WO2009087797A1 - Surface protection film - Google Patents

Surface protection film Download PDF

Info

Publication number
WO2009087797A1
WO2009087797A1 PCT/JP2008/068020 JP2008068020W WO2009087797A1 WO 2009087797 A1 WO2009087797 A1 WO 2009087797A1 JP 2008068020 W JP2008068020 W JP 2008068020W WO 2009087797 A1 WO2009087797 A1 WO 2009087797A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
protective film
amorphous
surface protective
ethylene
Prior art date
Application number
PCT/JP2008/068020
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuhiko Usui
Takashi Moriya
Kazunori Kobashi
Original Assignee
Dic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic Corporation filed Critical Dic Corporation
Priority to CN2008801245032A priority Critical patent/CN101909887A/en
Publication of WO2009087797A1 publication Critical patent/WO2009087797A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C09J123/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/04Presence of homo or copolymers of ethene

Definitions

  • the present invention is applied to the surface of various resin plates, glass plates, metal plates, etc. used in building materials, electrical / electronic fields, etc. for the purpose of protection, storage, transportation and post-processing.
  • the present invention relates to a surface protective film that protects a kimono from scratches and contamination.
  • the surface protective film does not float or peel off from the adherend, and has very little contamination such as adhesive residue on the adherend surface after film peeling.
  • the present invention relates to a surface protective film that protects a kimono from scratches and contamination.
  • the surface protective film does not float or peel off from the adherend, and has very little contamination such as adhesive residue on the adherend surface after film peeling.
  • the basic required performance for the surface protective film includes excellent adherence workability that can be uniformly applied to the above-mentioned various adherends without involving wrinkles or air, storage of the adherend, transportation, etc.
  • Adhesive strength that does not float or peel between the surfaces of the adherend, environmental changes during storage of the adherend, and changes in the adhesive strength over time due to post-processing are less likely to be easily peeled off and the surface of the adherend after peeling It does not contaminate.
  • a film made of polyvinyl chloride resin, polyethylene resin, polypropylene resin or the like is used as a base material, and one surface thereof is coated with an adhesive such as urethane, acrylic or rubber.
  • these surface protective films may be inferior in adhesion between the base film and the pressure-sensitive adhesive, or when peeled from the adherend due to the low cohesive force of the pressure-sensitive adhesive itself.
  • the surface protection film produced by applying a pressure-sensitive adhesive to the film requires a minimum of two steps, ie, a film production process and a pressure-sensitive adhesive coating process, which increases the production cost.
  • a large amount of solvent needs to be removed in the pressure-sensitive adhesive coating process, which increases the environmental load.
  • a self-adhesive surface protective film in which a base film layer and an adhesive layer are simultaneously extruded and laminated by a coextrusion lamination method has been proposed.
  • a surface protective film for example, as a resin composition for an adhesive layer, a mixture containing an amorphous olefin copolymer, a crystalline olefin copolymer, and a thermoplastic elastomer and having specific properties is used.
  • Patent Document 1 Use (for example, refer to Patent Document 1) or use a mixture of an amorphous olefin copolymer, a crystalline olefin polymer, and a block copolymer having a crystalline olefin block at a specific ratio.
  • Patent Document 2 provides a multilayer film that is excellent in adhesive strength and peeling stability and has no adhesive residue after peeling.
  • the present inventors already have a crystalline propylene-based polymer as a main component as a surface protective film that has both moderate adhesiveness and heat resistance and has little contamination on the surface of the adherend after peeling.
  • a surface protective film in which a base material layer and an adhesive layer composed mainly of a resin in which an amorphous ⁇ -olefin polymer and a crystalline propylene polymer are mixed at a specific ratio are laminated (for example, a patent) Reference 3).
  • the problem of the present invention is that it has moderate adhesiveness and adhesive stability, has not only a residue that can be visually confirmed on the surface of the adherend after peeling, but also a minute amount of contamination that cannot be confirmed. It is intended to provide a surface protective film having good next processing suitability, and having no blocking when it is rolled out and then used again.
  • the present inventors have determined that a specific ratio of an amorphous ⁇ -olefin polymer and a linear low density polyethylene as a resin used for the adhesive layer of the surface protective film. Or a resin in which an amorphous ⁇ -olefin polymer, a linear low density polyethylene, and a crystalline ethylene- ⁇ -olefin copolymer are mixed at a specific ratio as a main component.
  • the inventors found that the surface of the adherend is very little contaminated and the suitability for secondary processing is improved, and the present invention has been completed.
  • the present invention is a surface protective film in which an adhesive layer (A) and a base material layer (B) are laminated, wherein the adhesive layer (A) is an amorphous ⁇ -olefin polymer (A1) 5 A mixed resin of 50 to 95% by mass and a linear low density polyethylene (A2) having a density of 0.880 to 0.938 g / cm 3 , or an amorphous ⁇ -olefin polymer.
  • A1 amorphous ⁇ -olefin polymer
  • A2 linear low density polyethylene
  • a surface protective film comprising a mixed resin of 5 to 50% by mass as a main component.
  • having a specific resin in each layer as a main component means that in the resin composition used in the layer (all including various additives and other resins used in combination as necessary) This means that the resin or mixed resin specified in the present invention is contained in an amount of 65% by mass or more.
  • the surface protective film of the present invention is visually observed on the surface of the adherend after peeling, even after being stuck to various resin plates, glass plates, metal plates, etc., and then left for a long time or exposed to a high temperature environment. There is no adhesive residue that can be confirmed, and there are very few residues that cannot be visually confirmed. Therefore, the surface protective film of the present invention is useful as a film for protecting the surface of various resin plates, glass plates, metal plates and the like, and is particularly suitable for applications where secondary processing such as printing is performed after the protective film is peeled off. is there. Moreover, when the surface protection film of this invention rolls up in roll shape, and it extends
  • the surface protective film of the present invention obtained using an ethylene polymer as a base material layer, in particular, cuts the adherend in a state where the surface protective film is adhered to the adherend.
  • the surface protective film cuts cleanly and exhibits excellent properties that do not cause appearance defects such as stringing and fluffing, and its application fields are wide.
  • the surface protective film of the present invention is a coextruded laminated film in which an adhesive layer (A) and a base material layer (B) are formed by a coextrusion laminating method.
  • the amorphous ⁇ -olefin polymer (A1) used for the adhesive layer (A) of the surface protective film of the present invention is a polymer containing monomer units based on ⁇ -olefins having 3 to 20 carbon atoms, or A copolymer having a melting peak with a heat of fusion of 1 J / g or more and a crystallization peak with a heat of crystallization of 1 J / g or more in a differential scanning calorimeter (DSC) measurement range of ⁇ 100 to 200 ° C. None of these polymers are observed, and these may be used alone or in combination of two or more.
  • DSC differential scanning calorimeter
  • the ⁇ -olefin having 3 to 20 carbon atoms may be linear or branched, for example, propylene, butene-1, pentene-1, hexene-1, heptene-1, octene-1 , Nonene-1, decene-1, undecene-1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nanodecene-1, eicosene-1, etc.
  • Linear ⁇ -olefin branched such as 3-methylbutene-1,3-methylpentene-1,4-methylpentene-1,2-ethyl-1-hexene, 2,2,4-trimethylpentene-1 These ⁇ -olefins are included.
  • the amorphous ⁇ -olefin polymer (A1) is preferably a copolymer having two or more monomer units based on these ⁇ -olefins. Copolymers having at least one monomer unit based on 4 to 20 ⁇ -olefin are industrially available, linear low density polyethylene (A2) described later or crystalline ethylene- ⁇ -olefin copolymer. From the viewpoint of compatibility with the polymer (A3), coextrusion moldability and the like, amorphous propylene-butene-1 copolymer and amorphous propylene-ethylene-butene-1 copolymer are most preferable. .
  • the amorphous ⁇ -olefin polymer (A1) may have a monomer unit other than the ⁇ -olefin.
  • monomer units include monomer units based on ethylene, polyene compounds, cyclic olefins, vinyl aromatic compounds, and the like.
  • the content of monomer units based on propylene in the amorphous propylene-butene-1 copolymer is selected from the viewpoint of improving the heat resistance of the resulting surface protective film.
  • the total monomer unit of the polymer is 100% by mass, it is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
  • the content of monomer units based on propylene in the amorphous propylene-ethylene-butene-1 copolymer is selected from the viewpoint of improving the heat resistance of the resulting surface protective film.
  • the total monomer unit of the butene-1 copolymer is 100% by mass, it is preferably 50% by mass or more, and more preferably 60% by mass or more.
  • the content of monomer units based on ethylene in the amorphous propylene-ethylene-butene-1 copolymer is the same as the total amount of amorphous propylene-ethylene-butene-1 copolymer.
  • the amount is preferably 10% by mass or more, more preferably 20% by mass or more, based on 100% by mass of the monomer unit. If the content of the monomer unit based on ethylene is within this range, the adhesive layer (B) becomes relatively soft, and even if the adherend surface has irregularities, it adheres in a form that follows the irregularities. Therefore, sufficient adhesive strength can be obtained.
  • the intrinsic viscosity [ ⁇ ] of the amorphous ⁇ -olefin polymer (A1) is preferably 0.1 to 10.0 dl / g, more preferably 0.7 to 7.0 dl / g.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably more than 1 and 4 or less, more preferably 2 to 3. .
  • the amorphous ⁇ -olefin polymer (A1) is an olefin polymer, it is possible to remove acetic acid as in the case where an ethylene-vinyl acetate copolymer is used as a resin for the adhesive layer. There is no increase in adhesive strength over time due to resin alteration, and stable adhesive strength can be maintained over a long period of time.
  • the method for producing the amorphous ⁇ -olefin polymer (A1) is not particularly limited, and for example, using a gas phase polymerization method, a solution polymerization method, a slurry polymerization method, a bulk polymerization method, or the like, Examples thereof include a method of polymerizing with a metallocene catalyst.
  • a more preferable production method includes the production method disclosed in JP-A-2002-348417.
  • the resin used for the adhesive layer (A) in the surface protective film of the present invention is a resin obtained by mixing the amorphous ⁇ -olefin polymer (A1) and the linear low density polyethylene (A2), or the amorphous
  • This is a resin in which an ⁇ -olefin polymer (A1), a linear low density polyethylene (A2), and a crystalline ethylene- ⁇ -olefin copolymer (A3) are mixed.
  • the linear low density polyethylene (A2) and the crystalline ethylene- ⁇ -olefin copolymer (A3) into the amorphous ⁇ -olefin polymer (A1), the surface state of the adherend is obtained.
  • Adhesive strength can be adjusted according to the required properties depending on the material and application of the adherend, and contamination on the adherend surface after peeling can be reduced regardless of the strength of the adhesive strength.
  • the linear low density polyethylene (A2) are those having a density in the range of 0.880 ⁇ 0.938g / cm 3, the density is more preferably from 0.898 ⁇ 0.925g / cm 3.
  • the melt flow rate (MFR, measured at 190 ° C. and 21.18 N according to JIS K7210: 1999) is preferably 0.5 to 30.0 g / 10 min. More preferred is 0 to 15.0 g / 10 min. If the density and MFR of the linear low density polyethylene (A2) are within this range, the compatibility with the above-mentioned amorphous ⁇ -olefin polymer (A1) is good, and the film formability of the laminated film is improved. To do.
  • Examples of the crystalline ethylene- ⁇ -olefin copolymer (A3) include an ethylene-propylene copolymer and an ethylene-butene-1 copolymer, and the ethylene-butene-1 copolymer is preferred. It is preferable from the viewpoint of easy industrial availability and easy adjustment of the adhesive strength of the resulting surface protective film.
  • the crystalline ethylene- ⁇ -olefin copolymer (A3) has an MFR (measured at 190 ° C. and 21.18 N) of 0.5 to 30.0 g / 10 min and a density of 0.870 to 0.
  • Those having a .905 g / cm 3 are preferable, and those having an MFR of 2.0 to 15.0 g / 10 min and a density of 0.880 to 0.900 g / cm 3 are more preferable. If the MFR and density of the crystalline ethylene- ⁇ -olefin copolymer (A3) are within this range, the compatibility with the amorphous ⁇ -olefin polymer (A1) described above is good and the laminated film is formed. Film properties are improved. Further, from the viewpoint of the effect of preventing contamination of the adherend surface, these resins are more preferably a metallocene catalyst system described later with a small amount of low molecular weight components.
  • the crystallinity is a melting peak with a melting heat of 1 J / g or more and a crystallization peak with a crystallization heat of 1 J / g or more in a measurement range of ⁇ 100 to 200 ° C. with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the blending ratio thereof is amorphous ⁇ -olefin.
  • the polymer (A1) is 5 to 50% by mass
  • the linear low density polyethylene (A2) is 50 to 95% by mass, more preferably the component (A1) is 5 to 40% by mass, and the component (A2) is 60 to 95% by mass. %. If the blending ratio of the amorphous ⁇ -olefin polymer (A1) is less than 5% by mass, sufficient adhesive strength cannot be obtained, and if it exceeds 50% by mass, the adhesive strength is too strong, making it difficult to handle the film. There is a problem. Also, by adjusting the blending ratio of component (A1) and component (A2) within the above range, the adhesive strength is adjusted to about 0.05 to 5.0 N / 25 mm according to the required adhesive strength. Easy to do.
  • a resin obtained by mixing the amorphous ⁇ -olefin polymer (A1), the linear low density polyethylene (A2), and the crystalline ethylene- ⁇ -olefin copolymer (A3) into the adhesive layer (A) is used.
  • the blending ratio is 5 to 50% by mass of an amorphous ⁇ -olefin polymer (A1), and a linear low density polyethylene (density 0.880 to 0.938 g / cm 3 ).
  • Component (A3) is 10 to 45 mass%.
  • the resin used for the adhesive layer (A) is mainly composed of the above-mentioned mixed resin, but other resins may be used in combination as long as the effects of the present invention are not impaired.
  • other resins that can be used at this time include propylene homopolymer, propylene-butene-1 copolymer, propylene-butene-1-ethylene terpolymer, butene-1 homopolymer, styrene-butadiene- Styrene copolymer (SBS), styrene-isoprene-styrene copolymer (SIS), styrene-ethylene-butylene-styrene copolymer (SEBS), styrene-ethylene-propylene-styrene copolymer (SEPS), styrene- Butadiene copolymer (SB), styrene-isoprene copolymer (SI), stylene homopoly
  • the method for preparing the mixed resin used in the pressure-sensitive adhesive layer (A) of the present invention is not particularly limited, but the amorphous ⁇ -olefin polymer (A1) is difficult to handle at room temperature.
  • the amorphous ⁇ -olefin polymer (A1) is previously melted with the linear low density polyethylene (A2) or other crystalline polymer. It is preferable to knead and form pellets that are easy to handle.
  • the main component is a specific resin in each layer means that the resin composition used in the layer (various additives and other resins used in combination as necessary). Including all), it means that the resin or mixed resin specified in the present invention is contained in an amount of 65% by mass or more, and that it is 75% by mass or more from the point that the effect of the present invention is more easily expressed. Particularly preferred is 85% by mass or more.
  • the resin used for the base material layer (B) of the surface protective film of the present invention is not particularly limited as long as it is a thermoplastic resin and can be coextruded with the adhesive layer (A), but the adhesive layer (A It is preferable that the olefin polymer is a main component from the viewpoint of good affinity with), and it is particularly preferable that the main component is an ethylene polymer (B1) or a crystalline propylene polymer (B2). .
  • Examples of the ethylene polymer (B1) include low density polyethylene, linear low density polyethylene, medium density polyethylene, and high density polyethylene. These may be used alone or in combination. Among these, since heat resistance is favorable, it is preferable to use a linear low density polyethylene, a medium density polyethylene, or a mixed resin of low density polyethylene and high density polyethylene as a main component.
  • the surface of the adherend is When the adherend is cut and processed with the protective film attached, the surface protective film is cut cleanly and also exhibits good cutting properties that do not cause appearance defects such as stringing and fluffing.
  • these ethylene polymers (B1) those having an MFR (measured at 190 ° C. and 21.18 N) of 0.5 to 30.0 g / 10 min can be easily extruded.
  • the MFR is preferably 2.0 to 15.0 g / 10 min.
  • these ethylene-based polymers (B1) have a melting point of 90 to 135 ° C., the film can be exposed to a high temperature environment by drying, thermoforming or the like after being attached to the adherend. Since the shrinkage is small, it is preferable because the floating and peeling from the adherend and the warpage of the adherend can be suppressed. More preferably, the melting point is 105 to 130 ° C.
  • a crystalline propylene polymer (B2) as the resin used for the base material layer (B).
  • the crystalline propylene polymer (B2) include a propylene homopolymer, an ethylene-propylene copolymer, a propylene-butene-1 copolymer, and a propylene-ethylene-butene-1 copolymer. . These may be used alone or in combination of two or more.
  • These crystalline polypropylene polymers (B2) have an MFR (measured at 230 ° C. and 21.18 N) of 0.5 to 30.0 g / 10 min and a melting point of 120 to 165 ° C.
  • the MFR is 2.0 to 15.0 g / 10 min and the melting point is 125 to 162 ° C. If the MFR and the melting point are within this range, the film is less shrunk even if it is exposed to a high temperature environment by drying, heat molding or the like after being attached to the adherend, so that it does not float or peel off. The film formability of the laminated film is also improved without causing warpage.
  • the crystallinity is a melting peak with a melting heat of 1 J / g or more and a crystallization peak with a crystallization heat of 1 J / g or more in a measurement range of ⁇ 100 to 200 ° C. with a differential scanning calorimeter (DSC). Refers to a polymer in which one of the following is observed.
  • a crystalline propylene polymer (also referred to as a metallocene catalyst polypropylene) obtained by using a metallocene catalyst is preferable.
  • the metallocene catalyst polypropylene is a polypropylene polymerized using a metallocene catalyst instead of the conventional Ziegler-Natta catalyst.
  • the metallocene catalyst include a metallocene homogeneous mixed catalyst containing a metallocene compound and an aluminoxane, a metallocene supported catalyst in which a metallocene compound is supported on a particulate carrier, and the like.
  • the metallocene supported catalysts are disclosed in JP-A-5-155931, JP-A-8-104691, JP-A-8-157515, JP-A-8-231621, and the like.
  • the metallocene catalyst-based polypropylene has high uniformity in molecular weight distribution and composition distribution, and the content of the low molecular weight component is small. Therefore, by using the metallocene catalyst-based polypropylene for the base material layer (B) of the present invention, the low molecular weight component It becomes easy to prevent contamination of the adherend surface due to bleeding.
  • the metallocene catalyst-based polypropylene may be a propylene homopolymer or a copolymer of propylene and other ⁇ -olefins. Examples of copolymers of propylene and other ⁇ -olefins include ethylene-propylene copolymer. Examples include coalescence.
  • the same amorphous ⁇ -olefin polymer (B3) as that described in detail for the adhesive layer (A) May be used in combination.
  • the amorphous ⁇ -olefin polymer (B3) used at this time may be the same copolymer as the amorphous ⁇ -olefin polymer (A1) used for the adhesive layer (A). Different copolymers may be used.
  • the flexibility of the obtained film can be prepared by using an ethylene-methyl methacrylate copolymer (hereinafter referred to as “EMMA”) or the like in combination.
  • EMMA ethylene-methyl methacrylate copolymer
  • the EMMA preferably has an MFR (measured at 190 ° C. and 21.18 N) of 0.5 to 30.0 g / 10 minutes, more preferably an MFR of 2.0 to 15.0 g / 10 minutes. Is.
  • the content of monomer units based on methyl methacrylic acid is preferably 3 to 30% by mass, and more preferably 8 to 25% by mass.
  • MMA methyl methacrylic acid
  • the amorphous propylene polymer (B2) when the amorphous propylene polymer (B2) is blended with the amorphous ⁇ -olefin polymer (B3), the ethylene polymer (B1) and / or EMMA,
  • the blending ratio of the crystalline propylene polymer (B2), the amorphous ⁇ -olefin polymer (B3), the ethylene polymer (B1) and / or EMMA is [mass based on the crystalline propylene polymer].
  • (B2)]: [Amorphous ⁇ -olefin polymer (B3)]: [Ethylene polymer (B1) and / or EMMA] 70 to 95: 4 to 29: 1 to 12 More preferably, the ratio is in the range of 80 to 95: 4 to 19: 1 to 5. When the blending ratio is within this range, heat resistance can be maintained while imparting sufficient flexibility to the surface protective film to be obtained.
  • the surface protective film of the present invention essentially comprises two layers of the adhesive layer (A) and the base material layer (B).
  • the adhesive layer (A) may be provided on the surface opposite to the surface on which the layers are stacked.
  • the resin used for the surface layer (C) is not particularly limited, but is preferably composed mainly of an olefin polymer from the viewpoint of good affinity with the base material layer (B). It is more preferable to use the polymer (C1) or the crystalline propylene polymer (C2).
  • the main component of the substrate layer (B) is an ethylene polymer (B1)
  • the ethylene polymer (C1) is used
  • the main component of the substrate layer (B) is a crystalline propylene polymer ( In the case of B2), it is more preferable that the crystalline propylene polymer (C2) is a main component.
  • Examples of the ethylene polymer (C1) that can be suitably used as the main component of the surface layer (C) include those similar to the ethylene polymer (B1) used as the main component of the base material layer (B). It is done. Further, by selecting the ethylene polymer (C1) as the main component of the surface layer (C), the final state is the same as when the ethylene polymer (B1) is used as the main component of the base material layer (B). The high cuttability of the surface protective film thus obtained is manifested.
  • the ethylene polymer (B1) used for the base material layer (B) and the ethylene polymer (C1) used for the surface layer (C) may use the same resin, but use different resins. Also good.
  • the ethylene-based polymer (C1) used as the main component of the surface layer (C) when low density polyethylene is used, it is easy to modify the surface of the surface layer (C) into a satin finish. By making the surface of the surface layer (C) satin, blocking can be reduced even when the adhesive force of the adhesive layer (A) is designed to be strong. Moreover, when high-density polyethylene is used in combination with low-density polyethylene, the rigidity of the resulting surface protective film can be increased, and workability such as sticking and peeling is improved.
  • the ethylene-propylene copolymer may be a resin obtained by copolymerizing ethylene and propylene.
  • the ethylene-propylene copolymer can be obtained by polymerizing ethylene or polymerizing ethylene and propylene in the presence of a propylene homopolymer. Examples thereof include an ethylene-propylene block copolymer.
  • an ethylene-propylene block copolymer having an ethylene-derived component content of 8 to 20% by mass is preferable because the surface can be easily textured, and the ethylene-derived component content is 10 to 10%. It is more preferable to use 15% by mass of an ethylene-propylene block copolymer. Further, the MFR (value measured at 230 ° C.
  • the ethylene-propylene copolymer is preferably in the range of 4 to 12 g / 10 minutes from the viewpoint of easy extrusion and in the range of 6 to 10 g / 10 minutes It is more preferable that Similarly, the density of the copolymer is preferably in the range of 0.890 to 0.910 g / cm 3 from the viewpoint of easy extrusion, and in the range of 0.895 to 0.905 g / cm 3. More preferred.
  • the surface of the surface layer (C) can be modified into a satin finish, so that the base material layer (B) It is preferable to select and use it appropriately in view of the affinity with the resin type used in the above.
  • the crystalline propylene polymer (C2) that can be suitably used as the main component of the surface layer (C) is the same as the crystalline propylene polymer (B2) used as the main component of the substrate layer (B). Can be mentioned.
  • the crystalline propylene polymer (C2) is selected as the main component of the surface layer (C)
  • the crystalline propylene polymer (B2) is used as the main component of the base material layer (B).
  • high heat resistance of the finally obtained surface protective film is expressed.
  • the crystalline propylene polymer (C2) and the ethylene-propylene copolymer are mixed from the viewpoint of adhesive strength level, required transparency, etc. May be adjusted.
  • the surface protective film of the present invention preferably has a total film thickness of 20 to 120 ⁇ m. If the thickness of all the films is within this range, the protective properties and adhesion of the adherend, and workability such as sticking and peeling will be good.
  • the thickness of the adhesive layer (A) is preferably 3 to 30 ⁇ m, more preferably 5 to 25 ⁇ m. If the thickness of the pressure-sensitive adhesive layer (A) is within this range, the pressure-sensitive adhesive property and the film forming property of the laminated film will be good.
  • the thickness of the surface layer (C) is preferably 3 to 30 ⁇ m, more preferably 5 to 20 ⁇ m. When the thickness of the surface layer (C) is within this range, the heat resistance and the film formability of the laminated film are good.
  • the method for producing the surface protective film of the present invention is not particularly limited as long as it is a coextrusion lamination method.
  • the resin used for each resin layer is melted by using two or more extruders, Examples include a method of laminating in a molten state by a coextrusion method such as an extrusion die method or a feed block method, and then processing into a film using a method such as inflation or a T-die / chill roll method.
  • the melt-laminated film may be nipped between a rubber touch roll, a steel belt or the like and the chill roll and cooled.
  • the surface protective film of the present invention may be stretched in at least one axial direction.
  • a known method such as longitudinal or lateral uniaxial stretching, sequential biaxial stretching, simultaneous biaxial stretching, or tubular method biaxial stretching can be employed.
  • the stretching process may be inline or offline.
  • the stretching method for uniaxial stretching may be a proximity roll stretching method or a rolling method.
  • the stretching ratio of uniaxial stretching is preferably 1.1 to 80 times in the longitudinal or transverse direction, more preferably 3 to 30 times.
  • the stretching ratio of biaxial stretching is preferably 1.2 to 70 times in terms of area ratio, more preferably 4 to 6 times in length, 5 to 9 times in width, and 20 to 54 times in terms of area ratio.
  • the longitudinal or lateral stretching process is not necessarily limited to one-stage stretching, and may be multi-stage stretching.
  • longitudinal uniaxial stretching such as longitudinal uniaxial roll stretching and longitudinal uniaxial rolling stretching in sequential biaxial stretching
  • proximity roll stretching either the flat method or the cross method may be used, but multistage proximity cross stretching that can reduce width shrinkage is more preferable.
  • the stretching temperature is preferably 80 ° C. to 160 ° C. in any stretching method in the case of uniaxial stretching, and preferably 90 to 165 ° C. in the case of using tenter stretching in uniaxial stretching. Further, more preferable stretching temperatures are 110 to 155 ° C.
  • the stretching temperature range similar to that in the case of uniaxial stretching is preferable in any method.
  • the temperature of the preheating part is preferably 60 to 140 ° C.
  • the temperature of the heat fixing part is preferably 90 to 160 ° C.
  • the surface protective film of the present invention is further stretched in at least one axial direction and structurally stabilized by heat setting, and further by orientation crystallization of the resin used for the base layer (B) and the surface layer (C). This is preferable because the heat resistance is improved and the change with time of the adhesive force is small. Particularly, when the crystalline propylene polymer is used for the base material layer (B) and / or the surface layer (C), the effect becomes high. .
  • a lubricant an antiblocking agent, an ultraviolet absorber, a light stabilizer, an antistatic agent, an antifogging agent, and the like may be added as appropriate within the range not impairing the effects of the present invention. May be added to any layer depending on the purpose.
  • these additives it is preferable to use various additives for olefin polymers.
  • the reaction mixture was continuously withdrawn so that the reaction mixture in the polymerization vessel maintained 100 L. Further, from the lower part of the polymerization vessel, dimethylsilyl (tetramethylcyclopentadienyl) (3-t-butyl-5-methyl-2-phenoxy) titanium dichloride is added as a catalyst component at 0.005 g / hour at triphenylmethyl. Tetrakis (pentafluorophenyl) borate was continuously fed at a rate of 0.298 g / hr and triisobutylaluminum was fed at a rate of 2.315 g / hr. The copolymerization reaction was carried out at 45 ° C.
  • TIBA triisobutylaluminum
  • the content of propylene monomer units is 61.5% by mass
  • the content of ethylene monomer units is 21.0% by mass
  • the content of the monomer unit was 17.5% by mass.
  • the melting peak in DSC of this copolymer was not observed, the intrinsic viscosity [ ⁇ ] was 1.69 dl / g, and the molecular weight distribution (Mw / Mn) was 2.0.
  • amorphous propylene-butene-1 copolymer / crystalline propylene-butene-1 copolymer 60/40 (mass ratio)
  • an aromatic phosphite antioxidant (“Irgafos 168” manufactured by Ciba Specialty Chemicals Co., Ltd.) and a hindered phenol antioxidant (Ciba Specialty Chemicals Co., Ltd.).
  • Irganox 1010 “Irganox 1010”] and 2000 ppm each of the two-screw extruder (IKEMAI PCM3 Was melt-kneaded at 230 ° C. in 30mm ⁇ screws), then to obtain a pellet of granulator (compositions containing amorphous ⁇ - olefin polymer by Nakatani Machine CK2) (1).
  • Preparation Example 3 [Preparation of Pellet Composed of Composition (3) Containing Amorphous ⁇ -Olefin Polymer]
  • the amorphous ⁇ -olefin polymer used in Preparation Example 1 is the amorphous propylene-ethylene-butene-1 copolymer obtained in Synthesis Example 2, A pellet of the composition (3) containing an amorphous ⁇ -olefin polymer was obtained.
  • Example 1 As the resin for the surface layer, a propylene homopolymer [density: 0.900 g / cm 3 , MFR (value measured at 230 ° C., 21.18 N): 8.0 g / 10 min; hereinafter referred to as “HOPP”.
  • ethylene-propylene block copolymer [density: 0.900 g / cm 3 , MFR (230 ° C., 21.18N): 8 g / 10 min]
  • the resin HOPP is used, and as the adhesive layer resin, 30 parts by mass of the composition (1) containing the amorphous ⁇ -olefin polymer prepared above and linear low density polyethylene [density: 0.902 g / Cm 3 , MFR (value measured at 190 ° C., 21.18 N): 3.0 g / 10 min; hereinafter referred to as “LLDPE (1)”.
  • the mixture was supplied to a surface layer extruder (caliber 50 mm), a substrate layer extruder (caliber 50 mm) and an adhesive layer extruder (caliber 40 mm), respectively, and extruded by a coextrusion method.
  • a surface layer extruder caliber 50 mm
  • a substrate layer extruder caliber 50 mm
  • an adhesive layer extruder caliber 40 mm
  • the film was wound on a roll to obtain a surface protective film.
  • the obtained film was aged in a aging room at 35 ° C. for 48 hours in order to stabilize physical properties.
  • Example 2 An ethylene-propylene block copolymer is used as the resin for the surface layer, and 50 parts by mass of the composition (1) and LLDPE (1) containing an amorphous ⁇ -olefin polymer as the resin for the adhesive layer A surface protective film was obtained in the same manner as in Example 1 except that it was replaced with.
  • Example 3 In the same configuration as in Example 2, it was supplied to an extruder for surface layer (caliber 50 mm), an extruder for substrate layer (caliber 50 mm), and an extruder for adhesive layer (caliber 40 mm), and extrusion temperature by coextrusion method. Extruded at 250 ° C from the T-die so that the surface layer thickness is 40 ⁇ m, the base material layer thickness is 120 ⁇ m, and the adhesive layer thickness is 40 ⁇ m, and after cooling with a 40 ° C water-cooled metal cooling roll, proximity The film was stretched four times in length at 140 ° C. by a roll stretching method, and further heat-set at 145 ° C. to obtain a uniaxially stretched surface protective film. The obtained film was aged in a aging room at 35 ° C. for 48 hours in order to stabilize physical properties. In addition, the thickness of each layer of Example 3 in Table 1 is that after uniaxial stretching.
  • Example 4 Surface protection was carried out in the same manner as in Example 2 except that the adhesive layer resin was replaced with a mixture of 40 parts by mass of the composition (2) containing an amorphous ⁇ -olefin polymer and 60 parts by mass of LLDPE (1). A film was obtained.
  • Example 5 As an adhesive layer resin, 40 parts by mass of a composition (4) containing an amorphous ⁇ -olefin polymer and linear low-density polyethylene [density: 0.920 g / cm 3 , MFR (190 ° C., 21. Value measured at 18N): 4.0 g / 10 min; hereinafter referred to as “LLDPE (2)”. A surface protective film was obtained in the same manner as in Example 2 except that 60 parts by mass of the mixture was used.
  • Example 6 Surface protection was carried out in the same manner as in Example 2 except that a mixture of 20 parts by mass of the composition (5) containing an amorphous ⁇ -olefin polymer and 80 parts by mass of LLDPE (2) was used as the adhesive layer resin. A film was obtained.
  • Example 7 HOPP is used as the resin for the surface layer, the same HOPP is used as the resin for the base layer, and a composition (2) containing an amorphous ⁇ -olefin polymer as the resin for the adhesive layer and LLDPE (2) Using a mixed resin with 90 masses, each is supplied to an extruder for surface layer (caliber 50 mm), an extruder for substrate layer (caliber 50 mm), and an extruder for adhesive layer (caliber 40 mm). Same as Example 1 except that the extrusion method was carried out at an extrusion temperature of 250 ° C. and extruded from the T-die so that the surface layer thickness was 14 ⁇ m, the base material layer thickness was 42 ⁇ m, and the adhesive layer thickness was 14 ⁇ m. Thus, a surface protective film was obtained.
  • Metallocene catalyst-based ethylene-propylene random copolymer [density: 0.900 g / cm 3 , MFR (value measured at 230 ° C., 21.18 N): 7.0 g / 10 min, ethylene single Content rate of the monomer unit: 3.5 mass%; hereinafter referred to as “metallocene catalyst system COPP”. And a mixture of 50 parts by mass of the composition (3) containing an amorphous ⁇ -olefin polymer and 50 parts by mass of LLDPE (2) as the adhesive layer resin.
  • the film was wound on a roll to obtain a surface protective film.
  • the obtained film was aged in a aging room at 35 ° C. for 48 hours in order to stabilize physical properties.
  • Example 9 A metallocene catalyst COPP is used as the base layer resin, and 6.0 parts by mass of the amorphous ⁇ -olefin polymer (2) and 94 parts by mass of LLDPE (2) are used as the adhesive layer resin.
  • a surface protective film was obtained in the same manner as in Example 2 except that the above mixture was used.
  • Metallocene catalyst COPP is used as the base layer resin, and composition containing the amorphous ⁇ -olefin polymer as the adhesive layer resin (2) 6.0 parts by mass, LLDPE (2) 84 parts by mass And ethylene-butene-1 copolymer [density: 0.895 g / cm 3 , MFR (measured at 190 ° C., 21.18 N): 3.0 g / 10 min; hereinafter referred to as “EBR”.
  • EBR ethylene-butene-1 copolymer
  • Example 11 A metallocene catalyst COPP is used as the base layer resin, and 30 parts by mass of the composition (2), LLDPE (2) 50 parts by mass and EBR20 containing an amorphous ⁇ -olefin polymer as the adhesive layer resin.
  • a surface protective film was obtained in the same manner as in Example 2 except that a mixture of parts by mass was used.
  • Example 12 The metallocene catalyst COPP is used as the base layer resin, and 20 parts by mass of the composition (2), LLDPE (2) 40 parts by mass and EBR40 containing the amorphous ⁇ -olefin polymer as the adhesive layer resin.
  • a surface protective film was obtained in the same manner as in Example 2 except that a mixture of parts by mass was used.
  • Example 13 As the resin for the base layer, high density polyethylene [density: 0.960 g / cm 3 , MFR (measured at 190 ° C., 21.18 N): 13 g / 10 min; hereinafter referred to as “HDPE”. ] 50 parts by mass and low density polyethylene [Density: 0.902 g / cm 3 , MFR (value measured at 190 ° C., 21.18 N): 4 g / 10 min; hereinafter referred to as “LDPE”.
  • Example 14 The surface was the same as in Example 13 except that 50 parts by mass of the composition (1) containing an amorphous ⁇ -olefin polymer and 50 parts by mass of LLDPE (1) were used as the adhesive layer resin. A protective film was obtained.
  • Example 15 The surface was the same as in Example 13 except that 40 mass parts of the composition (2) containing an amorphous ⁇ -olefin polymer and 60 mass parts of LLDPE (1) were used as the adhesive layer resin. A protective film was obtained.
  • Example 16 The surface was the same as in Example 13 except that 40 parts by mass of the composition (4) containing an amorphous ⁇ -olefin polymer and 60 parts by mass of LLDPE (1) were used as the adhesive layer resin. A protective film was obtained.
  • Example 17 As Example 13 with the exception that 40 parts by mass of the composition (2) containing an amorphous ⁇ -olefin polymer, 40 parts by mass of LLDPE (1) and 20 parts by mass of EBR were used as the adhesive layer resin. A surface protective film was obtained in the same manner.
  • Example 18 The surface was the same as in Example 13 except that a mixed resin of 15 parts by mass of composition (2) containing an amorphous ⁇ -olefin polymer and 85 parts by mass of LLDPE (2) was used as the adhesive layer resin. A protective film was obtained.
  • a mixed resin of 10 parts by mass of a composition (2) containing an amorphous ⁇ -olefin polymer and 90 parts by mass of LLDPE (2) an extruder for surface layer (caliber 50 mm), base material layer Are fed to an extruder for extrusion (diameter 50 mm) and an adhesive layer extruder (diameter 40 mm), respectively, and the surface layer thickness is 14 ⁇ m from the T-die at an extrusion temperature of 250 ° C. by co-extrusion, and the thickness of the substrate layer is
  • a surface protective film was obtained in the same manner as in Example 13 except that extrusion was performed so that the thickness of the adhesive layer was 42 ⁇ m and
  • Example 20 A surface protective film was obtained in the same manner as in Example 19 except that a mixed resin of 85 parts by mass of HOPP and 15 parts by mass of ethylene-propylene block copolymer was used as the resin for the surface layer.
  • Example 21 Example 19 was used except that a mixed resin of 95 parts by mass of LLDPE (1) and 5 parts by mass of an ethylene-propylene block copolymer was used as the resin for the surface layer, and LLDPE (1) was used as the resin for the base layer. In the same manner, a surface protective film was obtained.
  • Example 22 Example 19 except that a mixed resin of 95 parts by mass of LLDPE (2) and 5 parts by mass of an ethylene-propylene block copolymer was used as the resin for the surface layer, and LLDPE (2) was used as the resin for the base layer. A surface protective film was obtained in the same manner.
  • Example 23 As the resin for the surface layer, linear low density polyethylene [density: 0.940 g / cm 3 , MFR (value measured at 190 ° C., 21.18 N): 4.0 g / 10 min; hereinafter referred to as “LLDPE (3)” That's it.
  • a surface protective film was obtained in the same manner as in Example 19 except that a mixed resin of 95 parts by mass and 5 parts by mass of an ethylene-propylene block copolymer was used, and LLDPE (3) was used as the base layer resin. .
  • Example 24 A surface protective film was obtained in the same manner as in Example 18 except that LDPE was used as the base layer resin.
  • Example 25 As the base layer resin, LDPE is used, and as the adhesive layer resin, 10 parts by mass of a composition (2) containing an amorphous ⁇ -olefin polymer and 90 parts by mass of LLDPE (2) are used. A surface protective film was obtained in the same manner as in Example 13 except that.
  • Example 26 Surface protection was carried out in the same manner as in Example 19 except that a mixture of 20 parts by mass of the composition (5) containing an amorphous ⁇ -olefin polymer and 80 parts by mass of LLDPE (2) was used as the adhesive layer resin. A film was obtained.
  • Example 2 (Comparative Example 1) Example 2 except that a mixture of the composition (2) 3.16 parts by mass LLDPE (2) 96.84 parts by mass containing the amorphous ⁇ -olefin polymer was used as the adhesive layer resin. A surface protective film for comparison was obtained.
  • Example 2 As in Example 2, except that a mixture of 30 parts by mass of composition (1) containing amorphous ⁇ -olefin polymer and 70 parts by mass of LLDPE (3) was used as the adhesive layer resin, A surface protective film was obtained.
  • Comparative Example 3 As an adhesive layer resin, 52 parts by mass of a composition (2) containing an amorphous ⁇ -olefin polymer and 8 parts by mass of a crystalline propylene-butene-1 copolymer similar to that used in Preparation Example 1 And a styrene-ethylene-propylene-styrene block copolymer (“Septon 2063” manufactured by Kuraray Co., Ltd .; hereinafter referred to as “SEPS”) in the same manner as in Example 2, except that 40 parts by mass of the mixture was used. A surface protective film was obtained.
  • SEPS styrene-ethylene-propylene-styrene block copolymer
  • Example 4 The surface for comparison was obtained in the same manner as in Example 2 except that the adhesive layer resin was a mixture of 50 parts by mass of composition (1) containing amorphous ⁇ -olefin polymer and 50 parts by mass of HOPP. A protective film was obtained.
  • Example 5 Example 2 except that a mixture of 50 parts by mass of the composition (1) containing an amorphous ⁇ -olefin polymer, 30 parts by mass of LLDPE (2) and 20 parts by mass of EBR was used as the adhesive layer resin. Similarly, a comparative surface protective film was obtained.
  • Example 6 Comparative Example 6 except that a mixture of 30 parts by mass of the composition (2) containing an amorphous ⁇ -olefin polymer, 20 parts by mass of LLDPE (2) and 50 parts by mass of EBR was used as the adhesive layer resin. Similarly, a comparative surface protective film was obtained.
  • Example 7 Example 13 except that a mixed resin of 3.16 parts by mass of composition (2) containing an amorphous ⁇ -olefin polymer and 96.84 parts by mass of LLDPE (2) containing an amorphous ⁇ -olefin polymer was used as the adhesive layer resin. In the same manner, a comparative surface protective film was obtained.
  • Example 8 The same procedure as in Example 13 was conducted except that a mixed resin of 30 parts by mass of the composition (1) containing an amorphous ⁇ -olefin polymer and 70 parts by mass of LLDPE (3) was used as the adhesive layer resin. A comparative surface protective film was obtained.
  • Comparative Example 9 As an adhesive layer resin, 52 parts by mass of a composition (2) containing an amorphous ⁇ -olefin polymer and 8 parts by mass of a crystalline propylene-butene-1 copolymer similar to that used in Preparation Example 1 And the surface protection film for a comparison was obtained like Example 13 except having used the mixed resin of 40 mass parts of SEPS.
  • Comparative Example 10 Comparative surface as in Example 13 except that the resin for the adhesive layer was a mixed resin of 50 parts by mass of composition (1) containing amorphous ⁇ -olefin polymer and 50 parts by mass of HOPP. A protective film was obtained.
  • Example 13 except that a mixed resin of 50 parts by mass of the composition (1) containing an amorphous ⁇ -olefin polymer, 30 parts by mass of LLDPE (2) and 20 parts by mass of EBR was used as the adhesive layer resin. In the same manner, a comparative surface protective film was obtained.
  • the surface protective film was made into a 15 cm long by 5 cm wide acrylic plate (mirror finish, manufactured by Mitsubishi Rayon Co., Ltd.) in accordance with JIS Z0237: 2000. "Acrylite" was attached to the entire surface.
  • the acrylic plate to which the film was adhered was left in a dryer at 60 ° C. for 3 days and then cooled in a constant temperature room at 23 ° C. for 1 hour. From the cooled test piece, the film was peeled off at a high speed in the direction of 180 °, the state of contamination on the acrylic plate surface was visually confirmed, and the adhesive residue was evaluated according to the following criteria.
  • There is no dirt such as cloudy, white streaks or foreign matter on the acrylic plate surface.
  • X The acrylic plate surface has any dirt such as cloudy, white streaks or foreign matters.
  • the obtained surface protective film was cut out with the size of A4 (length 297 mm x width 210 mm). At this time, the film was cut out so that the extrusion direction (MD direction) during film formation coincided with the A4 vertical direction. After stacking 10 cut out films, the upper and lower sides were sandwiched between A4 size, 3 mm thick vinyl chloride plates, a weight of 5 kg was placed, and stored in a dryer at 40 ° C. for 14 days, then at 23 ° C. It was stored for 1 hour in a constant temperature room of 50% RH.
  • the film was cut out in a width of 25 mm in the MD direction, and peeled in the direction of 180 ° at a speed of 300 mm / min using a tensile tester (manufactured by A & D Co., Ltd.) to measure the blocking force. From the obtained blocking force, blocking resistance was evaluated according to the following criteria.
  • Tables 1 to 6 show the layer structures of the surface protective films produced above and the evaluation results obtained using these surface protective films. In Examples and Comparative Examples in which no surface layer is provided, the column is left blank. The composition containing the amorphous ⁇ -olefin polymer used for the adhesive layer is shown separately for each component.
  • the surface protective film of the present invention has an adhesive strength with respect to the acrylic plate of about 0.1 to 2.2 N / 25 mm. It was found to have a wide range of adhesive strength. In addition, it was found that there was no occurrence of floating or peeling after sticking to the acrylic plate, and that the surface protective film had practically good adhesiveness. In particular, when the film is peeled off from the attached acrylic plate, there is no visible contamination such as cloudiness, streaks, or foreign matter, and there is very little reduction in the wetting tension on the acrylic plate surface after peeling off the surface protective film. From this, it was found that after the surface protective film was peeled off, it can be suitably used for applications in which secondary processing such as printing is performed.
  • Comparative Example 1 is an example of a surface protective film in which the blending amount of the linear low density polyethylene is about 97% by mass exceeding the prescribed upper limit of 95% by mass.
  • the adhesive strength was only about 0.05 N / 25 mm as an initial value, and it was found that the adhesive strength was insufficient due to the occurrence of floating, peeling and the like due to light impact.
  • Comparative Example 2 the density of the linear low density polyethylene, an example of a surface protective film and 0.940 g / cm 3 greater than the 0.938 g / cm 3 of the upper limit as defined.
  • the initial adhesive strength is only about 0.03 N / 25 mm, and the occurrence of peeling and peeling immediately after the film is adhered is observed. It was found that if the density is too high, the adhesive strength becomes insufficient.
  • Comparative Example 3 is an example of a surface protective film using a styrene-ethylene-propylene-styrene block copolymer (SEPS) instead of linear low density polyethylene for the adhesive layer.
  • SEPS styrene-ethylene-propylene-styrene block copolymer
  • Comparative Example 4 is an example of a surface protective film using a propylene homopolymer instead of a linear low density polyethylene for the adhesive layer.
  • generation of adhesive residue was observed, and it was found that the decrease in wet tension on the surface of the acrylic plate after peeling the surface protective film was large.
  • Comparative Example 5 is an example of a surface protective film in which the blending amount of the linear low density polyethylene is 37.5% by mass, which is less than 40% by mass of the specified lower limit.
  • the surface protective film of Comparative Example 5 was found to have a problem that adhesive residue was generated.
  • Comparative Example 6 is an example of a surface protective film in which the blending amount of the ethylene- ⁇ -olefin copolymer (EBR) is about 50.8% by mass exceeding the specified upper limit of 40% by mass.
  • the surface protective film of Comparative Example 6 was found to have a large blocking power and poor blocking resistance.
  • Comparative Example 7 is an example of a surface protective film in which the blending ratio of the amorphous propylene-butene-1 copolymer of the adhesive layer to the linear low density polyethylene is about 3% by mass, which is smaller than the lower limit of 5% by mass. is there.
  • the adhesive strength was only about 0.05 N / 25 mm as an initial value, and it was found that the adhesive strength was insufficient due to the occurrence of floating, peeling and the like by light impact.
  • Comparative Example 8 the density of the linear low density polyethylene used in the adhesive layer, an example of the surface protection film and 0.940 g / cm 3 greater than the 0.938 g / cm 3 of the upper limit as defined.
  • the adhesive strength is only about 0.03 N / 25 mm as an initial value, and the occurrence of floating, peeling, etc. is observed immediately after the film is attached. It was found that if the density is too high, the adhesive strength becomes insufficient.
  • Comparative Example 9 is an example of a surface protective film using a styrene-ethylene-propylene-styrene block copolymer (SEPS) instead of linear low density polyethylene for the adhesive layer.
  • SEPS styrene-ethylene-propylene-styrene block copolymer
  • Comparative Example 10 is an example of a surface protective film using a propylene homopolymer instead of linear low density polyethylene for the adhesive layer.
  • production of adhesive residue was seen and it turned out that the fall of the wet tension of the acrylic board surface after peeling a surface protective film is also large.
  • Comparative Example 11 is an example of a surface protective film in which the blending ratio of the amorphous propylene-butene-1 copolymer of the adhesive layer to the linear low-density polyethylene is 50% by mass exceeding the upper limit of 40% by mass. . It was found that the surface protective film of Comparative Example 11 had a problem that adhesive residue was generated.
  • the surface protective film of the present invention has a wide range of adhesive strengths ranging from optimum fine adhesion to medium adhesion level, and does not cause floating or peeling after sticking to an acrylic plate.
  • adhesive strengths ranging from optimum fine adhesion to medium adhesion level, and does not cause floating or peeling after sticking to an acrylic plate.
  • there is no visible contamination such as cloudiness, streaks, or foreign matter, and there is very little reduction in the wetting tension on the acrylic plate surface after peeling off the surface protective film. Therefore, it is suitable for applications in which secondary processing such as printing is performed after the surface protective film is peeled off.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)

