WO2015115429A1 - 作業機の制御システム - Google Patents

作業機の制御システム Download PDF

Info

Publication number
WO2015115429A1
WO2015115429A1 PCT/JP2015/052207 JP2015052207W WO2015115429A1 WO 2015115429 A1 WO2015115429 A1 WO 2015115429A1 JP 2015052207 W JP2015052207 W JP 2015052207W WO 2015115429 A1 WO2015115429 A1 WO 2015115429A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
valve
pressure
passage
neutral
Prior art date
Application number
PCT/JP2015/052207
Other languages
English (en)
French (fr)
Inventor
説与 吉田
郁夫 稲垣
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to KR1020167016760A priority Critical patent/KR101828195B1/ko
Priority to DE112015000577.3T priority patent/DE112015000577T5/de
Priority to CN201580003630.7A priority patent/CN105899816B/zh
Priority to US15/113,486 priority patent/US10072396B2/en
Publication of WO2015115429A1 publication Critical patent/WO2015115429A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/022Flow-dividers; Priority valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/36Pilot pressure sensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41554Flow control characterised by the connections of the flow control means in the circuit being connected to a return line and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/428Flow control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/45Control of bleed-off flow, e.g. control of bypass flow to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups

Definitions

  • the present invention relates to a work machine control system.
  • JP 10-088627A discloses an excavating and turning work machine that supplies hydraulic oil from a first pump, a second pump, and a third pump to each circuit system.
  • a split flow pump In working machines such as hydraulic excavators, instead of two hydraulic pumps, a split flow pump is provided in which a single cylinder block has a discharge port divided into two stages and can simultaneously discharge two systems of hydraulic oil. May be used.
  • This invention aims at improving the energy efficiency at the time of using a split flow pump for a working machine provided with a plurality of circuit systems.
  • a work machine control system that controls a work machine having a first actuator and a second actuator is a split flow type that discharges a working fluid from a first discharge port and a second discharge port.
  • the fluid pressure pump, the working fluid discharged from the first discharge port, the first operation valve for controlling the first actuator, and the first discharge port in a state where the first operation valve is in the normal position A first circuit system having a first neutral passage communicating with the tank, a second operation valve that is supplied with the working fluid discharged from the second discharge port and controls the second actuator, and the second operation valve
  • a second circuit system having a second neutral passage for communicating the second discharge port with the tank in a state where the second operation port is in a normal position, and the first operation valve and the second operation valve.
  • a communication switching valve that is switched by a switching signal when one of them is switched to communicate the first neutral passage and the second neutral passage; and at least one of the first circuit system and the second circuit system And is switched by the switching signal to block communication between the first neutral passage and the second neutral passage with the tank on the side where the first operation valve or the second operation valve is not switched.
  • a discharge flow rate adjusting device for adjusting the discharge flow rate of the fluid pressure pump when the switching signal is input from any one of the first operation valve and the second operation valve And comprising.
  • FIG. 1 is a configuration diagram of a work machine to which the work machine control system according to the first and second embodiments of the present invention is applied.
  • FIG. 2 is a circuit diagram of the work machine control system according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged view of a part of the discharge flow rate adjusting device in FIG.
  • FIG. 4 is a diagram illustrating a modification of the discharge flow rate adjusting device.
  • FIG. 5 is a circuit diagram of a work machine control system according to the second embodiment of the present invention.
  • control system 100 A working machine control system (hereinafter simply referred to as “control system”) 100 according to a first embodiment of the present invention will be described below with reference to FIGS.
  • a hydraulic excavator 1 as a working machine to which the control system 100 is applied will be described with reference to FIG.
  • the working machine is the hydraulic excavator 1
  • the control system 100 can also be applied to other working machines such as a wheel loader.
  • the working oil is used as the working fluid, but other fluids such as working water may be used as the working fluid.
  • the hydraulic excavator 1 includes a crawler-type traveling unit 2, a swivel unit 3 that can be pivoted on an upper part of the traveling unit 2, and an excavation unit 5 that is disposed at the front center of the swivel unit 3.
  • the traveling unit 2 travels the excavator 1 by driving a pair of left and right crawlers 2a by a traveling motor (not shown).
  • the turning unit 3 is driven by a turning motor (not shown) and turns in the left-right direction with respect to the traveling unit 2.
  • the excavation unit 5 includes a boom 6 that is rotatably supported around a horizontal axis that extends in the left-right direction of the swivel unit 3, an arm 7 that is rotatably supported on the tip of the boom 6, and a pivot that rotates around the tip of the arm 7. And a bucket 8 that is movably supported and excavates earth and sand. Further, the excavation unit 5 includes a boom cylinder 6 a that rotates the boom 6 up and down, an arm cylinder 7 a that rotates the arm 7 up and down, and a bucket cylinder 8 a that rotates the bucket 8.
  • the control system 100 is discharged from a hydraulic pump 10 as a fluid pressure pump that discharges hydraulic oil, a first circuit system 20 to which hydraulic oil discharged from the first discharge port 12 is supplied, and a second discharge port 13.
  • the pilot pressure when one of the second circuit system 30 to which the hydraulic fluid is supplied, the operation valves 21 to 23 of the first circuit system 20 and the operation valves 31 to 34 of the second circuit system 30 is switched.
  • the communication switching valve 40 for communicating the first neutral passage 25 of the first circuit system 20 with the second neutral passage 35 of the second circuit system 30, and the operation valves 21 to 23 and the operation valves 31 to 34.
  • a discharge flow rate adjusting mechanism 50 as a discharge flow rate adjusting device that adjusts the discharge flow rate of the hydraulic pump 10 to decrease when a pilot pressure is input from either one of them.
  • the pilot pressure for switching the operation valves 21 to 23 or the operation valves 31 to 34 corresponds to the switching signal.
  • the control system 100 controls the operation of a plurality of actuators of the excavator 1.
  • the control system 100 includes another pump (not shown) that supplies hydraulic oil to a third circuit system (not shown) having another actuator such as a swing motor.
  • the hydraulic pump 10 is driven by an engine (not shown).
  • the hydraulic pump 10 has a split flow in which a first discharge port 12 and a second discharge port 13 are arranged in two stages in a single cylinder block (not shown) and can simultaneously discharge two systems of hydraulic oil.
