WO2010016403A1 - Surface protection film - Google Patents

Surface protection film Download PDF

Info

Publication number
WO2010016403A1
WO2010016403A1 PCT/JP2009/063326 JP2009063326W WO2010016403A1 WO 2010016403 A1 WO2010016403 A1 WO 2010016403A1 JP 2009063326 W JP2009063326 W JP 2009063326W WO 2010016403 A1 WO2010016403 A1 WO 2010016403A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
surface protective
mass
propylene
adhesive layer
Prior art date
Application number
PCT/JP2009/063326
Other languages
French (fr)
Japanese (ja)
Inventor
一範 小橋
貴史 森谷
芳隆 佐藤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008201750A external-priority patent/JP4525811B2/en
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020107029682A priority Critical patent/KR101162583B1/en
Priority to CN2009801299145A priority patent/CN102112305A/en
Publication of WO2010016403A1 publication Critical patent/WO2010016403A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention is a surface protective film used for the purpose of protecting the surface of various resin plates, glass plates, metal plates, etc., and in particular, contamination such as adhesive residue on the adherend surface after film peeling is extremely high.
  • the present invention relates to a surface protective film characterized in that the secondary workability of the adherend can be kept small.
  • Surface protective films are used for the purpose of protecting the surface of adherends from scratches and contamination by sticking to the surface of various resin plates, glass plates, metal plates, etc. used in the building materials and electrical / electronic fields. Is. Many inventions have been reported so far for the purpose of satisfying various performance requirements for the surface protective film.
  • One of the required performances for the surface protective film is minimization of contamination due to adhesive residue on the adherend surface after film peeling. When secondary processing such as printing is performed on the adherend after film peeling, even fine contamination that cannot be visually confirmed affects its workability. Reduction of the remaining is required.
  • Other required performances include that there is no so-called blocking phenomenon that the contact surfaces of the film cannot be easily peeled off when the film is rolled up and then used, and the film is stuck on the adherend.
  • the surface protective film When heat treatment or the like is performed in a worn state, there is no lifting or peeling from the adherend, no increase in adhesive strength with the passage of time after film attachment, so-called no increase in adhesion, etc. It is done. Furthermore, in actual use, after the surface protective film is stored and transported in a state of being adhered to various adherends, the protective film is peeled off from the adherend once, and the surface state of the adherend is determined. After the inspection, the surface protective film may be pasted again and used for post-processing. If the adhesive surfaces adhere to each other at such a use site, and the adhesiveness between the adhesive surfaces is strong, the adhesive surface may be whitened or roughened if the adhesive portions are peeled off.
  • New problems have arisen, such as inferior handling properties that allow the surface to be peeled off and the surface protective film to be adhered to the adherend again.
  • various technical measures such as selecting an appropriate resin combination in consideration of the affinity between the adhesive layer and the base material layer as well as appropriately adjusting the adhesive performance of the adhesive layer. Ingenuity is required.
  • a base material layer made of a thermoplastic resin, an amorphous olefin copolymer, a crystalline olefin polymer, and a crystallinity Coextruded laminated film having a pressure-sensitive adhesive layer made of a block copolymer having an olefin block (for example, see Patent Document 1), and improving heat processability in a state where a surface protective film is adhered to an adherend.
  • a coextruded laminated film having a base layer mainly composed of a crystalline propylene polymer, and an adhesive layer composed of an amorphous ⁇ -olefin copolymer and a crystalline propylene polymer (for example, refer to Patent Document 2.), heat processability in a state in which the surface protective film is adhered to the adherend, and a block when the film is wound up and used after being rolled up.
  • Examples of king suppression include a surface layer mainly composed of a polypropylene resin composed of a propylene homopolymer and a propylene-ethylene copolymer elastomer, and a base material layer mainly composed of a crystalline propylene polymer.
  • a coextruded laminated film having an adhesive layer made of an amorphous ⁇ -olefin copolymer and a crystalline propylene polymer (for example, see Patent Document 3).
  • the problem to be solved by the present invention is that the surface protection film is capable of maintaining good secondary workability of the adherend with very little contamination such as adhesive residue on the adherend surface after peeling the surface protective film. It is to provide a film, and further to provide a surface protective film having good peelability and excellent handling properties even when the adhesive surfaces of the surface protective film are attached to each other.
  • the surface protective film is a block copolymer having a crystalline olefin block and a density of 0.880 to 0.938 g / cm 3.
  • the surface protective film that can keep the secondary workability of the adherend satisfactorily with very little contamination to the adherend surface after film peeling. As a result, the present invention has been completed.
  • the present invention is a surface protective film in which an adhesive layer (A) and a base material layer (B) are laminated, wherein the adhesive layer (A) is a block copolymer (A1) having a crystalline olefin block. And a linear low density polyethylene (A2) having a density of 0.880 to 0.938 g / cm 3 , in an amount of 50% by mass or more based on the total mass of the components constituting the adhesive layer (A). 5-80% by mass of the total mass of the block copolymer (A1) having a crystalline olefin block and the linear low-density polyethylene (A2) having a density of 0.880-0.938 g / cm 3. Is a block copolymer (A1) having a crystalline olefin block.
  • the present invention is attached to the surface of various resin plates, glass plates, metal plates, etc. used in the building materials and electric / electronic fields, etc., and used for the purpose of protecting these adherend surfaces from scratches and contamination.
  • the film is rolled up into a roll and then used again after being rolled out, there is no blocking, and the film is stuck to the adherend when heat processing is performed
  • Also has high heat resistance such as no lifting or peeling from the adherend, no adhesion enhancement after film sticking, and very little contamination due to adhesive residue on the adherend surface after film peeling, It is possible to obtain a highly useful surface protective film that can keep the secondary workability of the adherend favorable.
  • the adhesive surface of the surface protective film is excellent in peelability even when the adhesive surfaces are attached to each other, and the adhesive surface after peeling does not cause surface roughness or whitening. Again, it can be used as a surface protective film.
  • the pressure-sensitive adhesive layer (A) constituting the surface protective film of the present invention comprises a block copolymer (A1) having a crystalline olefin block and a linear low density polyethylene having a density of 0.880 to 0.938 g / cm 3. (A2) and the block copolymer (A1) having the crystalline olefin block with respect to the total amount of the components constituting the adhesive layer (A), specifically,
  • the total mass with the chain low density polyethylene (A2) is 50% by mass or more.
  • the total mass of the block copolymer (A1) and the linear low-density polyethylene (A2) is 80% by mass or more. It is preferable.
  • the block copolymer (A1) having a crystalline olefin block used in the present application is a copolymer having a block (I) made of crystalline polyolefin and another block (II) having no crystallinity.
  • the other block (II) has a block composed of a conjugated diene polymer.
  • the adhesiveness and adhesive residue of the surface protective film obtained when used as a resin for the adhesive layer (A) in combination with the linear low density polyethylene (A2) described later At least one of the polymer chains represented by (I-II) n1 or (I-II) n2- (I) (n1, n2 is an integer of 1 or more).
  • the terminal is preferably composed of the crystalline olefin block (I).
  • Examples of the block copolymer (A1) having such a crystalline olefin block include those provided in JP-A-3-128957 and JP-A-8-231786. Specifically, a polybutadiene polymer block having a low 1,2-vinyl bond content (for example, 25% or less) and a polymer mainly composed of a conjugated diene compound, which contains 1,2- and 3,4-bonds. A copolymer composed of a polymer block having a high rate (for example, 50% or more) is synthesized, and the polybutadiene portion is made to have a structure similar to polyethylene by hydrogenating the copolymer to form a crystalline polymer block. And the like.
  • conjugated diene compound examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl. 1,3-octadiene, 3-butyl-1,3-octadiene, chloroprene, and the like. From the viewpoint of industrial availability, 1,3-butadiene and isoprene are preferably used.
  • Examples of commercially available products that can be preferably used as such a block copolymer having a crystalline olefin block include a block copolymer having a structure of crystalline olefin-ethylene / butylene copolymer-crystalline olefin (hereinafter referred to as a block copolymer). , Abbreviated as CEBC.) “Dynalon 6200P” manufactured by JSR Corporation.
  • the pressure-sensitive adhesive layer (A) constituting the surface protective film of the present invention has a linear shape having a density of 0.880 to 0.938 g / cm 3 in combination with the block copolymer (A1) having a crystalline olefin block.
  • Low density polyethylene (A2) is one of the main components. When the linear low density polyethylene (A2) having a density of 0.898 to 0.925 g / cm 3 is used, the balance between the suppression effect of adhesion enhancement and the tackiness of the finally obtained surface protective film is good. This is more preferable.
  • the melt flow rate [The value measured at 190 degreeC and 21.18N based on JISK7210: 1999.
  • MFR (190 ° C.)
  • MFR 190 ° C.
  • the pressure-sensitive adhesive layer (A) constituting the surface protective film of the present invention has a block copolymer (A1) having a crystalline olefin block as its main component and a density of 0.880 to 0.938 g / cm 3 .
  • A1 block copolymer having a crystalline olefin block as its main component and a density of 0.880 to 0.938 g / cm 3 .
  • the use ratio of the block copolymer (A1) is less than 5% by mass, the adhesive strength is insufficient, and peeling or floating after the sticking is likely to occur, and the use ratio of the block copolymer (A1) is If it exceeds 80% by mass, the adhesive strength becomes strong. As a result, blocking during storage in the form of a roll tends to occur, and low contamination to the adherend surface may be insufficient.
  • resin used for the adhesive layer (B) of the surface protective film of the present invention if the above block copolymer (A1) and linear low density polyethylene (A2) are contained in a total amount of 50% by mass or more.
  • other resins, particularly other olefin polymers may further be included.
  • propylene polymer (A3) examples include propylene homopolymer, propylene-ethylene copolymer, propylene-butene-1 copolymer, propylene-ethylene-butene-1 copolymer, and metallocene catalyst-based polypropylene. Can be mentioned. These may be used alone or in combination of two or more. These propylene polymers (A3) preferably have an MFR of 230 ° C. of 0.5 to 30.0 g / 10 min and a melting point of 120 to 165 ° C., more preferably an MFR of 230 ° C. Of 2.0 to 15.0 g / 10 min and a melting point of 125 to 162 ° C. If the MFR at 230 ° C.
  • the film shrinks little even when exposed to a high temperature environment by drying, heat molding or the like after being adhered to the adherend, and thus there is no floating or peeling. There is no warping of the adherend and the film formability is improved.
  • metallocene catalyst polypropylene is preferred.
  • the metallocene catalyst polypropylene is a polypropylene polymerized using a metallocene catalyst instead of the conventional Ziegler-Natta catalyst.
  • the metallocene catalyst include a metallocene homogeneous mixed catalyst containing a metallocene compound and an aluminoxane, a metallocene supported catalyst in which a metallocene compound is supported on a particulate carrier, and the like.
  • the metallocene supported catalysts are disclosed in JP-A-5-155931, JP-A-8-104691, JP-A-8-157515, JP-A-8-231621, and the like.
  • Metallocene catalyst-based polypropylene has high uniformity in molecular weight distribution and composition distribution and low content of low molecular weight components. Therefore, by using metallocene catalyst polypropylene for the propylene polymer (A3), bleeding of low molecular weight components Contamination of the adherend surface due to can be prevented.
  • the metallocene catalyst-based polypropylene may be a propylene homopolymer or a copolymer of propylene and other ⁇ -olefins. Examples of copolymers of propylene and other ⁇ -olefins include propylene-ethylene copolymer. Coalescence is mentioned.
  • A3 a block copolymer having a crystalline olefin block
  • A2 linear low density polyethylene
  • A3 propylene-based polymer
  • the total mass is 80% by mass or more based on the total mass of the components constituting the adhesive layer (A) because the performance balance of the resulting surface protective film is excellent. preferable.
  • the usage ratio (A1) of each component in a total of 100 parts by mass of the block copolymer (A1), the linear low-density polyethylene (A2), and the propylene polymer (A3): ( A2): (A3) is in the range of 10-50: 10-70: 10-50, it can be easily peeled when the adhesive surfaces are attached to each other while the adhesive force is appropriate, and It is more preferable because it can be reused after peeling. That is, if the use ratio of (A1) is 10% by mass or more, the adhesive strength is sufficient, and if it is 50% by mass or less, adhesive residue after peeling can be prevented.
  • the use ratio of (A2) is 10% by mass or more, whitening and roughening of the adhesive surface at the time of mutual attachment can be prevented, and if it is 70% by mass or less, appropriate adhesive force can be easily obtained. Further, when the use ratio of (A3) is 10% by mass or more, peeling at the time of mutual attachment is easy, and when it is 50% by mass or less, it is easy to prevent whitening and unevenness after peeling.
  • the component (A1) and the component (A3) are combined in order to combine low adhesion to the adherend, blocking resistance, and practical adhesive strength as a surface protective film. Even when used in combination, it has been found that a practical surface protective film can be obtained by controlling the mixing ratio. However, since only the component (A1) and the component (A3) are different in the original properties (flexibility) of the resin, it becomes difficult to control the tackiness, and the degree of freedom in industrial production is narrow and not practical. As a result, it was found that the combined use of the component (A1) and the component (A2) and the combined use of the component (A3) are preferable.
  • the adhesive layer (A) can be made into a mixture in which other resins, various additives, and the like are used in combination as long as the effects of the present invention are not impaired.
  • other resins as long as the effects of the present invention are not impaired, it is possible to use a resin conventionally used for obtaining a film by a coextrusion lamination method, and particularly, various olefin polymers are used. it can.
  • the base material layer (B) As resin which comprises the base material layer (B) used together with the adhesion layer (A) which comprises the surface protection film of this invention, it is a thermoplastic resin and co-extrusion with an adhesion layer (A) is possible.
  • the base material layer (B) is comprised from an olefin polymer (B1) from the point that affinity with the adhesion layer (A) which comprises the surface protection film of this invention is favorable. It is preferable to contain 65% by mass or more with respect to the total mass of the components.
  • Examples of the olefin polymer (B1) include ethylene polymers and crystalline propylene polymers.
  • Examples of the ethylene polymer include low density polyethylene, linear low density polyethylene, medium density polyethylene, and high density polyethylene. These may be used alone or in combination.
  • the surface protective film is cut cleanly when the adherend is cut with the surface protective film adhered to the adherend. As a result, good cutting properties that do not cause appearance defects such as stringing and fluffing are exhibited.
  • low-density polyethylene, high-density polyethylene, or a mixed resin of low-density polyethylene and high-density polyethylene is preferable because of good heat resistance.
  • those ethylene polymers having an MFR (190 ° C.) of 0.5 to 30.0 g / 10 min are preferable because of easy extrusion, and more preferably an MFR of 2.0 to 15.0 g / 10 min.
  • MFR 190 ° C.
  • these ethylene polymers have a melting point of 90 to 135 ° C., the film shrinks little even when exposed to a high temperature environment by drying, heat molding or the like after being attached to the adherend. Therefore, it is preferable because it can suppress floating and peeling from the adherend and warpage of the adherend, and more preferably has a melting point of 105 to 130 ° C.
  • Examples of the crystalline propylene polymer include propylene homopolymer, propylene-ethylene copolymer, propylene-butene-1 copolymer, propylene-ethylene-butene-1 copolymer, and metallocene catalyst-based polypropylene. Can be mentioned. These may be used alone or in combination. When these crystalline propylene-based polymers are used as the base material layer (B), the heat resistance of the surface protective film is improved, and the crystalline propylene-based polymer can be suitably used for applications such as heat processing after sticking. Of these, metallocene catalyst-based polypropylene is preferably used.
  • metallocene-catalyzed polypropylene has high molecular weight distribution and uniform composition distribution and low content of low molecular weight components, so when used as a main component of the base material layer (B), it is due to bleeding of low molecular weight components. This is because contamination of the adherend surface is reduced.
  • crystallinity means having a peak of 0.5 J / g or more in the range of 95 to 250 ° C. in DSC (differential scanning calorimetry).
  • the metallocene catalyst-based polypropylene may be a propylene homopolymer or a copolymer of propylene and another ⁇ -olefin.
  • These crystalline propylene polymers preferably have an MFR (230 ° C.) of 0.5 to 30.0 g / 10 min and a melting point of 120 to 165 ° C., more preferably MFR (230 ° C. ) Is 2.0 to 15.0 g / 10 min and the melting point is 125 to 162 ° C. If the MFR and the melting point are within this range, the film shrinks little even when exposed to a high temperature environment by drying, heat molding, or the like after being attached to the adherend, so that it floats or peels off from the adherend. This is preferable because warpage of the adherend can be suppressed, and the film forming property of the laminated film is also improved.
  • MFR 230 ° C.
  • the surface protective film of the present invention may be composed of two layers of the above-mentioned pressure-sensitive adhesive layer (A) and base material layer (B), and a surface layer (C) may be provided in combination therewith. . At this time, the surface layer (C) is placed on the surface opposite to the adhesive layer (A) on the base material layer (B).
  • the resin that is the main component of the surface layer (C) used in the surface protective film of the present invention is a thermoplastic resin, particularly if coextrusion with the adhesive layer (A) and the base material layer (B) is possible.
  • olefin polymer (C1) is contained with respect to the total mass of the component which comprises this surface layer (C) from the point that affinity with the said base material layer (B) is favorable. It is preferable to do.
  • the main component of the base material layer (B) is an ethylene polymer
  • an ethylene polymer is used.
  • crystallinity is obtained. It is more preferable to use a propylene polymer.
  • Examples of the ethylene polymer used as the resin component of the surface layer (C) include those similar to the ethylene polymer used in the base material layer (B). Further, by selecting an ethylene polymer as the resin component of the surface layer (C), the surface protective film finally obtained is the same as in the case of using the ethylene polymer as the resin component of the base layer (B). High cutting ability.
  • the resin component of the surface layer (C) when low density polyethylene is used, it is easy to modify the surface of the surface layer (C) into a satin finish. By making the surface of the surface layer (C) satin, blocking can be reduced even when the adhesive force of the adhesive layer (A) is designed to be strong. Moreover, when high-density polyethylene is used in combination with low-density polyethylene, the rigidity of the resulting surface protective film can be increased, and workability such as sticking and peeling is improved.
  • the surface of the surface layer (C) can be modified into a satin finish.