Abstract

The invention relates to a surface protection film which is to be applied to the surfaces of building materials, various resin plates for use in electrical and electronic fields, glass plates, metal plates and so on for the purpose of protecting the adherends from scratching, contamination or the like in storage, transportation, or post-processing. A surface protection film which little stains the surface of an adherend and is excellent in fabricability is provided by using, as the main resin component constituting the pressure-sensitive adhesive layer of the film, a resin blend which comprises an amorphous α-olefin polymer and a linear low-density polyethylene at a specific ratio or which comprises an amorphous α-olefin polymer, a linear low-density polyethylene, and a crystalline ethylene/α-olefin copolymer at a specific ratio.

Description

表面保護フィルムSurface protection film
 本発明は、建築資材、電気・電子分野等で用いられる各種樹脂板、ガラス板、金属板等の表面を保護する目的でその表面に貼着して、保管、運搬、後加工の際に被着体を傷付き、汚染等から守る表面保護フィルムに関する。特に、被着体に表面保護フィルムが貼着された後の、被着体からの浮き、剥がれがなく、なおかつフィルム剥離後の被着体表面への糊残り等の汚染が極めて少ない表面保護フィルムに関する。 The present invention is applied to the surface of various resin plates, glass plates, metal plates, etc. used in building materials, electrical / electronic fields, etc. for the purpose of protection, storage, transportation and post-processing. The present invention relates to a surface protective film that protects a kimono from scratches and contamination. In particular, after the surface protective film is adhered to the adherend, the surface protective film does not float or peel off from the adherend, and has very little contamination such as adhesive residue on the adherend surface after film peeling. About.
 表面保護フィルムに対する基本的な要求性能としては、前記した各種被着体に対し、シワや空気を巻き込むことなく一様に貼り付けられる貼着作業性に優れること、被着体の保管、搬送等の間に浮きや剥がれが生じない適度な粘着力を有すること、被着体の保管中の環境変化や後加工による粘着力の経時変化が少なく、容易に剥離可能で剥離後に被着体の表面を汚染することがないことなどが挙げられる。 The basic required performance for the surface protective film includes excellent adherence workability that can be uniformly applied to the above-mentioned various adherends without involving wrinkles or air, storage of the adherend, transportation, etc. Adhesive strength that does not float or peel between the surfaces of the adherend, environmental changes during storage of the adherend, and changes in the adhesive strength over time due to post-processing are less likely to be easily peeled off and the surface of the adherend after peeling It does not contaminate.
 従来の表面保護フィルムとしては、ポリ塩化ビニル樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂等からなるフィルムを基材として、その片面にウレタン系、アクリル系、ゴム系等の粘着剤を塗工したものが知られている。しかし、これらの表面保護フィルムは、基材であるフィルムと粘着剤との密着性に劣る場合があったり、粘着剤自体の凝集力の低さが原因で被着体から剥離した際に粘着剤の一部が被着体の表面に残留したりする問題があった。また、フィルムに粘着剤を塗工して製造する表面保護フィルムは、基材であるフィルムの製造工程と粘着剤の塗工工程との最低2工程を必要とするため製造コストが高くなる問題、粘着剤の塗工工程で大量の溶剤を除去する必要があり環境負荷が高くなる問題等があった。 As a conventional surface protection film, a film made of polyvinyl chloride resin, polyethylene resin, polypropylene resin or the like is used as a base material, and one surface thereof is coated with an adhesive such as urethane, acrylic or rubber. Are known. However, these surface protective films may be inferior in adhesion between the base film and the pressure-sensitive adhesive, or when peeled from the adherend due to the low cohesive force of the pressure-sensitive adhesive itself. There is a problem that a part of the film remains on the surface of the adherend. In addition, the surface protection film produced by applying a pressure-sensitive adhesive to the film requires a minimum of two steps, ie, a film production process and a pressure-sensitive adhesive coating process, which increases the production cost. There is a problem that a large amount of solvent needs to be removed in the pressure-sensitive adhesive coating process, which increases the environmental load.
 上記の問題点を改善する方法として共押出積層法により、基材のフィルム層と粘着剤層とを同時に押出、積層した自己粘着型の表面保護フィルムが提案されている。このような表面保護フィルムとしては、例えば、粘着層用の樹脂組成物として、非晶性オレフィン共重合体と結晶性オレフィン共重合体と熱可塑性エラストマーとを含有し、特定の性質を有する混合物を用いること(例えば、特許文献1参照。)や、非晶性オレフィン共重合体と結晶性オレフィン系重合体と結晶性オレフィンブロックを有するブロック共重合体とを特定の割合で混合したものを用いること(例えば、特許文献2参照。)により、粘着強度・剥離安定性に優れ、剥離後の糊残りがないという多層フィルムが提供されている。 As a method for improving the above problems, a self-adhesive surface protective film in which a base film layer and an adhesive layer are simultaneously extruded and laminated by a coextrusion lamination method has been proposed. As such a surface protective film, for example, as a resin composition for an adhesive layer, a mixture containing an amorphous olefin copolymer, a crystalline olefin copolymer, and a thermoplastic elastomer and having specific properties is used. Use (for example, refer to Patent Document 1) or use a mixture of an amorphous olefin copolymer, a crystalline olefin polymer, and a block copolymer having a crystalline olefin block at a specific ratio. (For example, refer to Patent Document 2) provides a multilayer film that is excellent in adhesive strength and peeling stability and has no adhesive residue after peeling.
 又、本発明者らは既に、適度な粘着性と耐熱性とを兼備し、且つ剥離後の被着体表面への汚染が少ない表面保護フィルムとして、結晶性プロピレン系重合体を主成分とする基材層と、非晶性α-オレフィン系重合体と結晶性プロピレン系重合体とを特定割合で混合した樹脂を主成分とする粘着層とを積層した表面保護フィルムを提供した(例えば、特許文献3参照。)。 In addition, the present inventors already have a crystalline propylene-based polymer as a main component as a surface protective film that has both moderate adhesiveness and heat resistance and has little contamination on the surface of the adherend after peeling. Provided is a surface protective film in which a base material layer and an adhesive layer composed mainly of a resin in which an amorphous α-olefin polymer and a crystalline propylene polymer are mixed at a specific ratio are laminated (for example, a patent) Reference 3).
 しかしながら、前記特許文献1又は2で提供された表面保護フィルムをアクリル板等に粘着した場合には、その初期粘着力が高いことに起因して被着体からの剥離が困難になることがあった。また用途によっては保護フィルムが剥離された後、被着体である樹脂板等の表面に印刷等の二次加工を施す場合がある。前記特許文献1又は2で提供された共押出積層フィルムからなる表面保護フィルムでは、フィルム剥離後の被着体表面に糊残り等による極微量な残留物が生じ、このような二次加工において印刷不良の要因となる問題があった。更に、粘着層にスチレン系のエラストマーを配合した場合、ロール状に巻き取った後、再び繰り出して使用する際に粘着層と基材層が密着し、繰り出しが困難になる問題、いわゆるブロッキングが起こる場合があった。 However, when the surface protective film provided in Patent Document 1 or 2 is adhered to an acrylic plate or the like, peeling from the adherend may be difficult due to its high initial adhesive strength. It was. Depending on the application, after the protective film is peeled off, secondary processing such as printing may be performed on the surface of a resin plate or the like as an adherend. In the surface protective film comprising the coextruded laminated film provided in Patent Document 1 or 2, a very small amount of residue due to adhesive residue or the like is generated on the surface of the adherend after film peeling, and printing is performed in such secondary processing. There was a problem that caused the failure. Furthermore, when a styrene-based elastomer is blended in the adhesive layer, the problem arises that the adhesive layer and the base material layer are in close contact when used again after being rolled up, so-called blocking occurs. There was a case.
 又、特許文献3で提供した表面保護フィルムにおいては、剥離後の被着体表面への目視確認できるほどの汚染はないものの、被着体表面の性質を変化させることがあり、特に剥離後にコーティング・印刷等の二次加工を行なう際に悪影響を与えることがあった。 Moreover, in the surface protective film provided in Patent Document 3, although there is no contamination to the adherend surface after peeling, the property of the adherend surface may be changed. -There was an adverse effect when performing secondary processing such as printing.
特開2006-188646号公報JP 2006-188646 A 特開2006-257247号公報JP 2006-257247 A 特開2007-130872号公報Japanese Patent Laid-Open No. 2007-130872
 本発明の課題は、適度な粘着性と粘着安定性とを有し、剥離後の被着体表面への目視確認できる残留物はもちろん、確認不可能な微量な汚染も無く、印刷等の二次加工適性が良好で、かつロール状に巻き取った後、再び繰り出して使用する際のブロッキングがない表面保護フィルムを提供することである。 The problem of the present invention is that it has moderate adhesiveness and adhesive stability, has not only a residue that can be visually confirmed on the surface of the adherend after peeling, but also a minute amount of contamination that cannot be confirmed. It is intended to provide a surface protective film having good next processing suitability, and having no blocking when it is rolled out and then used again.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、表面保護フィルムの粘着層に用いる樹脂として、非晶性α-オレフィン系重合体と、直鎖状低密度ポリエチレンとを特定割合で混合した樹脂、又は非晶性α-オレフィン系重合体と、直鎖状低密度ポリエチレンと、結晶性エチレン-α-オレフィン共重合体とを特定割合で混合した樹脂を主成分として用いることによって、被着体表面への汚染が極めて少なく、二次加工適性が向上することを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have determined that a specific ratio of an amorphous α-olefin polymer and a linear low density polyethylene as a resin used for the adhesive layer of the surface protective film. Or a resin in which an amorphous α-olefin polymer, a linear low density polyethylene, and a crystalline ethylene-α-olefin copolymer are mixed at a specific ratio as a main component. The inventors found that the surface of the adherend is very little contaminated and the suitability for secondary processing is improved, and the present invention has been completed.
 すなわち、本発明は、粘着層(A)と基材層(B)とを積層した表面保護フィルムであって、該粘着層(A)が、非晶性α-オレフィン系重合体(A1)5~50質量%と、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)50~95質量%との混合樹脂、又は、非晶性α-オレフィン系重合体(A1)5~50質量%と、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)40~90質量%と、結晶性エチレン-α-オレフィン共重合体(A3)5~50質量%との混合樹脂、を主成分とすることを特徴とする表面保護フィルムを提供するものである。尚、本発明において、各層における特定の樹脂を主成分とするということは、当該層に使用する樹脂組成物(各種添加剤や必要に応じて併用されるその他の樹脂等を含む全部)中、本発明で規定する樹脂又は混合樹脂を65質量%以上で含有する事を言うものである。 That is, the present invention is a surface protective film in which an adhesive layer (A) and a base material layer (B) are laminated, wherein the adhesive layer (A) is an amorphous α-olefin polymer (A1) 5 A mixed resin of 50 to 95% by mass and a linear low density polyethylene (A2) having a density of 0.880 to 0.938 g / cm 3 , or an amorphous α-olefin polymer. (A1) 5 to 50% by mass, linear low density polyethylene (A2) having a density of 0.880 to 0.938 g / cm 3 and 40 to 90% by mass, and a crystalline ethylene-α-olefin copolymer (A3) Provided is a surface protective film comprising a mixed resin of 5 to 50% by mass as a main component. In addition, in this invention, having a specific resin in each layer as a main component means that in the resin composition used in the layer (all including various additives and other resins used in combination as necessary) This means that the resin or mixed resin specified in the present invention is contained in an amount of 65% by mass or more.
 本発明の表面保護フィルムは、各種樹脂板、ガラス板、金属板等に貼着された後、長期間放置されたり、高温環境にさらされたりしても、剥離後の被着体表面に目視確認できる糊残りが無く、なおかつ目視確認不可能な残留物も極めて少ない。従って、本発明の表面保護フィルムは、各種樹脂板、ガラス板、金属板等の表面を保護するフィルムとして有用であり、特に保護フィルム剥離後に印刷等の二次加工を施される用途に好適である。また、本発明の表面保護フィルムは、ロール状に巻き取った後、再び繰り出して使用する際、ブロッキングがなく、耐ブロッキング性にも優れる。 The surface protective film of the present invention is visually observed on the surface of the adherend after peeling, even after being stuck to various resin plates, glass plates, metal plates, etc., and then left for a long time or exposed to a high temperature environment. There is no adhesive residue that can be confirmed, and there are very few residues that cannot be visually confirmed. Therefore, the surface protective film of the present invention is useful as a film for protecting the surface of various resin plates, glass plates, metal plates and the like, and is particularly suitable for applications where secondary processing such as printing is performed after the protective film is peeled off. is there. Moreover, when the surface protection film of this invention rolls up in roll shape, and it extends | stretches out again and uses it, there is no blocking and it is excellent also in blocking resistance.
 又、特に基材層としてエチレン系重合体を用いて得られる本発明の表面保護フィルムは、上記性能に加え、被着体に表面保護フィルムが貼着された状態で該被着体を切断加工する際に、表面保護フィルムがきれいに切断し、糸引き、毛羽立ち等の外観不良を生じさせないという優れた性質をも発現し、その応用分野が広い。 In addition to the above performance, the surface protective film of the present invention obtained using an ethylene polymer as a base material layer, in particular, cuts the adherend in a state where the surface protective film is adhered to the adherend. In this case, the surface protective film cuts cleanly and exhibits excellent properties that do not cause appearance defects such as stringing and fluffing, and its application fields are wide.
 以下、本発明を詳細に説明する。本発明の表面保護フィルムは、粘着層(A)と基材層(B)とを共押出積層法により形成した共押出積層フィルムである。 Hereinafter, the present invention will be described in detail. The surface protective film of the present invention is a coextruded laminated film in which an adhesive layer (A) and a base material layer (B) are formed by a coextrusion laminating method.
 本発明の表面保護フィルムの粘着層(A)に用いる非晶性α-オレフィン系重合体(A1)は、炭素原子数3~20のα-オレフィンに基づく単量体単位を含有する重合体又は共重合体であって、示差走査熱量計(DSC)の-100~200℃の測定範囲で、結晶の融解熱量が1J/g以上の融解ピーク、結晶化熱量が1J/g以上の結晶化ピークのいずれも観測されない重合体であり、これらは、単独で用いても、2種以上を併用してもよい。 The amorphous α-olefin polymer (A1) used for the adhesive layer (A) of the surface protective film of the present invention is a polymer containing monomer units based on α-olefins having 3 to 20 carbon atoms, or A copolymer having a melting peak with a heat of fusion of 1 J / g or more and a crystallization peak with a heat of crystallization of 1 J / g or more in a differential scanning calorimeter (DSC) measurement range of −100 to 200 ° C. None of these polymers are observed, and these may be used alone or in combination of two or more.
 前記炭素原子数3~20のα-オレフィンは、直鎖状、分岐状のいずれのものでもよく、例えば、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、へプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ナノデセン-1、エイコセン-1等の直鎖状のα-オレフィン;3-メチルブテン-1、3-メチルペンテン-1、4-メチルペンテン-1、2-エチル-1-ヘキセン、2,2,4-トリメチルペンテン-1等の分岐状のα-オレフィンなどが挙げられる。 The α-olefin having 3 to 20 carbon atoms may be linear or branched, for example, propylene, butene-1, pentene-1, hexene-1, heptene-1, octene-1 , Nonene-1, decene-1, undecene-1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nanodecene-1, eicosene-1, etc. Linear α-olefin; branched such as 3-methylbutene-1,3-methylpentene-1,4-methylpentene-1,2-ethyl-1-hexene, 2,2,4-trimethylpentene-1 These α-olefins are included.
 また、前記非晶性α-オレフィン系重合体(A1)は、これらのα-オレフィンに基づく単量体単位を2種以上有する共重合体が好ましく、プロピレンに基づく単量体単位と、炭素数4~20のα-オレフィンに基づく単量体単位とを1種以上有する共重合体が、工業的入手容易性、後述する直鎖状低密度ポリエチレン(A2)又は結晶性エチレン-α-オレフィン共重合体(A3)との相溶性、共押出成形性等の観点からより好ましく、特に非晶性プロピレン-ブテン-1共重合体、非晶性プロピレン-エチレン-ブテン-1共重合体が最も好ましい。また、非晶性α-オレフィン系重合体(A1)には、上記のα-オレフィン以外の単量体単位を有していてもよい。このような単量体単位としては、例えば、エチレン、ポリエン化合物、環状オレフィン、ビニル芳香族化合物等に基づく単量体単位が挙げられる。 The amorphous α-olefin polymer (A1) is preferably a copolymer having two or more monomer units based on these α-olefins. Copolymers having at least one monomer unit based on 4 to 20 α-olefin are industrially available, linear low density polyethylene (A2) described later or crystalline ethylene-α-olefin copolymer. From the viewpoint of compatibility with the polymer (A3), coextrusion moldability and the like, amorphous propylene-butene-1 copolymer and amorphous propylene-ethylene-butene-1 copolymer are most preferable. . The amorphous α-olefin polymer (A1) may have a monomer unit other than the α-olefin. Examples of such monomer units include monomer units based on ethylene, polyene compounds, cyclic olefins, vinyl aromatic compounds, and the like.
 前記非晶性プロピレン-ブテン-1共重合体中のプロピレンに基づく単量体単位の含有率としては、得られる表面保護フィルムの耐熱性が向上する観点から、非晶性プロピレン-ブテン-1共重合体の全単量体単位を100質量%とすると、70質量%以上が好ましく、より好ましくは80質量%以上で、さらに好ましくは90質量%以上ある。 The content of monomer units based on propylene in the amorphous propylene-butene-1 copolymer is selected from the viewpoint of improving the heat resistance of the resulting surface protective film. When the total monomer unit of the polymer is 100% by mass, it is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
 前記非晶性プロピレン-エチレン-ブテン-1共重合体中のプロピレンに基づく単量体単位の含有率としては、得られる表面保護フィルムの耐熱性が向上する観点から、非晶性プロピレン-エチレン-ブテン-1共重合体の全単量体単位を100質量%とすると、50質量%以上が好ましく、より好ましくは60質量%以上である。また、非晶性プロピレン-エチレン-ブテン-1共重合体中のエチレンに基づく単量体単位の含有率としては、は、同じく、非晶性プロピレン-エチレン-ブテン-1共重合体の全単量体単位を100質量%としたときの10質量%以上であることが好ましく、より好ましくは20質量%以上である。エチレンに基づく単量体単位の含有率がこの範囲であれば、前記粘着層(B)が比較的柔らかいものになり、被着体表面に凹凸がある場合でも、その凹凸に追従する形で密着するため、十分な粘着力が得られる。 The content of monomer units based on propylene in the amorphous propylene-ethylene-butene-1 copolymer is selected from the viewpoint of improving the heat resistance of the resulting surface protective film. When the total monomer unit of the butene-1 copolymer is 100% by mass, it is preferably 50% by mass or more, and more preferably 60% by mass or more. Similarly, the content of monomer units based on ethylene in the amorphous propylene-ethylene-butene-1 copolymer is the same as the total amount of amorphous propylene-ethylene-butene-1 copolymer. The amount is preferably 10% by mass or more, more preferably 20% by mass or more, based on 100% by mass of the monomer unit. If the content of the monomer unit based on ethylene is within this range, the adhesive layer (B) becomes relatively soft, and even if the adherend surface has irregularities, it adheres in a form that follows the irregularities. Therefore, sufficient adhesive strength can be obtained.
 また、前記非晶性α-オレフィン系重合体(A1)の極限粘度[η]は0.1~10.0dl/gが好ましく、より好ましくは0.7~7.0dl/gである。さらに、重量平均分子量(Mw)と数平均分子量(Mn)の比で表される分子量分布(Mw/Mn)は、1より大きく4以下であることが好ましく、2~3であることがより好ましい。非晶性α-オレフィン系重合体(A1)の極限粘度、分子量分布がこの範囲であると、耐熱性、透明性、粘着性が向上し、又、表面保護フィルムを貼着した被着体を長期保管したり、高温環境にさらされたりしても非晶性α-オレフィン系重合体(A1)中の低分子量成分が被着体表面に移行することによる被着体の汚染を低減化することができる。また、非晶性α-オレフィン系重合体(A1)は、オレフィン系重合体であることから、エチレン-酢酸ビニル共重合体を粘着層用の樹脂として用いた場合のように、脱酢酸等の樹脂の変質による経時的な粘着力の増加がなく、長期にわたり安定した粘着力を維持することができる。 In addition, the intrinsic viscosity [η] of the amorphous α-olefin polymer (A1) is preferably 0.1 to 10.0 dl / g, more preferably 0.7 to 7.0 dl / g. Furthermore, the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably more than 1 and 4 or less, more preferably 2 to 3. . When the intrinsic viscosity and molecular weight distribution of the amorphous α-olefin polymer (A1) are within this range, the heat resistance, transparency and adhesiveness are improved, and the adherend to which a surface protective film is attached is provided. Reduces contamination of the adherend due to migration of low molecular weight components in the amorphous α-olefin polymer (A1) to the adherend surface even when stored for a long period of time or exposed to a high temperature environment. be able to. Further, since the amorphous α-olefin polymer (A1) is an olefin polymer, it is possible to remove acetic acid as in the case where an ethylene-vinyl acetate copolymer is used as a resin for the adhesive layer. There is no increase in adhesive strength over time due to resin alteration, and stable adhesive strength can be maintained over a long period of time.
 前記非晶性α-オレフィン系重合体(A1)の製造方法としては、特に制限されるものではなく、例えば、気相重合法、溶液重合法、スラリー重合法、塊状重合法等を用いて、メタロセン系触媒により重合する方法等が挙げられる。より好ましい製造方法としては、特開2002-348417号公報に開示された製造方法が挙げられる。 The method for producing the amorphous α-olefin polymer (A1) is not particularly limited, and for example, using a gas phase polymerization method, a solution polymerization method, a slurry polymerization method, a bulk polymerization method, or the like, Examples thereof include a method of polymerizing with a metallocene catalyst. A more preferable production method includes the production method disclosed in JP-A-2002-348417.
 本発明の表面保護フィルムにおける粘着層(A)に用いる樹脂は、前記非晶性α-オレフィン重合体(A1)と直鎖状低密度ポリエチレン(A2)を混合した樹脂、又は、前記非晶性α-オレフィン重合体(A1)と直鎖状低密度ポリエチレン(A2)と結晶性エチレン-α-オレフィン共重合体(A3)とを混合した樹脂である。前記非晶性α-オレフィン重合体(A1)に、直鎖状低密度ポリエチレン(A2)、結晶性エチレン-α-オレフィン共重合体(A3)を配合することにより、被着体の表面状態、被着体の材質、用途等による要求特性に応じた粘着力に調製することができ、粘着力の強弱によらず、剥離後の被着体表面への汚染を低減することができる。 The resin used for the adhesive layer (A) in the surface protective film of the present invention is a resin obtained by mixing the amorphous α-olefin polymer (A1) and the linear low density polyethylene (A2), or the amorphous This is a resin in which an α-olefin polymer (A1), a linear low density polyethylene (A2), and a crystalline ethylene-α-olefin copolymer (A3) are mixed. By blending the linear low density polyethylene (A2) and the crystalline ethylene-α-olefin copolymer (A3) into the amorphous α-olefin polymer (A1), the surface state of the adherend is obtained. Adhesive strength can be adjusted according to the required properties depending on the material and application of the adherend, and contamination on the adherend surface after peeling can be reduced regardless of the strength of the adhesive strength.