  • the hydraulic pump 10 distributes hydraulic oil equally from the first discharge port 12 and the second discharge port 13.
  • the hydraulic pump 10 is a variable displacement pump that includes a swash plate (not shown) whose tilt angle is adjusted by a regulator 11 controlled by pilot pressure, and whose discharge flow rate is adjusted by the tilt angle of the swash plate.
  • the hydraulic pump 10 uses the hydraulic oil pressure adjusted by the discharge flow rate adjusting mechanism 50 as a pilot pressure, and the tilt angle of the swash plate is adjusted so that the discharge flow rate increases as the pilot pressure increases.
  • the discharge flow rate of the hydraulic oil discharged from the first discharge port 12 and the second discharge port 13 is adjusted by a single regulator 11.
  • the hydraulic fluid discharged from the hydraulic pump 10 passes through the first discharge passage 15 connected to the first discharge port 12 and the second discharge passage 16 connected to the second discharge port 13, and the first circuit system 20. And the second circuit system 30 respectively.
  • a main relief valve 18 is provided downstream of the first discharge passage 15 and the second discharge passage 16 so as to open when a predetermined main relief pressure is exceeded and keep the operating hydraulic pressure below the main relief pressure.
  • the first discharge passage 15 and the second discharge passage 16 are respectively provided with check valves 15a and 16a that allow only the flow of hydraulic oil to the main relief valve 18.
  • the predetermined main relief pressure is set high enough to ensure a minimum operating pressure for each of the operation valves 21 to 23 and 31 to 34 described later.
  • the first circuit system 20 includes, in order from the upstream side, an operation valve 21 that controls the travel motor of the left crawler 2a, an operation valve 22 that controls the boom cylinder 6a, and an operation valve 23 that controls the bucket cylinder 8a. Prepare. These operation valves 21 to 23 correspond to the first operation valve, and the traveling motor, the boom cylinder 6a, and the bucket cylinder 8a correspond to the first actuator.
  • the first circuit system 20 includes a first neutral passage 25 that allows the first discharge passage 15 to communicate with the tank 19 in a state where the operation valves 21 to 23 are all in the normal position, and a parallel passage that is provided in parallel with the first neutral passage 25. 26.
  • the operation valves 21 to 23 control the operation of each actuator by controlling the flow rate of hydraulic oil guided from the hydraulic pump 10 to each actuator.
  • the operation valves 21 to 23 are operated by pilot pressure supplied when the operator of the excavator 1 manually operates the operation lever.
  • the operation valve 21 is normally in the normal position by the biasing force of the pair of centering springs, and is switched to the first switching position and the second switching position by the pilot pressure supplied from the pilot passages 21a and 21b.
  • the operation valve 22 is normally in the normal position by the urging force of the pair of centering springs, and is switched to the first switching position and the second switching position by the pilot pressure supplied from the pilot passages 22a and 22b.
  • the operation valve 23 is normally in the normal position by the urging force of the pair of centering springs, and is switched to the first switching position and the second switching position by the pilot pressure supplied from the pilot passages 23a and 23b.
  • a neutral cut valve 27 is provided. The neutral cut valve 27 blocks communication between the first neutral passage 25 and the tank 19 when the operation valves 31 to 34 of the second circuit system 30 are switched.
  • the neutral cut valve 27 has a communication position 27a for communicating the first neutral passage 25 and a blocking position 27b for blocking the first neutral passage 25.
  • the neutral cut valve 27 is normally in the communication position 27a by the urging force of the return spring.
  • the neutral cut valve 27 is switched to the cutoff position 27b by the pilot pressure supplied to the pilot chamber 27c.
  • Opening / closing is opened upstream of the pilot chamber 27c when a pilot pressure in a second pilot passage 75 (to be described later) becomes higher than a predetermined differential pressure set in advance as compared with a pilot pressure in the first pilot passage 65.
  • a valve 28 is provided.
  • the predetermined differential pressure set in advance is a differential pressure between the first pilot passage 65 and the second pilot passage 75 when only the operation valves 31 to 34 are switched.
  • the second circuit system 30 includes, in order from the upstream side, an operation valve 31 that controls the traveling motor of the right crawler 2a, an operation valve 32 that controls the spare actuator, and an operation valve 33 that also controls the spare actuator, And an operation valve 34 for controlling the arm cylinder 7a.
  • These operation valves 31 to 34 correspond to the second operation valve, and the traveling motor, the spare actuator, and the arm cylinder 7a correspond to the second actuator.
  • the second circuit system 30 includes a second neutral passage 35 that allows the second discharge passage 16 to communicate with the tank 19 in a state where the operation valves 31 to 34 are all in the normal position, and a parallel passage that is provided in parallel with the second neutral passage 35. 36.
  • the operation valves 31 to 34 control the operation of each actuator by controlling the flow rate of hydraulic oil guided from the hydraulic pump 10 to each actuator.
  • Each of the operation valves 31 to 34 is operated by a pilot pressure supplied when the operator of the excavator 1 manually operates the operation lever.
  • the operation valve 31 is normally in the normal position by the biasing force of the pair of centering springs, and is switched to the first switching position and the second switching position by the pilot pressure supplied from the pilot passages 31a and 31b.
  • the operation valve 32 is normally in the normal position by the urging force of the pair of return springs, and is switched to the first switching position and the second switching position by the pilot pressure supplied from the pilot passages 32a and 32b.
  • the operation valve 33 is normally in the normal position by the urging force of the pair of return springs, and is switched to the first switching position and the second switching position by the pilot pressure supplied from the pilot passages 33a and 33b.
  • the operation valve 34 is normally in the normal position by the urging force of the pair of return springs, and is switched to the first switching position and the second switching position by the pilot pressure supplied from the pilot passages 34a and 34b.
  • a neutral cut valve 37 is provided. The neutral cut valve 37 blocks communication between the second neutral passage 35 and the tank 19 when the operation valves 21 to 23 of the first circuit system 20 are switched.
  • the neutral cut valve 37 has a communication position 37a for communicating the second neutral passage 35 and a blocking position 37b for blocking the second neutral passage 35.
  • the neutral cut valve 37 is normally in the communication position 37a by the biasing force of the return spring.