  • the propylene-ethylene block copolymer may be a resin obtained by block polymerization of propylene and ethylene. For example, ethylene polymerization or ethylene / propylene polymerization is performed in the presence of a propylene homopolymer. And a propylene-ethylene block copolymer obtained in the above manner.
  • a propylene-ethylene block copolymer having an ethylene-derived component content of 8 to 20% by mass is preferable because the surface can be easily textured, and the ethylene-derived component content is 10 to 10%.
  • a propylene-ethylene block copolymer of 15% by mass is more preferable.
  • the MFR (230 ° C.) of the mixed resin of the ethylene polymer and the propylene-ethylene block copolymer is preferably in the range of 4 to 12 g / 10 minutes from the viewpoint of easy extrusion, and 6 to 10 g / 10. More preferably, it is in the range of minutes.
  • the density of the mixed resin is preferably in the range of 0.890 to 0.910 g / cm 3 from the viewpoint of easy extrusion, and more preferably in the range of 0.895 to 0.905 g / cm 3. preferable.
  • Examples of the crystalline propylene polymer used as the resin component of the surface layer (C) include the same as the crystalline propylene polymer used as the resin component of the substrate layer (B). Further, by selecting a crystalline propylene polymer as the resin component of the surface layer (C), finally, as in the case of using the crystalline propylene polymer as the resin component of the base layer (B), finally High heat resistance of the obtained surface protective film is expressed.
  • the surface layer (C) is formed into a satin finish.
  • the crystalline propylene polymer used at this time is preferably a highly versatile propylene homopolymer (hereinafter referred to as “HOPP”).
  • HOPP highly versatile propylene homopolymer
  • those having a weight average molecular weight in the range of 400,000 to 1,000,000 are preferable in that irregularities can be formed on the film surface and the surface can be modified into a satin finish. A range is more preferable.
  • the content of EPR in the mixed resin is preferably in the range of 5 to 35% by mass from the viewpoint that the film surface can be uniformly modified into a satin finish.
  • the MFR (230 ° C.) of the mixed resin of crystalline propylene polymer and EPR is preferably in the range of 0.5 to 15 g / 10 minutes from the viewpoint of easy extrusion.
  • the weight average molecular weight of the EPR was obtained by calculating a component extracted from the mixed resin by a cross fractionation method at 40 ° C. using orthodichlorobenzene as a solvent by GPC (gel permeation chromatography). It is.
  • the content of EPR in the mixed resin is obtained from the amount of EPR extracted by cross-fractionation at 40 ° C. using orthodichlorobenzene as a solvent.
  • the method for producing the mixed resin of the crystalline propylene polymer and EPR is not particularly limited, and specific examples include, for example, a propylene homopolymer and an ethylene-propylene copolymer elastomer, each separately using a Ziegler type catalyst.
  • a solution polymerization method, a slurry polymerization method, a gas phase polymerization method, etc. after producing a propylene homopolymer in the first stage by a method of mixing both in a kneader or a two-stage polymerization method, Examples include a method of generating EPR in the presence of this polymer in the second stage.
  • the Ziegler-type catalyst is a so-called Ziegler-Natta catalyst, and is obtained by supporting a transition metal compound such as a titanium-containing compound or a transition metal compound on a support such as a magnesium compound.
  • a transition metal compound such as a titanium-containing compound or a transition metal compound
  • a support such as a magnesium compound.
  • the combination with the promoter of an organometallic compound is mentioned.
  • the surface protective film of the present invention preferably has a total film thickness of 20 to 120 ⁇ m. When the thickness of all the films is within this range, workability such as sticking and peeling is improved.
  • the thickness of the adhesive layer (A) is preferably 3 to 30 ⁇ m, more preferably 5 to 25 ⁇ m. If the thickness of the pressure-sensitive adhesive layer (A) is within this range, in addition to the above-mentioned pressure-sensitive adhesive properties, the film formability of the laminated film will be good.
  • the thickness of the surface layer is preferably 3 to 30 ⁇ m, more preferably 5 to 20 ⁇ m. When the thickness of the surface layer is within this range, the heat resistance and the film formability of the laminated film are good.
  • the method for producing the surface protective film of the present invention is not particularly limited as long as it is a coextrusion lamination method.
  • the resin used for each resin layer is melted by using two or more extruders, Examples include a method of laminating in a molten state by a co-extrusion method such as a manifold method or a feed block method, and then processing into a film using a method such as inflation or a T-die chill roll method.
  • the melt-laminated film may be nipped between a rubber touch roll, a steel belt or the like and the chill roll and cooled.
  • the surface protective film of the present invention may be a uniaxially stretched film or a biaxially stretched film.
  • the base material layer is oriented and crystallized by stretching in at least one axial direction, and the structure is stabilized by heat setting. This is preferable because the heat resistance is improved and the change in adhesive strength with time is reduced.
  • a lubricant an antiblocking agent, an ultraviolet absorber, a light stabilizer, an antistatic agent, an antifogging agent, and the like may be added as appropriate within a range not impairing the effects of the present invention.
  • an antiblocking agent an ultraviolet absorber
  • a light stabilizer an antistatic agent
  • an antifogging agent an antifogging agent, and the like
  • Example 1 As a resin for the surface layer, a propylene mixed resin [a resin composed of a propylene homopolymer and EPR, MFR (230 ° C.): 4.0 g / 10 min, EPR content: 11 mass%, EPR weight average molecular weight 550,000 As a base layer resin, a metallocene catalyst-based propylene-ethylene random copolymer [density: 0.900 g / cm 3 , MFR (230 ° C., 21.18 N): 7.0 g / 10 min, ethylene single Content rate of the monomer unit: 3.5 mass%; hereinafter referred to as “metallocene catalyst system COPP”.
  • a metallocene catalyst-based propylene-ethylene random copolymer [density: 0.900 g / cm 3 , MFR (230 ° C., 21.18 N): 7.0 g / 10 min, ethylene single Content rate of the monomer unit: 3.5 mass%; hereinafter referred to
  • each was supplied to an extruder for surface layer (caliber 30 mm), an extruder for base layer (caliber 40 mm) and an extruder for adhesive layer (caliber 30 mm), and extruded by coextrusion method.
  • a T-die After extruding from a T-die at a temperature of 250 ° C. to a surface layer thickness of 10 ⁇ m, a base material layer thickness of 30 ⁇ m, and an adhesive layer thickness of 10 ⁇ m, and cooling with a 40 ° C. water-cooled metal cooling roll The film was wound on a roll to obtain a surface protective film.
  • the obtained film was aged in a aging room at 35 ° C. for 48 hours in order to stabilize physical properties.
  • Example 2 A surface protective film of Example 2 was obtained in the same manner as Example 1 except that a mixture of 30 parts by mass of CEBC and 70 parts by mass of LLDPE (1) was used as the adhesive layer resin.
  • Example 3 As a resin for the adhesive layer, 10 parts by mass of CEBC and linear low density polyethylene [density: 0.920 g / cm 3 , MFR (190 ° C.): 3.0 g / 10 min; hereinafter referred to as “LLDPE (2)”.
  • the surface protective film of Example 3 was obtained in the same manner as in Example 1 except that 90 parts by mass of the mixture was used.
  • Example 4 A surface protective film of Example 4 was obtained in the same manner as in Example 1 except that a mixture of 30 parts by mass of CEBC and 70 parts by mass of LLDPE (2) was used as the adhesive layer resin.
  • Example 5 The surface protective film of Example 5 was the same as Example 4 except that HOPP [density: 0.900 g / cm 3 , MFR (230 ° C.): 8.0 g / 10 min] was used as the base layer resin. Got.
  • Example 6 As a resin for the surface layer, a propylene-based mixed resin [a resin comprising a propylene homopolymer and EPR, MFR (230 ° C.): 4.0 g / 10 min, EPR content: 30 mass%, EPR weight average molecular weight 550,000
  • the surface protective film of Example 6 was obtained in the same manner as in Example 1 except that a mixture of 50 parts by mass of CEBC and 50 parts by mass of LLDPE (2) was used as the adhesive layer resin.
  • Example 7 A surface protective film of Example 7 was obtained in the same manner as in Example 6 except that a mixture of 70 parts by mass of CEBC and 30 parts by mass of LLDPE (2) was used as the adhesive layer resin.
  • Example 8 A surface protective film of Example 8 was obtained in the same manner as in Example 7 except that HOPP was used as the base layer resin.
  • Example 9 As the resin for the surface layer and the resin for the base layer, low density polyethylene [density: 0.920 g / cm 3 , MFR (190 ° C.): 6 g / 10 min; hereinafter referred to as “LDPE (1)”. ], A mixture of 10 parts by weight of CEBC and 90 parts by weight of LLDPE (1) was used as the adhesive layer resin, the surface layer thickness was 14 ⁇ m, the base layer thickness was 42 ⁇ m, and the adhesive layer thickness A surface protective film of Example 9 was obtained in the same manner as in Example 1 except that the film was extruded so as to be 14 ⁇ m.
  • LDPE (1) low density polyethylene
  • Example 10 A surface protective film of Example 10 was obtained in the same manner as Example 9 except that a mixture of 30 parts by mass of CEBC and 70 parts by mass of LLDPE (1) was used as the adhesive layer resin.
  • Example 11 A surface protective film of Example 11 was obtained in the same manner as Example 9 except that a mixture of 10 parts by weight of CEBC and 90 parts by weight of LLDPE (2) was used as the adhesive layer resin.
  • Example 12 A surface protective film of Example 12 was obtained in the same manner as in Example 9 except that a mixture of 30 parts by mass of CEBC and 70 parts by mass of LLDPE (2) was used as the adhesive layer resin.
  • Example 13 As the resin for the surface layer, 50 parts by mass of LDPE (1) and high-density polyethylene [density: 0.960 g / cm 3, MFR (190 ° C.): 5.5 g / 10 min; hereinafter referred to as “HDPE (1)”. ] In the same manner as in Example 9, except that 50 parts by mass of the mixture was used, and 50 parts by mass of CEBC and 50 parts by mass of LLDPE (2) were used as the adhesive layer resin. Got.
  • Example 14 The surface layer resin is not used, and a mixture of 70 parts by mass of CEBC and 30 parts by mass of LLDPE (2) is used as the adhesive layer resin so that the thickness of the base layer is 56 ⁇ m and the thickness of the adhesive layer is 14 ⁇ m.
  • a surface protective film of Example 14 was obtained in the same manner as Example 9 except that the film was extruded.
  • Low density polyethylene (density: 0.902 g / cm 3 , MFR (190 ° C., 21.18 N): 4 g / 10 min; hereinafter referred to as “LDPE (2)”) and high density polyethylene (density: 0.960 g / cm 3 , MFR (190 ° C., 21.18 N): 13 g / 10 min; hereinafter referred to as “HDPE (2)”) are mixed so as to have a mass ratio of 50/50, and used as an adhesive layer resin.
  • LDPE (2) low density polyethylene
  • HDPE (2) high density polyethylene
  • Example 15 was obtained in the same manner as in Example 1 except that the substrate layer was extruded from a T-die so that the thickness of the base material layer was 64 ⁇ m and the thickness of the adhesive layer was 16 ⁇ m.
  • Example 16 As a resin for the surface layer, LDPE (2) and a propylene-ethylene block copolymer are mixed at a mass ratio of 95/5, and LDPE (2) and HDPE (2) are mixed as the base resin.
  • LDPE (2) and HDPE (2) Used as a resin for the adhesive layer, with a mass ratio of 50/50, CEBC and linear low-density polyethylene (density: 0.902 g / cm 3 , MFR (190 ° C., 21.18 N): 6 g / 10 minutes; hereinafter referred to as “LLDPE (3)”) using a mixture having a mass ratio of 5/95, an extruder for surface layer (caliber 50 mm), an extruder for substrate layer (caliber 50 mm), and an adhesive layer To an extruder (40 mm in diameter) and by co-extrusion at an extrusion temperature of 250 ° C., the thickness of the surface layer from the T-die is 16 ⁇ m, the thickness of the base material layer is 48 ⁇
  • Example 17 HOPP and propylene-ethylene block copolymer are mixed as a surface layer resin in a mass ratio of 95/5, a metallocene catalyst COPP is used as the base layer resin, and CEBC is used as the adhesive layer resin.
  • a surface protective film of Example 17 was obtained in the same manner as in Example 16 except that a mixture of LLDPE (2) at a mass ratio of 30/70 was used.
  • Example 18 A surface protective film of Example 18 was obtained in the same manner as Example 16 except that a mixture of CEBC, LLDPE (3), and metallocene catalyst system COPP having a mass ratio of 25/70/5 was used as the adhesive layer resin. It was.
  • Example 19 The surface protective film of Example 19 was obtained in the same manner as in Example 15 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/40/20 was used as the adhesive layer resin. It was.
  • Example 20 The surface protective film of Example 20 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/35/25 was used as the adhesive layer resin. Obtained.
  • Example 21 The surface protective film of Example 21 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/30/30 was used as the adhesive layer resin. It was.
  • Example 22 A surface protective film of Example 22 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 35/40/25 was used as the adhesive layer resin. It was.
  • Example 23 A surface protective film of Example 23 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (3), and metallocene catalyst system COPP having a mass ratio of 25/45/30 was used as the adhesive layer resin. It was.
  • Example 24 A surface protective film of Example 24 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (3), and metallocene catalyst system COPP having a mass ratio of 25/50/25 was used as the adhesive layer resin. It was.
  • Example 25 The surface protective film of Example 25 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/10/50 was used as the adhesive layer resin. Obtained.
  • Example 26 The surface protective film of Example 26 was obtained in the same manner as in Example 17 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/35/25 was used as the adhesive layer resin. Obtained.
  • Example 27 The surface protective film of Example 27 was obtained in the same manner as in Example 17 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/30/30 was used as the adhesive layer resin. Obtained.
  • Example 28 The surface protective film of Example 28 was obtained in the same manner as in Example 17 except that a mixture of CEBC, LLDPE (3), and metallocene catalyst system COPP having a mass ratio of 25/50/25 was used as the adhesive layer resin. Obtained.
  • Example 29 The surface protective film of Example 29 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 15/65/20 was used as the adhesive layer resin. It was.
  • Example 30 The surface protective film of Example 30 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 30/60/10 was used as the adhesive layer resin. It was.
  • Example 6 Example 6 except that a mixture of 57 parts by mass of amorphous propylene-butene-1 copolymer, 3 parts by mass of crystalline propylene-butene-1 copolymer and 40 parts by mass of CEBC was used as the adhesive layer resin. Similarly, the surface protective film of Comparative Example 1 was obtained.
  • Comparative Example 2 As the adhesive layer resin, a mixture of 49.4 parts by mass of an amorphous propylene-butene-1 copolymer, 10.6 parts by mass of a crystalline propylene-butene-1 copolymer and 40 parts by mass of CEBC was used. In the same manner as in Example 6, a surface protective film of Comparative Example 2 was obtained.
  • Comparative Example 3 As the adhesive layer resin, a mixture of 50 parts by mass of styrene-ethylene-propylene-styrene block copolymer (Kuraray Co., Ltd. “Septon 2063”; hereinafter referred to as “SEPS”) and LLDPE (2) 50 parts by mass was used. A surface protective film of Comparative Example 3 was obtained in the same manner as Example 6 except for the above.
  • SEPS styrene-ethylene-propylene-styrene block copolymer
  • Comparative Example 4 A surface protective film of Comparative Example 4 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 30/10/60 was used as the adhesive layer resin. It was.
  • Comparative Example 5 Comparative Example in the same manner as in Example 16 except that a mixture of CEBC, metallocene catalyst system COPP, and amorphous propylene-butene-1 copolymer having a mass ratio of 40/10/50 was used as the adhesive layer resin. 5 surface protection film was obtained.
  • Comparative Example 6 A surface protective film of Comparative Example 6 was obtained in the same manner as in Example 16 except that a mixture of CEBC and metallocene catalyst system COPP having a mass ratio of 70/30 was used as the adhesive layer resin.
  • a surface protective film is made of an acrylic plate (mirror finish, manufactured by Mitsubishi Rayon Co., Ltd., “Acrylite” in accordance with JIS Z0237: 2000. )).
  • the acrylic plate on which the film was adhered was allowed to stand in a dryer at 60 ° C. for 3 days, and then cooled in a constant temperature room at 23 ° C. for 1 hour. From the cooled test piece, the film was peeled off at a high speed in the direction of 180 °, the state of contamination on the acrylic plate surface was visually confirmed, and the adhesive residue was evaluated according to the following criteria. ⁇ : No cloudiness, white streaks, foreign matter, etc.
  • the surface of the acrylic plate is cloudy, white streaks, foreign matter, etc. but can be used for practical use.
  • the surface of the acrylic plate is cloudy, white streaks, foreign matter, etc. What is unsuitable for
  • the wetting tension on the acrylic plate surface was measured by a method based on JIS K6768: 1999.
  • the wetting tension of the test piece before film attachment was 40 mN / m.
  • the reduction width of wetting tension [(wetting tension of test piece before film sticking: 40 mN / m)-(after film peeling) was evaluated as a substitute evaluation of printability after peeling off the protective film.
  • the evaluation criteria are as follows. A: The decrease width of the wetting tension is 2 mN / m or less. X: The reduction width of the wetting tension exceeds 2 mN / m.
  • the obtained surface protective film was cut out in the size of A4 (length 297 mm x width 210 mm). At this time, the film was cut out so that the extrusion direction (MD direction) during film formation coincided with the A4 vertical direction. After stacking 10 cut out films, the upper and lower sides were sandwiched between A4 size, 3 mm thick vinyl chloride plates, a weight of 5 kg was placed, and stored in a dryer at 40 ° C. for 14 days, then at 23 ° C. It was stored for 1 hour in a constant temperature room of 50% RH.
  • the film was cut out in a width of 25 mm in the MD direction, and peeled in the direction of 180 ° at a speed of 300 mm / min using a tensile tester (manufactured by A & D Co., Ltd.) to measure the blocking force. From the obtained blocking force, blocking resistance was evaluated according to the following criteria.
  • Adhesion between adhesive surfaces, adhesive surface state after peeling In a temperature-controlled room at 23 ° C. and 50% RH, the adhesive surfaces of two surface protective films consisting of 15 cm long ⁇ 25 mm wide by a method according to JIS Z0237: 2000 Affixed. The stuck film was allowed to stand in a constant temperature room at 23 ° C. for 30 minutes, and then peeled off at high speed. The condition of the adhesive surface was visually confirmed, and the adhesive surface state was evaluated according to the following criteria. ⁇ : The adhesive surface is not whitened or roughened. ⁇ : The adhesive surface is whitened or roughened, but it can withstand practical use. ⁇ : The adhesive surface is whitened and roughened. What is
  • the strength of the adhesive strength of the surface protective film obtained in each example is mainly due to the difference in the adhesion layer, and can take various values depending on the composition of the adhesion layer. There is no significant difference between the values of “50 ° C. ⁇ 1 day” and there is little increase in adhesion.
  • the surface protective film obtained in each comparative example has a greater adhesion enhancement than the examples.
  • the adhesive residue on the adherend after peeling of the film could not be visually confirmed.
  • the decrease in the wet tension of the adherend surface before and after the film was peeled was small, and the contamination of the adherend surface could be minimized to the extent that the printability was not lowered.
  • the adhesive residue on the adherend after film peeling can be visually confirmed, and the printability of the adherend surface after film peeling is as in each example. An evaluation result that is lower than the above was obtained.
  • the surface protective film of the present invention can also be used in such a usage method that the surface protective film is attached and detached during the manufacturing process.
  • the surface protective film of the present invention has a wide range of adhesive strengths ranging from optimum fine adhesion to medium adhesion level, and does not cause floating or peeling after sticking to an acrylic plate.
  • adhesive strengths ranging from optimum fine adhesion to medium adhesion level, and does not cause floating or peeling after sticking to an acrylic plate.
  • there is no visible contamination such as cloudiness, streaks, or foreign matter, and there is very little reduction in the wetting tension on the acrylic plate surface after peeling off the surface protective film. Therefore, it is suitable for applications in which secondary processing such as printing is performed after the surface protective film is peeled off.