 前記直鎖状低密度ポリエチレン(A2)は、密度が0.880~0.938g/cmの範囲にあるものであり、密度が0.898~0.925g/cmのものがより好ましい。また、そのメルトフローレート(MFR、JIS K7210:1999に準拠して、190℃、21.18Nで測定した値。)は、0.5~30.0g/10分であるものが好ましく、2.0~15.0g/10分であるものがより好ましい。直鎖状低密度ポリエチレン(A2)の密度及びMFRがこの範囲であれば、前述した非晶性α-オレフィン系重合体(A1)との相溶性が良好で、積層フィルムの成膜性が向上する。 The linear low density polyethylene (A2) are those having a density in the range of 0.880 ~ 0.938g / cm 3, the density is more preferably from 0.898 ~ 0.925g / cm 3. The melt flow rate (MFR, measured at 190 ° C. and 21.18 N according to JIS K7210: 1999) is preferably 0.5 to 30.0 g / 10 min. More preferred is 0 to 15.0 g / 10 min. If the density and MFR of the linear low density polyethylene (A2) are within this range, the compatibility with the above-mentioned amorphous α-olefin polymer (A1) is good, and the film formability of the laminated film is improved. To do.
 前記結晶性エチレン-α-オレフィン共重合体(A3)としては、エチレン-プロピレン共重合体、エチレン-ブテン-1共重合体等が挙げられるが、エチレン-ブテン-1共重合体であることが工業的入手容易性と得られる表面保護フィルムの粘着力の調整が容易になる観点から好ましい。結晶性エチレン-α-オレフィン共重合体(A3)としては、MFR(190℃、21.18Nで測定した値。)が0.5~30.0g/10分で、密度が0.870~0.905g/cmであるものが好ましく、より好ましくは、MFRが2.0~15.0g/10分で、密度が0.880~0.900g/cmのものである。結晶性エチレン-α-オレフィン共重合体(A3)のMFR及び密度がこの範囲であれば、前述した非晶性α-オレフィン系重合体(A1)との相溶性が良好で、積層フィルムの成膜性が向上する。また、被着体表面の汚染防止効果から、これらの樹脂は低分子量成分の少ない、後述するメタロセン触媒系であることがより好ましい。尚、結晶性とは、示差走査熱量計(DSC)の-100~200℃の測定範囲で、結晶の融解熱量が1J/g以上の融解ピーク、結晶化熱量が1J/g以上の結晶化ピークの何れかが観測される重合体を言うものである。 Examples of the crystalline ethylene-α-olefin copolymer (A3) include an ethylene-propylene copolymer and an ethylene-butene-1 copolymer, and the ethylene-butene-1 copolymer is preferred. It is preferable from the viewpoint of easy industrial availability and easy adjustment of the adhesive strength of the resulting surface protective film. The crystalline ethylene-α-olefin copolymer (A3) has an MFR (measured at 190 ° C. and 21.18 N) of 0.5 to 30.0 g / 10 min and a density of 0.870 to 0. Those having a .905 g / cm 3 are preferable, and those having an MFR of 2.0 to 15.0 g / 10 min and a density of 0.880 to 0.900 g / cm 3 are more preferable. If the MFR and density of the crystalline ethylene-α-olefin copolymer (A3) are within this range, the compatibility with the amorphous α-olefin polymer (A1) described above is good and the laminated film is formed. Film properties are improved. Further, from the viewpoint of the effect of preventing contamination of the adherend surface, these resins are more preferably a metallocene catalyst system described later with a small amount of low molecular weight components. The crystallinity is a melting peak with a melting heat of 1 J / g or more and a crystallization peak with a crystallization heat of 1 J / g or more in a measurement range of −100 to 200 ° C. with a differential scanning calorimeter (DSC). Is a polymer in which any of the above is observed.
 粘着層(A)に非晶性α-オレフィン系重合体(A1)と直鎖状低密度ポリエチレン(A2)との混合樹脂を主成分として用いる場合、その配合比率は、非晶性α-オレフィン系重合体(A1)5~50質量%、直鎖状低密度ポリエチレン(A2)50~95質量%であり、より好ましくは成分(A1)5~40質量%、成分(A2)60~95質量%で混合したものである。非晶性α-オレフィン系重合体(A1)の配合比率が5質量%未満であると十分な粘着力が得られず、50質量%を超えると粘着力が強すぎるためフィルムの取り扱いが困難になる問題がある。また、成分(A1)及び成分(A2)の配合比率を、前記の範囲で調整することで、要求される粘着力に応じて、約0.05~5.0N/25mm程度の粘着力に調整することが容易になる。 When the mixed resin of the amorphous α-olefin polymer (A1) and the linear low density polyethylene (A2) is used as the main component for the adhesive layer (A), the blending ratio thereof is amorphous α-olefin. The polymer (A1) is 5 to 50% by mass, the linear low density polyethylene (A2) is 50 to 95% by mass, more preferably the component (A1) is 5 to 40% by mass, and the component (A2) is 60 to 95% by mass. %. If the blending ratio of the amorphous α-olefin polymer (A1) is less than 5% by mass, sufficient adhesive strength cannot be obtained, and if it exceeds 50% by mass, the adhesive strength is too strong, making it difficult to handle the film. There is a problem. Also, by adjusting the blending ratio of component (A1) and component (A2) within the above range, the adhesive strength is adjusted to about 0.05 to 5.0 N / 25 mm according to the required adhesive strength. Easy to do.
 また、粘着層(A)に非晶性α-オレフィン系重合体(A1)と直鎖状低密度ポリエチレン(A2)と結晶性エチレン-α-オレフィン共重合体(A3)とを混合した樹脂を主成分として用いる場合、その配合比率は、非晶性α-オレフィン系重合体(A1)5~50質量%、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)40~90質量%、結晶性エチレン-α-オレフィン共重合体(A3)5~50質量%であり、より好ましくは成分(A1)5~30質量%、成分(A2)40~85質量%、成分(A3)10~45質量%である。成分(A1)、成分(A2)、成分(A3)の配合比率を、前記の範囲で調整することで、要求される粘着力に応じて、約0.1~7.0N/25mm程度の粘着力に調整することが容易になる。 In addition, a resin obtained by mixing the amorphous α-olefin polymer (A1), the linear low density polyethylene (A2), and the crystalline ethylene-α-olefin copolymer (A3) into the adhesive layer (A) is used. When used as a main component, the blending ratio is 5 to 50% by mass of an amorphous α-olefin polymer (A1), and a linear low density polyethylene (density 0.880 to 0.938 g / cm 3 ). A2) 40 to 90% by mass, crystalline ethylene-α-olefin copolymer (A3) 5 to 50% by mass, more preferably component (A1) 5 to 30% by mass, and component (A2) 40 to 85% by mass. %, Component (A3) is 10 to 45 mass%. By adjusting the blending ratio of component (A1), component (A2), and component (A3) within the above range, an adhesive of about 0.1 to 7.0 N / 25 mm depending on the required adhesive strength It becomes easy to adjust to the force.
 本発明において、粘着層(A)に用いる樹脂は、前述の混合樹脂を主成分とするものであるが、本発明の効果を損なわない範囲において、その他の樹脂を併用しても良い。このとき併用できるその他の樹脂としては、例えば、プロピレン単独重合体、プロピレン-ブテン-1共重合体、プロピレン-ブテン-1-エチレン三元共重合体、ブテン-1単独重合体、スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-イソプレン-スチレン共重合体(SIS)、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、スチレン-エチレン-プロピレン-スチレン共重合体(SEPS)、スチレン-ブタジエン共重合体(SB)、スチレン-イソプレン共重合体(SI)、スチレン-エチレン-ブチレン共重合体(SEB)、スチレン-ブタジエンラバー(SBR)、スチレン-エチレン-ブチレン-エチレン共重合体(SEBC)、さらにはこれらの水素添加物等が挙げられる。 In the present invention, the resin used for the adhesive layer (A) is mainly composed of the above-mentioned mixed resin, but other resins may be used in combination as long as the effects of the present invention are not impaired. Examples of other resins that can be used at this time include propylene homopolymer, propylene-butene-1 copolymer, propylene-butene-1-ethylene terpolymer, butene-1 homopolymer, styrene-butadiene- Styrene copolymer (SBS), styrene-isoprene-styrene copolymer (SIS), styrene-ethylene-butylene-styrene copolymer (SEBS), styrene-ethylene-propylene-styrene copolymer (SEPS), styrene- Butadiene copolymer (SB), styrene-isoprene copolymer (SI), styrene-ethylene-butylene copolymer (SEB), styrene-butadiene rubber (SBR), styrene-ethylene-butylene-ethylene copolymer (SEBC) ) And these hydrogenated products.
 又、本発明の粘着層(A)に用いる混合樹脂の調製方法としては特に限定されるものではないが、非晶性α-オレフィン系重合体(A1)が常温での取り扱いが困難であることを鑑み、共押出積層法をより簡便に適用するため、予め非晶性α-オレフィン系重合体(A1)を、直鎖状低密度ポリエチレン(A2)やその他の結晶性の重合体等と溶融混練して、取り扱いが容易なペレット状にしておくことが好ましい。 The method for preparing the mixed resin used in the pressure-sensitive adhesive layer (A) of the present invention is not particularly limited, but the amorphous α-olefin polymer (A1) is difficult to handle at room temperature. In view of the above, in order to more easily apply the coextrusion lamination method, the amorphous α-olefin polymer (A1) is previously melted with the linear low density polyethylene (A2) or other crystalline polymer. It is preferable to knead and form pellets that are easy to handle.
 尚、前述のように、本発明において、各層における特定の樹脂を主成分とするということは、当該層に使用する樹脂組成物(各種添加剤や必要に応じて併用されるその他の樹脂等を含む全部)中、本発明で規定する樹脂又は混合樹脂を65質量%以上で含有する事を言うものであり、75質量%以上であることが、本発明の効果をより発現しやすくなる点から好ましく、特に85質量%以上であることが最も好ましい。 As described above, in the present invention, the main component is a specific resin in each layer means that the resin composition used in the layer (various additives and other resins used in combination as necessary). Including all), it means that the resin or mixed resin specified in the present invention is contained in an amount of 65% by mass or more, and that it is 75% by mass or more from the point that the effect of the present invention is more easily expressed. Particularly preferred is 85% by mass or more.
 本発明の表面保護フィルムの基材層(B)に用いる樹脂としては、熱可塑性樹脂であって、粘着層(A)との共押出が可能であれば特に限定されないが、前記粘着層(A)との親和性が良好である点からオレフィン系重合体を主成分とすることが好ましく、特にエチレン系重合体(B1)又は結晶性プロピレン系重合体(B2)を主成分とすることが好ましい。 The resin used for the base material layer (B) of the surface protective film of the present invention is not particularly limited as long as it is a thermoplastic resin and can be coextruded with the adhesive layer (A), but the adhesive layer (A It is preferable that the olefin polymer is a main component from the viewpoint of good affinity with), and it is particularly preferable that the main component is an ethylene polymer (B1) or a crystalline propylene polymer (B2). .
 前記エチレン系重合体(B1)としては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレンなどが挙げられる。これらはそれぞれ単独で使用してもよいし、併用してもよい。これらの中でも、耐熱性が良好なことから、直鎖状低密度ポリエチレン、中密度ポリエチレン、又は低密度ポリエチレンと高密度ポリエチレンとの混合樹脂を主成分とすることが好ましい。 Examples of the ethylene polymer (B1) include low density polyethylene, linear low density polyethylene, medium density polyethylene, and high density polyethylene. These may be used alone or in combination. Among these, since heat resistance is favorable, it is preferable to use a linear low density polyethylene, a medium density polyethylene, or a mixed resin of low density polyethylene and high density polyethylene as a main component.
 前記エチレン系重合体(B1)を基材層(B)として用いた場合には、本発明の主目的である、剥離後の被着体表面への汚染防止効果に加え、被着体に表面保護フィルムが貼着された状態で被着体を切断加工する際に、表面保護フィルムがきれいに切断され、糸引き、毛羽立ち等の外観不良を生じない良好な切断性をも発現する。 When the ethylene-based polymer (B1) is used as the base material layer (B), in addition to the effect of preventing contamination of the adherend surface after peeling, which is the main object of the present invention, the surface of the adherend is When the adherend is cut and processed with the protective film attached, the surface protective film is cut cleanly and also exhibits good cutting properties that do not cause appearance defects such as stringing and fluffing.
 また、これらのエチレン系重合体(B1)としては、MFR(190℃、21.18Nで測定した値)が0.5~30.0g/10分であるものが、押出成形が容易となることから好ましく、より好ましくはMFRが2.0~15.0g/10分のものである。更に、これらのエチレン系重合体(B1)が、融点が90~135℃のものであれば、被着体に貼着された後の乾燥、加熱成形等によって高温環境にさらされてもフィルムの収縮が少ないため、被着体からの浮きや剥がれ、被着体の反りなどを抑制することができるので好ましく、より好ましくは融点が105~130℃のものである。 Further, as these ethylene polymers (B1), those having an MFR (measured at 190 ° C. and 21.18 N) of 0.5 to 30.0 g / 10 min can be easily extruded. The MFR is preferably 2.0 to 15.0 g / 10 min. Furthermore, if these ethylene-based polymers (B1) have a melting point of 90 to 135 ° C., the film can be exposed to a high temperature environment by drying, thermoforming or the like after being attached to the adherend. Since the shrinkage is small, it is preferable because the floating and peeling from the adherend and the warpage of the adherend can be suppressed. More preferably, the melting point is 105 to 130 ° C.
 本発明の表面保護フィルムにより耐熱性が要求される場合には、基材層(B)に用いる樹脂として結晶性プロピレン系重合体(B2)を用いることが好ましい。前記結晶性プロピレン系重合体(B2)としては、例えば、プロピレン単独重合体、エチレン-プロピレン共重合体、プロピレン-ブテン-1共重合体、プロピレン-エチレン-ブテン-1共重合体等が挙げられる。これらは単独で用いても、2種以上を併用してもよい。また、これらの結晶性ポリプロピレン系重合体(B2)のMFR(230℃、21.18Nで測定した値)が0.5~30.0g/10分で、融点が120~165℃であるものが好ましく、より好ましくは、MFRが2.0~15.0g/10分で、融点が125~162℃のものである。MFR及び融点がこの範囲であれば、被着体に貼着された後の乾燥、加熱成形等によって高温環境にさらされてもフィルムの収縮が少ないため、浮きや剥がれがなく、被着体に反りを発生させることもなく、積層フィルムの成膜性も向上する。尚、結晶性とは、示差走査熱量計(DSC)の-100~200℃の測定範囲で、結晶の融解熱量が1J/g以上の融解ピーク、結晶化熱量が1J/g以上の結晶化ピークのいずれかが観測される重合体を言う。 When heat resistance is required by the surface protective film of the present invention, it is preferable to use a crystalline propylene polymer (B2) as the resin used for the base material layer (B). Examples of the crystalline propylene polymer (B2) include a propylene homopolymer, an ethylene-propylene copolymer, a propylene-butene-1 copolymer, and a propylene-ethylene-butene-1 copolymer. . These may be used alone or in combination of two or more. These crystalline polypropylene polymers (B2) have an MFR (measured at 230 ° C. and 21.18 N) of 0.5 to 30.0 g / 10 min and a melting point of 120 to 165 ° C. More preferably, the MFR is 2.0 to 15.0 g / 10 min and the melting point is 125 to 162 ° C. If the MFR and the melting point are within this range, the film is less shrunk even if it is exposed to a high temperature environment by drying, heat molding or the like after being attached to the adherend, so that it does not float or peel off. The film formability of the laminated film is also improved without causing warpage. The crystallinity is a melting peak with a melting heat of 1 J / g or more and a crystallization peak with a crystallization heat of 1 J / g or more in a measurement range of −100 to 200 ° C. with a differential scanning calorimeter (DSC). Refers to a polymer in which one of the following is observed.
 また、前記基材層(B)に用いる結晶性プロピレン系重合体(B2)の中でも、メタロセン触媒を用いて得られる結晶性プロピレン系重合体(メタロセン触媒系ポリプロピレンともいう。)であることが好ましい。メタロセン触媒系ポリプロピレンは、従来のチーグラー・ナッタ系触媒に代え、メタロセン系触媒を用いて重合したポリプロピレンである。このメタロセン系触媒としては、例えば、メタロセン化合物とアルミノキサンとを含むメタロセン均一混合触媒、微粒子状の担体上にメタロセン化合物が担持されたメタロセン担持型触媒等が挙げられる。メタロセン担持型触媒については、特開平5-155931号公報、特開平8-104691号公報、特開平8-157515号公報及び特開平8-231621号公報等に開示されている。メタロセン触媒系ポリプロピレンは、分子量分布及び組成分布の均一性が高く、低分子量成分の含有量が少ないため、本発明の基材層(B)にメタロセン触媒系ポリプロピレンを用いることで、低分子量成分のブリードによる被着体表面の汚染を防止することが容易になる。また、メタロセン触媒系ポリプロピレンは、プロピレン単独重合体でも、プロピレンと他のα-オレフィンとの共重合体でも良く、プロピレンと他のα-オレフィンとの共重合体の例として、エチレン-プロピレン共重合体等が挙げられる。 Among the crystalline propylene polymers (B2) used for the base material layer (B), a crystalline propylene polymer (also referred to as a metallocene catalyst polypropylene) obtained by using a metallocene catalyst is preferable. . The metallocene catalyst polypropylene is a polypropylene polymerized using a metallocene catalyst instead of the conventional Ziegler-Natta catalyst. Examples of the metallocene catalyst include a metallocene homogeneous mixed catalyst containing a metallocene compound and an aluminoxane, a metallocene supported catalyst in which a metallocene compound is supported on a particulate carrier, and the like. The metallocene supported catalysts are disclosed in JP-A-5-155931, JP-A-8-104691, JP-A-8-157515, JP-A-8-231621, and the like. The metallocene catalyst-based polypropylene has high uniformity in molecular weight distribution and composition distribution, and the content of the low molecular weight component is small. Therefore, by using the metallocene catalyst-based polypropylene for the base material layer (B) of the present invention, the low molecular weight component It becomes easy to prevent contamination of the adherend surface due to bleeding. The metallocene catalyst-based polypropylene may be a propylene homopolymer or a copolymer of propylene and other α-olefins. Examples of copolymers of propylene and other α-olefins include ethylene-propylene copolymer. Examples include coalescence.
 前記基材層(B)として、前記結晶性プロピレン系重合体(B2)を用いる場合に、前記粘着層(A)について詳述したものと同様の非晶性α-オレフィン系重合体(B3)を併用しても良い。非晶性α-オレフィン系重合体(B3)を併用することによって、得られる表面保護フィルムの柔軟性が増してフィルムの貼着時の被着体表面への追従性が向上し、また剥離時には滑らかに剥離する。尚、このとき用いる非晶性α-オレフィン系重合体(B3)は前記した粘着層(A)に用いた非晶性α-オレフィン系重合体(A1)と同じ共重合体であっても、異なる共重合体であっても良い。 When the crystalline propylene polymer (B2) is used as the substrate layer (B), the same amorphous α-olefin polymer (B3) as that described in detail for the adhesive layer (A) May be used in combination. By using the amorphous α-olefin polymer (B3) in combination, the flexibility of the surface protective film obtained is increased and the followability to the adherend surface when the film is applied is improved. Removes smoothly. The amorphous α-olefin polymer (B3) used at this time may be the same copolymer as the amorphous α-olefin polymer (A1) used for the adhesive layer (A). Different copolymers may be used.
 基材層(B)に非晶性α-オレフィン系重合体(B3)を配合する場合、結晶性プロピレン系重合体(B2)と非晶性α-オレフィン系重合体(B3)との配合比率は、質量基準で〔結晶性プロピレン系重合体(B2)〕:〔非晶性α-オレフィン系重合体(B3)〕=70~95:30~5の範囲であることが好ましく、より好ましくは前記比率が80~95:20~5の範囲である。結晶性プロピレン系重合体(B2)と非晶性α-オレフィン系重合体(B3)との配合比率がこの範囲であれば、得られる表面保護フィルムに十分な柔軟性を付与しながら耐熱性を維持することができる。 When the amorphous α-olefin polymer (B3) is blended in the base layer (B), the blending ratio of the crystalline propylene polymer (B2) and the amorphous α-olefin polymer (B3) Is preferably in the range of [crystalline propylene polymer (B2)]: [amorphous α-olefin polymer (B3)] = 70 to 95:30 to 5, more preferably The ratio is in the range of 80 to 95:20 to 5. If the blending ratio of the crystalline propylene polymer (B2) and the amorphous α-olefin polymer (B3) is within this range, the surface protection film to be obtained has sufficient flexibility and heat resistance. Can be maintained.
 また、基材層(B)として前記エチレン系重合体(B1)と結晶性プロピレン系重合体(B2)とを併用することにより、得られる表面保護フィルムの柔軟性を調整してもよい。更にエチレン-メチルメタクリレート共重合体(以下、「EMMA」という。)等を併用することでも得られるフィルムの柔軟性を調製することができる。EMMAとしては、MFR(190℃、21.18Nで測定した値)が0.5~30.0g/10分のものが好ましく、より好ましくは、MFRが2.0~15.0g/10分のものである。EMMAにおいてはメチルメタクリル酸(以下、「MMA」という。)に基づく単量体単位の含有率が3~30質量%のものが好ましく、より好ましくは、8~25質量%である。上記MFR、MMAの含有量がこの範囲であると、得られる表面保護フィルムに十分な柔軟性を付与し、且つ積層フィルムの成膜性が向上する。 Moreover, you may adjust the softness | flexibility of the surface protection film obtained by using together the said ethylene polymer (B1) and crystalline propylene polymer (B2) as a base material layer (B). Furthermore, the flexibility of the obtained film can be prepared by using an ethylene-methyl methacrylate copolymer (hereinafter referred to as “EMMA”) or the like in combination. The EMMA preferably has an MFR (measured at 190 ° C. and 21.18 N) of 0.5 to 30.0 g / 10 minutes, more preferably an MFR of 2.0 to 15.0 g / 10 minutes. Is. In EMMA, the content of monomer units based on methyl methacrylic acid (hereinafter referred to as “MMA”) is preferably 3 to 30% by mass, and more preferably 8 to 25% by mass. When the contents of the MFR and MMA are within this range, sufficient flexibility is imparted to the resulting surface protective film, and the film formability of the laminated film is improved.
 基材層(B)において、結晶性プロピレン系重合体(B2)に、非晶性α-オレフィン系重合体(B3)と、エチレン系重合体(B1)及び/又はEMMAとを配合する場合、結晶性プロピレン系重合体(B2)、非晶性α-オレフィン系重合体(B3)、エチレン系重合体(B1)及び/又はEMMAの配合比率は、質量基準で、〔結晶性プロピレン系重合体(B2)〕:〔非晶性α-オレフィン系重合体(B3)〕:〔エチレン系重合体(B1)及び/又はEMMA〕=70~95:4~29:1~12の範囲であることが好ましく、より好ましくは前記比率が80~95:4~19:1~5の範囲である。配合比率がこの範囲であれば、得られる表面保護フィルムに十分な柔軟性を付与しながら、耐熱性を維持することできる。 In the base material layer (B), when the amorphous propylene polymer (B2) is blended with the amorphous α-olefin polymer (B3), the ethylene polymer (B1) and / or EMMA, The blending ratio of the crystalline propylene polymer (B2), the amorphous α-olefin polymer (B3), the ethylene polymer (B1) and / or EMMA is [mass based on the crystalline propylene polymer]. (B2)]: [Amorphous α-olefin polymer (B3)]: [Ethylene polymer (B1) and / or EMMA] = 70 to 95: 4 to 29: 1 to 12 More preferably, the ratio is in the range of 80 to 95: 4 to 19: 1 to 5. When the blending ratio is within this range, heat resistance can be maintained while imparting sufficient flexibility to the surface protective film to be obtained.
 本発明の表面保護フィルムは、上記のように粘着層(A)と基材層(B)との2層を必須とするものであるが、さらに基材層(B)において、粘着層(A)を積層した面の反対面に表面層(C)を設けても構わない。表面層(C)に用いる樹脂としては、特に限定はないが、前記基材層(B)との親和性が良好である点からオレフィン系重合体を主成分とすることが好ましく、特にエチレン系重合体(C1)又は結晶性プロピレン系重合体(C2)を用いることがより好ましい。特に、前記基材層(B)の主成分がエチレン系重合体(B1)の場合にはエチレン系重合体(C1)を、基材層(B)の主成分が結晶性プロピレン系重合体(B2)である場合には結晶性プロピレン系重合体(C2)を主成分とするとより好ましい。 As described above, the surface protective film of the present invention essentially comprises two layers of the adhesive layer (A) and the base material layer (B). In the base material layer (B), the adhesive layer (A The surface layer (C) may be provided on the surface opposite to the surface on which the layers are stacked. The resin used for the surface layer (C) is not particularly limited, but is preferably composed mainly of an olefin polymer from the viewpoint of good affinity with the base material layer (B). It is more preferable to use the polymer (C1) or the crystalline propylene polymer (C2). In particular, when the main component of the substrate layer (B) is an ethylene polymer (B1), the ethylene polymer (C1) is used, and the main component of the substrate layer (B) is a crystalline propylene polymer ( In the case of B2), it is more preferable that the crystalline propylene polymer (C2) is a main component.
