the abbreviation of each component in the said Table 3 has the following meaning, respectively.
<Raw resin>
b-LLDPE-1; manufactured by Sumitomo Chemical Co., Ltd., product number: CU7004
b-LLDPE-2; manufactured by Sumitomo Chemical Co., Ltd., product number: GT140
b-LLDPE-3; manufactured by Sumitomo Chemical Co., Ltd., product number: GH051
LLDPE-1; manufactured by Ube Maruzen Polyethylene Co., Ltd., product number: 2040FC
LLDPE-2; manufactured by Ube Maruzen Polyethylene Co., Ltd., product number: 1540F
PP-1; manufactured by Nippon Polypro Co., Ltd., product number: WFX4TA (propylene-ethylene random copolymer polymerized using a metallocene catalyst)
PP-2; manufactured by Nippon Polypro Co., Ltd., product number: FW3GT
<Antistatic agent>
A: Mixture of glycerin fatty acid ester and stearyl diethanolamine B: Mixture of glycerin fatty acid ester, diethanolamine stearate and stearyl alcohol C: Mixture of glycerin fatty acid ester, N, N bis (2-hydroxyethyl) fatty amine and higher fatty acid All of the inhibitors are LLDPE-1 (manufactured by Ube Maruzen Polyethylene Co., Ltd., product number: 2040FC, melting point = 118 ° C., MFR = 3.7 g / 10 min (190 ° C.), Mw / Mn = 5 as a base resin. 0.0, density = 0.919 g / cm 3 , non-crystalline component = 0.6% by weight, long chain branching content = 1.31) 10 parts by weight of antistatic agent were mixed with 90 parts by weight. Formulated as a pelletized masterbatch.
Each resin supplied to the extruder is a resin having the characteristics shown in Table 5 below.
The content of long chain branches shown in the “long chain branch” column is the number of carbon atoms per 1,000 carbon atoms, calculated according to the following formula (1) from the results of 13 C-NMR measured under the following conditions: The number of branches of 8 or more.
[ 13C -NMR measurement conditions]
Measuring device: Model “JNM-ECS400” manufactured by JEOL Ltd.
Solvent: Mixed solvent of trichlorobenzene / heavy benzene (75/25% by volume)
Sample concentration: 80 mg / 2.5 mL solution Measurement mode: 1H-complete decoupling Measurement temperature: 120 ° C.
Pulse width: 90 degree pulse Pulse repetition time: 9 seconds Integration number: 9,000 times Long chain branch content (pieces / 1000C) = A ÷ B × 1,000 (1)
(In Formula (1), A is a peak area of chemical shift δ = 22.87 ppm, and B is a peak area of chemical shift δ = 30 ppm.)
In the temperature rising elution fractionation method under the following conditions, the amorphous component content is measured during the period in which the column supply after the sample supply is cooled to 0 ° C. and then the supply of the solvent is started and the column temperature is maintained at 0 ° C. This is the weight ratio of the fraction eluted in the total fraction.
[Conditions for temperature rising elution fractionation]
Measuring equipment: Model number "TREF equipment special type", manufactured by Senshu Kagaku Co., Ltd.
Column: Internal diameter 10mm x 300mm
Filler: Chromosolv P NAW (manufactured by GL Sciences, 30/60 mesh)
Sample solution concentration: 5 mg / mL
Sample solution injection volume: 2 mL
Solvent: Orthodichlorobenzene Flow rate: 1 mL / min
Sample injection temperature: 140 ° C
Temperature drop rate: 5 ° C / h
Cooling arrival temperature: 0 ° C
Maintenance time at cooling temperature: 30 minutes Temperature increase rate: 5 ° C / h
Detector: Infrared detector Measurement wave number: 3.42 μm
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-T000012
Effects of the Invention According to the present invention,
High fusing seal strength and less variation
Excellent optical properties such as haze, gloss and image clarity;
There is provided a polyolefin-based unstretched multilayer film that can exhibit an excellent antistatic effect even when the blending amount of the antistatic agent is small.
The polyolefin-based unstretched multilayer film of the present invention can be suitably used for fusing and sealing applications. The fusing seal bag manufactured from the film has high fusing seal strength, little variation in the sealing strength, excellent contents visibility, and is hardly charged.
Further, even when the polyolefin-based unstretched multilayer film of the present invention is subjected to, for example, corona discharge treatment, the strength of the gusset portion is not impaired. It is also possible.
Therefore, the fusing seal bag manufactured from the polyolefin-based unstretched multilayer film of the present invention is a package of shampoo, hair conditioner, body soap, detergent, etc. for refilling; a package of clothing; a package of documents and cards It can be used for applications such as body.