Abstract

Provided is a surface protection film that is applied to the surfaces of various resin plates, glass plates, and metal plates that are used as construction materials or in electrical and electronic fields for protection purposes and protects the adherend from being scratched, and contamination or the like during storage, transportation, and post-processing. Specifically, provided is a surface protection film which realizes extremely low contamination on the adherend surface and has excellent suitability for secondary processing that uses the resin, wherein a block copolymer having crystalline olefin blocks and a straight chain low-density polyethylene of 0.880-0.938 g/cm3 density are mixed in a specific proportion, as the major component, for the adhesive layer of the surface protection film.

Description

表面保護フィルムSurface protection film
 本発明は、各種樹脂板、ガラス板、金属板等の表面を保護する目的で使用される表面保護フィルムであって、特に、フィルム剥離後の被着体表面への糊残り等の汚染が極めて少なく、被着体の二次加工性を保つことが出来ることを特徴とする表面保護フィルムに関する。 The present invention is a surface protective film used for the purpose of protecting the surface of various resin plates, glass plates, metal plates, etc., and in particular, contamination such as adhesive residue on the adherend surface after film peeling is extremely high. The present invention relates to a surface protective film characterized in that the secondary workability of the adherend can be kept small.
 表面保護フィルムは、建築資材や電気・電子分野等で用いられる各種樹脂板、ガラス板、金属板等の表面に貼着し、これら被着体表面を傷付きや汚染等から守る目的で使用されるものである。表面保護フィルムに対する様々な要求性能を満たす目的で、これまで多数の発明が報告されてきた。表面保護フィルムに対する要求性能の一つに、フィルム剥離後の被着体表面への糊残りによる汚染の極少化がある。フィルム剥離後に被着体に印刷等の二次加工を施す場合には、目視確認が不可能なほどの微細な汚染でさえもがその加工性に影響を及ぼすため、非常に高いレベルでの糊残り低減化が要求される。この他の要求性能としては、フィルムをロール状に巻き取った後、繰り出して使用する際にフィルムの接触面同士が簡単に剥がれなくなる固着現象、所謂ブロッキングがないこと、フィルムが被着体に貼着された状態で加熱加工等がなされる場合には被着体からの浮きや剥がれがないこと、フィルム貼着後の時間の経過に伴う接着強度の増加、所謂接着亢進がないことなどが挙げられる。更に、実際に使用される現場において、表面保護フィルムを各種被着体に貼着した状態で保管、運搬された後に、被着体から当該保護フィルムを一度剥がし、被着体の表面状態等を検査してから、再度該表面保護フィルムを貼着して後加工等に供される場合がある。この様な使用現場において粘着面同士が互着すると粘着面同士の接着性が強固な場合、該互着部を剥離しようとすると粘着面に白化、面荒れが生じることがあり、容易に互着部を剥離し、再度被着体に表面保護フィルムを貼着し得るハンドリング性が劣る等の新たな問題が生じている。これらを兼備するためには、粘着層の粘着性能を適切に調整することはもちろん、粘着層と基材層との親和性を考慮して適当な樹脂の組み合わせを選択するなど、様々な技術的工夫が必要となる。 Surface protective films are used for the purpose of protecting the surface of adherends from scratches and contamination by sticking to the surface of various resin plates, glass plates, metal plates, etc. used in the building materials and electrical / electronic fields. Is. Many inventions have been reported so far for the purpose of satisfying various performance requirements for the surface protective film. One of the required performances for the surface protective film is minimization of contamination due to adhesive residue on the adherend surface after film peeling. When secondary processing such as printing is performed on the adherend after film peeling, even fine contamination that cannot be visually confirmed affects its workability. Reduction of the remaining is required. Other required performances include that there is no so-called blocking phenomenon that the contact surfaces of the film cannot be easily peeled off when the film is rolled up and then used, and the film is stuck on the adherend. When heat treatment or the like is performed in a worn state, there is no lifting or peeling from the adherend, no increase in adhesive strength with the passage of time after film attachment, so-called no increase in adhesion, etc. It is done. Furthermore, in actual use, after the surface protective film is stored and transported in a state of being adhered to various adherends, the protective film is peeled off from the adherend once, and the surface state of the adherend is determined. After the inspection, the surface protective film may be pasted again and used for post-processing. If the adhesive surfaces adhere to each other at such a use site, and the adhesiveness between the adhesive surfaces is strong, the adhesive surface may be whitened or roughened if the adhesive portions are peeled off. New problems have arisen, such as inferior handling properties that allow the surface to be peeled off and the surface protective film to be adhered to the adherend again. In order to combine these, various technical measures such as selecting an appropriate resin combination in consideration of the affinity between the adhesive layer and the base material layer as well as appropriately adjusting the adhesive performance of the adhesive layer. Ingenuity is required.
 表面保護フィルムの従来技術としては、表面保護フィルムの接着亢進の抑制を図った例として、熱可塑性樹脂からなる基材層と、非晶性オレフィン共重合体、結晶性オレフィン系重合体及び結晶性オレフィンブロックを有するブロック共重合体からなる粘着層とを有する共押出積層フィルム(例えば、特許文献1参照。)、表面保護フィルムが被着体に貼着された状態での加熱加工性の改良を図った例として、結晶性プロピレン系重合体を主成分とする基材層と、非晶性α-オレフィン系共重合体及び結晶性プロピレン系重合体からなる粘着層とを有する共押出積層フィルム(例えば、特許文献2参照。)、表面保護フィルムが被着体に貼着された状態での加熱加工性と、フィルムをロール状に巻き取った後、繰り出して使用する際のブロッキングの抑制を図った例として、プロピレン単独重合体及びプロピレン-エチレン共重合体エラストマーからなるポリプロピレン系樹脂を主成分とする表面層と、結晶性プロピレン系重合体を主成分とする基材層と、非晶性α-オレフィン系共重合体及び結晶性プロピレン系重合体からなる粘着層とを有する共押出積層フィルム(例えば、特許文献3参照。)などが挙げられる。 As an example of a conventional surface protection film, as an example of suppressing the enhancement of adhesion of the surface protection film, a base material layer made of a thermoplastic resin, an amorphous olefin copolymer, a crystalline olefin polymer, and a crystallinity Coextruded laminated film having a pressure-sensitive adhesive layer made of a block copolymer having an olefin block (for example, see Patent Document 1), and improving heat processability in a state where a surface protective film is adhered to an adherend. As an example, a coextruded laminated film having a base layer mainly composed of a crystalline propylene polymer, and an adhesive layer composed of an amorphous α-olefin copolymer and a crystalline propylene polymer ( For example, refer to Patent Document 2.), heat processability in a state in which the surface protective film is adhered to the adherend, and a block when the film is wound up and used after being rolled up. Examples of king suppression include a surface layer mainly composed of a polypropylene resin composed of a propylene homopolymer and a propylene-ethylene copolymer elastomer, and a base material layer mainly composed of a crystalline propylene polymer. And a coextruded laminated film having an adhesive layer made of an amorphous α-olefin copolymer and a crystalline propylene polymer (for example, see Patent Document 3).
 しかしながら、これらの技術においては、確かに、フィルムの接着亢進の抑制、フィルムが被着体に貼着された状態での加熱加工性、フィルム巻取り後のブロッキングの抑制等については効果が見られるものの、いずれの技術においても、フィルム剥離後の被着体表面への糊残りによる汚染の極少化に関しては不十分であり、フィルム剥離後の被着体の二次加工性に問題があった。更に表面保護フィルムが互着した際の剥離性に関しても充分に解決されていない。 However, in these techniques, there are certainly effects such as suppression of enhancement of adhesion of the film, heat processability when the film is adhered to the adherend, suppression of blocking after winding the film, and the like. However, in any of the techniques, the minimization of contamination due to adhesive residue on the surface of the adherend after film peeling is insufficient, and there is a problem in the secondary processability of the adherend after film peeling. Furthermore, the peelability when the surface protective films are attached to each other is not sufficiently solved.
特開2006-257247号公報JP 2006-257247 A 特開2007-130872号公報Japanese Patent Laid-Open No. 2007-130872 特開2008-68564号公報JP 2008-68564 A
 従って、本発明が解決しようとする課題は、表面保護フィルム剥離後の被着体表面への糊残り等の汚染が極めて少なく、被着体の二次加工性を良好に保つことが出来る表面保護フィルムを提供すること、更には、表面保護フィルムの粘着面同士が互着した場合においても剥離性が良好でハンドリング性に優れる表面保護フィルムを提供することである。 Accordingly, the problem to be solved by the present invention is that the surface protection film is capable of maintaining good secondary workability of the adherend with very little contamination such as adhesive residue on the adherend surface after peeling the surface protective film. It is to provide a film, and further to provide a surface protective film having good peelability and excellent handling properties even when the adhesive surfaces of the surface protective film are attached to each other.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、表面保護フィルムが、結晶性オレフィンブロックを有するブロック共重合体と、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレンとを主成分する粘着層を有する場合、フィルム剥離後の被着体表面への汚染が極めて少なく、被着体の二次加工性を良好に保つことが出来る表面保護フィルムとなることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the surface protective film is a block copolymer having a crystalline olefin block and a density of 0.880 to 0.938 g / cm 3. When having a pressure-sensitive adhesive layer mainly composed of chain-shaped low-density polyethylene, the surface protective film that can keep the secondary workability of the adherend satisfactorily with very little contamination to the adherend surface after film peeling. As a result, the present invention has been completed.
 即ち、本発明は、粘着層(A)と基材層(B)とを積層した表面保護フィルムであって、該粘着層(A)が、結晶性オレフィンブロックを有するブロック共重合体(A1)と、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)と、を該粘着層(A)を構成する成分の全質量に対して50質量%以上含有し、且つ結晶性オレフィンブロックを有するブロック共重合体(A1)と、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)との合計質量の5~80質量%が結晶性オレフィンブロックを有するブロック共重合体(A1)であることを特徴とする表面保護フィルムを提供するものである。 That is, the present invention is a surface protective film in which an adhesive layer (A) and a base material layer (B) are laminated, wherein the adhesive layer (A) is a block copolymer (A1) having a crystalline olefin block. And a linear low density polyethylene (A2) having a density of 0.880 to 0.938 g / cm 3 , in an amount of 50% by mass or more based on the total mass of the components constituting the adhesive layer (A). 5-80% by mass of the total mass of the block copolymer (A1) having a crystalline olefin block and the linear low-density polyethylene (A2) having a density of 0.880-0.938 g / cm 3. Is a block copolymer (A1) having a crystalline olefin block.
 本発明によれば、建築資材や電気・電子分野等で用いられる各種樹脂板、ガラス板、金属板等の表面に貼着し、これら被着体表面を傷付きや汚染等から守る目的で使用される表面保護フィルムであって、フィルムをロール状に巻き取った後で再び繰り出して使用する際にブロッキングがなく、フィルムが被着体に貼着された状態で加熱加工等がなされる場合にも被着体からの浮きや剥がれがないなどの高い耐熱性を有し、フィルム貼着後の接着亢進がなく、フィルム剥離後の被着体表面への糊残りによる汚染が非常に少ないため、被着体の二次加工性を良好に保つことが出来る利用価値の高い表面保護フィルムを得ることが出来る。更に、粘着層にプロピレン系重合体を併用する場合には、表面保護フィルムの粘着面同士が互着した場合にも剥離性に優れるとともに、剥離後の粘着面に面あれや白化等が起こらず、再び表面保護フィルムとして使用することができる。 According to the present invention, it is attached to the surface of various resin plates, glass plates, metal plates, etc. used in the building materials and electric / electronic fields, etc., and used for the purpose of protecting these adherend surfaces from scratches and contamination. When the film is rolled up into a roll and then used again after being rolled out, there is no blocking, and the film is stuck to the adherend when heat processing is performed Also has high heat resistance such as no lifting or peeling from the adherend, no adhesion enhancement after film sticking, and very little contamination due to adhesive residue on the adherend surface after film peeling, It is possible to obtain a highly useful surface protective film that can keep the secondary workability of the adherend favorable. In addition, when using a propylene polymer in the adhesive layer, the adhesive surface of the surface protective film is excellent in peelability even when the adhesive surfaces are attached to each other, and the adhesive surface after peeling does not cause surface roughness or whitening. Again, it can be used as a surface protective film.
 本発明の表面保護フィルムを構成する粘着層(A)は、結晶性オレフィンブロックを有するブロック共重合体(A1)と密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)とを主成分とするものであり、具体的には、当該粘着層(A)を構成する成分全量に対して、前記結晶性オレフィンブロックを有するブロック共重合体(A1)と前記直鎖状低密度ポリエチレン(A2)との合計質量が50質量%以上で含有していることを特徴とするものである。特に被着体への糊残りの低減および低汚染性を重視する場合には、前記ブロック共重合体(A1)と前記直鎖状低密度ポリエチレン(A2)の合計質量が80質量%以上で含有していることが好ましい。 The pressure-sensitive adhesive layer (A) constituting the surface protective film of the present invention comprises a block copolymer (A1) having a crystalline olefin block and a linear low density polyethylene having a density of 0.880 to 0.938 g / cm 3. (A2) and the block copolymer (A1) having the crystalline olefin block with respect to the total amount of the components constituting the adhesive layer (A), specifically, The total mass with the chain low density polyethylene (A2) is 50% by mass or more. In particular, when importance is attached to reduction of adhesive residue and low contamination on the adherend, the total mass of the block copolymer (A1) and the linear low-density polyethylene (A2) is 80% by mass or more. It is preferable.
 本願で使用する前記結晶性オレフィンブロックを有するブロック共重合体(A1)は、結晶性ポリオレフィンからなるブロック(I)と結晶性を有さないその他のブロック(II)とを有する共重合体であり、好ましくは、当該その他のブロック(II)として共役ジエン系重合体からなるブロックを有するものである。また、該共重合体の構成としては、後述する直鎖状低密度ポリエチレン(A2)と組み合わせて粘着層(A)用樹脂として用いた際に得られる表面保護フィルムの粘着性と糊残り性との性能バランスに特に優れる点から、(I-II)n1又は(I-II)n2-(I)(n1、n2は1以上の整数である。)で表される、ポリマー鎖の少なくとも1つの末端が結晶性オレフィンブロック(I)からなるものであることが好ましい。 The block copolymer (A1) having a crystalline olefin block used in the present application is a copolymer having a block (I) made of crystalline polyolefin and another block (II) having no crystallinity. Preferably, the other block (II) has a block composed of a conjugated diene polymer. In addition, as the constitution of the copolymer, the adhesiveness and adhesive residue of the surface protective film obtained when used as a resin for the adhesive layer (A) in combination with the linear low density polyethylene (A2) described later At least one of the polymer chains represented by (I-II) n1 or (I-II) n2- (I) (n1, n2 is an integer of 1 or more). The terminal is preferably composed of the crystalline olefin block (I).
 この様な結晶性オレフィンブロックを有するブロック共重合体(A1)としては、例えば、特開平3-128957号公報や特開平8-231786号で提供されているものが挙げられる。具体的には、1,2-ビニル結合含有率の低い(例えば25%以下)ポリブタジエン重合体ブロックと、共役ジエン化合物を主体とする重合体であって1,2-及び3,4-結合含有率が高い(例えば50%以上)重合体ブロックとからなる共重合体を合成し、これを水素添加することによって該ポリブタジエン部分をポリエチレンと類似の構造とすることで結晶性の重合体ブロックとしたもの等が挙げられる。 Examples of the block copolymer (A1) having such a crystalline olefin block include those provided in JP-A-3-128957 and JP-A-8-231786. Specifically, a polybutadiene polymer block having a low 1,2-vinyl bond content (for example, 25% or less) and a polymer mainly composed of a conjugated diene compound, which contains 1,2- and 3,4-bonds. A copolymer composed of a polymer block having a high rate (for example, 50% or more) is synthesized, and the polybutadiene portion is made to have a structure similar to polyethylene by hydrogenating the copolymer to form a crystalline polymer block. And the like.
 前記共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエン、クロロプレン等が挙げられ、工業的入手容易性の観点から、1,3-ブタジエン、イソプレンを用いることが好ましい。この様な結晶性オレフィンブロックを有するブロック共重合体として好ましく用いることができる市販品としては、例えば、結晶性オレフィン-エチレン・ブチレン共重合体-結晶性オレフィンの構成を有するブロック共重合体(以下、CEBCと略記する。)JSR株式会社製「ダイナロン 6200P」等が挙げられる。 Examples of the conjugated diene compound include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl. 1,3-octadiene, 3-butyl-1,3-octadiene, chloroprene, and the like. From the viewpoint of industrial availability, 1,3-butadiene and isoprene are preferably used. Examples of commercially available products that can be preferably used as such a block copolymer having a crystalline olefin block include a block copolymer having a structure of crystalline olefin-ethylene / butylene copolymer-crystalline olefin (hereinafter referred to as a block copolymer). , Abbreviated as CEBC.) “Dynalon 6200P” manufactured by JSR Corporation.
 本発明の表面保護フィルムを構成する粘着層(A)は、結晶性オレフィンブロックを有するブロック共重合体(A1)に併せて、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)を主成分の一つとする。直鎖状低密度ポリエチレン(A2)の密度が0.898~0.925g/cmのものを用いると、最終的に得られる表面保護フィルムの接着亢進の抑制効果と粘着性とのバランスが良好になるのでより好ましい。また、そのメルトフローレート[JIS K7210:1999に準拠して、190℃、21.18Nで測定した値。以下「MFR(190℃)」と示す。]が、0.5~30.0g/10分の範囲であれば、フィルムの成膜性が向上するので好ましい。更にMFRが2.0~15.0g/10分の範囲であるものがより好ましい。 The pressure-sensitive adhesive layer (A) constituting the surface protective film of the present invention has a linear shape having a density of 0.880 to 0.938 g / cm 3 in combination with the block copolymer (A1) having a crystalline olefin block. Low density polyethylene (A2) is one of the main components. When the linear low density polyethylene (A2) having a density of 0.898 to 0.925 g / cm 3 is used, the balance between the suppression effect of adhesion enhancement and the tackiness of the finally obtained surface protective film is good. This is more preferable. Moreover, the melt flow rate [The value measured at 190 degreeC and 21.18N based on JISK7210: 1999. Hereinafter, it is indicated as “MFR (190 ° C.)”. ] In the range of 0.5 to 30.0 g / 10 min is preferable because the film formability is improved. More preferably, the MFR is in the range of 2.0 to 15.0 g / 10 min.
 本発明の表面保護フィルムを構成する粘着層(A)が、その主成分として、結晶性オレフィンブロックを有するブロック共重合体(A1)と、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)とを併用することで、フィルム剥離後の被着体表面への汚染を極小化し、被着体表面の二次加工性を保つことが出来る。 The pressure-sensitive adhesive layer (A) constituting the surface protective film of the present invention has a block copolymer (A1) having a crystalline olefin block as its main component and a density of 0.880 to 0.938 g / cm 3 . By using together with the linear low density polyethylene (A2), the contamination on the adherend surface after film peeling can be minimized and the secondary processability of the adherend surface can be maintained.
 上記粘着層(A)中の、結晶性オレフィンブロックを有するブロック共重合体(A1)、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)の使用割合としては、(A1)と(A2)の合計質量の5~80質量%が結晶性オレフィンブロックを有するブロック共重合体(A1)であることを必須とする。使用割合がこの範囲であることによって、被着体表面への低汚染性と粘着力とのバランスを保つものである。即ち、前記ブロック共重合体(A1)の使用割合が5質量%未満では、粘着力が不足し、貼着後の剥がれや浮きが生じやすくなり、前記ブロック共重合体(A1)の使用割合が80質量%を超えると粘着力が強くなる結果、ロール状で保管する際のブロッキングが起こりやすくなったり、被着体表面への低汚染性が不足したりすることがある。 As the use ratio of the block copolymer (A1) having a crystalline olefin block and the linear low density polyethylene (A2) having a density of 0.880 to 0.938 g / cm 3 in the adhesive layer (A). It is essential that 5 to 80% by mass of the total mass of (A1) and (A2) is a block copolymer (A1) having a crystalline olefin block. When the use ratio is within this range, the balance between low contamination and adherence to the adherend surface is maintained. That is, when the use ratio of the block copolymer (A1) is less than 5% by mass, the adhesive strength is insufficient, and peeling or floating after the sticking is likely to occur, and the use ratio of the block copolymer (A1) is If it exceeds 80% by mass, the adhesive strength becomes strong. As a result, blocking during storage in the form of a roll tends to occur, and low contamination to the adherend surface may be insufficient.