 表面層(C)の主成分として好適に用いることができるエチレン系重合体(C1)としては、上記基材層(B)の主成分として用いるエチレン系重合体(B1)と同様のものが挙げられる。また、表面層(C)の主成分としてエチレン系重合体(C1)を選択することで、基材層(B)の主成分としてエチレン系重合体(B1)を用いた場合と同様に、最終的に得られる表面保護フィルムの高い切断性が発現する。尚、基材層(B)に用いる前記エチレン系重合体(B1)と、表面層(C)に用いるエチレン系重合体(C1)とは同じ樹脂を用いても良いが、異なる樹脂を用いても良い。 Examples of the ethylene polymer (C1) that can be suitably used as the main component of the surface layer (C) include those similar to the ethylene polymer (B1) used as the main component of the base material layer (B). It is done. Further, by selecting the ethylene polymer (C1) as the main component of the surface layer (C), the final state is the same as when the ethylene polymer (B1) is used as the main component of the base material layer (B). The high cuttability of the surface protective film thus obtained is manifested. The ethylene polymer (B1) used for the base material layer (B) and the ethylene polymer (C1) used for the surface layer (C) may use the same resin, but use different resins. Also good.
 前記表面層(C)の主成分として用いるエチレン系重合体(C1)の中でも、低密度ポリエチレンを用いると、表面層(C)の表面を梨地状に改質することが容易である。表面層(C)の表面を梨地状とすることで、粘着層(A)の粘着力を強く設計した場合でもブロッキングを軽減できる。また、低密度ポリエチレンと共に高密度ポリエチレンを併用すると、得られる表面保護フィルムの剛性を上げることができ、貼着・剥離等の作業性が良好となる。 Among the ethylene-based polymer (C1) used as the main component of the surface layer (C), when low density polyethylene is used, it is easy to modify the surface of the surface layer (C) into a satin finish. By making the surface of the surface layer (C) satin, blocking can be reduced even when the adhesive force of the adhesive layer (A) is designed to be strong. Moreover, when high-density polyethylene is used in combination with low-density polyethylene, the rigidity of the resulting surface protective film can be increased, and workability such as sticking and peeling is improved.
 また、前記表面層(C)の主成分として、前記エチレン系重合体(C1)とエチレン-プロピレン共重合体との混合樹脂を用いても、表面層(C)の表面を梨地状に改質することができる。前記エチレン-プロピレン共重合体としては、エチレンとプロピレンとを共重合した樹脂であれば良く、例えば、プロピレン単独重合体の存在下で、エチレンの重合、又はエチレン及びプロピレンの重合を行って得られるエチレン-プロピレンブロック共重合体などが挙げられる。これらの中でも、表面を梨地状にすることが容易であることから、エチレン由来成分含有率が8~20質量%であるエチレン-プロピレンブロック共重合体が好ましく、エチレン由来成分の含有率が10~15質量%のエチレン-プロピレンブロック共重合体を用いることがより好ましい。更にエチレン-プロピレン共重合体のMFR(230℃、21.18Nで測定した値)は4~12g/10分の範囲であることが押出加工しやすい点で好ましく、6~10g/10分の範囲であることがより好ましい。同様に、該共重合体の密度は0.890~0.910g/cmの範囲であることが押出加工しやすい点で好ましく、0.895~0.905g/cmの範囲であることがより好ましい。尚、表面層(C)の主成分として前記エチレン-プロピレン共重合体を単独で用いても、表面層(C)の表面を梨地状に改質することができるので、基材層(B)に用いる樹脂種との親和性等を鑑みて適宜選択して使用することが好ましい。 Further, even when a mixed resin of the ethylene polymer (C1) and the ethylene-propylene copolymer is used as a main component of the surface layer (C), the surface of the surface layer (C) is modified into a satin finish. can do. The ethylene-propylene copolymer may be a resin obtained by copolymerizing ethylene and propylene. For example, the ethylene-propylene copolymer can be obtained by polymerizing ethylene or polymerizing ethylene and propylene in the presence of a propylene homopolymer. Examples thereof include an ethylene-propylene block copolymer. Among these, an ethylene-propylene block copolymer having an ethylene-derived component content of 8 to 20% by mass is preferable because the surface can be easily textured, and the ethylene-derived component content is 10 to 10%. It is more preferable to use 15% by mass of an ethylene-propylene block copolymer. Further, the MFR (value measured at 230 ° C. and 21.18 N) of the ethylene-propylene copolymer is preferably in the range of 4 to 12 g / 10 minutes from the viewpoint of easy extrusion and in the range of 6 to 10 g / 10 minutes It is more preferable that Similarly, the density of the copolymer is preferably in the range of 0.890 to 0.910 g / cm 3 from the viewpoint of easy extrusion, and in the range of 0.895 to 0.905 g / cm 3. More preferred. Even if the ethylene-propylene copolymer is used alone as the main component of the surface layer (C), the surface of the surface layer (C) can be modified into a satin finish, so that the base material layer (B) It is preferable to select and use it appropriately in view of the affinity with the resin type used in the above.
 表面層(C)の主成分として好適に用いることができる結晶性プロピレン系重合体(C2)としては、上記基材層(B)の主成分として用いる結晶性プロピレン系重合体(B2)と同様のものが挙げられる。また、表面層(C)の主成分として結晶性プロピレン系重合体(C2)を選択することで、基材層(B)の主成分として結晶性プロピレン系重合体(B2)を用いた場合と同様に、最終的に得られる表面保護フィルムの高い耐熱性が発現する。 The crystalline propylene polymer (C2) that can be suitably used as the main component of the surface layer (C) is the same as the crystalline propylene polymer (B2) used as the main component of the substrate layer (B). Can be mentioned. In addition, when the crystalline propylene polymer (C2) is selected as the main component of the surface layer (C), the crystalline propylene polymer (B2) is used as the main component of the base material layer (B). Similarly, high heat resistance of the finally obtained surface protective film is expressed.
 また、表面層(C)の主成分として、粘着力レベルや要求される透明性等から、結晶性プロピレン系重合体(C2)と前記エチレン-プロピレン共重合体とを混合し、適宜梨地の度合いを調整しても良い。 In addition, as a main component of the surface layer (C), the crystalline propylene polymer (C2) and the ethylene-propylene copolymer are mixed from the viewpoint of adhesive strength level, required transparency, etc. May be adjusted.
 本発明の表面保護フィルムは、全フィルム厚さが20~120μmのものが好ましい。全フィルムの厚さがこの範囲であれば、被着体の保護性、粘着性、及び貼着・剥離等の作業性が良好となる。また、粘着層(A)の厚さは、3~30μmが好ましく、より好ましくは5~25μmである。粘着層(A)の厚さがこの範囲であれば、粘着性及び積層フィルムの成膜性が良好となる。さらに、本発明の表面保護フィルムに前記表面層(C)を設ける場合は、表面層(C)の厚さは3~30μmが好ましく、より好ましくは5~20μmである。表面層(C)の厚さがこの範囲であれば、耐熱性及び積層フィルムの成膜性が良好となる。 The surface protective film of the present invention preferably has a total film thickness of 20 to 120 μm. If the thickness of all the films is within this range, the protective properties and adhesion of the adherend, and workability such as sticking and peeling will be good. The thickness of the adhesive layer (A) is preferably 3 to 30 μm, more preferably 5 to 25 μm. If the thickness of the pressure-sensitive adhesive layer (A) is within this range, the pressure-sensitive adhesive property and the film forming property of the laminated film will be good. Furthermore, when the surface layer (C) is provided on the surface protective film of the present invention, the thickness of the surface layer (C) is preferably 3 to 30 μm, more preferably 5 to 20 μm. When the thickness of the surface layer (C) is within this range, the heat resistance and the film formability of the laminated film are good.
 本発明の表面保護フィルムの製造方法としては、共押出積層法であれば特に限定されるものではないが、例えば、2台以上の押出機を用いて各樹脂層に用いる樹脂を溶融し、共押出ダイス法、フィードブロック法等の共押出法により溶融状態で積層した後、インフレーション、T-ダイ・チルロール法等の方法を用いてフィルム状に加工する方法が挙げられる。T-ダイ・チルロール法の場合、ゴムタッチロールやスチールベルト等とチルロール間で、溶融積層されたフィルムをニップして冷却してもよい。 The method for producing the surface protective film of the present invention is not particularly limited as long as it is a coextrusion lamination method. For example, the resin used for each resin layer is melted by using two or more extruders, Examples include a method of laminating in a molten state by a coextrusion method such as an extrusion die method or a feed block method, and then processing into a film using a method such as inflation or a T-die / chill roll method. In the case of the T-die / chill roll method, the melt-laminated film may be nipped between a rubber touch roll, a steel belt or the like and the chill roll and cooled.
 さらに、本発明の表面保護フィルムは、少なくとも1軸方向に延伸されていてもよい。延伸方法としては、縦あるいは横方向の1軸延伸、逐次2軸延伸、同時2軸延伸、あるいはチューブラー法2軸延伸等の公知の方法を採用することができる。また、延伸工程はインラインでもあっても、オフラインであってもよい。1軸延伸の延伸方法としては、近接ロール延伸法でも圧延法でもよい。1軸延伸の延伸倍率としては、縦あるいは横方向に1.1~80倍が好ましく、より好ましくは3~30倍である。一方、2軸延伸の延伸倍率としては、面積比で1.2~70倍が好ましく、より好ましくは縦4~6倍、横5~9倍、面積比で20~54倍である。 Furthermore, the surface protective film of the present invention may be stretched in at least one axial direction. As the stretching method, a known method such as longitudinal or lateral uniaxial stretching, sequential biaxial stretching, simultaneous biaxial stretching, or tubular method biaxial stretching can be employed. Further, the stretching process may be inline or offline. The stretching method for uniaxial stretching may be a proximity roll stretching method or a rolling method. The stretching ratio of uniaxial stretching is preferably 1.1 to 80 times in the longitudinal or transverse direction, more preferably 3 to 30 times. On the other hand, the stretching ratio of biaxial stretching is preferably 1.2 to 70 times in terms of area ratio, more preferably 4 to 6 times in length, 5 to 9 times in width, and 20 to 54 times in terms of area ratio.
 また、縦あるいは横方向の延伸工程としては、必ずしも1段延伸に限らず、多段延伸であってもよい。特に、逐次2軸延伸における縦1軸ロール延伸、縦1軸圧延延伸等の縦1軸延伸においては、厚み、物性の均一性等の点で多段延伸とすることが好ましい。さらに近接ロール延伸においては、フラット法、クロス法のいずれでも構わないが、幅縮みの低減が図れる多段の近接クロス延伸がより好ましい。延伸温度は、1軸延伸の場合、いずれの延伸方法においても80℃~160℃が好ましく、1軸延伸でテンター延伸を使用する場合は、90~165℃が好ましい。また、より好ましい延伸温度としては、それぞれ110~155℃、120~160℃である。一方、2軸延伸の場合、いずれの方法においても1軸延伸の場合と同様な延伸温度範囲が好ましい。また、延伸工程前に予熱部、延伸工程後に熱固定部を適宜設けてもよい。この場合、予熱部の温度は60~140℃、熱固定部の温度は90~160℃の範囲が好ましい。 Also, the longitudinal or lateral stretching process is not necessarily limited to one-stage stretching, and may be multi-stage stretching. In particular, in longitudinal uniaxial stretching such as longitudinal uniaxial roll stretching and longitudinal uniaxial rolling stretching in sequential biaxial stretching, it is preferable to perform multistage stretching in view of thickness, uniformity of physical properties, and the like. Further, in the proximity roll stretching, either the flat method or the cross method may be used, but multistage proximity cross stretching that can reduce width shrinkage is more preferable. The stretching temperature is preferably 80 ° C. to 160 ° C. in any stretching method in the case of uniaxial stretching, and preferably 90 to 165 ° C. in the case of using tenter stretching in uniaxial stretching. Further, more preferable stretching temperatures are 110 to 155 ° C. and 120 to 160 ° C., respectively. On the other hand, in the case of biaxial stretching, the stretching temperature range similar to that in the case of uniaxial stretching is preferable in any method. Moreover, you may provide a pre-heating part before an extending process, and a heat setting part after an extending process suitably. In this case, the temperature of the preheating part is preferably 60 to 140 ° C., and the temperature of the heat fixing part is preferably 90 to 160 ° C.
 本発明の表面保護フィルムは、少なくとも1軸方向への延伸し、熱固定により構造安定化を図ることで、基材層(B)、表面層(C)に用いる樹脂の配向結晶化により、さらに耐熱性が向上し、粘着力の経時変化が小さくなるので好ましく、特に結晶性プロピレン系重合体を基材層(B)及び/又は表面層(C)に用いた場合にはその効果が高くなる。 The surface protective film of the present invention is further stretched in at least one axial direction and structurally stabilized by heat setting, and further by orientation crystallization of the resin used for the base layer (B) and the surface layer (C). This is preferable because the heat resistance is improved and the change with time of the adhesive force is small. Particularly, when the crystalline propylene polymer is used for the base material layer (B) and / or the surface layer (C), the effect becomes high. .
 また、本発明の効果を損なわない範囲で、滑剤、ブロッキング防止剤、紫外線吸収剤、光安定剤、耐電防止剤、防曇剤等、着色剤等を適宜添加してもよく、添加する樹脂層は目的に応じていずれの層に添加しても良い。これらの添加剤としては、オレフィン系重合体用の各種添加剤を使用することが好ましい。 In addition, a lubricant, an antiblocking agent, an ultraviolet absorber, a light stabilizer, an antistatic agent, an antifogging agent, and the like may be added as appropriate within the range not impairing the effects of the present invention. May be added to any layer depending on the purpose. As these additives, it is preferable to use various additives for olefin polymers.
 以下に実施例及び比較例を挙げて、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples.
(合成例1)
[非晶性α-オレフィン系重合体(非晶性プロピレン-ブテン-1共重合体)の合成]
 攪拌機を備えた100Lステンレス製重合容器中で、水素を分子量調整剤として用いて、プロピレンとブテン-1を連続的に共重合させて、非晶性α-オレフィン重合体として非晶性プロピレン-ブテン-1共重合体を得た。具体的には、重合器の下部から、重合溶媒としてヘキサンを供給速度100L/時間で、プロピレンを24.00kg/時間で、ブテン-1を1.81kg/時間で連続的に供給し、重合器の上部から、重合器中の反応混合物が100Lを保持するように、反応混合物を連続的に抜き出した。また、重合器の下部から、触媒成分として、ジメチルシリル(テトラメチルシクロペンタジエニル)(3-t-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライドを0.005g/時間で、トリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレートを0.298g/時間で、トリイソブチルアルミニウムを2.315g/時間の供給速度で、各々連続的に供給した。共重合反応は、重合器の外部に取り付けられたジャケットに、冷却水を循環させることによって45℃で行った。重合器の上部から連続的に抜き出された反応混合物に少量のエタノールを加え重合反応を停止させた後、脱モノマー、水洗浄、及び溶媒除去工程を経て、非晶性プロピレン-ブテン-1共重合体を得た。次いで、得られた共重合体を80℃で24時間減圧乾燥した。この非晶性プロピレン-ブテン-1共重合体中のプロピレン単量体単位の含有率は94.5質量%、ブテン-1単量体単位の含有率は5.5質量%であった。(各単量体単位は日本電子株式会社製 核磁気共鳴装置JMN-LA300により算出した。)また該共重合体のDSC(Seiko Instruments Inc.製EXSTAR6000)における融解ピークは観測されず、また、極限粘度[η]は2.3dl/g、分子量分布(Mw/Mn)は2.2であった。(分子量分布は東ソー株式会社製ゲルパーミエーションクロマトグラフ、HLC-8020により分析した。)
(Synthesis Example 1)
[Synthesis of Amorphous α-Olefin Polymer (Amorphous Propylene-Butene-1 Copolymer)]
In a 100L stainless steel polymerization vessel equipped with a stirrer, propylene and butene-1 were continuously copolymerized using hydrogen as a molecular weight regulator to produce amorphous propylene-butene as an amorphous α-olefin polymer. -1 copolymer was obtained. Specifically, hexane as a polymerization solvent is continuously supplied from the lower part of the polymerization vessel at a supply rate of 100 L / hour, propylene at 24.00 kg / hour, and butene-1 at 1.81 kg / hour. From the top of the reaction mixture, the reaction mixture was continuously withdrawn so that the reaction mixture in the polymerization vessel maintained 100 L. Further, from the lower part of the polymerization vessel, dimethylsilyl (tetramethylcyclopentadienyl) (3-t-butyl-5-methyl-2-phenoxy) titanium dichloride is added as a catalyst component at 0.005 g / hour at triphenylmethyl. Tetrakis (pentafluorophenyl) borate was continuously fed at a rate of 0.298 g / hr and triisobutylaluminum was fed at a rate of 2.315 g / hr. The copolymerization reaction was carried out at 45 ° C. by circulating cooling water through a jacket attached to the outside of the polymerization vessel. A small amount of ethanol was added to the reaction mixture continuously extracted from the upper part of the polymerization vessel to stop the polymerization reaction, followed by steps of demonomerization, water washing, and solvent removal. A polymer was obtained. Subsequently, the obtained copolymer was dried under reduced pressure at 80 ° C. for 24 hours. In this amorphous propylene-butene-1 copolymer, the content of propylene monomer units was 94.5% by mass, and the content of butene-1 monomer units was 5.5% by mass. (Each monomer unit was calculated using a nuclear magnetic resonance apparatus JMN-LA300 manufactured by JEOL Ltd.) Further, no melting peak was observed in the DSC (EXSTAR6000 manufactured by Seiko Instruments Inc.) of the copolymer, and the limit was limited. The viscosity [η] was 2.3 dl / g, and the molecular weight distribution (Mw / Mn) was 2.2. (The molecular weight distribution was analyzed by a gel permeation chromatograph manufactured by Tosoh Corporation, HLC-8020.)
(合成例2)
[非晶性α-オレフィン系重合体(非晶性プロピレン-エチレン-ブテン-1共重合体)の合成]
 攪拌器、温度計、滴下ロート及び還流冷却管を備えた容量2Lのセパラブルフラスコ反応器を減圧、窒素置換した後、乾燥トルエン1Lを重合溶媒として導入した。ここにエチレン2×10-6cm/分、プロピレン4×10-6cm/分、ブテン-1 1×10-6cm/分を常圧にて連続供給し、溶媒温度を30℃とした。トリイソブチルアルミニウム(以下TIBAという)0.75mmolを重合槽に添加した後、ジメチルシリル(テトラメチルシクロペンタジエニル)(3-t-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド0.0015mmolを重合槽に添加した。その15秒後にトリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート0.0075mmolを重合槽に添加し、10分間重合を行った。その結果、非晶性プロピレン-ブテン-1-エチレン共重合体を得た。この非晶性プロピレン-エチレン-ブテン-1共重合体中のプロピレン単量体単位の含有量は61.5質量%、エチレン単量体単位の含有量は21.0質量%、ブテン-1単量体単位の含有量は17.5質量%であった。また該共重合体のDSCにおける融解ピークは観測されず、また、極限粘度[η]は1.69dl/g、分子量分布(Mw/Mn)は2.0であった。
(Synthesis Example 2)
[Synthesis of Amorphous α-Olefin Polymer (Amorphous Propylene-Ethylene-Butene-1 Copolymer)]
A 2 L separable flask reactor equipped with a stirrer, thermometer, dropping funnel and reflux condenser was decompressed and purged with nitrogen, and then 1 L of dry toluene was introduced as a polymerization solvent. Here, ethylene 2 × 10 −6 cm 3 / min, propylene 4 × 10 −6 cm 3 / min and butene-1 1 × 10 −6 cm 3 / min are continuously supplied at normal pressure, and the solvent temperature is 30 ° C. It was. After adding 0.75 mmol of triisobutylaluminum (hereinafter referred to as TIBA) to the polymerization vessel, 0.0015 mmol of dimethylsilyl (tetramethylcyclopentadienyl) (3-t-butyl-5-methyl-2-phenoxy) titanium dichloride was added. Added to the polymerization vessel. 15 seconds later, 0.0075 mmol of triphenylmethyltetrakis (pentafluorophenyl) borate was added to the polymerization tank, and polymerization was carried out for 10 minutes. As a result, an amorphous propylene-butene-1-ethylene copolymer was obtained. In this amorphous propylene-ethylene-butene-1 copolymer, the content of propylene monomer units is 61.5% by mass, the content of ethylene monomer units is 21.0% by mass, The content of the monomer unit was 17.5% by mass. Moreover, the melting peak in DSC of this copolymer was not observed, the intrinsic viscosity [η] was 1.69 dl / g, and the molecular weight distribution (Mw / Mn) was 2.0.
(調製例1)
[非晶性α-オレフィン系重合体を含有する組成物(1)からなるペレットの調製]
 上記合成例1で得られた非晶性プロピレン-ブテン-1共重合体に、結晶性プロピレン-ブテン-1共重合体〔密度0.900g/cm、MFR(230℃、21.18Nで測定した値)10.0g/10分、DSCにおける最大融解ピーク126℃〕を、非晶性プロピレン-ブテン-1共重合体/結晶性プロピレン-ブテン-1共重合体=60/40(質量比)となるように配合し、さらに芳香族フォスファイト系酸化防止剤〔チバ・スペシャルティ・ケミカルズ株式会社製「イルガフォス(Irgafos)168」〕と、ヒンダードフェノール系酸化防止剤〔チバ・スペシャルティ・ケミカルズ株式会社製「イルガノックス(Irganox)1010」〕と、を各々2000ppm配合し、2軸押出機(IKEGAI製PCM30、30mmφスクリュー)で230℃で溶融混練し、次いで、造粒機(ナカタニ機械製CK2)により非晶性α-オレフィン系重合体を含有する組成物(1)のペレットを得た。
(Preparation Example 1)
[Preparation of Pellet Composed of Composition (1) Containing Amorphous α-Olefin Polymer]
The amorphous propylene-butene-1 copolymer obtained in Synthesis Example 1 was added to the crystalline propylene-butene-1 copolymer [density 0.900 g / cm 3 , MFR (measured at 230 ° C., 21.18 N]. Value) 10.0 g / 10 min, maximum melting peak 126 ° C. in DSC], amorphous propylene-butene-1 copolymer / crystalline propylene-butene-1 copolymer = 60/40 (mass ratio) In addition, an aromatic phosphite antioxidant (“Irgafos 168” manufactured by Ciba Specialty Chemicals Co., Ltd.) and a hindered phenol antioxidant (Ciba Specialty Chemicals Co., Ltd.). “Irganox 1010”] and 2000 ppm each of the two-screw extruder (IKEMAI PCM3 Was melt-kneaded at 230 ° C. in 30mmφ screws), then to obtain a pellet of granulator (compositions containing amorphous α- olefin polymer by Nakatani Machine CK2) (1).
(調製例2)
[非晶性α-オレフィン系重合体を含有する組成物(2)からなるペレットの調製]
 非晶性プロピレン-ブテン-1共重合体/結晶性プロピレン-ブテン-1共重合体=95/5(質量比)となるように配合した以外は、調整例1と同様にして非晶性α-オレフィン系重合体を含有する組成物(2)のペレットを得た。
(Preparation Example 2)
[Preparation of Pellet Composed of Composition (2) Containing Amorphous α-Olefin Polymer]
Amorphous propylene-butene-1 copolymer / crystalline propylene-butene-1 copolymer = Amorphous α in the same manner as in Preparation Example 1 except that the blend was made to be 95/5 (mass ratio). -Pellets of the composition (2) containing an olefin polymer were obtained.
(調製例3)
[非晶性α-オレフィン系重合体を含有する組成物(3)からなるペレットの調製]
 調整例1において、用いる非晶性α-オレフィン系重合体を、合成例2で得られた非晶性プロピレン-エチレン-ブテン-1共重合体とする以外は、調製例1と同様にして、非晶性α-オレフィン系重合体を含有する組成物(3)のペレットを得た。
(Preparation Example 3)
[Preparation of Pellet Composed of Composition (3) Containing Amorphous α-Olefin Polymer]
In the same manner as in Preparation Example 1, except that the amorphous α-olefin polymer used in Preparation Example 1 is the amorphous propylene-ethylene-butene-1 copolymer obtained in Synthesis Example 2, A pellet of the composition (3) containing an amorphous α-olefin polymer was obtained.
(調製例4)
[非晶性α-オレフィン系重合体を含有する組成物(4)からなるペレットの調製]