  • the neutral cut valve 37 is switched to the cutoff position 37b by the pilot pressure supplied to the pilot chamber 37c.
  • Opening / closing is opened upstream of the pilot chamber 37c when a pilot pressure in a first pilot passage 65, which will be described later, becomes higher than a predetermined differential pressure set in advance compared to a pilot pressure in the second pilot passage 75.
  • a valve 38 is provided.
  • the predetermined differential pressure set in advance is a differential pressure between the first pilot passage 65 and the second pilot passage 75 when only the operation valves 21 to 23 are switched.
  • the neutral cut valves 27 and 37 may be provided in at least one of the first circuit system 20 and the second circuit system 30.
  • the communication switching valve 40 is a normal position 40a that blocks the first neutral passage 25 and the second neutral passage 35, and a first series that allows only the flow of hydraulic oil from the first neutral passage 25 to the second neutral passage 35.
  • the passage position 40b and the second communication position 40c that allows only the flow of hydraulic oil from the second neutral passage 35 to the first neutral passage 25 are provided.
  • the communication switching valve 40 is normally in the normal position 40a by the biasing force of the pair of centering springs.
  • the communication switching valve 40 is switched to the first communication position 40b by the pilot pressure supplied to the first pilot chamber 40d, and is switched to the second communication position 40c by the pilot pressure acting on the second pilot chamber 40e.
  • Opening / closing is opened upstream of the first pilot chamber 40d when the pilot pressure in the second pilot passage 75 is higher than a predetermined differential pressure set in advance compared to the pilot pressure in the first pilot passage 65.
  • a valve 42 is provided. The on-off valve 42 is opened and closed at the same timing as the on-off valve 28 that switches the pilot pressure acting on the pilot chamber 27 c of the neutral cut valve 27.
  • pilot pressure in the first pilot passage 65 (described later) is higher than a predetermined differential pressure set in advance compared to the pilot pressure in the second pilot passage 75, upstream of the second pilot chamber 40e.
  • An on-off valve 41 that opens is provided. The on-off valve 41 is opened and closed at the same timing as the on-off valve 38 for switching the pilot pressure acting on the pilot chamber 37 c of the neutral cut valve 37.
  • the discharge flow rate adjusting mechanism 50 selects the highest pilot pressure among the pilot pressures for switching the operation valves 21 to 23 and communicates them, and the highest pressure among the pilot pressures for switching the operation valves 31 to 34.
  • the high pressure side pilot pressure is selected from among the pilot pressures communicated from the first high pressure selection circuit 60 and the second high pressure selection circuit 70 to the regulator 11 by selecting and communicating the pilot pressure of A shuttle valve 80 as a high pressure selection valve to be operated, a switching valve 81 that is switched by a pilot pressure communicated from the first high pressure selection circuit 60 and a pilot pressure communicated from the second high pressure selection circuit 70, and the first high pressure selection circuit 60
  • the pilot pressure acting on the regulator 11 as the differential pressure of the pilot pressure communicating from the second high pressure selection circuit 70 increases.
  • the first high-pressure selection circuit 60 selects the high-pressure side pilot pressure in the pilot passage 21a and the pilot passage 21b and communicates the high-pressure side pilot pressure between the pilot passage 22a and the pilot passage 22b.
  • a shuttle valve 62 that is selected and communicated, and a shuttle valve 63 that selects and communicates the pilot pressure on the high pressure side of the pilot passage 23a and the pilot passage 23b are provided.
  • the pilot pressure guided from the shuttle valves 61 to 63 joins the first pilot passage 65 via check valves 61a to 63a that prevent backflow of hydraulic oil.
  • the first high pressure selection circuit 60 selects the highest pilot pressure among the pilot passages 21 a, 21 b, 22 a, 22 b, 23 a, 23 b, and pilots the second pilot chamber 40 e of the communication switching valve 40 and the neutral cut valve 37. It leads to the chamber 37c.
  • the second high-pressure selection circuit 70 selects the high-pressure side pilot pressure in the pilot passage 31a and the pilot passage 31b and makes the high-pressure-side pilot pressure out of the pilot passage 32a and the pilot passage 32b.
  • a shuttle valve 74 for selecting and communicating the pressure.
  • the pilot pressure guided from the shuttle valves 71 to 74 joins the second pilot passage 75 via check valves 71a to 74a that prevent backflow of hydraulic oil.
  • the second high pressure selection circuit 70 selects the highest pilot pressure from among the pilot passages 31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, and neutralizes the first pilot chamber 40d of the communication switching valve 40. It leads to the pilot chamber 27c of the valve 27.
  • the shuttle valve 80 selects either one of the hydraulic fluids on the high pressure side of the first pilot passage 65 and the second pilot passage 75 and enters the pilot passage 11a of the regulator 11 through the pilot passage 80a. Lead.
  • the switching valve 81 blocks the high pressure side of the pilot pressure communicating from the first pilot passage 65 and the pilot pressure communicating from the second pilot passage 75 and causes the low pressure side to act on the differential pressure reducing valve 82.
  • the switching valve 81 shuts off the hydraulic oil from the first pilot passage 65 and the second pilot passage 75 and allows only the hydraulic oil from the pilot passage 80a to communicate, and the hydraulic oil from the second pilot passage 75
  • a first switching position 81b for communicating the hydraulic oil from the pilot passage 80a and a second switching position 81c for communicating the hydraulic oil from the first pilot passage 65 and the hydraulic oil from the pilot passage 80a are provided.
  • the switching valve 81 has a spool (not shown) on which the urging force of the centering spring 81d and the pilot pressure of the pilot passage 81f act on one side and the urging force of the centering spring 81e and the pilot pressure on the pilot passage 81g on the other side. Prepare.
  • the hydraulic pressure of the first pilot passage 65 is guided to the pilot passage 81f
  • the hydraulic pressure of the second pilot passage 75 is guided to the pilot passage 81g.
  • the switching valve 81 When the pilot pressure is not supplied to the first pilot passage 65 and the second pilot passage 75, the switching valve 81 is switched to the normal position 81a by the urging force of the centering springs 81d and 81e.