 本発明の表面保護フィルムの粘着層(B)に用いる樹脂としては、前述のブロック共重合体(A1)と直鎖状低密度ポリエチレン(A2)とを合計して50質量%以上で含有すればよく、その他の樹脂類、特にその他のオレフィン系重合体を更に含んでいても良い。このとき、更に粘着面同士の互着が生じた場合の剥離容易性、剥離後の再使用可能性の点からはプロピレン系重合体(A3)を併用することが好ましい。 As resin used for the adhesive layer (B) of the surface protective film of the present invention, if the above block copolymer (A1) and linear low density polyethylene (A2) are contained in a total amount of 50% by mass or more. In addition, other resins, particularly other olefin polymers may further be included. At this time, it is preferable to use a propylene polymer (A3) in combination from the viewpoint of ease of peeling when the adhesive surfaces are further adhered to each other and reusability after peeling.
 前記プロピレン系重合体(A3)は、例えば、プロピレン単独重合体、プロピレン-エチレン共重合体、プロピレン-ブテン-1共重合体、プロピレン-エチレン-ブテン-1共重合体、メタロセン触媒系ポリプロピレン等が挙げられる。これらは単独で用いても、2種以上を併用してもよい。また、これらのプロピレン系重合体(A3)は、230℃のMFRが0.5~30.0g/10分で、融点が120~165℃であるものが好ましく、より好ましくは、230℃のMFRが2.0~15.0g/10分で、融点が125~162℃のものである。230℃のMFR及び融点がこの範囲であれば、被着体に貼着された後の乾燥、加熱成形等によって高温環境にさらされてもフィルムの収縮が少ないため、浮きや剥がれがなく、被着体に反りを発生させることもなく、また、フィルムの成膜性も向上する。 Examples of the propylene polymer (A3) include propylene homopolymer, propylene-ethylene copolymer, propylene-butene-1 copolymer, propylene-ethylene-butene-1 copolymer, and metallocene catalyst-based polypropylene. Can be mentioned. These may be used alone or in combination of two or more. These propylene polymers (A3) preferably have an MFR of 230 ° C. of 0.5 to 30.0 g / 10 min and a melting point of 120 to 165 ° C., more preferably an MFR of 230 ° C. Of 2.0 to 15.0 g / 10 min and a melting point of 125 to 162 ° C. If the MFR at 230 ° C. and the melting point are within this range, the film shrinks little even when exposed to a high temperature environment by drying, heat molding or the like after being adhered to the adherend, and thus there is no floating or peeling. There is no warping of the adherend and the film formability is improved.
 また、前記粘着層(A)に用いるプロピレン系重合体(A3)の中でも、メタロセン触媒系ポリプロピレンが好ましい。メタロセン触媒系ポリプロピレンは、従来のチーグラー・ナッタ系触媒に代え、メタロセン系触媒を用いて重合したポリプロピレンである。このメタロセン系触媒としては、例えば、メタロセン化合物とアルミノキサンとを含むメタロセン均一混合触媒、微粒子状の担体上にメタロセン化合物が担持されたメタロセン担持型触媒等が挙げられる。メタロセン担持型触媒については、特開平5-155931号公報、特開平8-104691号公報、特開平8-157515号公報及び特開平8-231621号公報等に開示されている。メタロセン触媒系ポリプロピレンは、分子量分布及び組成分布の均一性が高く、低分子量成分の含有量が少ないため、前記プロピレン系重合体(A3)にメタロセン触媒系ポリプロピレンを用いることで、低分子量成分のブリードによる被着体表面の汚染を防止することができる。また、メタロセン触媒系ポリプロピレンは、プロピレン単独重合体でも、プロピレンと他のα-オレフィンとの共重合体でも良く、プロピレンと他のα-オレフィンとの共重合体の例として、プロピレン-エチレン共重合体が挙げられる。 Of the propylene polymers (A3) used for the adhesive layer (A), metallocene catalyst polypropylene is preferred. The metallocene catalyst polypropylene is a polypropylene polymerized using a metallocene catalyst instead of the conventional Ziegler-Natta catalyst. Examples of the metallocene catalyst include a metallocene homogeneous mixed catalyst containing a metallocene compound and an aluminoxane, a metallocene supported catalyst in which a metallocene compound is supported on a particulate carrier, and the like. The metallocene supported catalysts are disclosed in JP-A-5-155931, JP-A-8-104691, JP-A-8-157515, JP-A-8-231621, and the like. Metallocene catalyst-based polypropylene has high uniformity in molecular weight distribution and composition distribution and low content of low molecular weight components. Therefore, by using metallocene catalyst polypropylene for the propylene polymer (A3), bleeding of low molecular weight components Contamination of the adherend surface due to can be prevented. The metallocene catalyst-based polypropylene may be a propylene homopolymer or a copolymer of propylene and other α-olefins. Examples of copolymers of propylene and other α-olefins include propylene-ethylene copolymer. Coalescence is mentioned.
 粘着層(A)において、結晶性オレフィンブロックを有するブロック共重合体(A1)と、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)と、プロピレン系重合体(A3)とを併用する場合、その合計質量が粘着層(A)を構成する成分の全質量に対して80質量%以上であることが、得られる表面保護フィルムの性能バランスに優れる点から好ましい。 In the adhesive layer (A), a block copolymer (A1) having a crystalline olefin block, a linear low density polyethylene (A2) having a density of 0.880 to 0.938 g / cm 3 , a propylene-based polymer When combined with (A3), the total mass is 80% by mass or more based on the total mass of the components constituting the adhesive layer (A) because the performance balance of the resulting surface protective film is excellent. preferable.
 又、前記ブロック共重合体(A1)と、前記直鎖状低密度ポリエチレン(A2)と、前記プロピレン系重合体(A3)との合計100質量部中の各成分の使用割合(A1):(A2):(A3)が、10~50:10~70:10~50の範囲であることが、粘着力が適正でありながら、粘着面同士の互着時に容易に剥離することができ、且つ剥離後に再使用可能である点からより好ましい。即ち、(A1)の使用割合が10質量%以上であれば粘着力が充分であり、50質量%以下であれば、剥離後の糊残りを防止できる。(A2)の使用割合が10質量%以上であれば、互着時の粘着面の白化や面あれを防止でき、70質量%以下であれば、適正な粘着力が得られやすい。又(A3)の使用割合が10質量%以上であれば、互着時の剥離が容易になり、50質量%以下であれば剥離後の白化・面あれを防止することが容易である。 Moreover, the usage ratio (A1) of each component in a total of 100 parts by mass of the block copolymer (A1), the linear low-density polyethylene (A2), and the propylene polymer (A3): ( A2): (A3) is in the range of 10-50: 10-70: 10-50, it can be easily peeled when the adhesive surfaces are attached to each other while the adhesive force is appropriate, and It is more preferable because it can be reused after peeling. That is, if the use ratio of (A1) is 10% by mass or more, the adhesive strength is sufficient, and if it is 50% by mass or less, adhesive residue after peeling can be prevented. If the use ratio of (A2) is 10% by mass or more, whitening and roughening of the adhesive surface at the time of mutual attachment can be prevented, and if it is 70% by mass or less, appropriate adhesive force can be easily obtained. Further, when the use ratio of (A3) is 10% by mass or more, peeling at the time of mutual attachment is easy, and when it is 50% by mass or less, it is easy to prevent whitening and unevenness after peeling.
 本発明の粘着層(A)において、被着体への低汚染性、耐ブロッキング性、表面保護フィルムとして実用的な粘着力を兼備させるには、前記成分(A1)と成分(A3)とを併用する場合でも、その混合比率を管理することで実用的な表面保護フィルムが得られることが判っている。しかしながら、成分(A1)と成分(A3)のみでは、樹脂本来の性質(柔軟性)に相違があるため、粘着性の制御が難しくなり、工業的生産における自由度が狭く、実用的ではない点を鑑みた結果、成分(A1)と成分(A2)との併用、更には成分(A3)との併用が好ましいことを見出した。この結果として、粘着層(A)には更に本発明の効果を損なわない範囲でその他の樹脂や各種添加剤等を併用した混合物とすることもできるようになった。その他の樹脂類としては、本発明の効果を損なわない範囲で、従来、共押出積層法でフィルムを得る場合に使用される樹脂を用いることが可能であり、特にオレフィン系の各種重合体が使用できる。 In the pressure-sensitive adhesive layer (A) of the present invention, the component (A1) and the component (A3) are combined in order to combine low adhesion to the adherend, blocking resistance, and practical adhesive strength as a surface protective film. Even when used in combination, it has been found that a practical surface protective film can be obtained by controlling the mixing ratio. However, since only the component (A1) and the component (A3) are different in the original properties (flexibility) of the resin, it becomes difficult to control the tackiness, and the degree of freedom in industrial production is narrow and not practical. As a result, it was found that the combined use of the component (A1) and the component (A2) and the combined use of the component (A3) are preferable. As a result, the adhesive layer (A) can be made into a mixture in which other resins, various additives, and the like are used in combination as long as the effects of the present invention are not impaired. As other resins, as long as the effects of the present invention are not impaired, it is possible to use a resin conventionally used for obtaining a film by a coextrusion lamination method, and particularly, various olefin polymers are used. it can.
 本発明の表面保護フィルムを構成する粘着層(A)に併せて用いる基材層(B)を構成する樹脂としては、熱可塑性樹脂であって、粘着層(A)との共押出が可能であれば特に限定されないが、本発明の表面保護フィルムを構成する粘着層(A)との親和性が良好である点からオレフィン系重合体(B1)を、該基材層(B)を構成する成分の全質量に対して65質量%以上含有するものであることが好ましい。 As resin which comprises the base material layer (B) used together with the adhesion layer (A) which comprises the surface protection film of this invention, it is a thermoplastic resin and co-extrusion with an adhesion layer (A) is possible. Although it will not specifically limit if it exists, the base material layer (B) is comprised from an olefin polymer (B1) from the point that affinity with the adhesion layer (A) which comprises the surface protection film of this invention is favorable. It is preferable to contain 65% by mass or more with respect to the total mass of the components.
 前記オレフィン系重合体(B1)としては、エチレン系重合体や結晶性プロピレン系重合体などが挙げられる。 Examples of the olefin polymer (B1) include ethylene polymers and crystalline propylene polymers.
 前記エチレン系重合体としては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレンなどが挙げられる。これらはそれぞれ単独で使用してもよいし、併用してもよい。これらのエチレン系重合体を基材層(B)として用いた場合には、被着体に表面保護フィルムが貼着された状態で被着体を切断加工する際に、表面保護フィルムがきれいに切断され、糸引き、毛羽立ち等の外観不良を生じない良好な切断性が発現する。また、これらの中でも、耐熱性が良好なことから、低密度ポリエチレン、高密度ポリエチレン、又は低密度ポリエチレンと高密度ポリエチレンとの混合樹脂が好ましい。 Examples of the ethylene polymer include low density polyethylene, linear low density polyethylene, medium density polyethylene, and high density polyethylene. These may be used alone or in combination. When these ethylene-based polymers are used as the base material layer (B), the surface protective film is cut cleanly when the adherend is cut with the surface protective film adhered to the adherend. As a result, good cutting properties that do not cause appearance defects such as stringing and fluffing are exhibited. Of these, low-density polyethylene, high-density polyethylene, or a mixed resin of low-density polyethylene and high-density polyethylene is preferable because of good heat resistance.
 また、これらのエチレン系重合体は、MFR(190℃)が0.5~30.0g/10分であるものが、押出成形が容易となることから好ましく、より好ましくはMFRが2.0~15.0g/10分のものである。更に、これらのエチレン系重合体が、融点が90~135℃のものであれば、被着体に貼着された後の乾燥、加熱成形等によって高温環境にさらされてもフィルムの収縮が少ないため、被着体からの浮きや剥がれ、被着体の反りなどを抑制することができるので好ましく、より好ましくは融点が105~130℃のものである。 In addition, those ethylene polymers having an MFR (190 ° C.) of 0.5 to 30.0 g / 10 min are preferable because of easy extrusion, and more preferably an MFR of 2.0 to 15.0 g / 10 min. Further, when these ethylene polymers have a melting point of 90 to 135 ° C., the film shrinks little even when exposed to a high temperature environment by drying, heat molding or the like after being attached to the adherend. Therefore, it is preferable because it can suppress floating and peeling from the adherend and warpage of the adherend, and more preferably has a melting point of 105 to 130 ° C.
 前記結晶性プロピレン系重合体としては、例えば、プロピレン単独重合体、プロピレン-エチレン共重合体、プロピレン-ブテン-1共重合体、プロピレン-エチレン-ブテン-1共重合体、メタロセン触媒系ポリプロピレンなどが挙げられる。これらはそれぞれ単独で使用してもよいし、併用してもよい。これらの結晶性プロピレン系重合体を基材層(B)として用いた場合には、表面保護フィルムの耐熱性が向上し、貼着後に加熱加工される用途等に好適に用いることが出来る。また、これらの中でも、メタロセン触媒系ポリプロピレンを用いることが好ましい。これは、メタロセン触媒系ポリプロピレンは分子量分布及び組成分布の均一性が高く、低分子量成分の含有量が少ないため、前記基材層(B)の主成分として用いた場合、低分子量成分のブリードによる被着体表面の汚染が低減されるためである。なお、本願において結晶性とはDSC(示差走査熱量測定)において95~250℃の範囲で0.5J/g以上のピークを有することを言うものである。尚、メタロセン触媒系ポリプロピレンは、プロピレン単独重合体でも、プロピレンと他のα-オレフィンとの共重合体でも良い。 Examples of the crystalline propylene polymer include propylene homopolymer, propylene-ethylene copolymer, propylene-butene-1 copolymer, propylene-ethylene-butene-1 copolymer, and metallocene catalyst-based polypropylene. Can be mentioned. These may be used alone or in combination. When these crystalline propylene-based polymers are used as the base material layer (B), the heat resistance of the surface protective film is improved, and the crystalline propylene-based polymer can be suitably used for applications such as heat processing after sticking. Of these, metallocene catalyst-based polypropylene is preferably used. This is because metallocene-catalyzed polypropylene has high molecular weight distribution and uniform composition distribution and low content of low molecular weight components, so when used as a main component of the base material layer (B), it is due to bleeding of low molecular weight components. This is because contamination of the adherend surface is reduced. In the present application, crystallinity means having a peak of 0.5 J / g or more in the range of 95 to 250 ° C. in DSC (differential scanning calorimetry). The metallocene catalyst-based polypropylene may be a propylene homopolymer or a copolymer of propylene and another α-olefin.
 また、これらの結晶性プロピレン系重合体は、MFR(230℃)が0.5~30.0g/10分で、融点が120~165℃であるものが好ましく、より好ましくは、MFR(230℃)が2.0~15.0g/10分で、融点が125~162℃のものである。MFR及び融点がこの範囲であれば、被着体に貼着された後の乾燥、加熱成形等によって高温環境にさらされてもフィルムの収縮が少ないため、被着体からの浮きや剥がれ、被着体の反りなどを抑制できるので好ましく、更に、積層フィルムの成膜性も向上する。 These crystalline propylene polymers preferably have an MFR (230 ° C.) of 0.5 to 30.0 g / 10 min and a melting point of 120 to 165 ° C., more preferably MFR (230 ° C. ) Is 2.0 to 15.0 g / 10 min and the melting point is 125 to 162 ° C. If the MFR and the melting point are within this range, the film shrinks little even when exposed to a high temperature environment by drying, heat molding, or the like after being attached to the adherend, so that it floats or peels off from the adherend. This is preferable because warpage of the adherend can be suppressed, and the film forming property of the laminated film is also improved.
 本発明の表面保護フィルムは、前述の粘着層(A)と基材層(B)との2層から構成されるものでも良いし、これらに併せて表面層(C)を設けてもかまわない。この際表面層(C)は基材層(B)上の粘着層(A)と反対側の面に設置される。本発明の表面保護フィルムに用いる表面層(C)の主成分となる樹脂は、熱可塑性樹脂であって、粘着層(A)及び基材層(B)との共押出が可能であれば特に限定されないが、前記基材層(B)との親和性が良好である点からオレフィン系重合体(C1)を該表面層(C)を構成する成分の全質量に対して65質量%以上含有するものとすることが好ましい。特に、前記基材層(B)の主成分がエチレン系重合体の場合にはエチレン系重合体を、基材層(B)の主成分が結晶性プロピレン系重合体である場合には結晶性プロピレン系重合体を用いることがより好ましい。 The surface protective film of the present invention may be composed of two layers of the above-mentioned pressure-sensitive adhesive layer (A) and base material layer (B), and a surface layer (C) may be provided in combination therewith. . At this time, the surface layer (C) is placed on the surface opposite to the adhesive layer (A) on the base material layer (B). The resin that is the main component of the surface layer (C) used in the surface protective film of the present invention is a thermoplastic resin, particularly if coextrusion with the adhesive layer (A) and the base material layer (B) is possible. Although not limited, 65 mass% or more of olefin polymer (C1) is contained with respect to the total mass of the component which comprises this surface layer (C) from the point that affinity with the said base material layer (B) is favorable. It is preferable to do. In particular, when the main component of the base material layer (B) is an ethylene polymer, an ethylene polymer is used. When the main component of the base material layer (B) is a crystalline propylene polymer, crystallinity is obtained. It is more preferable to use a propylene polymer.
 表面層(C)の樹脂成分として用いるエチレン系重合体としては、上記基材層(B)で用いるエチレン重合体と同様のものが挙げられる。また、表面層(C)の樹脂成分としてエチレン系重合体を選択することで、基材層(B)の樹脂成分としてエチレン重合体を用いた場合と同様に、最終的に得られる表面保護フィルムの高い切断性が発現する。 Examples of the ethylene polymer used as the resin component of the surface layer (C) include those similar to the ethylene polymer used in the base material layer (B). Further, by selecting an ethylene polymer as the resin component of the surface layer (C), the surface protective film finally obtained is the same as in the case of using the ethylene polymer as the resin component of the base layer (B). High cutting ability.
 前記表面層(C)の樹脂成分として用いるエチレン系重合体の中でも、低密度ポリエチレンを用いると、表面層(C)の表面を梨地状に改質することが容易である。表面層(C)の表面を梨地状とすることで、粘着層(A)の粘着力を強く設計した場合でもブロッキングを軽減できる。また、低密度ポリエチレンと共に高密度ポリエチレンを併用すると、得られる表面保護フィルムの剛性を上げることができ、貼着・剥離等の作業性が良好となる。 Among the ethylene polymers used as the resin component of the surface layer (C), when low density polyethylene is used, it is easy to modify the surface of the surface layer (C) into a satin finish. By making the surface of the surface layer (C) satin, blocking can be reduced even when the adhesive force of the adhesive layer (A) is designed to be strong. Moreover, when high-density polyethylene is used in combination with low-density polyethylene, the rigidity of the resulting surface protective film can be increased, and workability such as sticking and peeling is improved.
 また、前記表面層(C)の樹脂成分として、前記エチレン系重合体とプロピレン-エチレンブロック共重合体との混合樹脂を用いても、表面層(C)の表面を梨地状に改質することができる。ここで前記プロピレン-エチレンブロック共重合体とは、プロピレンとエチレンとをブロック重合した樹脂であれば良く、例えば、プロピレン単独重合体の存在下で、エチレンの重合、又はエチレン及びプロピレンの重合を行って得られるプロピレン-エチレンブロック共重合体などが挙げられる。これらの中でも、表面を梨地状にすることが容易であることから、エチレン由来成分含有率が8~20質量%であるプロピレン-エチレンブロック共重合体が好ましく、エチレン由来成分の含有率が10~15質量%のプロピレン-エチレンブロック共重合体であれば、より好ましい。この、エチレン系重合体とプロピレン-エチレンブロック共重合体との混合樹脂のMFR(230℃)は4~12g/10分の範囲であることが押出加工しやすい点で好ましく、6~10g/10分の範囲であることがより好ましい。同様に、該混合樹脂の密度は0.890~0.910g/cmの範囲であることが押出加工しやすい点で好ましく、0.895~0.905g/cmの範囲であることがより好ましい。 Further, even when a mixed resin of the ethylene polymer and the propylene-ethylene block copolymer is used as the resin component of the surface layer (C), the surface of the surface layer (C) can be modified into a satin finish. Can do. Here, the propylene-ethylene block copolymer may be a resin obtained by block polymerization of propylene and ethylene. For example, ethylene polymerization or ethylene / propylene polymerization is performed in the presence of a propylene homopolymer. And a propylene-ethylene block copolymer obtained in the above manner. Among these, a propylene-ethylene block copolymer having an ethylene-derived component content of 8 to 20% by mass is preferable because the surface can be easily textured, and the ethylene-derived component content is 10 to 10%. A propylene-ethylene block copolymer of 15% by mass is more preferable. The MFR (230 ° C.) of the mixed resin of the ethylene polymer and the propylene-ethylene block copolymer is preferably in the range of 4 to 12 g / 10 minutes from the viewpoint of easy extrusion, and 6 to 10 g / 10. More preferably, it is in the range of minutes. Similarly, the density of the mixed resin is preferably in the range of 0.890 to 0.910 g / cm 3 from the viewpoint of easy extrusion, and more preferably in the range of 0.895 to 0.905 g / cm 3. preferable.