 非晶性プロピレン-エチレン-ブテン-1共重合体/結晶性プロピレン-ブテン-1共重合体=95/5(質量比)となるように配合した以外は、調整例3と同様にして非晶性α-オレフィン系重合体を含有する組成物(4)のペレットを得た。
(Preparation Example 4)
[Preparation of Pellet Composed of Composition (4) Containing Amorphous α-Olefin Polymer]
Amorphous propylene-ethylene-butene-1 copolymer / crystalline propylene-butene-1 copolymer = 95/5 (mass ratio) A pellet of the composition (4) containing a hydrophilic α-olefin polymer was obtained.
(調製例5)
[非晶性α-オレフィン系重合体を含有する組成物(5)からなるペレットの調製]
 上記合成例1で得られた非晶性プロピレン-ブテン-1共重合体に、直鎖状低密度ポリエチレン〔密度0.935g/cm、MFR(190℃、21.18Nで測定した値)3.5g/10分〕を、非晶性プロピレン-ブテン-1共重合体/直鎖状低密度ポリエチレン=95/5(質量比)となるように配合した以外は調製例1と同様にして、非晶性α-オレフィン系重合体を含有する組成物(5)のペレットを得た。
(Preparation Example 5)
[Preparation of Pellet Composed of Composition (5) Containing Amorphous α-Olefin Polymer]
The amorphous propylene-butene-1 copolymer obtained in Synthesis Example 1 was added to a linear low density polyethylene (density 0.935 g / cm 3 , MFR (measured at 190 ° C. and 21.18 N) 3 0.5 g / 10 min] in the same manner as in Preparation Example 1, except that amorphous propylene-butene-1 copolymer / linear low-density polyethylene = 95/5 (mass ratio). A pellet of the composition (5) containing an amorphous α-olefin polymer was obtained.
(実施例1)
 表面層用樹脂として、プロピレン単独重合体〔密度:0.900g/cm、MFR(230℃、21.18Nで測定した値):8.0g/10分;以下、「HOPP」という。〕80質量部、エチレン-プロピレンブロック共重合体〔密度:0.900g/cm、MFR(230℃、21.18N):8g/10分〕20質量部の混合樹脂を用い、基材層用樹脂として、HOPPを用い、粘着層用樹脂として、上記で調製した非晶性α-オレフィン系重合体を含有する組成物(1)30質量部及び直鎖状低密度ポリエチレン〔密度:0.902g/cm、MFR(190℃、21.18Nで測定した値):3.0g/10分;以下「LLDPE(1)」という。〕70質量部の混合物を用いて、表面層用押出機(口径50mm)、基材層用押出機(口径50mm)及び粘着層用押出機(口径40mm)にそれぞれ供給し、共押出法により押出温度250℃でT-ダイから表面層の厚さが12μm、基材層の厚さが38μm、粘着層の厚さが10μmになるように押出し、40℃の水冷金属冷却ロールで冷却した後、ロールに巻き取り、表面保護フィルムを得た。得られたフィルムは、物理的性質を安定化するため、35℃の熟成室で48時間熟成させた。
Example 1
As the resin for the surface layer, a propylene homopolymer [density: 0.900 g / cm 3 , MFR (value measured at 230 ° C., 21.18 N): 8.0 g / 10 min; hereinafter referred to as “HOPP”. ] 80 parts by mass, ethylene-propylene block copolymer [density: 0.900 g / cm 3 , MFR (230 ° C., 21.18N): 8 g / 10 min] As the resin, HOPP is used, and as the adhesive layer resin, 30 parts by mass of the composition (1) containing the amorphous α-olefin polymer prepared above and linear low density polyethylene [density: 0.902 g / Cm 3 , MFR (value measured at 190 ° C., 21.18 N): 3.0 g / 10 min; hereinafter referred to as “LLDPE (1)”. Using 70 parts by mass of the mixture, the mixture was supplied to a surface layer extruder (caliber 50 mm), a substrate layer extruder (caliber 50 mm) and an adhesive layer extruder (caliber 40 mm), respectively, and extruded by a coextrusion method. After extruding from a T-die at a temperature of 250 ° C. to a surface layer thickness of 12 μm, a base layer thickness of 38 μm, and an adhesive layer thickness of 10 μm, and cooling with a 40 ° C. water-cooled metal cooling roll, The film was wound on a roll to obtain a surface protective film. The obtained film was aged in a aging room at 35 ° C. for 48 hours in order to stabilize physical properties.
(実施例2)
 表面層用樹脂として、エチレン-プロピレンブロック共重合体を用い、粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(1)50質量部及びLLDPE(1)50質量部に代えた以外は実施例1と同様にし、表面保護フィルムを得た。
(Example 2)
An ethylene-propylene block copolymer is used as the resin for the surface layer, and 50 parts by mass of the composition (1) and LLDPE (1) containing an amorphous α-olefin polymer as the resin for the adhesive layer A surface protective film was obtained in the same manner as in Example 1 except that it was replaced with.
(実施例3)
 実施例2と同様な構成で、表面層用押出機(口径50mm)、基材層用押出機(口径50mm)及び粘着層用押出機(口径40mm)にそれぞれ供給し、共押出法により押出温度250℃でT-ダイから表面層の厚さが40μm、基材層の厚さが120μm、粘着層の厚さが40μmになるように押出し、40℃の水冷金属冷却ロールで冷却した後、近接ロール延伸法により140℃で縦4倍延伸し、さらに145℃で熱固定して、1軸延伸された表面保護フィルムを得た。得られたフィルムは、物理的性質を安定化するため、35℃の熟成室で48時間熟成させた。なお、表1中の実施例3の各層の厚さは、1軸延伸後のものである。
(Example 3)
In the same configuration as in Example 2, it was supplied to an extruder for surface layer (caliber 50 mm), an extruder for substrate layer (caliber 50 mm), and an extruder for adhesive layer (caliber 40 mm), and extrusion temperature by coextrusion method. Extruded at 250 ° C from the T-die so that the surface layer thickness is 40 µm, the base material layer thickness is 120 µm, and the adhesive layer thickness is 40 µm, and after cooling with a 40 ° C water-cooled metal cooling roll, proximity The film was stretched four times in length at 140 ° C. by a roll stretching method, and further heat-set at 145 ° C. to obtain a uniaxially stretched surface protective film. The obtained film was aged in a aging room at 35 ° C. for 48 hours in order to stabilize physical properties. In addition, the thickness of each layer of Example 3 in Table 1 is that after uniaxial stretching.
(実施例4)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)40質量部及びLLDPE(1)60質量部の混合物に代えた以外は実施例2と同様にし、表面保護フィルムを得た。
Example 4
Surface protection was carried out in the same manner as in Example 2 except that the adhesive layer resin was replaced with a mixture of 40 parts by mass of the composition (2) containing an amorphous α-olefin polymer and 60 parts by mass of LLDPE (1). A film was obtained.
(実施例5)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(4)40質量部及び直鎖状低密度ポリエチレン〔密度:0.920g/cm、MFR(190℃、21.18Nで測定した値):4.0g/10分;以下「LLDPE(2)」という。〕60質量部の混合物を用いた以外は、実施例2と同様にし、表面保護フィルムを得た。
(Example 5)
As an adhesive layer resin, 40 parts by mass of a composition (4) containing an amorphous α-olefin polymer and linear low-density polyethylene [density: 0.920 g / cm 3 , MFR (190 ° C., 21. Value measured at 18N): 4.0 g / 10 min; hereinafter referred to as “LLDPE (2)”. A surface protective film was obtained in the same manner as in Example 2 except that 60 parts by mass of the mixture was used.
(実施例6)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(5)20質量部及びLLDPE(2)80質量部の混合物を用いた以外は実施例2と同様にし、表面保護フィルムを得た。
(Example 6)
Surface protection was carried out in the same manner as in Example 2 except that a mixture of 20 parts by mass of the composition (5) containing an amorphous α-olefin polymer and 80 parts by mass of LLDPE (2) was used as the adhesive layer resin. A film was obtained.
(実施例7)
 表面層用樹脂として、HOPPを用い、基材層用樹脂として同様なHOPPを用い、粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)10質量部とLLDPE(2)90質量物との混合樹脂を用いて、表面層用押出機(口径50mm)、基材層用押出機(口径50mm)及び粘着層用押出機(口径40mm)にそれぞれ供給し、共押出法により押出温度250℃でT-ダイから表面層の厚さが14μm、基材層の厚さが42μm、粘着層の厚さが14μmになるように押出した以外は、実施例1と同様にして表面保護フィルムを得た。
(Example 7)
HOPP is used as the resin for the surface layer, the same HOPP is used as the resin for the base layer, and a composition (2) containing an amorphous α-olefin polymer as the resin for the adhesive layer and LLDPE (2) Using a mixed resin with 90 masses, each is supplied to an extruder for surface layer (caliber 50 mm), an extruder for substrate layer (caliber 50 mm), and an extruder for adhesive layer (caliber 40 mm). Same as Example 1 except that the extrusion method was carried out at an extrusion temperature of 250 ° C. and extruded from the T-die so that the surface layer thickness was 14 μm, the base material layer thickness was 42 μm, and the adhesive layer thickness was 14 μm. Thus, a surface protective film was obtained.
(実施例8)
 基材層用樹脂として、メタロセン触媒系エチレン-プロピレンランダム共重合体〔密度:0.900g/cm、MFR(230℃、21.18Nで測定した値):7.0g/10分、エチレン単量体単位の含有率:3.5質量%;以下、「メタロセン触媒系COPP」という。〕を用い、粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(3)50質量部及びLLDPE(2)50質量部の混合物を用いて、基材層用押出機(口径50mm)及び粘着層用押出機(口径40mm)にそれぞれ供給し、共押出法により押出温度250℃でT-ダイから基材層の厚さが50μm、粘着層の厚さが10μmになるように押出し、40℃の水冷金属冷却ロールで冷却した後、ロールに巻き取り、表面保護フィルムを得た。得られたフィルムは、物理的性質を安定化するため、35℃の熟成室で48時間熟成させた。
(Example 8)
Metallocene catalyst-based ethylene-propylene random copolymer [density: 0.900 g / cm 3 , MFR (value measured at 230 ° C., 21.18 N): 7.0 g / 10 min, ethylene single Content rate of the monomer unit: 3.5 mass%; hereinafter referred to as “metallocene catalyst system COPP”. And a mixture of 50 parts by mass of the composition (3) containing an amorphous α-olefin polymer and 50 parts by mass of LLDPE (2) as the adhesive layer resin. (Diameter 50 mm) and an adhesive layer extruder (40 mm diameter), respectively, by co-extrusion method at an extrusion temperature of 250 ° C., the thickness of the substrate layer from the T-die becomes 50 μm, and the thickness of the adhesive layer becomes 10 μm After being extruded and cooled with a 40 ° C. water-cooled metal cooling roll, the film was wound on a roll to obtain a surface protective film. The obtained film was aged in a aging room at 35 ° C. for 48 hours in order to stabilize physical properties.
(実施例9)
 基材層用樹脂として、メタロセン触媒系COPPを用い、粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)6.0質量部及びLLDPE(2)94質量部の混合物を用いた以外は、実施例2と同様にし、表面保護フィルムを得た。
Example 9
A metallocene catalyst COPP is used as the base layer resin, and 6.0 parts by mass of the amorphous α-olefin polymer (2) and 94 parts by mass of LLDPE (2) are used as the adhesive layer resin. A surface protective film was obtained in the same manner as in Example 2 except that the above mixture was used.
(実施例10)
 基材層用樹脂として、メタロセン触媒系COPPを用い、粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)6.0質量部、LLDPE(2)84質量部及びエチレン-ブテン-1共重合体〔密度:0.895g/cm、MFR(190℃、21.18Nで測定した値):3.0g/10分;以下「EBR」という。〕10質量部の混合物を用いた以外は、実施例2と同様にし、表面保護フィルムを得た。
(Example 10)
Metallocene catalyst COPP is used as the base layer resin, and composition containing the amorphous α-olefin polymer as the adhesive layer resin (2) 6.0 parts by mass, LLDPE (2) 84 parts by mass And ethylene-butene-1 copolymer [density: 0.895 g / cm 3 , MFR (measured at 190 ° C., 21.18 N): 3.0 g / 10 min; hereinafter referred to as “EBR”. A surface protective film was obtained in the same manner as in Example 2 except that 10 parts by mass of the mixture was used.
(実施例11)
 基材層用樹脂として、メタロセン触媒系COPPを用い、粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)30質量部、LLDPE(2)50質量部及びEBR20質量部の混合物を用いた以外は、実施例2と同様にし、表面保護フィルムを得た。
(Example 11)
A metallocene catalyst COPP is used as the base layer resin, and 30 parts by mass of the composition (2), LLDPE (2) 50 parts by mass and EBR20 containing an amorphous α-olefin polymer as the adhesive layer resin. A surface protective film was obtained in the same manner as in Example 2 except that a mixture of parts by mass was used.
(実施例12)
 基材層用樹脂として、メタロセン触媒系COPPを用い、粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)20質量部及びLLDPE(2)40質量部及びEBR40質量部の混合物を用いた以外は、実施例2と同様にし、表面保護フィルムを得た。
Example 12
The metallocene catalyst COPP is used as the base layer resin, and 20 parts by mass of the composition (2), LLDPE (2) 40 parts by mass and EBR40 containing the amorphous α-olefin polymer as the adhesive layer resin. A surface protective film was obtained in the same manner as in Example 2 except that a mixture of parts by mass was used.
(実施例13)
 基材層用樹脂として、高密度ポリエチレン〔密度:0.960g/cm、MFR(190℃、21.18Nで測定した値):13g/10分;以下「HDPE」という。〕50質量部及び低密度ポリエチレン〔密度:0.902g/cm、MFR(190℃、21.18Nで測定した値):4g/10分;以下「LDPE」という。)50質量部の混合樹脂を用い、粘着層用樹脂として、上記で調製した非晶性α-オレフィン系重合体を含有する組成物(1)30質量部及びLLDPE(1)70質量部の混合樹脂を用いて、基材層用押出機(口径50mm)及び粘着層用押出機(口径40mm)にそれぞれ供給し、共押出法により押出温度250℃でT-ダイから基材層の厚さが56μm、粘着層の厚さが14μmになるように押出し、40℃の水冷金属冷却ロールで冷却した後、ロールに巻き取り、表面保護フィルムを得た。得られたフィルムは、物理的性質を安定化するため、35℃の熟成室で48時間熟成させた。
(Example 13)
As the resin for the base layer, high density polyethylene [density: 0.960 g / cm 3 , MFR (measured at 190 ° C., 21.18 N): 13 g / 10 min; hereinafter referred to as “HDPE”. ] 50 parts by mass and low density polyethylene [Density: 0.902 g / cm 3 , MFR (value measured at 190 ° C., 21.18 N): 4 g / 10 min; hereinafter referred to as “LDPE”. ) Mixing of 30 parts by mass of the composition (1) containing the amorphous α-olefin polymer prepared above and 70 parts by mass of LLDPE (1) using 50 parts by mass of the mixed resin as the adhesive layer resin The resin is supplied to a substrate layer extruder (caliber 50 mm) and an adhesive layer extruder (caliber 40 mm), respectively, and the thickness of the substrate layer from the T-die at an extrusion temperature of 250 ° C. by coextrusion method. After extruding to 56 μm and the thickness of the adhesive layer to 14 μm and cooling with a 40 ° C. water-cooled metal cooling roll, the film was wound on a roll to obtain a surface protective film. The obtained film was aged in a aging room at 35 ° C. for 48 hours in order to stabilize physical properties.
(実施例14)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(1)50質量部及びLLDPE(1)50質量部の混合樹脂を用いた以外は実施例13と同様にして表面保護フィルムを得た。
(Example 14)
The surface was the same as in Example 13 except that 50 parts by mass of the composition (1) containing an amorphous α-olefin polymer and 50 parts by mass of LLDPE (1) were used as the adhesive layer resin. A protective film was obtained.
(実施例15)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)40質量部及びLLDPE(1)60質量部の混合樹脂を用いた以外は実施例13と同様にして表面保護フィルムを得た。
(Example 15)
The surface was the same as in Example 13 except that 40 mass parts of the composition (2) containing an amorphous α-olefin polymer and 60 mass parts of LLDPE (1) were used as the adhesive layer resin. A protective film was obtained.
(実施例16)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(4)40質量部及びLLDPE(1)60質量部の混合樹脂を用いた以外は実施例13と同様にして表面保護フィルムを得た。
(Example 16)
The surface was the same as in Example 13 except that 40 parts by mass of the composition (4) containing an amorphous α-olefin polymer and 60 parts by mass of LLDPE (1) were used as the adhesive layer resin. A protective film was obtained.
(実施例17)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)40質量部、LLDPE(1)40質量部及びEBR20質量部の混合樹脂を用いた以外は実施例13と同様にして表面保護フィルムを得た。
(Example 17)
As Example 13 with the exception that 40 parts by mass of the composition (2) containing an amorphous α-olefin polymer, 40 parts by mass of LLDPE (1) and 20 parts by mass of EBR were used as the adhesive layer resin. A surface protective film was obtained in the same manner.
(実施例18)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)15質量部及びLLDPE(2)85質量部の混合樹脂を用いた以外は実施例13と同様にして表面保護フィルムを得た。
(Example 18)
The surface was the same as in Example 13 except that a mixed resin of 15 parts by mass of composition (2) containing an amorphous α-olefin polymer and 85 parts by mass of LLDPE (2) was used as the adhesive layer resin. A protective film was obtained.
(実施例19)
 表面層用樹脂として、LDPE95質量部及びエチレン-プロピレンブロック共重合体5質量部の混合樹脂を用い、基材層用樹脂として、HDPE50質量部及びLDPE50質量部の混合樹脂を用い、粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)10質量部及びLLDPE(2)90質量部の混合樹脂を用いて、表面層用押出機(口径50mm)、基材層用押出機(口径50mm)及び粘着層用押出機(口径40mm)にそれぞれ供給し、共押出法により押出温度250℃でT-ダイから表面層の厚さが14μm、基材層の厚さが42μm、粘着層の厚さが14μmになるように押出した以外は実施例13と同様にして表面保護フィルムを得た。
(Example 19)
Adhesive layer resin using a mixed resin of 95 parts by mass of LDPE and 5 parts by mass of ethylene-propylene block copolymer as the resin for the surface layer, and a mixed resin of 50 parts by mass of HDPE and 50 parts by mass of LDPE as the resin for the base layer Using a mixed resin of 10 parts by mass of a composition (2) containing an amorphous α-olefin polymer and 90 parts by mass of LLDPE (2), an extruder for surface layer (caliber 50 mm), base material layer Are fed to an extruder for extrusion (diameter 50 mm) and an adhesive layer extruder (diameter 40 mm), respectively, and the surface layer thickness is 14 μm from the T-die at an extrusion temperature of 250 ° C. by co-extrusion, and the thickness of the substrate layer is A surface protective film was obtained in the same manner as in Example 13 except that extrusion was performed so that the thickness of the adhesive layer was 42 μm and the thickness was 14 μm.
(実施例20)
 表面層用樹脂として、HOPP85質量部及びエチレン-プロピレンブロック共重合体15質量部の混合樹脂を用いた以外は実施例19と同様にして表面保護フィルムを得た。
(Example 20)
A surface protective film was obtained in the same manner as in Example 19 except that a mixed resin of 85 parts by mass of HOPP and 15 parts by mass of ethylene-propylene block copolymer was used as the resin for the surface layer.
(実施例21)
 表面層用樹脂として、LLDPE(1)95質量部及びエチレン-プロピレンブロック共重合体5質量部の混合樹脂を用い、基材層用樹脂として、LLDPE(1)を用いた以外は実施例19と同様にして、表面保護フィルムを得た。
(Example 21)
Example 19 was used except that a mixed resin of 95 parts by mass of LLDPE (1) and 5 parts by mass of an ethylene-propylene block copolymer was used as the resin for the surface layer, and LLDPE (1) was used as the resin for the base layer. In the same manner, a surface protective film was obtained.
(実施例22)
 表面層用樹脂として、LLDPE(2)95質量部及びエチレン-プロピレンブロック共重合体5質量部の混合樹脂を用い、基材層用樹脂として、LLDPE(2)を用いた以外は実施例19と同様にして表面保護フィルムを得た。
(Example 22)
Example 19 except that a mixed resin of 95 parts by mass of LLDPE (2) and 5 parts by mass of an ethylene-propylene block copolymer was used as the resin for the surface layer, and LLDPE (2) was used as the resin for the base layer. A surface protective film was obtained in the same manner.
(実施例23)
 表面層用樹脂として、直鎖状低密度ポリエチレン〔密度:0.940g/cm、MFR(190℃、21.18Nで測定した値):4.0g/10分;以下「LLDPE(3)」という。〕95質量部及びエチレン-プロピレンブロック共重合体5質量部の混合樹脂を用い、基材層用樹脂として、LLDPE(3)を用いた以外は実施例19と同様にして表面保護フィルムを得た。
(Example 23)
As the resin for the surface layer, linear low density polyethylene [density: 0.940 g / cm 3 , MFR (value measured at 190 ° C., 21.18 N): 4.0 g / 10 min; hereinafter referred to as “LLDPE (3)” That's it. A surface protective film was obtained in the same manner as in Example 19 except that a mixed resin of 95 parts by mass and 5 parts by mass of an ethylene-propylene block copolymer was used, and LLDPE (3) was used as the base layer resin. .
(実施例24)
 基材層用樹脂として、LDPEを用いた以外は、実施例18と同様にして表面保護フィルムを得た。
(Example 24)
A surface protective film was obtained in the same manner as in Example 18 except that LDPE was used as the base layer resin.
(実施例25)
 基材層用樹脂として、LDPEを用い、粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)10質量部及びLLDPE(2)90質量部の混合樹脂を用いた以外は実施例13と同様にして表面保護フィルムを得た。
(Example 25)
As the base layer resin, LDPE is used, and as the adhesive layer resin, 10 parts by mass of a composition (2) containing an amorphous α-olefin polymer and 90 parts by mass of LLDPE (2) are used. A surface protective film was obtained in the same manner as in Example 13 except that.
(実施例26)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(5)20質量部及びLLDPE(2)80質量部の混合物を用いた以外は実施例19と同様にし、表面保護フィルムを得た。
(Example 26)
Surface protection was carried out in the same manner as in Example 19 except that a mixture of 20 parts by mass of the composition (5) containing an amorphous α-olefin polymer and 80 parts by mass of LLDPE (2) was used as the adhesive layer resin. A film was obtained.
(比較例1)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)3.16質量部LLDPE(2)96.84質量部の混合物を用いた以外は、実施例2と同様にし、比較用の表面保護フィルムを得た。
(Comparative Example 1)
Example 2 except that a mixture of the composition (2) 3.16 parts by mass LLDPE (2) 96.84 parts by mass containing the amorphous α-olefin polymer was used as the adhesive layer resin. A surface protective film for comparison was obtained.
(比較例2)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(1)30質量部及びLLDPE(3)70質量部の混合物を用いた以外は、実施例2と同様にし、比較用の表面保護フィルムを得た。
(Comparative Example 2)
As in Example 2, except that a mixture of 30 parts by mass of composition (1) containing amorphous α-olefin polymer and 70 parts by mass of LLDPE (3) was used as the adhesive layer resin, A surface protective film was obtained.
(比較例3)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)52質量部、調製例1で用いたものと同様の結晶性プロピレン-ブテン-1共重合体8質量部及びスチレン-エチレン-プロピレン-スチレンブロック共重合体(株式会社クラレ製「セプトン2063」;以下、「SEPS」という。)40質量部の混合物を用いた以外は、実施例2と同様にして、比較用の表面保護フィルムを得た。
(Comparative Example 3)
As an adhesive layer resin, 52 parts by mass of a composition (2) containing an amorphous α-olefin polymer and 8 parts by mass of a crystalline propylene-butene-1 copolymer similar to that used in Preparation Example 1 And a styrene-ethylene-propylene-styrene block copolymer (“Septon 2063” manufactured by Kuraray Co., Ltd .; hereinafter referred to as “SEPS”) in the same manner as in Example 2, except that 40 parts by mass of the mixture was used. A surface protective film was obtained.
(比較例4)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(1)50質量部及びHOPP50質量部の混合物を用いた以外は、実施例2と同様にして、比較用の表面保護フィルムを得た。
(Comparative Example 4)