Claims (5)

  1.  最外層であるA層、中間層であるB層および最外層であるC層がこの順に積層したポリオレフィン系無延伸多層フィルムであって、
     A層およびC層が、それぞれ、メタロセン系触媒を用いて重合されたプロピレン−エチレンランダム共重合体を50重量%以上含有するポリプロピレン系樹脂から形成され、
     B層が、
     長鎖分岐LLDPE15~75重量%、
     LLDPE(ただし、上記の長鎖分岐LLDPEを除く。)25~85重量%、および
     ポロプロピレン系樹脂30重量%以下、ただし前記長鎖分岐LLDPE、LLDPEおよびポリプロピレン系樹脂の合計は100重量%である、ならびに
    帯電防止剤
    を含有するポリオレフィン系樹脂から形成され、さらに、
     前記長鎖分岐LLDPEは、下記の条件(1)~(3)
     (1)ゲルパーミエーションクロマトグラフィーによって測定したポリスチレン換算の重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが7.5~15.0である、
     (2)昇温溶出分別法によって測定した非結晶成分量が1~4重量%である、
    および
     (3)13C−NMRによって測定した炭素数8以上の分岐の数が、炭素原子1,000個あたり1.5~5.0個である、
    のすべてを満足し、そして
     溶断シール用途に用いられることを特徴とする、前記多層フィルム。
    A polyolefin-based unstretched multilayer film in which an outermost layer A layer, an intermediate layer B layer and an outermost layer C layer are laminated in this order,
    Each of the A layer and the C layer is formed from a polypropylene resin containing 50% by weight or more of a propylene-ethylene random copolymer polymerized using a metallocene catalyst,
    B layer
    Long chain branched LLDPE 15-75 wt%,
    25 to 85% by weight of LLDPE (excluding the above-mentioned long chain branched LLDPE), and 30% by weight or less of the propylene propylene resin, provided that the total of the long chain branched LLDPE, LLDPE and polypropylene resin is 100% by weight As well as a polyolefin-based resin containing an antistatic agent,
    The long chain branched LLDPE has the following conditions (1) to (3):
    (1) The ratio Mw / Mn of the weight average molecular weight Mw in terms of polystyrene and the number average molecular weight Mn measured by gel permeation chromatography is 7.5 to 15.0.
    (2) The amount of amorphous components measured by the temperature rising elution fractionation method is 1 to 4% by weight.
    And (3) The number of branches having 8 or more carbon atoms measured by 13 C-NMR is 1.5 to 5.0 per 1,000 carbon atoms.
    The multilayer film is characterized by satisfying all of the above and being used for fusing and sealing applications.
  2.  B層を形成するためのポリオレフィン系樹脂における帯電防止剤の含有量が、該樹脂に含有される長鎖分岐LLDPE、LLDPEおよびポリプロピレン系樹脂の合計100重量部に対して0.1~3重量部である、請求項1に記載の多層フィルム。 The content of the antistatic agent in the polyolefin resin for forming the B layer is 0.1 to 3 parts by weight with respect to 100 parts by weight of the total of the long-chain branched LLDPE, LLDPE and polypropylene resin contained in the resin. The multilayer film according to claim 1, wherein
  3.  A層およびC層を形成するために用いられるポリプロピレン系樹脂が帯電防止剤を含有しない、請求項1に記載の多層フィルム。 The multilayer film according to claim 1, wherein the polypropylene resin used to form the A layer and the C layer does not contain an antistatic agent.
  4.  多層フィルム全体の厚みが20~200μmであり、
    多層フィルム全体の厚みに占めるB層の厚みの割合が30~80%である、請求項1~3のいずれか一項に記載の多層フィルム。
    The total thickness of the multilayer film is 20 to 200 μm,
    The multilayer film according to any one of claims 1 to 3, wherein the ratio of the thickness of the B layer to the total thickness of the multilayer film is 30 to 80%.
  5.  請求項1~4のいずれか一項に記載の多層フィルムから製造された溶断シール袋。 A fusing-seal bag manufactured from the multilayer film according to any one of claims 1 to 4.
PCT/JP2015/052786 2014-01-29 2015-01-26 Multi-layer non-oriented polyolefin film WO2015115631A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167020398A KR20160114603A (en) 2014-01-29 2015-01-26 Multi-layer non-oriented polyolefin film
CN201580003420.8A CN105848896B (en) 2014-01-29 2015-01-26 The non-stretched multilayer film of polyolefin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-014112 2014-01-29
JP2014014112 2014-01-29
JP2014201422A JP6281950B2 (en) 2014-01-29 2014-09-30 Polyolefin-based unstretched multilayer film
JP2014-201422 2014-09-30

Publications (1)

Publication Number Publication Date
WO2015115631A1 true WO2015115631A1 (en) 2015-08-06