 表面層(C)の樹脂成分として用いる結晶性プロピレン系重合体としては、上記基材層(B)の樹脂成分として用いる結晶性プロピレン重合体と同様のものが挙げられる。また、表面層(C)の樹脂成分として結晶性プロピレン系重合体を選択することで、基材層(B)の樹脂成分として結晶性プロピレン系重合体を用いた場合と同様に、最終的に得られる表面保護フィルムの高い耐熱性が発現する。 Examples of the crystalline propylene polymer used as the resin component of the surface layer (C) include the same as the crystalline propylene polymer used as the resin component of the substrate layer (B). Further, by selecting a crystalline propylene polymer as the resin component of the surface layer (C), finally, as in the case of using the crystalline propylene polymer as the resin component of the base layer (B), finally High heat resistance of the obtained surface protective film is expressed.
 また、表面層(C)の樹脂成分として、前記結晶性プロピレン系重合体とプロピレン-エチレン共重合エラストマー(以下、「EPR」という。)との混合樹脂を用いると、表面層(C)を梨地状に容易に改質することができる。このとき用いる結晶性プロピレン系重合体としては、汎用性の高いプロピレン単独重合体(以下、「HOPP」という。)が好ましい。一方、このとき用いるEPRとしては、重量平均分子量が40万~100万の範囲であるものがフィルム表面に凹凸を形成させて、表面を梨地状に改質できる点で好ましく、50~80万の範囲であることがより好ましい。また、混合樹脂中のEPRの含有率は、5~35質量%の範囲であることがフィルム表面を均質に梨地状に改質できる点で好ましい。この、結晶性プロピレン系重合体とEPRとの混合樹脂のMFR(230℃)は、0.5~15g/10分の範囲であることが押出加工しやすい点で好ましい。なお、前記EPRの重量平均分子量は、該混合樹脂を、オルソジクロルベンゼンを溶媒として使用し、40℃においてクロス分別法によって抽出した成分をGPC(ゲルパーミエーションクロマトグラフィー)によって算出して求めたものである。また、前記混合樹脂中のEPRの含有率は、該混合樹脂を、オルソジクロルベンゼンを溶媒として使用し、40℃においてクロス分別法によって抽出されたEPRの抽出量より求めたものである。 Further, when a mixed resin of the crystalline propylene polymer and the propylene-ethylene copolymer elastomer (hereinafter referred to as “EPR”) is used as the resin component of the surface layer (C), the surface layer (C) is formed into a satin finish. Can be easily modified. The crystalline propylene polymer used at this time is preferably a highly versatile propylene homopolymer (hereinafter referred to as “HOPP”). On the other hand, as the EPR used at this time, those having a weight average molecular weight in the range of 400,000 to 1,000,000 are preferable in that irregularities can be formed on the film surface and the surface can be modified into a satin finish. A range is more preferable. Further, the content of EPR in the mixed resin is preferably in the range of 5 to 35% by mass from the viewpoint that the film surface can be uniformly modified into a satin finish. The MFR (230 ° C.) of the mixed resin of crystalline propylene polymer and EPR is preferably in the range of 0.5 to 15 g / 10 minutes from the viewpoint of easy extrusion. In addition, the weight average molecular weight of the EPR was obtained by calculating a component extracted from the mixed resin by a cross fractionation method at 40 ° C. using orthodichlorobenzene as a solvent by GPC (gel permeation chromatography). It is. The content of EPR in the mixed resin is obtained from the amount of EPR extracted by cross-fractionation at 40 ° C. using orthodichlorobenzene as a solvent.
 前記結晶性プロピレン系重合体とEPRとの混合樹脂の製造方法は、特に制限はなく、具体例として例えば、プロピレン単独重合体とエチレン-プロピレン共重合エラストマーとを、それぞれ別々にチーグラー型触媒を用いて溶液重合法、スラリー重合法、気相重合法等により製造した後、両者を混練機にて混合する方法や、2段重合法により、1段目でプロピレン単独重合体を生成させた後、2段目においてこの重合体の存在下でEPRを生成させる方法等が挙げられる。 The method for producing the mixed resin of the crystalline propylene polymer and EPR is not particularly limited, and specific examples include, for example, a propylene homopolymer and an ethylene-propylene copolymer elastomer, each separately using a Ziegler type catalyst. After producing by a solution polymerization method, a slurry polymerization method, a gas phase polymerization method, etc., after producing a propylene homopolymer in the first stage by a method of mixing both in a kneader or a two-stage polymerization method, Examples include a method of generating EPR in the presence of this polymer in the second stage.
 前記チーグラー型触媒は、所謂チーグラー・ナッタ触媒であり、チタン含有化合物などの遷移金属化合物、またはマグネシウム化合物などの担体に遷移金属化合物を担持させることによって、得られる担体担持触媒と有機アルミニウム化合物などの有機金属化合物の助触媒とを組合せたもの等が挙げられる。 The Ziegler-type catalyst is a so-called Ziegler-Natta catalyst, and is obtained by supporting a transition metal compound such as a titanium-containing compound or a transition metal compound on a support such as a magnesium compound. The combination with the promoter of an organometallic compound is mentioned.
 本発明の表面保護フィルムは、全フィルム厚さが20~120μmのものが好ましい。全フィルムの厚さがこの範囲であれば、貼着・剥離等の作業性が良好となる。また、粘着層(A)の厚さは、3~30μmが好ましく、より好ましくは5~25μmである。粘着層(A)の厚さがこの範囲であれば、上記粘着特性に加え、積層フィルムの成膜性が良好となる。さらに、本発明の表面保護フィルムに前記表面層(C)を設ける場合は、表面層の厚さは3~30μmが好ましく、より好ましくは5~20μmである。表面層の厚さがこの範囲であれば、耐熱性及び積層フィルムの成膜性が良好となる。 The surface protective film of the present invention preferably has a total film thickness of 20 to 120 μm. When the thickness of all the films is within this range, workability such as sticking and peeling is improved. The thickness of the adhesive layer (A) is preferably 3 to 30 μm, more preferably 5 to 25 μm. If the thickness of the pressure-sensitive adhesive layer (A) is within this range, in addition to the above-mentioned pressure-sensitive adhesive properties, the film formability of the laminated film will be good. Furthermore, when the surface layer (C) is provided on the surface protective film of the present invention, the thickness of the surface layer is preferably 3 to 30 μm, more preferably 5 to 20 μm. When the thickness of the surface layer is within this range, the heat resistance and the film formability of the laminated film are good.
 本発明の表面保護フィルムの製造方法としては、共押出積層法であれば特に限定されるものではないが、例えば、2台以上の押出機を用いて各樹脂層に用いる樹脂を溶融し、マルチマニホールド法、フィードブロック法等の共押出法により溶融状態で積層した後、インフレーション、T-ダイ・チルロール法等の方法を用いてフィルム状に加工する方法が挙げられる。T-ダイ・チルロール法の場合、ゴムタッチロールやスチールベルト等とチルロール間で、溶融積層されたフィルムをニップして冷却してもよい。 The method for producing the surface protective film of the present invention is not particularly limited as long as it is a coextrusion lamination method. For example, the resin used for each resin layer is melted by using two or more extruders, Examples include a method of laminating in a molten state by a co-extrusion method such as a manifold method or a feed block method, and then processing into a film using a method such as inflation or a T-die chill roll method. In the case of the T-die / chill roll method, the melt-laminated film may be nipped between a rubber touch roll, a steel belt or the like and the chill roll and cooled.
 さらに、本発明の表面保護フィルムを一軸延伸フィルム又は二軸延伸フィルムとしても構わない。少なくとも1軸方向へ延伸することで基材層が配向結晶化され、熱固定による構造安定化が図られる。これにより、耐熱性が向上し、粘着力の経時変化が小さくなるので好ましい。 Furthermore, the surface protective film of the present invention may be a uniaxially stretched film or a biaxially stretched film. The base material layer is oriented and crystallized by stretching in at least one axial direction, and the structure is stabilized by heat setting. This is preferable because the heat resistance is improved and the change in adhesive strength with time is reduced.
 また、本発明の効果を損なわない範囲で、滑剤、ブロッキング防止剤、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤等、着色剤等を適宜添加してもよい。これらの添加剤としては、オレフィン系樹脂用の各種添加剤を使用することが好ましい。 In addition, a lubricant, an antiblocking agent, an ultraviolet absorber, a light stabilizer, an antistatic agent, an antifogging agent, and the like may be added as appropriate within a range not impairing the effects of the present invention. As these additives, it is preferable to use various additives for olefin-based resins.
 以下に実施例及び比較例を挙げて、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples.
(実施例1)
 表面層用樹脂として、プロピレン系混合樹脂[プロピレン単独重合体及びEPRからなる樹脂、MFR(230℃):4.0g/10分、EPRの含有率:11質量%、EPRの重量平均分子量55万]を用い、基材層用樹脂として、メタロセン触媒系プロピレン-エチレンランダム共重合体〔密度:0.900g/cm、MFR(230℃、21.18N):7.0g/10分、エチレン単量体単位の含有率:3.5質量%;以下、「メタロセン触媒系COPP」という。〕を用い、粘着層用樹脂として、JSR株式会社製「ダイナロン6200P」〔密度:0.88g/cm、MFR(230℃):2.5g/10分:以下「CEBC」という。〕10質量部及び直鎖状低密度ポリエチレン〔密度:0.902g/cm、MFR(190℃):3.0g/10分;以下「LLDPE(1)」という。〕90質量部の混合物を用いて、表面層用押出機(口径30mm)、基材層用押出機(口径40mm)及び粘着層用押出機(口径30mm)にそれぞれ供給し、共押出法により押出温度250℃でT-ダイから、表面層の厚さが10μm、基材層の厚さが30μm、粘着層の厚さが10μmになるように押出し、40℃の水冷金属冷却ロールで冷却した後、ロールに巻き取り、表面保護フィルムを得た。得られたフィルムは、物理的性質を安定化するため、35℃の熟成室で48時間熟成させた。
Example 1
As a resin for the surface layer, a propylene mixed resin [a resin composed of a propylene homopolymer and EPR, MFR (230 ° C.): 4.0 g / 10 min, EPR content: 11 mass%, EPR weight average molecular weight 550,000 As a base layer resin, a metallocene catalyst-based propylene-ethylene random copolymer [density: 0.900 g / cm 3 , MFR (230 ° C., 21.18 N): 7.0 g / 10 min, ethylene single Content rate of the monomer unit: 3.5 mass%; hereinafter referred to as “metallocene catalyst system COPP”. As a resin for the adhesive layer, “Dynalon 6200P” manufactured by JSR Corporation [density: 0.88 g / cm 3 , MFR (230 ° C.): 2.5 g / 10 min: hereinafter referred to as “CEBC”]. ] 10 parts by mass and linear low density polyethylene [density: 0.902 g / cm 3 , MFR (190 ° C.): 3.0 g / 10 min; hereinafter referred to as “LLDPE (1)”. ] Using 90 parts by mass of the mixture, each was supplied to an extruder for surface layer (caliber 30 mm), an extruder for base layer (caliber 40 mm) and an extruder for adhesive layer (caliber 30 mm), and extruded by coextrusion method. After extruding from a T-die at a temperature of 250 ° C. to a surface layer thickness of 10 μm, a base material layer thickness of 30 μm, and an adhesive layer thickness of 10 μm, and cooling with a 40 ° C. water-cooled metal cooling roll The film was wound on a roll to obtain a surface protective film. The obtained film was aged in a aging room at 35 ° C. for 48 hours in order to stabilize physical properties.
(実施例2)
 粘着層用樹脂として、CEBCを30質量部及びLLDPE(1)70質量部の混合物を用いた以外は実施例1と同様にして実施例2の表面保護フィルムを得た。
(Example 2)
A surface protective film of Example 2 was obtained in the same manner as Example 1 except that a mixture of 30 parts by mass of CEBC and 70 parts by mass of LLDPE (1) was used as the adhesive layer resin.
(実施例3)
 粘着層用樹脂として、CEBCを10質量部及び直鎖状低密度ポリエチレン[密度:0.920g/cm、MFR(190℃):3.0g/10分;以下「LLDPE(2)」という。]90質量部の混合物を用いた以外は実施例1と同様にして実施例3の表面保護フィルムを得た。
(Example 3)
As a resin for the adhesive layer, 10 parts by mass of CEBC and linear low density polyethylene [density: 0.920 g / cm 3 , MFR (190 ° C.): 3.0 g / 10 min; hereinafter referred to as “LLDPE (2)”. The surface protective film of Example 3 was obtained in the same manner as in Example 1 except that 90 parts by mass of the mixture was used.
(実施例4)
 粘着層用樹脂として、CEBCを30質量部及びLLDPE(2)70質量部の混合物を用いた以外は実施例1と同様にして実施例4の表面保護フィルムを得た。
Example 4
A surface protective film of Example 4 was obtained in the same manner as in Example 1 except that a mixture of 30 parts by mass of CEBC and 70 parts by mass of LLDPE (2) was used as the adhesive layer resin.
(実施例5)
 基材層用樹脂として、HOPP[密度:0.900g/cm、MFR(230℃):8.0g/10分]を用いた以外は実施例4と同様にして実施例5の表面保護フィルムを得た。
(Example 5)
The surface protective film of Example 5 was the same as Example 4 except that HOPP [density: 0.900 g / cm 3 , MFR (230 ° C.): 8.0 g / 10 min] was used as the base layer resin. Got.
(実施例6)
 表面層用樹脂として、プロピレン系混合樹脂[プロピレン単独重合体及びEPRからなる樹脂、MFR(230℃):4.0g/10分、EPRの含有率:30質量%、EPRの重量平均分子量55万]を用い、粘着層用樹脂として、CEBCを50質量部及びLLDPE(2)50質量部の混合物を用いた以外は実施例1と同様にして実施例6の表面保護フィルムを得た。
(Example 6)
As a resin for the surface layer, a propylene-based mixed resin [a resin comprising a propylene homopolymer and EPR, MFR (230 ° C.): 4.0 g / 10 min, EPR content: 30 mass%, EPR weight average molecular weight 550,000 The surface protective film of Example 6 was obtained in the same manner as in Example 1 except that a mixture of 50 parts by mass of CEBC and 50 parts by mass of LLDPE (2) was used as the adhesive layer resin.
(実施例7)
 粘着層用樹脂として、CEBCを70質量部及びLLDPE(2)30質量部の混合物を用いた以外は実施例6と同様にして実施7の表面保護フィルムを得た。
(Example 7)
A surface protective film of Example 7 was obtained in the same manner as in Example 6 except that a mixture of 70 parts by mass of CEBC and 30 parts by mass of LLDPE (2) was used as the adhesive layer resin.
(実施例8)
 基材層用樹脂として、HOPPを用いた以外は実施例7と同様にして実施例8の表面保護フィルムを得た。
(Example 8)
A surface protective film of Example 8 was obtained in the same manner as in Example 7 except that HOPP was used as the base layer resin.
(実施例9)
 表面層用樹脂及び基材層用樹脂として、低密度ポリエチレン[密度:0.920g/cm、MFR(190℃):6g/10分;以下「LDPE(1)」という。]を用い、粘着層用樹脂として、CEBCを10質量部及びLLDPE(1)90質量部の混合物を用い、表面層の厚さが14μm、基材層の厚さが42μm、粘着層の厚さが14μmになるように押出した以外は実施例1と同様にして実施例9の表面保護フィルムを得た。
Example 9
As the resin for the surface layer and the resin for the base layer, low density polyethylene [density: 0.920 g / cm 3 , MFR (190 ° C.): 6 g / 10 min; hereinafter referred to as “LDPE (1)”. ], A mixture of 10 parts by weight of CEBC and 90 parts by weight of LLDPE (1) was used as the adhesive layer resin, the surface layer thickness was 14 μm, the base layer thickness was 42 μm, and the adhesive layer thickness A surface protective film of Example 9 was obtained in the same manner as in Example 1 except that the film was extruded so as to be 14 μm.
(実施例10)
 粘着層用樹脂として、CEBCを30質量部及びLLDPE(1)70質量部の混合物を用いた以外は実施例9と同様にして実施例10の表面保護フィルムを得た。
(Example 10)
A surface protective film of Example 10 was obtained in the same manner as Example 9 except that a mixture of 30 parts by mass of CEBC and 70 parts by mass of LLDPE (1) was used as the adhesive layer resin.
(実施例11)
 粘着層用樹脂として、CEBCを10質量部及びLLDPE(2)90質量部の混合物を用いた以外は実施例9と同様にして実施例11の表面保護フィルムを得た。
Example 11
A surface protective film of Example 11 was obtained in the same manner as Example 9 except that a mixture of 10 parts by weight of CEBC and 90 parts by weight of LLDPE (2) was used as the adhesive layer resin.
(実施例12)
 粘着層用樹脂として、CEBCを30質量部及びLLDPE(2)70質量部の混合物を用いた以外は実施例9と同様にして実施例12の表面保護フィルムを得た。
(Example 12)
A surface protective film of Example 12 was obtained in the same manner as in Example 9 except that a mixture of 30 parts by mass of CEBC and 70 parts by mass of LLDPE (2) was used as the adhesive layer resin.
(実施例13)
 表面層用樹脂として、LDPE(1)を50質量部及び高密度ポリエチレン[密度:0.960g/cm3、MFR(190℃):5.5g/10分;以下「HDPE(1)」という。]を50質量部の混合物を用い、粘着層用樹脂として、CEBCを50質量部及びLLDPE(2)50質量部の混合物を用いた以外は実施例9と同様にして実施例13の表面保護フィルムを得た。
(Example 13)
As the resin for the surface layer, 50 parts by mass of LDPE (1) and high-density polyethylene [density: 0.960 g / cm 3, MFR (190 ° C.): 5.5 g / 10 min; hereinafter referred to as “HDPE (1)”. ] In the same manner as in Example 9, except that 50 parts by mass of the mixture was used, and 50 parts by mass of CEBC and 50 parts by mass of LLDPE (2) were used as the adhesive layer resin. Got.
(実施例14)
 表面層樹脂は用いず、粘着層用樹脂として、CEBCを70質量部及びLLDPE(2)30質量部の混合物を用い、基材層の厚さが56μm、粘着層の厚さが14μmになるように押出した以外は実施例9と同様にして実施例14の表面保護フィルムを得た。
(Example 14)
The surface layer resin is not used, and a mixture of 70 parts by mass of CEBC and 30 parts by mass of LLDPE (2) is used as the adhesive layer resin so that the thickness of the base layer is 56 μm and the thickness of the adhesive layer is 14 μm. A surface protective film of Example 14 was obtained in the same manner as Example 9 except that the film was extruded.
(実施例15)
 基材層用樹脂として、低密度ポリエチレン(密度:0.902g/cm、MFR(190℃、21.18N):4g/10分;以下「LDPE(2)」)と高密度ポリエチレン(密度:0.960g/cm、MFR(190℃、21.18N):13g/10分;以下「HDPE(2)」)とを質量比で50/50になるように混合し、粘着層用樹脂として、CEBC30質量部とLLDPE(2)70質量部の混合物を用いて、基材層用押出機(口径50mm)及び粘着層用押出機(口径40mm)にそれぞれ供給し、共押出法により押出温度250℃でT-ダイから基材層の厚さが64μm、粘着層の厚さが16μmになるように押出した以外は実施例1と同様にして、実施例15の表面保護フィルムを得た。
(Example 15)
Low density polyethylene (density: 0.902 g / cm 3 , MFR (190 ° C., 21.18 N): 4 g / 10 min; hereinafter referred to as “LDPE (2)”) and high density polyethylene (density: 0.960 g / cm 3 , MFR (190 ° C., 21.18 N): 13 g / 10 min; hereinafter referred to as “HDPE (2)”) are mixed so as to have a mass ratio of 50/50, and used as an adhesive layer resin. Using a mixture of 30 parts by mass of CEBC and 70 parts by mass of LLDPE (2), the mixture was supplied to an extruder for a base layer (caliber 50 mm) and an extruder for an adhesive layer (caliber 40 mm), respectively, and an extrusion temperature of 250 by coextrusion method. A surface protective film of Example 15 was obtained in the same manner as in Example 1 except that the substrate layer was extruded from a T-die so that the thickness of the base material layer was 64 μm and the thickness of the adhesive layer was 16 μm.
(実施例16)
 表面層用樹脂として、LDPE(2)とプロピレン-エチレンブロック共重合体とを質量比で95/5となるように混合し、基材用樹脂として、LDPE(2)とHDPE(2)とを質量比で50/50になるように混合して用い、粘着層用樹脂として、CEBCと直鎖状低密度ポリエチレン(密度:0.902g/cm、MFR(190℃、21.18N):6g/10分;以下「LLDPE(3)」という。)とを質量比で5/95の混合物を用い、表面層用押出機(口径50mm)、基材層用押出機(口径50mm)及び粘着層用押出機(口径40mm)にそれぞれ供給し、共押出法により押出温度250℃でT-ダイから表面層の厚さが16μm、基材層の厚さが48μm、粘着層の厚さが16μmになるように押出した以外は実施例1と同様にして、実施例16の表面保護フィルムを得た。
(Example 16)
As a resin for the surface layer, LDPE (2) and a propylene-ethylene block copolymer are mixed at a mass ratio of 95/5, and LDPE (2) and HDPE (2) are mixed as the base resin. Used as a resin for the adhesive layer, with a mass ratio of 50/50, CEBC and linear low-density polyethylene (density: 0.902 g / cm 3 , MFR (190 ° C., 21.18 N): 6 g / 10 minutes; hereinafter referred to as “LLDPE (3)”) using a mixture having a mass ratio of 5/95, an extruder for surface layer (caliber 50 mm), an extruder for substrate layer (caliber 50 mm), and an adhesive layer To an extruder (40 mm in diameter) and by co-extrusion at an extrusion temperature of 250 ° C., the thickness of the surface layer from the T-die is 16 μm, the thickness of the base material layer is 48 μm, and the thickness of the adhesive layer is 16 μm. Except for extruding In the same manner as in Example 1, to obtain a surface protective film of Example 16.
(実施例17)
 表面層用樹脂としてHOPPとプロピレン-エチレンブロック共重合体とを質量比で95/5となるように混合し、基材層用樹脂としてメタロセン触媒系COPPを用い、粘着層用樹脂として、CEBCとLLDPE(2)とを質量比で30/70の混合物を用いた以外は実施例16と同様にして実施例17の表面保護フィルムを得た。
(Example 17)