The surface for comparison was obtained in the same manner as in Example 2 except that the adhesive layer resin was a mixture of 50 parts by mass of composition (1) containing amorphous α-olefin polymer and 50 parts by mass of HOPP. A protective film was obtained.
(比較例5)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(1)50質量部、LLDPE(2)30質量部及びEBR20質量部の混合物を用いた以外は、実施例2と同様にして、比較用の表面保護フィルムを得た。
(Comparative Example 5)
Example 2 except that a mixture of 50 parts by mass of the composition (1) containing an amorphous α-olefin polymer, 30 parts by mass of LLDPE (2) and 20 parts by mass of EBR was used as the adhesive layer resin. Similarly, a comparative surface protective film was obtained.
(比較例6)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)30質量部、LLDPE(2)20質量部及びEBR50質量部の混合物を用いた以外は、実施例2と同様にして、比較用の表面保護フィルムを得た。
(Comparative Example 6)
Example 2 except that a mixture of 30 parts by mass of the composition (2) containing an amorphous α-olefin polymer, 20 parts by mass of LLDPE (2) and 50 parts by mass of EBR was used as the adhesive layer resin. Similarly, a comparative surface protective film was obtained.
(比較例7)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)3.16質量部及びLLDPE(2)96.84質量部の混合樹脂を用いた以外は、実施例13と同様にして比較用の表面保護フィルムを得た。
(Comparative Example 7)
Example 13 except that a mixed resin of 3.16 parts by mass of composition (2) containing an amorphous α-olefin polymer and 96.84 parts by mass of LLDPE (2) containing an amorphous α-olefin polymer was used as the adhesive layer resin. In the same manner, a comparative surface protective film was obtained.
(比較例8)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(1)30質量部及びLLDPE(3)70質量部の混合樹脂を用いた以外は、実施例13と同様にして比較用の表面保護フィルムを得た。
(Comparative Example 8)
The same procedure as in Example 13 was conducted except that a mixed resin of 30 parts by mass of the composition (1) containing an amorphous α-olefin polymer and 70 parts by mass of LLDPE (3) was used as the adhesive layer resin. A comparative surface protective film was obtained.
(比較例9)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(2)52質量部、調製例1で用いたものと同様の結晶性プロピレン-ブテン-1共重合体8質量部及びSEPS40質量部の混合樹脂を用いた以外は、実施例13と同様にして比較用の表面保護フィルムを得た。
(Comparative Example 9)
As an adhesive layer resin, 52 parts by mass of a composition (2) containing an amorphous α-olefin polymer and 8 parts by mass of a crystalline propylene-butene-1 copolymer similar to that used in Preparation Example 1 And the surface protection film for a comparison was obtained like Example 13 except having used the mixed resin of 40 mass parts of SEPS.
(比較例10)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(1)50質量部及びHOPP50質量部の混合樹脂を用いた以外は、実施例13と同様にして比較用の表面保護フィルムを得た。
(Comparative Example 10)
Comparative surface as in Example 13 except that the resin for the adhesive layer was a mixed resin of 50 parts by mass of composition (1) containing amorphous α-olefin polymer and 50 parts by mass of HOPP. A protective film was obtained.
(比較例11)
 粘着層用樹脂として、非晶性α-オレフィン系重合体を含有する組成物(1)50質量部、LLDPE(2)30質量部及びEBR20質量部の混合樹脂を用いた以外は、実施例13と同様にして比較用の表面保護フィルムを得た。
(Comparative Example 11)
Example 13 except that a mixed resin of 50 parts by mass of the composition (1) containing an amorphous α-olefin polymer, 30 parts by mass of LLDPE (2) and 20 parts by mass of EBR was used as the adhesive layer resin. In the same manner, a comparative surface protective film was obtained.
 上記の実施例1~26及び比較例1~11で得られた表面保護フィルムを用いて、以下の測定及び評価を行った。 The following measurements and evaluations were performed using the surface protective films obtained in Examples 1 to 26 and Comparative Examples 1 to 11 described above.
(1)粘着力の測定
 23℃、50%RHの恒温室において、JIS Z0237:2000の粘着力評価方法に準拠して、上記で得られた表面保護フィルムを厚さ2mmのアクリル板(鏡面仕上げ、三菱レイヨン株式会社製「アクリライト」)に貼着した。フィルムが貼着されたアクリル板を23℃恒温室中で24時間放置した後、引張試験機(株式会社エー・アンド・ディー製)を用いて、300mm/分の速度で180°方向に剥離して初期粘着力を測定した。また、フィルムを貼着したアクリル板を50℃の乾燥機中で1日放置した後、同様に粘着力を測定した。
(1) Measurement of adhesive strength In a thermostatic chamber at 23 ° C. and 50% RH, the surface protective film obtained above was applied to an acrylic plate (mirror finish) in accordance with JIS Z0237: 2000 adhesive strength evaluation method. And “Acrylite” manufactured by Mitsubishi Rayon Co., Ltd.). The acrylic plate with the film attached is left in a constant temperature room at 23 ° C. for 24 hours, and then peeled off in the 180 ° direction at a speed of 300 mm / min using a tensile tester (manufactured by A & D Co., Ltd.) The initial adhesive strength was measured. Moreover, after leaving the acrylic board which stuck the film in a 50 degreeC dryer for 1 day, adhesive force was measured similarly.
(2)粘着性の評価
 上記の粘着力の測定を行うために、表面保護フィルムをアクリル板に貼着した際の表面保護フィルムのアクリル板への貼着状態を目視で確認し、下記の基準によって粘着性の評価を行った。
 ○:アクリル板表面への均一な密着を保持しているもの。
 ×:均一な密着が保てず、一部に浮きが生じたもの。
(2) Evaluation of adhesiveness In order to measure the above adhesive strength, the state of adhesion of the surface protective film to the acrylic plate when the surface protective film was adhered to the acrylic plate was visually confirmed, and the following criteria were used. Was used to evaluate the tackiness.
◯: Maintaining uniform adhesion to the acrylic plate surface.
X: A thing in which uniform adhesion cannot be maintained and a part of it is lifted.
(3)糊残り性の評価
 23℃、50%RHの恒温室において、JIS Z0237:2000に準拠した方法で、表面保護フィルムを縦15cm×横5cmのアクリル板(鏡面仕上げ、三菱レイヨン株式会社製「アクリライト」)の全面に貼着した。フィルムが貼着されたアクリル板を60℃の乾燥機中で3日間放置後、23℃恒温室中で1時間冷却した。冷却された試験片から、フィルムを180°方向に高速で手剥がしし、アクリル板表面の汚染状況を目視で確認し、以下の基準にて糊残り性の評価を行った。
 ○:アクリル板表面に、くもり、白スジ、異物等の汚れが無い。
 ×:アクリル板表面に、くもり、白スジ、異物等いずれかの汚れがある。
(3) Evaluation of adhesive residue In a temperature-controlled room at 23 ° C. and 50% RH, the surface protective film was made into a 15 cm long by 5 cm wide acrylic plate (mirror finish, manufactured by Mitsubishi Rayon Co., Ltd.) in accordance with JIS Z0237: 2000. "Acrylite") was attached to the entire surface. The acrylic plate to which the film was adhered was left in a dryer at 60 ° C. for 3 days and then cooled in a constant temperature room at 23 ° C. for 1 hour. From the cooled test piece, the film was peeled off at a high speed in the direction of 180 °, the state of contamination on the acrylic plate surface was visually confirmed, and the adhesive residue was evaluated according to the following criteria.
○: There is no dirt such as cloudy, white streaks or foreign matter on the acrylic plate surface.
X: The acrylic plate surface has any dirt such as cloudy, white streaks or foreign matters.
(4)アクリル板表面の濡れ張力の測定
 上記(3)の評価でフィルムが剥離された試験片を用い、JIS K6768:1999に準拠した方法でアクリル板表面の濡れ張力を測定した。
(4) Measurement of Wetting Tension on Acrylic Board Surface Wet tension on the acrylic board surface was measured by a method based on JIS K6768: 1999 using the test piece from which the film was peeled off in the evaluation of (3) above.
(5)保護フィルム剥離後の印刷適性評価
 上記(4)の測定で得られた濡れ張力のブランクの値(フィルム貼着前のアクリル板の表面をアルコールで洗浄し、乾燥後に同様な方法で測定した濡れ張力:40mN/m)からの濡れ張力の低下幅を保護フィルム剥離後の印刷適性の代用評価として評価した。なお、評価基準は以下の通りである。
 ○:ブランクに対し、濡れ張力の低下幅が2mN/m以下である。
 ×:ブランクに対し、濡れ張力の低下幅が2mN/mを超えている。
(5) Evaluation of printability after protective film peeling The value of the wet tension blank obtained by the measurement of (4) above (the surface of the acrylic plate before film attachment was washed with alcohol, and measured by the same method after drying) (Wet tension: 40 mN / m) was evaluated as a substitute evaluation of printability after the protective film was peeled off. The evaluation criteria are as follows.
(Circle): The fall width | variety of a wetting tension is 2 mN / m or less with respect to a blank.
X: The reduction width of the wetting tension with respect to the blank exceeds 2 mN / m.
(6)耐ブロッキング性の評価
 得られた表面保護フィルムを、A4の大きさ(縦297mm×横210mm)で切り出した。この際、フィルム成膜時の押し出し方向(MD方向)とA4縦方向が一致するように切り出した。切り出したフィルムを10枚重ねた後、その上下をA4サイズ、厚さ3mmの塩化ビニル製の板で挟み、重さ5kgの重りを乗せ40℃の乾燥器中で14日間保管後、23℃、50%RHの恒温室内で1時間保管した。次いで、そのフィルムをMD方向に25mm幅で切り出し、引張試験機(株式会社エー・アンド・ディー製)を用いて、300mm/分の速度で180°方向に剥離してブロッキング力を測定した。得られたブロッキング力から、以下の基準によって耐ブロッキング性を評価した。
 ○:ブロッキング力が0.8N/25mm未満である。
 ×:ブロッキング力が0.8N/25mm以上である。
(6) Evaluation of blocking resistance The obtained surface protective film was cut out with the size of A4 (length 297 mm x width 210 mm). At this time, the film was cut out so that the extrusion direction (MD direction) during film formation coincided with the A4 vertical direction. After stacking 10 cut out films, the upper and lower sides were sandwiched between A4 size, 3 mm thick vinyl chloride plates, a weight of 5 kg was placed, and stored in a dryer at 40 ° C. for 14 days, then at 23 ° C. It was stored for 1 hour in a constant temperature room of 50% RH. Next, the film was cut out in a width of 25 mm in the MD direction, and peeled in the direction of 180 ° at a speed of 300 mm / min using a tensile tester (manufactured by A & D Co., Ltd.) to measure the blocking force. From the obtained blocking force, blocking resistance was evaluated according to the following criteria.
A: The blocking force is less than 0.8 N / 25 mm.
X: The blocking force is 0.8 N / 25 mm or more.
(7)切断性の評価
 23℃、50%RHの恒温室において、JIS Z0237:2000の粘着力評価方法に準拠して、上記で得られた表面保護フィルムを厚さ2mmのアクリル板(鏡面仕上げ、三菱レイヨン株式会社製「アクリライト」)の両面に貼着した。フィルムが貼着されたアクリル板を高速カッターで切断したときの、フィルムの切断端面を目視で観察し、以下の基準によって切断性を評価した。
 ○:フィルムの切断端面に糸引きや毛羽立ち、割れ等の外観不良が見られない。
 △:フィルムの切断端面に糸引きや毛羽立ち、割れ等の外観不良がやや見られる。
 ×:フィルムの切断端面に糸引きや毛羽立ち、割れ等の外観不良が見られる。
(7) Evaluation of cutting performance In a thermostatic chamber at 23 ° C. and 50% RH, the surface protective film obtained above was applied to an acrylic plate having a thickness of 2 mm according to JIS Z0237: 2000 (mirror finish). And “Acrylite” manufactured by Mitsubishi Rayon Co., Ltd.). When the acrylic plate to which the film was attached was cut with a high-speed cutter, the cut end face of the film was visually observed, and the cutting ability was evaluated according to the following criteria.
○: No appearance defects such as stringing, fluffing and cracking are observed on the cut end face of the film.
Δ: Some appearance defects such as stringing, fluffing and cracking are slightly seen on the cut end face of the film.
X: Appearance defects such as stringing, fluffing and cracking are observed on the cut end face of the film.
 上記で作製した表面保護フィルムの層構成及びこれらの表面保護フィルムを用いて得られた評価結果を表1~6に示した。尚、表面層を設けていない実施例・比較例ではその欄を空欄としている。粘着層に用いた非晶性α-オレフィン系重合体を含有する組成物については、各成分に分けて表記した。 Tables 1 to 6 show the layer structures of the surface protective films produced above and the evaluation results obtained using these surface protective films. In Examples and Comparative Examples in which no surface layer is provided, the column is left blank. The composition containing the amorphous α-olefin polymer used for the adhesive layer is shown separately for each component.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~26の結果から、本発明の表面保護フィルムは、アクリル板に対する粘着力が、0.1~2.2N/25mm程度であり、表面保護フィルムとして最適な微粘着から中粘着レベルの幅広い粘着力を有することがわかった。また、アクリル板への貼着後の浮き、剥がれ等の発生もなく、表面保護フィルムとして実用上良好な粘着性を有していることがわかった。特に貼着したアクリル板からフィルムを剥離した際に、目視で確認できるくもりやスジ、異物等の汚染は認められず、表面保護フィルムを剥離した後のアクリル板表面の濡れ張力の低下もきわめて少ないことから、表面保護フィルムを剥離した後、印刷等の二次加工を施される用途に好適に用いることができることがわかった。更に、基材層にエチレン系重合体を用いることによって、被着体に表面保護フィルムが貼着された状態で被着体を切断加工する際に、表面保護フィルムがきれいに切断し、糸引き、毛羽立ち等の外観不良を生じない、優れた切断性を有する表面保護フィルムが得られることがわかった。 From the results of Examples 1 to 26, the surface protective film of the present invention has an adhesive strength with respect to the acrylic plate of about 0.1 to 2.2 N / 25 mm. It was found to have a wide range of adhesive strength. In addition, it was found that there was no occurrence of floating or peeling after sticking to the acrylic plate, and that the surface protective film had practically good adhesiveness. In particular, when the film is peeled off from the attached acrylic plate, there is no visible contamination such as cloudiness, streaks, or foreign matter, and there is very little reduction in the wetting tension on the acrylic plate surface after peeling off the surface protective film. From this, it was found that after the surface protective film was peeled off, it can be suitably used for applications in which secondary processing such as printing is performed. Furthermore, by using an ethylene-based polymer for the base material layer, when the adherend is cut with the surface protective film adhered to the adherend, the surface protective film is cut cleanly, and stringing is performed. It was found that a surface protective film having excellent cutting properties that does not cause poor appearance such as fuzzing can be obtained.
 比較例1は、直鎖状低密度ポリエチレンの配合量を、規定した上限の95質量%を超える約97質量%とした表面保護フィルムの例である。この比較例1の表面保護フィルムでは、粘着力は初期値で0.05N/25mm程度しかなく、軽い衝撃で浮き、剥がれ等の発生が見られ、粘着力が不十分であることがわかった。 Comparative Example 1 is an example of a surface protective film in which the blending amount of the linear low density polyethylene is about 97% by mass exceeding the prescribed upper limit of 95% by mass. In the surface protective film of Comparative Example 1, the adhesive strength was only about 0.05 N / 25 mm as an initial value, and it was found that the adhesive strength was insufficient due to the occurrence of floating, peeling and the like due to light impact.
 比較例2は、直鎖状低密度ポリエチレンの密度を、規定した上限の0.938g/cmを超える0.940g/cmとした表面保護フィルムの例である。この比較例2の表面保護フィルムでは、粘着力は初期値で0.03N/25mm程度しかなく、フィルムの貼着直後に浮き、剥がれ等の発生が見られ、配合する直鎖状低密度ポリエチレンの密度が高すぎると、粘着力が不十分となることがわかった。 Comparative Example 2, the density of the linear low density polyethylene, an example of a surface protective film and 0.940 g / cm 3 greater than the 0.938 g / cm 3 of the upper limit as defined. In the surface protective film of Comparative Example 2, the initial adhesive strength is only about 0.03 N / 25 mm, and the occurrence of peeling and peeling immediately after the film is adhered is observed. It was found that if the density is too high, the adhesive strength becomes insufficient.
 比較例3は、粘着層に直鎖状低密度ポリエチレンを用いず、代わりにスチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)を用いた表面保護フィルムの例である。この比較例3の表面保護フィルムでは、糊残りの発生が見られ、表面保護フィルムを剥離した後のアクリル板表面の濡れ張力の低下も大きく、さらにブロッキング力が大きく、耐ブロッキング性にも劣ることがわかった。 Comparative Example 3 is an example of a surface protective film using a styrene-ethylene-propylene-styrene block copolymer (SEPS) instead of linear low density polyethylene for the adhesive layer. In the surface protective film of Comparative Example 3, generation of adhesive residue was observed, the decrease in the wet tension of the acrylic plate surface after peeling the surface protective film was large, the blocking power was large, and the blocking resistance was inferior. I understood.
 比較例4は、粘着層に直鎖状低密度ポリエチレンを用いず、代わりにプロピレン単独重合体を用いた表面保護フィルムの例である。この比較例4の表面保護フィルムでは、糊残りの発生が見られ、表面保護フィルムを剥離した後のアクリル板表面の濡れ張力の低下も大きいことがわかった。 Comparative Example 4 is an example of a surface protective film using a propylene homopolymer instead of a linear low density polyethylene for the adhesive layer. In the surface protective film of Comparative Example 4, generation of adhesive residue was observed, and it was found that the decrease in wet tension on the surface of the acrylic plate after peeling the surface protective film was large.
 比較例5は、直鎖状低密度ポリエチレンの配合量を、規定した下限の40質量%未満の37.5質量%とした表面保護フィルムの例である。この比較例5の表面保護フィルムでは、糊残りが発生する問題があることがわかった。 Comparative Example 5 is an example of a surface protective film in which the blending amount of the linear low density polyethylene is 37.5% by mass, which is less than 40% by mass of the specified lower limit. The surface protective film of Comparative Example 5 was found to have a problem that adhesive residue was generated.
 比較例6は、エチレン-α-オレフィン共重合体(EBR)の配合量を、規定した上限の40質量%を超える約50.8質量%とした表面保護フィルムの例である。この比較例6の表面保護フィルムでは、ブロッキング力が大きく、耐ブロッキング性に劣ることがわかった。 Comparative Example 6 is an example of a surface protective film in which the blending amount of the ethylene-α-olefin copolymer (EBR) is about 50.8% by mass exceeding the specified upper limit of 40% by mass. The surface protective film of Comparative Example 6 was found to have a large blocking power and poor blocking resistance.
 比較例7は、粘着層の非晶性プロピレン-ブテン-1共重合体の直鎖状低密度ポリエチレンとの配合比率が下限の5質量%より小さい約3質量%とした表面保護フィルムの例である。この比較例7の表面保護フィルムでは、粘着力は初期値で0.05N/25mm程度しかなく、軽い衝撃で浮き、剥がれ等の発生が見られ、粘着力が不十分であることがわかった。 Comparative Example 7 is an example of a surface protective film in which the blending ratio of the amorphous propylene-butene-1 copolymer of the adhesive layer to the linear low density polyethylene is about 3% by mass, which is smaller than the lower limit of 5% by mass. is there. In the surface protective film of Comparative Example 7, the adhesive strength was only about 0.05 N / 25 mm as an initial value, and it was found that the adhesive strength was insufficient due to the occurrence of floating, peeling and the like by light impact.
 比較例8は、粘着層に用いる直鎖状低密度ポリエチレンの密度を、規定した上限の0.938g/cmを超える0.940g/cmとした表面保護フィルムの例である。この比較例8の表面保護フィルムでは、粘着力は初期値で0.03N/25mm程度しかなく、フィルムの貼着直後に浮き、剥がれ等の発生が見られ、配合する直鎖状低密度ポリエチレンの密度が高すぎると、粘着力が不十分となることがわかった。 Comparative Example 8, the density of the linear low density polyethylene used in the adhesive layer, an example of the surface protection film and 0.940 g / cm 3 greater than the 0.938 g / cm 3 of the upper limit as defined. In the surface protective film of Comparative Example 8, the adhesive strength is only about 0.03 N / 25 mm as an initial value, and the occurrence of floating, peeling, etc. is observed immediately after the film is attached. It was found that if the density is too high, the adhesive strength becomes insufficient.
 比較例9は、粘着層に直鎖状低密度ポリエチレンを用いず、代わりにスチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)を用いた表面保護フィルムの例である。この比較例9の表面保護フィルムでは、糊残りの発生が見られ、表面保護フィルムを剥離した後のアクリル板表面の濡れ張力の低下も大きく、さらにブロッキング力が大きく、耐ブロッキング性にも劣ることがわかった。 Comparative Example 9 is an example of a surface protective film using a styrene-ethylene-propylene-styrene block copolymer (SEPS) instead of linear low density polyethylene for the adhesive layer. In the surface protective film of Comparative Example 9, generation of adhesive residue was observed, the decrease in wet tension of the acrylic plate surface after peeling the surface protective film was large, the blocking power was large, and the blocking resistance was inferior. I understood.
 比較例10は、粘着層に直鎖状低密度ポリエチレンを用いず、代わりにプロピレン単独重合体を用いた表面保護フィルムの例である。この比較例10の表面保護フィルムでは、糊残りの発生が見られ、表面保護フィルムを剥離した後のアクリル板表面の濡れ張力の低下も大きいことがわかった。 Comparative Example 10 is an example of a surface protective film using a propylene homopolymer instead of linear low density polyethylene for the adhesive layer. In the surface protective film of this comparative example 10, generation | occurrence | production of adhesive residue was seen and it turned out that the fall of the wet tension of the acrylic board surface after peeling a surface protective film is also large.
 比較例11は、粘着層の非晶性プロピレン-ブテン-1共重合体の直鎖状低密度ポリエチレンとの配合比率が上限の40質量%を超える50質量%とした表面保護フィルムの例である。この比較例11の表面保護フィルムでは、糊残りが発生する問題があることがわかった。 Comparative Example 11 is an example of a surface protective film in which the blending ratio of the amorphous propylene-butene-1 copolymer of the adhesive layer to the linear low-density polyethylene is 50% by mass exceeding the upper limit of 40% by mass. . It was found that the surface protective film of Comparative Example 11 had a problem that adhesive residue was generated.
 本発明の表面保護フィルムは、最適な微粘着から中粘着レベルの幅広い粘着力を有し、アクリル板への貼着後の浮き、剥がれ等の発生もない。特に貼着したアクリル板からフィルムを剥離した際に、目視で確認できるくもりやスジ、異物等の汚染は認められず、表面保護フィルムを剥離した後のアクリル板表面の濡れ張力の低下もきわめて少ないことから、表面保護フィルムを剥離した後、印刷等の二次加工を施される用途に好適である。 The surface protective film of the present invention has a wide range of adhesive strengths ranging from optimum fine adhesion to medium adhesion level, and does not cause floating or peeling after sticking to an acrylic plate. In particular, when the film is peeled off from the attached acrylic plate, there is no visible contamination such as cloudiness, streaks, or foreign matter, and there is very little reduction in the wetting tension on the acrylic plate surface after peeling off the surface protective film. Therefore, it is suitable for applications in which secondary processing such as printing is performed after the surface protective film is peeled off.