  • the switching valve 81 When the pilot pressure in the first pilot passage 65 is higher than the pilot pressure in the second pilot passage 75, the switching valve 81 is switched to the first switching position 81b by the pilot pressure in the pilot passage 81f. As a result, the pilot pressure in the first pilot passage 65, which is higher than that in the second pilot passage 75, passes through the shuttle valve 80 and is guided from the pilot passage 80a to the pilot passage 11a. The pilot pressure in the second pilot passage 75 having a lower pressure is introduced to the differential pressure reducing valve 82 through the pilot passage 82c.
  • the switching valve 81 is switched to the second switching position 81c by the pilot pressure in the pilot passage 81g.
  • the pilot pressure in the second pilot passage 75 having a higher pressure than that in the first pilot passage 65 passes through the shuttle valve 80 and is guided from the pilot passage 80a to the pilot passage 11a.
  • the pilot pressure in the first pilot passage 65 having a lower pressure is guided to the differential pressure reducing valve 82 through the pilot passage 82c.
  • the differential pressure reducing valve 82 includes a communication position 82a for connecting the pilot passage 80a and the pilot passage 11a, and a pressure reduction position 82b for returning a part of the hydraulic oil in the pilot passage 11a to the tank 19 to lower the pilot pressure in the pilot passage 11a. And comprising.
  • the differential pressure reducing valve 82 is normally in the communication position 82a by the biasing force of the return spring.
  • the differential pressure reducing valve 82 is switched to the communication position 82a by the urging force of the return spring and the pilot pressure of the pilot passage 82c, and is switched to the pressure reducing position 82b by the pilot pressure of the pilot passage 82d guided from the pilot passage 11a. Therefore, the differential pressure reducing valve 82 increases the hydraulic oil that returns to the tank 19 as the pilot pressure in the pilot passage 82d becomes larger than the pilot pressure in the pilot passage 82c.
  • the differential pressure reducing valve 82 When the differential pressure reducing valve 82 is in the communication position 82a, the pilot pressure on the high pressure side of the first pilot passage 65 and the second pilot passage 75 is guided to the pilot passage 11a. On the other hand, the pilot pressure on the low pressure side of the first pilot passage 65 and the second pilot passage 75 is guided to the pilot passage 82c. Therefore, the differential pressure reducing valve 82 lowers the pilot pressure acting on the regulator 11 as the differential pressure between the pilot pressures communicating from the first pilot passage 65 and the second pilot passage 75 increases.
  • the hydraulic oil discharged from the hydraulic pump 10 is apportioned into the first discharge passage 15 and the second discharge passage 16 and guided to the first neutral passage 25 and the second neutral passage 35.
  • the hydraulic pump 10 is adjusted to the minimum discharge flow rate because the pilot pressure acting on the regulator 11 from the pilot passage 11a is zero when all the operation valves 21 to 23 and 31 to 34 are not operated. Is done.
  • the operation valve 22 for operating the boom 6 is switched to the first switching position or the second switching position, and the operation valve 34 for operating the arm 7 is switched to the first switching position or the second switching position.
  • a pilot pressure is input to the first high pressure selection circuit 60 from the pilot passage 22a or the pilot passage 22b.
  • the pilot pressure in the pilot passage 22 a or the pilot passage 22 b is guided to the first pilot passage 65.
  • a pilot pressure is input to the second high pressure selection circuit 70 from the pilot passage 34a or the pilot passage 34b.
  • the pilot pressure in the pilot passage 34 a or the pilot passage 34 b is guided to the second pilot passage 75.
  • the pilot pressure in the first pilot passage 65 and the pilot pressure in the second pilot passage 75 differ in size depending on piping resistance and the like.
  • the pilot pressure in the first pilot passage 65 is higher than the pilot pressure in the second pilot passage 75 will be described.
  • the differential pressure between the pilot pressure in the first pilot passage 65 and the pilot pressure in the second pilot passage 75 is a difference due to piping resistance or the like, and thus does not become higher than a predetermined differential pressure set in advance. Therefore, both the on-off valves 41 and 42 are closed, and the communication switching valve 40 is in the normal position 40a.
  • the on-off valves 28 and 38 are both closed, and the neutral cut valves 27 and 37 are both at the communication positions 27a and 37a. Therefore, the remaining hydraulic oil that has not been led to the boom cylinder 6 a or the arm cylinder 7 a among the hydraulic oil led to the first neutral passage 25 and the second neutral passage 35 is returned to the tank 19.
  • the shuttle valve 80 selects the pilot pressure in the first pilot passage 65 and communicates with the pilot passage 80a. Let The switching valve 81 is switched to the first switching position 81b when the pilot pressure guided from the first pilot passage 65 to the pilot passage 81f overcomes the pilot pressure guided from the second pilot passage 75 to the pilot passage 81g.
  • the differential pressure reducing valve 82 In the differential pressure reducing valve 82, the pilot pressure of the first pilot passage 65 is guided to the pilot passage 82d, and the pilot pressure of the second pilot passage 75 is guided to the pilot passage 82c.
  • the differential pressure between the pilot passage 82c and the pilot passage 82d is small, the urging force of the return spring and the pilot pressure of the pilot passage 82c overcome the pilot pressure of the pilot passage 82d. Therefore, the differential pressure reducing valve 82 is switched to the communication position 82a, and the pilot pressure of the first pilot passage 65 is guided from the pilot passage 11a to the regulator 11. Therefore, the hydraulic pump 10 is adjusted so that the maximum discharge flow rate is obtained when both the operation valve 22 and the operation valve 34 are operated.
  • the pilot pressure in the pilot passage 22a or the pilot passage 22b is changed between the shuttle valve 62 and the check valve 62a. And is guided to the first pilot passage 65.
  • all the operation valves 31 to 34 are in the normal position, all pilot pressures input to the second high pressure selection circuit 70 are zero. Therefore, the pilot pressure in the second pilot passage 75 is zero.
  • the on-off valve 38 and the on-off valve 41 are opened. Therefore, the communication switching valve 40 is switched to the second communication position 40c, and the neutral cut valve 37 is switched to the cutoff position 37b.
  • the shuttle valve 80 selects the pilot pressure in the first pilot passage 65 to communicate with the pilot passage 80a. .
  • the switching valve 81 is switched to the first switching position 81b when the pilot pressure guided from the first pilot passage 65 to the pilot passage 81f overcomes the pilot pressure guided from the second pilot passage 75 to the pilot passage 81g.