HOPP and propylene-ethylene block copolymer are mixed as a surface layer resin in a mass ratio of 95/5, a metallocene catalyst COPP is used as the base layer resin, and CEBC is used as the adhesive layer resin. A surface protective film of Example 17 was obtained in the same manner as in Example 16 except that a mixture of LLDPE (2) at a mass ratio of 30/70 was used.
(実施例18)
 粘着層用樹脂として、CEBCとLLDPE(3)とメタロセン触媒系COPPとを質量比で25/70/5の混合物を用いた以外は実施例16と同様にして実施例18の表面保護フィルムを得た。
(Example 18)
A surface protective film of Example 18 was obtained in the same manner as Example 16 except that a mixture of CEBC, LLDPE (3), and metallocene catalyst system COPP having a mass ratio of 25/70/5 was used as the adhesive layer resin. It was.
(実施例19)
 粘着層用樹脂として、CEBCとLLDPE(2)とメタロセン触媒系COPPとを質量比で40/40/20の混合物を用いた以外は実施例15と同様にして実施例19の表面保護フィルムを得た。
Example 19
The surface protective film of Example 19 was obtained in the same manner as in Example 15 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/40/20 was used as the adhesive layer resin. It was.
(実施例20)
 粘着層用樹脂として、CEBCとLLDPE(2)とメタロセン触媒系COPPとを質量比で40/35/25の混合物を用いた以外は実施例16と同様にして、実施例20の表面保護フィルムを得た。
(Example 20)
The surface protective film of Example 20 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/35/25 was used as the adhesive layer resin. Obtained.
(実施例21)
 粘着層用樹脂として、CEBCとLLDPE(2)とメタロセン触媒系COPPとを質量比で40/30/30の混合物を用いた以外は実施例16と同様にして実施例21の表面保護フィルムを得た。
(Example 21)
The surface protective film of Example 21 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/30/30 was used as the adhesive layer resin. It was.
(実施例22)
 粘着層用樹脂として、CEBCとLLDPE(2)とメタロセン触媒系COPPとを質量比で35/40/25の混合物を用いた以外は実施例16と同様にして実施例22の表面保護フィルムを得た。
(Example 22)
A surface protective film of Example 22 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 35/40/25 was used as the adhesive layer resin. It was.
(実施例23)
 粘着層用樹脂として、CEBCとLLDPE(3)とメタロセン触媒系COPPとを質量比で25/45/30の混合物を用いた以外は実施例16と同様にして実施例23の表面保護フィルムを得た。
(Example 23)
A surface protective film of Example 23 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (3), and metallocene catalyst system COPP having a mass ratio of 25/45/30 was used as the adhesive layer resin. It was.
(実施例24)
 粘着層用樹脂として、CEBCとLLDPE(3)とメタロセン触媒系COPPとを質量比で25/50/25の混合物を用いた以外は実施例16と同様にして実施例24の表面保護フィルムを得た。
(Example 24)
A surface protective film of Example 24 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (3), and metallocene catalyst system COPP having a mass ratio of 25/50/25 was used as the adhesive layer resin. It was.
(実施例25)
 粘着層用樹脂として、CEBCとLLDPE(2)とメタロセン触媒系COPPとを質量比で40/10/50の混合物を用いた以外は実施例16と同様にして、実施例25の表面保護フィルムを得た。
(Example 25)
The surface protective film of Example 25 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/10/50 was used as the adhesive layer resin. Obtained.
(実施例26)
 粘着層用樹脂として、CEBCとLLDPE(2)とメタロセン触媒系COPPとを質量比で40/35/25の混合物を用いた以外は実施例17と同様にして、実施例26の表面保護フィルムを得た。
(Example 26)
The surface protective film of Example 26 was obtained in the same manner as in Example 17 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/35/25 was used as the adhesive layer resin. Obtained.
(実施例27)
 粘着層用樹脂として、CEBCとLLDPE(2)とメタロセン触媒系COPPとを質量比で40/30/30の混合物を用いた以外は実施例17と同様にして、実施例27の表面保護フィルムを得た。
(Example 27)
The surface protective film of Example 27 was obtained in the same manner as in Example 17 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 40/30/30 was used as the adhesive layer resin. Obtained.
(実施例28)
 粘着層用樹脂として、CEBCとLLDPE(3)とメタロセン触媒系COPPとを質量比で25/50/25の混合物を用いた以外は実施例17と同様にして、実施例28の表面保護フィルムを得た。
(Example 28)
The surface protective film of Example 28 was obtained in the same manner as in Example 17 except that a mixture of CEBC, LLDPE (3), and metallocene catalyst system COPP having a mass ratio of 25/50/25 was used as the adhesive layer resin. Obtained.
(実施例29)
 粘着層用樹脂として、CEBCとLLDPE(2)とメタロセン触媒系COPPとを質量比で15/65/20の混合物を用いた以外は実施例16と同様にして実施例29の表面保護フィルムを得た。
(Example 29)
The surface protective film of Example 29 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 15/65/20 was used as the adhesive layer resin. It was.
(実施例30)
 粘着層用樹脂として、CEBCとLLDPE(2)とメタロセン触媒系COPPとを質量比で30/60/10の混合物を用いた以外は実施例16と同様にして実施例30の表面保護フィルムを得た。
(Example 30)
The surface protective film of Example 30 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 30/60/10 was used as the adhesive layer resin. It was.
(比較例1)
 粘着層用樹脂として、非晶性プロピレン-ブテン-1共重合体57質量部、結晶性プロピレン-ブテン-1共重合体3質量部及びCEBC40質量部の混合物を用いた以外は、実施例6と同様にして比較例1の表面保護フィルムを得た。
(Comparative Example 1)
Example 6 except that a mixture of 57 parts by mass of amorphous propylene-butene-1 copolymer, 3 parts by mass of crystalline propylene-butene-1 copolymer and 40 parts by mass of CEBC was used as the adhesive layer resin. Similarly, the surface protective film of Comparative Example 1 was obtained.
(比較例2)
 粘着層用樹脂として、非晶性プロピレン-ブテン-1共重合体49.4質量部、結晶性プロピレン-ブテン-1共重合体10.6質量部及びCEBC40質量部の混合物を用いた以外は、実施例6と同様にして比較例2の表面保護フィルムを得た。
(Comparative Example 2)
As the adhesive layer resin, a mixture of 49.4 parts by mass of an amorphous propylene-butene-1 copolymer, 10.6 parts by mass of a crystalline propylene-butene-1 copolymer and 40 parts by mass of CEBC was used. In the same manner as in Example 6, a surface protective film of Comparative Example 2 was obtained.
(比較例3)
 粘着層用樹脂として、スチレン-エチレン-プロピレン-スチレンブロック共重合体(株式会社クラレ製「セプトン2063」;以下「SEPS」という。)50質量部及びLLDPE(2)50質量部の混合物を用いた以外は、実施例6と同様にして比較例3の表面保護フィルムを得た。
(Comparative Example 3)
As the adhesive layer resin, a mixture of 50 parts by mass of styrene-ethylene-propylene-styrene block copolymer (Kuraray Co., Ltd. “Septon 2063”; hereinafter referred to as “SEPS”) and LLDPE (2) 50 parts by mass was used. A surface protective film of Comparative Example 3 was obtained in the same manner as Example 6 except for the above.
(比較例4)
 粘着層用樹脂として、CEBCとLLDPE(2)とメタロセン触媒系COPPとを質量比で30/10/60の混合物を用いた以外は実施例16と同様にして比較例4の表面保護フィルムを得た。
(Comparative Example 4)
A surface protective film of Comparative Example 4 was obtained in the same manner as in Example 16 except that a mixture of CEBC, LLDPE (2), and metallocene catalyst system COPP having a mass ratio of 30/10/60 was used as the adhesive layer resin. It was.
(比較例5)
 粘着層用樹脂として、CEBCとメタロセン触媒系COPPと非晶性プロピレン-ブテン-1共重合体とを質量比で40/10/50の混合物を用いた以外は実施例16と同様にして比較例5の表面保護フィルムを得た。
(Comparative Example 5)
Comparative Example in the same manner as in Example 16 except that a mixture of CEBC, metallocene catalyst system COPP, and amorphous propylene-butene-1 copolymer having a mass ratio of 40/10/50 was used as the adhesive layer resin. 5 surface protection film was obtained.
(比較例6)
 粘着層用樹脂として、CEBCとメタロセン触媒系COPPとを質量比で70/30の混合物を用いた以外は実施例16と同様にして比較例6の表面保護フィルムを得た。
(Comparative Example 6)
A surface protective film of Comparative Example 6 was obtained in the same manner as in Example 16 except that a mixture of CEBC and metallocene catalyst system COPP having a mass ratio of 70/30 was used as the adhesive layer resin.
(実施例及び比較例で得られた表面保護フィルムの評価方法)
 粘着力の測定
 23℃、50%RHの恒温室において、JIS Z0237:2000の粘着力評価方法に準拠して、上記で得られた表面保護フィルムを厚さ2mmのアクリル板(鏡面仕上げ、三菱レイヨン株式会社製「アクリライト」)に貼着した。フィルムが貼着されたアクリル板を23℃恒温室中で24時間放置した後、引張試験機(株式会社エー・アンド・ディー製)を用いて、300mm/分の速度で180°方向に剥離して初期粘着力を測定した。また、フィルムを貼着したアクリル板を50℃の乾燥機中で1日放置した後、同様に粘着力を測定した。
(Evaluation method of surface protective film obtained in Examples and Comparative Examples)
Measurement of Adhesive Strength In a thermostatic chamber at 23 ° C. and 50% RH, the surface protective film obtained above was applied to an acrylic plate having a thickness of 2 mm (mirror finish, Mitsubishi Rayon) in accordance with the adhesive strength evaluation method of JIS Z0237: 2000. It was attached to "Acrylite" manufactured by Co., Ltd. The acrylic plate with the film attached is left in a constant temperature room at 23 ° C. for 24 hours, and then peeled off in the 180 ° direction at a speed of 300 mm / min using a tensile tester (manufactured by A & D Co., Ltd.). The initial adhesive strength was measured. Moreover, after leaving the acrylic board which stuck the film in a 50 degreeC dryer for one day, adhesive force was measured similarly.
 粘着性の評価
 上記の粘着力の測定を行う際に、アクリル板に貼着した表面保護フィルムのアクリル板への貼着状態を目視で確認し、下記の基準によって粘着性の評価を行った。
 ○:アクリル板表面への均一な密着を保持しているもの。
 ×:初期粘着力が不足し、均一な密着が保てず、一部に浮きが生じたもの。
Evaluation of adhesiveness When measuring the above-mentioned adhesive strength, the state of adhesion of the surface protective film adhered to the acrylic plate to the acrylic plate was visually confirmed, and the adhesiveness was evaluated according to the following criteria.
◯: Maintaining uniform adhesion to the acrylic plate surface.
X: Insufficient initial adhesive strength, uniform adhesion cannot be maintained, and partly floated.
 糊残り性の評価
 23℃、50%RHの恒温室において、JIS Z0237:2000に準拠した方法で、表面保護フィルムを縦15cm×巾5cmのアクリル板(鏡面仕上げ、三菱レイヨン株式会社製「アクリライト」)の全面に貼着した。フィルムが貼着されたアクリル板を60℃の乾燥機中で3日間静置後、23℃恒温室中で1時間冷却した。冷却された試験片から、フィルムを180°方向に高速で手剥がしし、アクリル板表面の汚染状況を目視で確認し、以下の基準にて糊残り性の評価を行った。
 ○:アクリル板表面にくもり、白スジ、異物等の汚れ無し。
 △:アクリル板表面にくもり、白スジ、異物等の何れかの汚れがあるが実用使用には耐えられるもの
 ×:アクリル板表面にくもり、白スジ、異物等のいずれかの汚れが有り、実用には不適であるもの
Evaluation of adhesive residue In a temperature-controlled room at 23 ° C. and 50% RH, a surface protective film is made of an acrylic plate (mirror finish, manufactured by Mitsubishi Rayon Co., Ltd., “Acrylite” in accordance with JIS Z0237: 2000. )). The acrylic plate on which the film was adhered was allowed to stand in a dryer at 60 ° C. for 3 days, and then cooled in a constant temperature room at 23 ° C. for 1 hour. From the cooled test piece, the film was peeled off at a high speed in the direction of 180 °, the state of contamination on the acrylic plate surface was visually confirmed, and the adhesive residue was evaluated according to the following criteria.
○: No cloudiness, white streaks, foreign matter, etc. on the acrylic plate surface.
△: The surface of the acrylic plate is cloudy, white streaks, foreign matter, etc. but can be used for practical use. ×: The surface of the acrylic plate is cloudy, white streaks, foreign matter, etc. What is unsuitable for
 アクリル板表面の濡れ張力の測定
 フィルム貼着前の試験片(アクリル板の表面をアルコールで洗浄し、乾燥させた試験片)及び上記糊残りの評価で用いたフィルム剥離後の試験片を用い、JIS K6768:1999に準拠した方法でアクリル板表面の濡れ張力を測定した。フィルム貼着前の試験片の濡れ張力は40mN/mであった。
Measurement of the wetting tension on the acrylic plate surface Using the test piece before film sticking (the test piece obtained by washing the surface of the acrylic plate with alcohol and drying) and the test piece after film peeling used in the evaluation of the adhesive residue, The wetting tension on the acrylic plate surface was measured by a method based on JIS K6768: 1999. The wetting tension of the test piece before film attachment was 40 mN / m.
 表面保護フィルム剥離後の印刷適正評価
 上記アクリル板表面の濡れ張力の測定値を用いて、濡れ張力の低下幅[(フィルム貼着前の試験片の濡れ張力:40mN/m)-(フィルム剥離後の試験片の濡れ張力)]を保護フィルム剥離後の印刷適性の代用評価として評価した。なお、評価基準は以下の通りである。
 ○:濡れ張力の低下幅が2mN/m以下である。
 ×:濡れ張力の低下幅が2mN/mを超えている。
Evaluation of printing suitability after surface protective film peeling Using the measured value of wetting tension on the surface of the acrylic plate, the reduction width of wetting tension [(wetting tension of test piece before film sticking: 40 mN / m)-(after film peeling) Was evaluated as a substitute evaluation of printability after peeling off the protective film. The evaluation criteria are as follows.
A: The decrease width of the wetting tension is 2 mN / m or less.
X: The reduction width of the wetting tension exceeds 2 mN / m.
 耐ブロッキング性の評価
 得られた表面保護フィルムを、A4の大きさ(縦297mm×横210mm)で切り出した。この際、フィルム成膜時の押し出し方向(MD方向)とA4縦方向が一致するように切り出した。切り出したフィルムを10枚重ねた後、その上下をA4サイズ、厚さ3mmの塩化ビニル製の板で挟み、重さ5kgの重りを乗せ40℃の乾燥器中で14日間保管後、23℃、50%RHの恒温室内で1時間保管した。次いで、そのフィルムをMD方向に25mm幅で切り出し、引張試験機(株式会社エー・アンド・ディー製)を用いて、300mm/分の速度で180°方向に剥離してブロッキング力を測定した。得られたブロッキング力から、以下の基準によって耐ブロッキング性を評価した。
 ○:ブロッキング力が0.8N/25mm未満である。
 ×:ブロッキング力が0.8N/25mm以上である。
Evaluation of blocking resistance The obtained surface protective film was cut out in the size of A4 (length 297 mm x width 210 mm). At this time, the film was cut out so that the extrusion direction (MD direction) during film formation coincided with the A4 vertical direction. After stacking 10 cut out films, the upper and lower sides were sandwiched between A4 size, 3 mm thick vinyl chloride plates, a weight of 5 kg was placed, and stored in a dryer at 40 ° C. for 14 days, then at 23 ° C. It was stored for 1 hour in a constant temperature room of 50% RH. Next, the film was cut out in a width of 25 mm in the MD direction, and peeled in the direction of 180 ° at a speed of 300 mm / min using a tensile tester (manufactured by A & D Co., Ltd.) to measure the blocking force. From the obtained blocking force, blocking resistance was evaluated according to the following criteria.
A: The blocking force is less than 0.8 N / 25 mm.
X: The blocking force is 0.8 N / 25 mm or more.
 粘着面同士の粘着力測定
 23℃、50%RHの恒温室において、JIS Z0237:2000に準拠した方法で、縦15cm×巾25mmからなる2枚の表面保護フィルムの粘着面同士を貼着した。貼着されたフィルムを23℃恒温室中で30分間静置した後、引張試験機(株式会社エー・アンド・ディー社製)を用いて、300mm/分の速度で180°方向に剥離して粘着面同士の接着力を測定した。
Measurement of Adhesive Force Between Adhesive Surfaces In a thermostatic chamber at 23 ° C. and 50% RH, the adhesive surfaces of two surface protective films each having a length of 15 cm and a width of 25 mm were attached by a method in accordance with JIS Z0237: 2000. After the stuck film was allowed to stand for 30 minutes in a constant temperature room at 23 ° C., it was peeled off in the 180 ° direction at a speed of 300 mm / min using a tensile tester (manufactured by A & D Co., Ltd.). The adhesive force between the adhesive surfaces was measured.
 粘着面同士の接着、剥離後の粘着面状態
 23℃、50%RHの恒温室において、JIS Z0237:2000に準拠した方法で、縦15cm×巾25mmからなる2枚の表面保護フィルムの粘着面同士を貼着した。貼着されたフィルムを23℃恒温室中で30分間静置した後、高速で手剥がしし、粘着面の状況を目視で確認し、以下の基準で粘着面状態を評価した。
 ○:粘着面に白化、面荒れがないもの
 △:粘着面に白化、もしくは面荒れが生じたが実用使用には耐えられるもの
 ×:粘着面に白化及び面荒れがみられ、実用には不適であるもの
Adhesion between adhesive surfaces, adhesive surface state after peeling In a temperature-controlled room at 23 ° C. and 50% RH, the adhesive surfaces of two surface protective films consisting of 15 cm long × 25 mm wide by a method according to JIS Z0237: 2000 Affixed. The stuck film was allowed to stand in a constant temperature room at 23 ° C. for 30 minutes, and then peeled off at high speed. The condition of the adhesive surface was visually confirmed, and the adhesive surface state was evaluated according to the following criteria.
○: The adhesive surface is not whitened or roughened. △: The adhesive surface is whitened or roughened, but it can withstand practical use. ×: The adhesive surface is whitened and roughened. What is
 上記の各評価を行った結果を、以下の表中に記載する。尚、表面層を設けていない表面保護フィルムについては当該箇所が空欄になっている。 The results of the above evaluations are shown in the table below. In addition, about the surface protection film which has not provided the surface layer, the said location is blank.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 粘着亢進に関して
 各実施例で得た表面保護フィルムの粘着力の強弱は、主に粘着層の違いに起因しており、粘着層の組成によって様々な値を取りうるが、いずれの場合も初期値と「50℃×1日後」の値に大きな差がなく接着亢進が少ない。これに対し各比較例で得た表面保護フィルムは、実施例に比べ接着亢進が大きい。
Regarding adhesion enhancement, the strength of the adhesive strength of the surface protective film obtained in each example is mainly due to the difference in the adhesion layer, and can take various values depending on the composition of the adhesion layer. There is no significant difference between the values of “50 ° C. × 1 day” and there is little increase in adhesion. On the other hand, the surface protective film obtained in each comparative example has a greater adhesion enhancement than the examples.
 表面保護フィルム剥離後の被着体表面の汚染に関して
 各実施例で得た表面保護フィルムでは、フィルム剥離後の被着体への糊残りは目視では確認できなかった。また、フィルム貼着前とフィルム剥離後とでの被着体表面の濡れ張力の低下も小さく、印刷適性を低下させない程度にまで被着体表面の汚染を極小化することが出来た。これに対し各比較例で得た表面保護フィルムでは、フィルム剥離後の被着体への糊残りを目視でも確認することができ、フィルム剥離後の被着体表面の印刷適性が各実施例と比べて低下する評価結果が得られた。
Contamination of the adherend surface after peeling of the surface protective film In the surface protective film obtained in each Example, the adhesive residue on the adherend after peeling of the film could not be visually confirmed. In addition, the decrease in the wet tension of the adherend surface before and after the film was peeled was small, and the contamination of the adherend surface could be minimized to the extent that the printability was not lowered. On the other hand, in the surface protective film obtained in each comparative example, the adhesive residue on the adherend after film peeling can be visually confirmed, and the printability of the adherend surface after film peeling is as in each example. An evaluation result that is lower than the above was obtained.
 粘着面同士の互着に関して
 粘着層に更にプロピレン系重合体を併用するものにおいては、粘着面同士が互着した場合においても剥離が容易であり、又粘着面に荒れ等を生じさせることが無く、製造工程の途中で表面保護フィルムの着脱が行なわれるような使用方法においても、本発明の表面保護フィルムが使用することができる。
Regarding adhesion between adhesive surfaces, in the case where a propylene-based polymer is further used in the adhesive layer, even when the adhesive surfaces are adhered to each other, peeling is easy, and there is no occurrence of roughness or the like on the adhesive surface. The surface protective film of the present invention can also be used in such a usage method that the surface protective film is attached and detached during the manufacturing process.
 本発明の表面保護フィルムは、最適な微粘着から中粘着レベルの幅広い粘着力を有し、アクリル板への貼着後の浮き、剥がれ等の発生もない。特に貼着したアクリル板からフィルムを剥離した際に、目視で確認できるくもりやスジ、異物等の汚染は認められず、表面保護フィルムを剥離した後のアクリル板表面の濡れ張力の低下もきわめて少ないことから、表面保護フィルムを剥離した後、印刷等の二次加工を施される用途に好適である。 The surface protective film of the present invention has a wide range of adhesive strengths ranging from optimum fine adhesion to medium adhesion level, and does not cause floating or peeling after sticking to an acrylic plate. In particular, when the film is peeled off from the attached acrylic plate, there is no visible contamination such as cloudiness, streaks, or foreign matter, and there is very little reduction in the wetting tension on the acrylic plate surface after peeling off the surface protective film. Therefore, it is suitable for applications in which secondary processing such as printing is performed after the surface protective film is peeled off.