Claims (6)

  1. 粘着層(A)と基材層(B)とを積層した表面保護フィルムであって、該粘着層(A)が、
    非晶性α-オレフィン系重合体(A1)5~50質量%と、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)50~95質量%との混合樹脂、又は、
    非晶性α-オレフィン系重合体(A1)5~50質量%と、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)40~90質量%と、結晶性エチレン-α-オレフィン共重合体(A3)5~50質量%との混合樹脂、
    を主成分とすることを特徴とする表面保護フィルム。
    A surface protective film obtained by laminating an adhesive layer (A) and a base material layer (B), wherein the adhesive layer (A)
    Mixing of 5 to 50% by mass of amorphous α-olefin polymer (A1) and 50 to 95% by mass of linear low density polyethylene (A2) having a density of 0.880 to 0.938 g / cm 3 Resin, or
    Amorphous α-olefin polymer (A1) 5 to 50% by mass, linear low density polyethylene (A2) 40 to 90% by mass with a density of 0.880 to 0.938 g / cm 3 , crystals Mixed resin with 5 to 50% by mass of a conductive ethylene-α-olefin copolymer (A3),
    A surface protective film characterized by comprising as a main component.
  2. 前記基材層(B)が、エチレン系重合体(B1)又は結晶性プロピレン系重合体(B2)を主成分とするものである請求項1記載の表面保護フィルム。 The surface protective film according to claim 1, wherein the base material layer (B) is mainly composed of an ethylene polymer (B1) or a crystalline propylene polymer (B2).
  3. 前記非晶性α-オレフィン系重合体(A1)が非晶性プロピレン-ブテン-1共重合体又は非晶性プロピレン-エチレン-ブテン-1共重合体である請求項1又は2記載の表面保護フィルム。 The surface protection according to claim 1 or 2, wherein the amorphous α-olefin polymer (A1) is an amorphous propylene-butene-1 copolymer or an amorphous propylene-ethylene-butene-1 copolymer. the film.
  4. 前記エチレン-α-オレフィン共重合体(A3)がエチレン-ブテン-1共重合体である請求項1~3の何れか1項記載の表面保護フィルム。 The surface protective film according to any one of claims 1 to 3, wherein the ethylene-α-olefin copolymer (A3) is an ethylene-butene-1 copolymer.
  5. オレフィン系重合体を主成分とする表面層(C)を、前記基材層(B)において、粘着層(A)を積層した面の反対面に設けた請求項1~4の何れか1項記載の表面保護フィルム。 The surface layer (C) mainly composed of an olefin polymer is provided on the surface opposite to the surface on which the adhesive layer (A) is laminated in the base material layer (B). The surface protective film as described.
  6. 少なくとも1軸方向に延伸されている請求項1~5の何れか1項記載の表面保護フィルム。 The surface protective film according to any one of claims 1 to 5, which is stretched in at least one axial direction.
PCT/JP2008/068020 2008-01-11 2008-10-03 Surface protection film WO2009087797A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008801245032A CN101909887A (en) 2008-01-11 2008-10-03 Surface protection film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008004233A JP4412408B2 (en) 2008-01-11 2008-01-11 Surface protection film
JP2008-004233 2008-01-11