  • the differential pressure reducing valve 82 In the differential pressure reducing valve 82, the pilot pressure of the first pilot passage 65 is guided to the pilot passage 82d, and the pilot pressure of the second pilot passage 75 is guided to the pilot passage 82c.
  • the differential pressure between the pilot passage 82c and the pilot passage 82d is large, the differential pressure reducing valve 82 is switched to the pressure reducing position 82b, and the hydraulic oil recirculated from the pilot passage 11a to the tank 19 increases. Therefore, when only the operation valve 22 is operated, the hydraulic pump 10 is adjusted so that the pilot pressure acting on the regulator 11 decreases and the discharge flow rate decreases.
  • the working oil merges from the second neutral passage 35 on the side where the operation valves 31 to 34 are not operated to the first neutral passage 25 on the side where the operation valve 22 is operated, and the discharge flow rate adjusting mechanism. 50 decreases the discharge flow rate of the hydraulic pump 10. Therefore, by using the hydraulic oil that has been recirculated to the tank 19 in the past, the flow rate of the hydraulic oil necessary for the operation of the actuator can be ensured even if the discharge flow rate of the hydraulic pump 10 is reduced. Can be improved.
  • the operator operates the operation lever to supply the pilot pressure from the pilot passage 34a or the pilot passage 34b, so that the operation valve 34 is in the first switching position or the second switching position. Can be switched to. Thereby, a part of the hydraulic fluid guided from the first discharge port 12 of the hydraulic pump 10 to the second circuit system 30 is guided from the operation valve 34 to the arm cylinder 7a.
  • the pilot pressure in the pilot passage 34a or the pilot passage 34b is changed between the shuttle valve 74 and the check valve 74a. And is guided to the second pilot passage 75.
  • the operation valves 21 to 23 are all in the normal position, all pilot pressures input to the first high pressure selection circuit 60 are zero. Therefore, the pilot pressure in the first pilot passage 65 is zero.
  • the on-off valve 28 and the on-off valve 42 are opened. Therefore, the communication switching valve 40 is switched to the first series communication position 40b, and the neutral cut valve 27 is switched to the cutoff position 27b.
  • the shuttle valve 80 selects the pilot pressure in the second pilot passage 75 to communicate with the pilot passage 80a. .
  • the switching valve 81 is switched to the second switching position 81c when the pilot pressure guided from the second pilot passage 75 to the pilot passage 81g overcomes the pilot pressure guided from the first pilot passage 65 to the pilot passage 81f.
  • the differential pressure reducing valve 82 In the differential pressure reducing valve 82, the pilot pressure of the second pilot passage 75 is guided to the pilot passage 82d, and the pilot pressure of the first pilot passage 65 is guided to the pilot passage 82c.
  • the differential pressure between the pilot passage 82c and the pilot passage 82d is large, the differential pressure reducing valve 82 is switched to the pressure reducing position 82b, and the hydraulic oil recirculated from the pilot passage 11a to the tank 19 increases. Therefore, when only the operation valve 34 is operated, the hydraulic pump 10 is adjusted so that the pilot pressure acting on the regulator 11 decreases and the discharge flow rate decreases.
  • the working oil merges from the first neutral passage 25 on the side where the operation valves 21 to 23 are not operated to the second neutral passage 35 on the side where the operation valve 34 is operated, and the discharge flow rate adjusting mechanism. 50 decreases the discharge flow rate of the hydraulic pump 10. Therefore, by using the hydraulic oil that has been recirculated to the tank 19 in the past, the flow rate of the hydraulic oil necessary for the operation of the actuator can be ensured even if the discharge flow rate of the hydraulic pump 10 is reduced. Can be improved.
  • the communication switching valve 40 causes the first neutral passage 25 and the second neutral passage 35 to communicate with each other by the pilot pressure, and the operation valves 21 to 23 and 31 to 34 of the first neutral passage 25 and the second neutral passage 35 are operated.
  • Neutral cut valves 27 and 37 block the side that is not.
  • the first circuit system 20 and the second circuit system 30 are operated from the side where the operation valves 21 to 23 and 31 to 34 are not operated to the side where the operation valves 21 to 23 and 31 to 34 are operated. Oil joins.
  • the discharge flow rate adjusting mechanism 50 decreases the discharge flow rate of the hydraulic pump 10. Therefore, by using the hydraulic oil that has been recirculated to the tank 19 in the past, the flow rate of the hydraulic oil necessary for the operation of the actuator can be ensured even if the discharge flow rate of the hydraulic pump 10 is reduced. Can be improved.
  • the discharge flow rate adjustment mechanism 150 is different from the discharge flow rate adjustment mechanism 50 in that a first switching valve 181 and a second switching valve 182 are provided instead of the single switching valve 81.
  • the discharge flow rate adjusting mechanism 150 selects the highest pilot pressure among the pilot pressures for switching the operation valves 21 to 23 and communicates them, and the highest pressure among the pilot pressures for switching the operation valves 31 to 34.
  • the high pressure side pilot pressure is selected from among the pilot pressures communicated from the first high pressure selection circuit 60 and the second high pressure selection circuit 70 to the regulator 11 by selecting and communicating the pilot pressure of A shuttle valve 80 as a high pressure selection valve to be actuated, a first switching valve 181 as a switching valve that is switched by the pressure of the hydraulic oil selected by the shuttle valve 80 and the pilot pressure communicated from the first high pressure selection circuit 60; It is switched by the pressure of the hydraulic oil selected by the shuttle valve 80 and the pilot pressure communicated from the second high pressure selection circuit 70.
  • Differential pressure reduction that lowers the pilot pressure acting on the regulator 11 as the differential pressure of the pilot pressure communicating with the second switching valve 182 as the switching valve, the first high pressure selection circuit 60 and the second high pressure selection circuit 70 increases.
  • a valve 82 that lower
  • the first switching valve 181 includes a blocking position 181a that blocks hydraulic oil from the first pilot passage 65 and a communication position 181b that allows hydraulic fluid from the first pilot passage 65 to communicate.
  • the first switching valve 181 is provided with a spool (not shown) on which the pilot pressure of the pilot passage 80a acts on one side and the urging force of the return spring 181c and the pilot pressure of the pilot passage 181d act on the other side.