Family

ID=53757196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052786 WO2015115631A1 (en) 2014-01-29 2015-01-26 Multi-layer non-oriented polyolefin film

Country Status (5)

Country Link
JP (1) JP6281950B2 (en)
KR (1) KR20160114603A (en)
CN (1) CN105848896B (en)
TW (1) TWI613080B (en)
WO (1) WO2015115631A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534249A (en) * 2018-06-29 2021-03-19 陶氏环球技术有限责任公司 Determination of the amorphous content of the Polymer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755577B (en) * 2017-12-26 2022-02-21 日商迪愛生股份有限公司 Laminated films and food packaging bags
JP7464441B2 (en) 2020-05-08 2024-04-09 サン・トックス株式会社 Non-oriented multi-layer film
WO2023065280A1 (en) * 2021-10-22 2023-04-27 Dow Global Technologies Llc Multilayer films

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244523A (en) * 2003-02-14 2004-09-02 Tohcello Co Ltd Heat-sealable propylene polymer film, laminated film and their use
JP2008238532A (en) * 2007-03-27 2008-10-09 Sumitomo Chemical Co Ltd Multi-layer film and bag
JP2009500205A (en) * 2005-07-08 2009-01-08 ダウ グローバル テクノロジーズ インコーポレイティド Layered film composition, packaging prepared therefrom and method of use
JP2012139854A (en) * 2010-12-28 2012-07-26 Japan Polyethylene Corp Packaging material and liquid packaging bag using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841760B2 (en) * 2001-06-29 2011-12-21 三井化学株式会社 Polypropylene resin multilayer film
CN101767465B (en) * 2008-12-29 2013-02-13 佛山塑料集团股份有限公司 Method for preparing thermoplastic resin film
JP5895590B2 (en) * 2011-04-28 2016-03-30 住友化学株式会社 Polypropylene resin composition and film comprising the same
CN102757599B (en) * 2011-04-28 2015-11-04 住友化学株式会社 Polypropylene resin composite and the film formed by it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244523A (en) * 2003-02-14 2004-09-02 Tohcello Co Ltd Heat-sealable propylene polymer film, laminated film and their use
JP2009500205A (en) * 2005-07-08 2009-01-08 ダウ グローバル テクノロジーズ インコーポレイティド Layered film composition, packaging prepared therefrom and method of use
JP2008238532A (en) * 2007-03-27 2008-10-09 Sumitomo Chemical Co Ltd Multi-layer film and bag
JP2012139854A (en) * 2010-12-28 2012-07-26 Japan Polyethylene Corp Packaging material and liquid packaging bag using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534249A (en) * 2018-06-29 2021-03-19 陶氏环球技术有限责任公司 Determination of the amorphous content of the Polymer

Also Published As

Publication number Publication date
CN105848896B (en) 2017-07-11
CN105848896A (en) 2016-08-10
TWI613080B (en) 2018-02-01
JP6281950B2 (en) 2018-02-21
KR20160114603A (en) 2016-10-05
TW201538326A (en) 2015-10-16
JP2015163461A (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP4928741B2 (en) Propylene-based resin film, propylene-based resin laminated film, and uses thereof
US20100125114A1 (en) Propylene-Based Film Compositions
JP6457402B2 (en) Polyolefin-based unstretched multilayer film
JP6852528B2 (en) Manufacturing method for each of polyolefin resin composition and film
JP6281950B2 (en) Polyolefin-based unstretched multilayer film
JP6540524B2 (en) Translucent wood grain oriented film
WO2009087797A1 (en) Surface protection film
KR20190111975A (en) Biaxially oriented polypropylene-based film
KR0137865B1 (en) Opaque, laminated and stretched products,and method for making them
JP6977639B2 (en) Polypropylene resin composition, laminates and biaxially stretched polypropylene films
JP2006299060A (en) Polypropylene-based drawing adhesive film
JP6500699B2 (en) Stretched film
JP4429430B2 (en) Sealant film
JP2009061705A (en) Manufacturing process of polypropylene resin laminated non-oriented film
JP6852527B2 (en) Manufacturing method for each of polyolefin resin composition and film
JP3628406B2 (en) Biaxially oriented polypropylene film
JP5545627B2 (en) Polyolefin thin film multilayer shrink film
JP6561857B2 (en) Stretched film
JP2001071431A (en) Multilayered stretched polypropylene film
JP4624721B2 (en) Laminated resin uniaxially stretched film
JPH06297659A (en) Biaxially stretched double layer film
JP2001105551A (en) Multi-layer film for packaging food
JP6379739B2 (en) High rigidity multilayer film
JP2005067176A (en) Heat-sealable laminated polypropylene resin film and package thereby
JP4853431B2 (en) Multilayer film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167020398

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743473

Country of ref document: EP

Kind code of ref document: A1