Publications (1)

Publication Number Publication Date
WO2009087797A1 true WO2009087797A1 (en) 2009-07-16

Family

ID=40852921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068020 WO2009087797A1 (en) 2008-01-11 2008-10-03 Surface protection film

Country Status (5)

Country Link
JP (1) JP4412408B2 (en)
KR (1) KR20100046267A (en)
CN (1) CN101909887A (en)
TW (1) TWI364446B (en)
WO (1) WO2009087797A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2559745A1 (en) * 2010-04-13 2013-02-20 Toray Advanced Film Co., Ltd. Surface protective film
JP2019155682A (en) * 2018-03-12 2019-09-19 東レフィルム加工株式会社 Substrate film for pasting and surface protective film for coated steel panel using the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5360723B2 (en) * 2010-07-05 2013-12-04 東レフィルム加工株式会社 Surface protection film
KR101250521B1 (en) * 2010-10-25 2013-04-03 대림산업 주식회사 Oriented co­extrusion film comprising heat­binding layer having enhanced heat­stability by c0­crystallization
CN103254827A (en) * 2012-02-15 2013-08-21 日东电工株式会社 Surface protection sheet
US9138979B2 (en) * 2012-05-02 2015-09-22 Tredegar Film Products Corporation Low peel force surface protection film and method of using same
CA2887844C (en) 2012-11-22 2020-08-18 Gunze Limited Heat-shrinkable film
JP2015030797A (en) * 2013-08-02 2015-02-16 日東電工株式会社 Adhesive tape and sheet
KR20190066334A (en) 2017-12-05 2019-06-13 (주)케이에프엠 Adhesive tape with a base containing 3d structures and preparation method thereof
CN108342166A (en) * 2018-02-10 2018-07-31 六安联众工业自动化技术有限公司 A kind of adhesive protecting film and its production technology
CN108342165A (en) * 2018-02-10 2018-07-31 六安联众工业自动化技术有限公司 A kind of household electrical appliances color steel adhesive protecting film
CN114507486B (en) * 2020-11-16 2024-02-20 象山激智新材料有限公司 High-temperature-resistant protective film and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188646A (en) * 2004-12-07 2006-07-20 Tohcello Co Ltd Adhesive film
JP2006257247A (en) * 2005-03-16 2006-09-28 Tohcello Co Ltd Adhesive film
JP2007238882A (en) * 2006-03-13 2007-09-20 Sekisui Chem Co Ltd Surface protective film
JP2008246947A (en) * 2007-03-30 2008-10-16 Dic Corp Surface protective film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188646A (en) * 2004-12-07 2006-07-20 Tohcello Co Ltd Adhesive film
JP2006257247A (en) * 2005-03-16 2006-09-28 Tohcello Co Ltd Adhesive film
JP2007238882A (en) * 2006-03-13 2007-09-20 Sekisui Chem Co Ltd Surface protective film
JP2008246947A (en) * 2007-03-30 2008-10-16 Dic Corp Surface protective film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2559745A1 (en) * 2010-04-13 2013-02-20 Toray Advanced Film Co., Ltd. Surface protective film
EP2559745A4 (en) * 2010-04-13 2014-01-01 Toray Advanced Film Co Ltd Surface protective film
JP2019155682A (en) * 2018-03-12 2019-09-19 東レフィルム加工株式会社 Substrate film for pasting and surface protective film for coated steel panel using the same
JP7082762B2 (en) 2018-03-12 2022-06-09 東レフィルム加工株式会社 Base film for gluing and surface protection film for coated steel sheet using it

Also Published As

Publication number Publication date
TW200930783A (en) 2009-07-16
JP2009166277A (en) 2009-07-30
CN101909887A (en) 2010-12-08
JP4412408B2 (en) 2010-02-10
KR20100046267A (en) 2010-05-06
TWI364446B (en) 2012-05-21

Similar Documents

Publication Publication Date Title
WO2009087797A1 (en) Surface protection film
JP2008068564A (en) Surface protecting film
JP6569723B2 (en) Self-adhesive surface protective film
JP4363454B2 (en) Surface protection film
JP2007130872A (en) Surface-protective film
WO2010084832A1 (en) Surface protective film
US7323252B2 (en) Biaxially oriented multilayer polypropylene film
JP5135258B2 (en) Biaxially stretched self-adhesive protective film
JP4748808B2 (en) Biaxially stretched self-adhesive protective film
JP7205462B2 (en) biaxially oriented polypropylene film
JP4573854B2 (en) Biaxially stretched self-adhesive protective film
JP2022033172A (en) Method of producing biaxially oriented polypropylene-based film
JP2007185781A (en) Surface protective film
WO2014054700A1 (en) Self-adhesive surface protection film
JP2012087164A (en) Surface protective film
JP5358076B2 (en) Biaxially stretched self-adhesive protective film
WO2010016403A1 (en) Surface protection film
WO2011034045A1 (en) Surface protective film
JP2011020299A (en) Surface protective film
JP5452208B2 (en) Biaxially stretched self-adhesive protective film for in-mold lamination
JP4529100B2 (en) Surface protection film
JP4581475B2 (en) Method for producing biaxially oriented multilayer polypropylene film
WO2023234189A1 (en) Adhesive film and adhesive label
WO2023286541A1 (en) Biaxially oriented laminated polypropylene film
JP2023013959A (en) Biaxially oriented laminated polypropylene film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124503.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107006237

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08870270

Country of ref document: EP

Kind code of ref document: A1