  • the hydraulic pressure of the first pilot passage 65 is guided to the pilot passage 181d.
  • the second switching valve 182 includes a blocking position 182a for blocking hydraulic oil from the second pilot passage 75, and a communication position 182b for allowing hydraulic oil from the second pilot passage 75 to communicate.
  • the second switching valve 182 is provided with a spool (not shown) on which the pilot pressure of the pilot passage 80a acts on one side and the urging force of the return spring 182c and the pilot pressure of the pilot passage 182d on the other side. The hydraulic pressure of the second pilot passage 75 is guided to the pilot passage 182d.
  • One of the first switching valve 181 and the second switching valve 182 is switched to the communication position 181b or the communication position 182b by the pressure of the hydraulic oil selected by the shuttle valve 80, and the passed hydraulic oil is used as a pilot pressure as a pilot passage 82c. Led to.
  • the pilot pressure in the first pilot passage 65 and the pilot pressure in the second pilot passage 75 are used in the differential pressure reducing valve 82 as in the discharge flow rate adjusting mechanism 50. Is connected to the pilot passage 82d, and the low pressure side between the pilot pressure of the first pilot passage 65 and the pilot pressure of the second pilot passage 75 is guided to the pilot passage 82c. Accordingly, even when the discharge flow rate adjustment mechanism 150 is used, the discharge flow rate of the hydraulic pump 10 can be adjusted in the same manner as the discharge flow rate adjustment mechanism 50.
  • control system 200 a work machine control system (hereinafter simply referred to as a “control system”) 200 according to a second embodiment of the present invention will be described with reference to FIG.
  • control system 200 a work machine control system 200 according to a second embodiment of the present invention.
  • differences from the first embodiment described above will be mainly described, and components having the same functions as those in the first embodiment will be denoted by the same reference numerals. Description is omitted.
  • the control system 200 is different from the first embodiment in that it includes a discharge flow rate adjustment mechanism 250 as a discharge flow rate adjustment device controlled by the controller 255 instead of the discharge flow rate adjustment mechanisms 50 and 150.
  • the electrical signal output by the switching operation of the operation valves 21 to 23 or the operation valves 31 to 34 corresponds to the switching signal.
  • This electrical signal is, for example, a signal from a pressure sensor (not shown) that detects pilot pressure acting on the operation valves 21 to 23, 31 to 34, or a displacement sensor (not shown) that detects the operation of the operation lever by the operator.
  • the signal from a pressure sensor not shown
  • a displacement sensor not shown
  • the discharge flow rate adjusting mechanism 250 includes a pilot pump 251 that generates pilot pressure, a first pressure reducing valve 260 that is controlled when an electric signal is input only from the operation valves 21 to 23, and an electric power only from the operation valves 31 to 34.
  • a second pressure reducing valve 270 that is controlled when a signal is input
  • a third pressure reducing valve 280 that is controlled when an electric signal is input from one of the operation valves 21 to 23 and the operation valves 31 to 34
  • a drain 252 from which hydraulic oil is discharged when the pilot pressure in the first pilot passage 65, the pilot pressure in the second pilot passage 75, or the pilot pressure acting on the regulator 11 is lowered.
  • the first pressure reducing valve 260 discharges part of the hydraulic fluid in the first pilot passage 65 to the drain 252 and a communication position 261 that guides the pilot pressure from the pilot pump 251 to the first pilot passage 65. And a pressure reducing position 262 for lowering the pilot pressure.
  • the first pressure reducing valve 260 is normally at the pressure reducing position 262 due to the biasing force of the return spring and the pilot pressure from the first pilot passage 65.
  • the first pressure reducing valve 260 is switched to the communication position 261 by the controller 255 when an electric signal is inputted only from the operation valves 21 to 23, and the pilot pressure from the pilot pump 251 is changed to the second pilot chamber of the communication switching valve 40. 40e and the pilot chamber 37c of the neutral cut valve 37 are guided.
  • the second pressure reducing valve 270 discharges a part of the hydraulic oil in the communication position 271 for guiding the pilot pressure from the pilot pump 251 to the second pilot passage 75 and the second pilot passage 75 to the drain 252 to the second pilot passage 75. And a pressure reducing position 272 for lowering the pilot pressure.
  • the second pressure reducing valve 270 is normally at the pressure reducing position 272 due to the biasing force of the return spring and the pilot pressure from the second pilot passage 75.
  • the second pressure reducing valve 270 is switched to the communication position 271 by the controller 255 when an electric signal is inputted only from the operation valves 31 to 34, and the pilot pressure from the pilot pump 251 is changed to the first pilot chamber of the communication switching valve 40. 40d and the pilot chamber 27c of the neutral cut valve 27 are guided.
  • the third pressure reducing valve 280 is a communication position 281 that guides the pilot pressure from the pilot pump 251 to the pilot passage 11a, and a pressure reducing pressure that lowers the pilot pressure in the pilot passage 11a by discharging part of the hydraulic oil in the pilot passage 11a to the drain 252. Position 282.
  • the third pressure reducing valve 280 is normally in the pressure reducing position 282 by the biasing force of the return spring and the pilot pressure from the pilot passage 11a.
  • the third pressure reducing valve 280 is switched to the pressure reducing position 282 by the controller 255 and guided from the pilot pump 251 to the regulator 11 when an electric signal is input from one of the operation valves 21 to 23 and the operation valves 31 to 34. Reduce pilot pressure.
  • the controller 255 controls the first pressure reducing valve 260, the second pressure reducing valve 270, and the third pressure reducing valve 280, so that the pilots of the first pilot passage 65, the second pilot passage 75, and the pilot passage 11a are piloted.
  • the pressure can be adjusted individually. Therefore, in the control system 200, it is not necessary to provide the on-off valves 28, 38, 41, and 42 provided in the control system 100 according to the first embodiment.
  • the hydraulic oil discharged from the hydraulic pump 10 is apportioned into the first discharge passage 15 and the second discharge passage 16 and guided to the first neutral passage 25 and the second neutral passage 35.