Claims (11)

  1. 粘着層(A)と基材層(B)とを積層した表面保護フィルムであって、該粘着層(A)が、
    結晶性オレフィンブロックを有するブロック共重合体(A1)と、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)と、を該粘着層(A)を構成する成分の全質量に対して50質量%以上含有し、且つ
    結晶性オレフィンブロックを有するブロック共重合体(A1)と、密度が0.880~0.938g/cmである直鎖状低密度ポリエチレン(A2)との合計質量の5~80質量%が結晶性オレフィンブロックを有するブロック共重合体(A1)であることを特徴とする表面保護フィルム。
    A surface protective film obtained by laminating an adhesive layer (A) and a base material layer (B), wherein the adhesive layer (A)
    The pressure-sensitive adhesive layer (A) comprises a block copolymer (A1) having a crystalline olefin block and a linear low-density polyethylene (A2) having a density of 0.880 to 0.938 g / cm 3. A block copolymer (A1) containing 50% by mass or more based on the total mass of the components and having a crystalline olefin block, and a linear low-density polyethylene having a density of 0.880 to 0.938 g / cm 3 A surface protective film, wherein 5 to 80% by mass of the total mass with (A2) is a block copolymer (A1) having a crystalline olefin block.
  2. 前記結晶性オレフィンブロックを有するブロック共重合体(A1)が、結晶性オレフィン-エチレン・ブチレン共重合体-結晶性オレフィンブロック共重合体(CEBC)である請求項1記載の表面保護フィルム。 The surface protective film according to claim 1, wherein the block copolymer (A1) having a crystalline olefin block is a crystalline olefin-ethylene-butylene copolymer-crystalline olefin block copolymer (CEBC).
  3. 粘着層(A)に更にプロピレン系重合体(A3)を含有する請求項1又は2記載の表面保護フィルム。 The surface protective film according to claim 1 or 2, further comprising a propylene-based polymer (A3) in the adhesive layer (A).
  4. 前記プロピレン系重合体(A3)がメタロセン触媒系ポリプロピレンである請求項3記載の表面保護フィルム。 The surface protection film according to claim 3, wherein the propylene polymer (A3) is a metallocene catalyst-based polypropylene.
  5. 前記ブロック共重合体(A1)と、前記直鎖状低密度ポリエチレン(A2)と前記プロピレン系重合体(A3)との合計100質量部中の各成分の使用割合(A1):(A2):(A3)が、10~50:10~70:10~50である請求項3又は4記載の表面保護フィルム。 Usage ratio (A1): (A2) of each component in a total of 100 parts by mass of the block copolymer (A1), the linear low-density polyethylene (A2), and the propylene-based polymer (A3): The surface protective film according to claim 3 or 4, wherein (A3) is from 10 to 50:10 to 70:10 to 50.
  6. 前記基材層(B)が、オレフィン系重合体(B1)を該基材層(B)を構成する成分の全質量に対して65質量%以上含有するものである請求項1~5の何れか1項記載の表面保護フィルム。 The base material layer (B) contains the olefin polymer (B1) in an amount of 65% by mass or more based on the total mass of the components constituting the base material layer (B). A surface protective film according to claim 1.
  7. 前記オレフィン系重合体(B1)が、低密度ポリエチレン、高密度ポリエチレンおよび結晶性プロピレン系重合体からなる群から選ばれる一種以上のオレフィン系重合体である請求項6記載の表面保護フィルム。 The surface protection film according to claim 6, wherein the olefin polymer (B1) is one or more olefin polymers selected from the group consisting of low density polyethylene, high density polyethylene and crystalline propylene polymer.
  8. 表面層(C)を、前記粘着層(A)の反対面の基材層(B)上に設けた請求項1~7の何れか1項記載の表面保護フィルム。 The surface protective film according to any one of claims 1 to 7, wherein the surface layer (C) is provided on the base material layer (B) opposite to the adhesive layer (A).
  9. 前記表面層(C)が、オレフィン系重合体(C1)を該表面層(C)を構成する成分の全質量に対して65質量%以上含有するものである請求項8記載の表面保護フィルム。 The surface protective film according to claim 8, wherein the surface layer (C) contains the olefin polymer (C1) in an amount of 65% by mass or more based on the total mass of components constituting the surface layer (C).
  10. 前記オレフィン系重合体(C1)が、低密度ポリエチレン、高密度ポリエチレンおよびプロピレン単独重合体からなる群から選ばれる一種以上のオレフィン系重合体である請求項9記載の表面保護フィルム。 The surface protection film according to claim 9, wherein the olefin polymer (C1) is one or more olefin polymers selected from the group consisting of low density polyethylene, high density polyethylene and propylene homopolymer.
  11. 前記オレフィン系重合体(C1)が、低密度ポリエチレン、高密度ポリエチレンおよびプロピレン単独重合体からなる群から選ばれる一種以上のオレフィン系重合体と、プロピレン-エチレンブロック共重合体との混合樹脂である請求項9記載の表面保護フィルム。 The olefin polymer (C1) is a mixed resin of at least one olefin polymer selected from the group consisting of low density polyethylene, high density polyethylene and propylene homopolymer, and a propylene-ethylene block copolymer. The surface protective film according to claim 9.
PCT/JP2009/063326 2008-08-05 2009-07-27 Surface protection film WO2010016403A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020107029682A KR101162583B1 (en) 2008-08-05 2009-07-27 Surface protection film
CN2009801299145A CN102112305A (en) 2008-08-05 2009-07-27 Surface protection film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-201750 2008-08-05
JP2008201750A JP4525811B2 (en) 2008-08-05 2008-08-05 Surface protection film
JP2008211693 2008-08-20
JP2008-211693 2008-08-20