  • the controller 255 sets both the first pressure reducing valve 260 and the second pressure reducing valve 270 to the pressure reducing position 262. And the pressure reducing position 272, the pilot pressure in the first pilot passage 65 and the second pilot passage 75 is discharged to the drain 252. Further, the controller 255 sets the third pressure reducing valve 280 to the pressure reducing position 282 and discharges the pilot pressure from the pilot passage 11a to the drain 252.
  • the communication switching valve 40 is in the normal position 40a. Therefore, the first neutral passage 25 and the second neutral passage 35 do not communicate with each other. Further, the neutral cut valves 27 and 37 are both at the communication positions 27a and 37a. Accordingly, the hydraulic oil guided to the first neutral passage 25 and the second neutral passage 35 is returned to the tank 19.
  • the hydraulic pump 10 is adjusted to the minimum discharge flow rate because the pilot pressure acting on the regulator 11 from the pilot passage 11a is zero. .
  • an electric signal for switching the operation valve 22 for operating the boom 6 and an electric signal for switching the operation valve 34 for operating the arm 7 are input to the controller 255. Since the controller 255 is not in a state where an electric signal is inputted only from the operation valves 21 to 23, the first pressure reducing valve 260 is set to the pressure reducing position 262, and similarly, an electric signal is inputted only from the operation valves 31 to 34. Since this is not the state, the second pressure reducing valve 270 is set to the pressure reducing position 272. Further, the controller 255 switches the third pressure reducing valve 280 to the communication position 281 and supplies the pilot pressure to the regulator 11 from the pilot passage 11a.
  • the communication switching valve 40 is in the normal position 40a. Therefore, the first neutral passage 25 and the second neutral passage 35 do not communicate with each other. Further, the neutral cut valves 27 and 37 are both at the communication positions 27a and 37a. Accordingly, the hydraulic oil guided to the first neutral passage 25 and the second neutral passage 35 is returned to the tank 19.
  • the hydraulic pump 10 is adjusted to the maximum discharge flow rate because the pilot pressure acting on the regulator 11 from the pilot passage 11a is maximum.
  • controller 255 is not limited to this, and the controller 255 outputs an electric signal corresponding to the magnitude of the load of the actuator.
  • the pilot pressure output to the three pressure reducing valves 280 and guided from the pilot pump 251 to the regulator 11 is controlled.
  • the discharge flow rate adjusting mechanism 250 inputs only an electric signal for switching the operation valve 22 for operating the boom 6 to the controller 255. Since the controller 255 is in a state where an electric signal is inputted only from the operation valves 21 to 23, the first pressure reducing valve 260 is switched to the communication position 261, and an electric signal is inputted only from the operation valves 31 to 34. Therefore, the second pressure reducing valve 270 is set to the pressure reducing position 272.
  • the pilot pressure from the pilot pump 251 passes through the first pressure reducing valve 260 and is guided to the first pilot passage 65. Therefore, the communication switching valve 40 is switched to the second communication position 40c, and the neutral cut valve 37 is switched to the cutoff position 37b.
  • the hydraulic oil in the second neutral passage 35 is not returned to the tank 19 because the neutral cut valve 37 is switched to the cutoff position 37b. Therefore, the hydraulic oil supplied from the hydraulic pump 10 to the second neutral passage 35 through the second discharge passage 16 joins the first neutral passage 25 through the communication switching valve 40.
  • the controller 255 switches the third pressure reducing valve 280 to the pressure reducing position 282 in accordance with the operation amount of the operation valve 22 to guide a part of the pilot pressure of the regulator 11 to the drain 252 and reduce the pilot pressure acting on the regulator 11. . Therefore, the hydraulic pump 10 is adjusted so that the discharge flow rate decreases when only the operation valve 22 is operated.
  • the working oil merges from the second neutral passage 35 on the side where the operation valves 31 to 34 are not operated to the first neutral passage 25 on the side where the operation valve 22 is operated, and the discharge flow rate adjusting mechanism. 250 decreases the discharge flow rate of the hydraulic pump 10. Therefore, by using the hydraulic oil that has been recirculated to the tank 19 in the past, the flow rate of the hydraulic oil necessary for the operation of the actuator can be ensured even if the discharge flow rate of the hydraulic pump 10 is reduced. Can be improved.
  • the discharge flow rate adjusting mechanism 50 inputs only the electric signal for switching the operation valve 34 for operating the arm 7 to the controller 255. Since the controller 255 is not in a state in which an electric signal is input only from the operation valves 21 to 23, the first pressure reducing valve 260 is set to the pressure reducing position 262, and an electric signal is input from only the operation valves 31 to 34. Therefore, the second pressure reducing valve 270 is switched to the communication position 271.
  • the pilot pressure from the pilot pump 251 passes through the second pressure reducing valve 270 and is guided to the second pilot passage 75. Therefore, the communication switching valve 40 is switched to the first series communication position 40b, and the neutral cut valve 27 is switched to the cutoff position 27b.
  • the hydraulic oil in the first neutral passage 25 is not returned to the tank 19 because the neutral cut valve 27 is switched to the cutoff position 27b. Therefore, the hydraulic oil supplied from the hydraulic pump 10 to the first neutral passage 25 through the first discharge passage 15 joins the second neutral passage 35 through the communication switching valve 40.
  • the controller 255 switches the third pressure reducing valve 280 to the pressure reducing position 282 in accordance with the operation amount of the operation valve 34 to guide a part of the pilot pressure of the regulator 11 to the drain 252 and reduce the pilot pressure acting on the regulator 11. . Therefore, the hydraulic pump 10 is adjusted so that the discharge flow rate decreases when only the operation valve 34 is operated.
  • the working oil merges from the first neutral passage 25 on the side where the operation valves 21 to 23 are not operated to the second neutral passage 35 on the side where the operation valve 34 is operated, and the discharge flow rate adjusting mechanism. 250 decreases the discharge flow rate of the hydraulic pump 10. Therefore, by using the hydraulic oil that has been recirculated to the tank 19 in the past, the flow rate of the hydraulic oil necessary for the operation of the actuator can be ensured even if the discharge flow rate of the hydraulic pump 10 is reduced. Can be improved.
  • the same effects as in the first embodiment can be obtained. Further, in the control system 200 according to the second embodiment, since the control is performed by the controller 255, the same control can be executed with a simple configuration as compared with the control system 100 according to the first embodiment. it can.