Publications (1)

Publication Number Publication Date
WO2010016403A1 true WO2010016403A1 (en) 2010-02-11

Family

ID=41663623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063326 WO2010016403A1 (en) 2008-08-05 2009-07-27 Surface protection film

Country Status (4)

Country Link
KR (1) KR101162583B1 (en)
CN (1) CN102112305A (en)
TW (1) TW201008772A (en)
WO (1) WO2010016403A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429689A (en) * 2011-03-23 2013-12-04 阿基里斯株式会社 Surface-protecting film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6170546B2 (en) * 2012-03-30 2017-07-26 ダウ グローバル テクノロジーズ エルエルシー Polyolefin elastomer compound
KR101496028B1 (en) * 2013-08-28 2015-02-25 삼성토탈 주식회사 Polypropylene for protective film and protective film
WO2015129426A1 (en) * 2014-02-28 2015-09-03 東レフィルム加工株式会社 Surface protection film for heating process
CN104497900B (en) * 2014-12-01 2016-09-28 张家港康得新光电材料有限公司 A kind of adhesive protecting film and the application in bonding protection bright finish PC plate thereof
CN104789142B (en) * 2015-03-24 2017-09-26 昆山金华安电子科技有限公司 A kind of special polyethylene protective film of glass
CN114507486B (en) * 2020-11-16 2024-02-20 象山激智新材料有限公司 High-temperature-resistant protective film and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257247A (en) * 2005-03-16 2006-09-28 Tohcello Co Ltd Adhesive film
JP2007076127A (en) * 2005-09-14 2007-03-29 Tohcello Co Ltd Adhesive film
JP2008162108A (en) * 2006-12-28 2008-07-17 Nippon Polyethylene Kk Surface protective film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240216A (en) * 1993-02-16 1994-08-30 Sekisui Chem Co Ltd Surface protecting film
JP2000186256A (en) 1998-12-22 2000-07-04 Sekisui Chem Co Ltd Surface protective film for resin plate
JP2006104246A (en) 2004-10-01 2006-04-20 Sumitomo Chemical Co Ltd Pressure-sensitive adhesive laminate
US7328547B2 (en) * 2004-10-29 2008-02-12 Bostik, Inc. Process for packaging plastic materials like hot melt adhesives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257247A (en) * 2005-03-16 2006-09-28 Tohcello Co Ltd Adhesive film
JP2007076127A (en) * 2005-09-14 2007-03-29 Tohcello Co Ltd Adhesive film
JP2008162108A (en) * 2006-12-28 2008-07-17 Nippon Polyethylene Kk Surface protective film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429689A (en) * 2011-03-23 2013-12-04 阿基里斯株式会社 Surface-protecting film
CN103429689B (en) * 2011-03-23 2015-09-09 阿基里斯株式会社 Surface protection film

Also Published As

Publication number Publication date
CN102112305A (en) 2011-06-29
KR101162583B1 (en) 2012-07-10
TW201008772A (en) 2010-03-01
KR20110027721A (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP6569723B2 (en) Self-adhesive surface protective film
JP4412408B2 (en) Surface protection film
WO2010016403A1 (en) Surface protection film
JP6015352B2 (en) Polyolefin film
JPWO2010084832A1 (en) Surface protection film
JP4363454B2 (en) Surface protection film
WO2016152835A1 (en) Polyethylene film
JP2007185781A (en) Surface protective film
WO2014054700A1 (en) Self-adhesive surface protection film
KR102413979B1 (en) Polyethylene film
JP5738191B2 (en) Surface protection film
JP5544821B2 (en) Adhesive film roll
JP4529100B2 (en) Surface protection film
JP2012087164A (en) Surface protective film
JP4525811B2 (en) Surface protection film
JP2013124293A (en) Surface protective film
JP6515917B2 (en) Self-adhesive surface protection film
JP2009184216A (en) Surface protection film
JPWO2014054701A1 (en) Self-adhesive surface protective film
JP7200943B2 (en) polyethylene resin film
JP7331698B2 (en) Method for producing polyethylene resin film
JP2011037039A (en) Surface protective film
JP2010229222A (en) Pressure sensitive adhesive film
WO2023286541A1 (en) Biaxially oriented laminated polypropylene film
JP2023013959A (en) Biaxially oriented laminated polypropylene film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129914.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107029682

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804887

Country of ref document: EP

Kind code of ref document: A1