  • the controller 255 controls the third pressure reducing valve 280 to adjust the pilot pressure acting on the regulator 11 and adjust the discharge flow rate of the hydraulic pump 10.
  • a device that adjusts the rotational speed of the engine that drives the hydraulic pump 10 may be applied as a discharge flow rate adjusting device so that the discharge flow rate of the hydraulic pump 10 can be adjusted according to the rotational speed of the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 作業機の制御システムは、作動流体を第一吐出ポートと第二吐出ポートとから吐出するスプリットフロー型の流体圧ポンプと、第一操作弁と第二操作弁とのいずれか一方が切り換えられたときの切換信号によって切り換えられて第一中立通路と第二中立通路とを連通させる連通切換弁と、切換信号によって切り換えられて前記第一中立通路と前記第二中立通路とのうち前記第一操作弁又は前記第二操作弁が切り換えられていない側のタンクとの連通を遮断する中立カット弁と、前記第一操作弁と前記第二操作弁とのいずれか一方から前記切換信号が入力された場合に前記流体圧ポンプの吐出流量を減少させるように調整する吐出流量調整装置と、を備える。

Description

作業機の制御システム
 本発明は、作業機の制御システムに関する。
 従来から、複数の回路系統を備え、複数の油圧ポンプからそれぞれの回路系統に作動油が供給される油圧ショベル等の作業機が知られている。JP10-088627Aには、第一ポンプ,第二ポンプ,及び第三ポンプからそれぞれの回路系統に作動油を供給する掘削旋回作業機が開示されている。
 また、油圧ショベル等の作業機では、二つの油圧ポンプに代えて、単一のシリンダブロックに吐出ポートが二段に分けて配設されて同時に二系統の作動油の吐出が可能なスプリットフローポンプが用いられる場合がある。
 しかしながら、スプリットフローポンプを用いた場合には、二つの回路系統への作動油の吐出流量は同一である。そのため、JP10-088627Aに記載の作業機にスプリットフローポンプを適用した場合には、一方の回路系統の操作弁のみを切り換えてアクチュエータを動作させると、他方の回路系統に供給される作動油はそのままタンクに還流されることとなる。
 本発明は、複数の回路系統を備える作業機にスプリットフローポンプを用いた場合のエネルギ効率を向上させることを目的とする。
 本発明のある態様によれば、第一アクチュエータと第二アクチュエータとを有する作業機を制御する作業機の制御システムは、作動流体を第一吐出ポートと第二吐出ポートとから吐出するスプリットフロー型の流体圧ポンプと、前記第一吐出ポートから吐出された作動流体が供給され、前記第一アクチュエータを制御する第一操作弁と当該第一操作弁がノーマル位置にある状態で前記第一吐出ポートをタンクに連通させる第一中立通路とを有する第一回路系統と、前記第二吐出ポートから吐出された作動流体が供給され、前記第二アクチュエータを制御する第二操作弁と当該第二操作弁がノーマル位置にある状態で前記第二吐出ポートをタンクに連通させる第二中立通路とを有する第二回路系統と、前記第一操作弁と前記第二操作弁とのいずれか一方が切り換えられたときの切換信号によって切り換えられて前記第一中立通路と前記第二中立通路とを連通させる連通切換弁と、前記第一回路系統と前記第二回路系統との少なくとも一方に設けられ、前記切換信号によって切り換えられて前記第一中立通路と前記第二中立通路とのうち前記第一操作弁又は前記第二操作弁が切り換えられていない側の前記タンクとの連通を遮断する中立カット弁と、前記第一操作弁と前記第二操作弁とのいずれか一方から前記切換信号が入力された場合に前記流体圧ポンプの吐出流量を減少させるように調整する吐出流量調整装置と、を備える。
図1は、本発明の第一及び第二の実施の形態に係る作業機の制御システムが適用される作業機の構成図である。 図2は、本発明の第一の実施の形態に係る作業機の制御システムの回路図である。 図3は、図2における吐出流量調整装置の一部を拡大した図である。 図4は、吐出流量調整装置の変形例を説明する図である。 図5は、本発明の第二の実施の形態に係る作業機の制御システムの回路図である。
 以下、図面を参照して、本発明の実施の形態について説明する。
 (第一の実施の形態)
 以下、図1から図4を参照して、本発明の第一の実施の形態に係る作業機の制御システム(以下、単に「制御システム」と称する。)100について説明する。
 まず、図1を参照して、制御システム100が適用される作業機としての油圧ショベル1について説明する。ここでは、作業機が油圧ショベル1である場合について説明するが、制御システム100は、ホイールローダ等の他の作業機にも適用可能である。また、ここでは、作動流体として作動油が用いられるが、作動水等の他の流体を作動流体として用いてもよい。
 油圧ショベル1は、クローラ式の走行部2と、走行部2の上部に旋回可能に設けられる旋回部3と、旋回部3の前方中央部に設けられる掘削部5と、を備える。
 走行部2は、走行モータ(図示省略)によって左右一対のクローラ2aを駆動することで油圧ショベル1を走行させる。旋回部3は、旋回モータ(図示省略)によって駆動され、走行部2に対して左右方向に旋回する。
 掘削部5は、旋回部3の左右方向に延びる水平軸まわりに回動可能に支持されるブーム6と、ブーム6の先端に回動可能に支持されるアーム7と、アーム7の先端に回動可能に支持されて土砂等を掘削するバケット8と、を備える。また、掘削部5は、ブーム6を上下に回動させるブームシリンダ6aと、アーム7を上下に回動させるアームシリンダ7aと、バケット8を回動させるバケットシリンダ8aと、を備える。
 次に、図2及び図3を参照して、制御システム100の構成について説明する。
 制御システム100は、作動油を吐出する流体圧ポンプとしての油圧ポンプ10と、第一吐出ポート12から吐出された作動油が供給される第一回路系統20と、第二吐出ポート13から吐出された作動油が供給される第二回路系統30と、第一回路系統20の操作弁21~23と第二回路系統30の操作弁31~34とのいずれか一方が切り換えられたときのパイロット圧によって切り換えられて第一回路系統20の第一中立通路25と第二回路系統30の第二中立通路35とを連通させる連通切換弁40と、操作弁21~23と操作弁31~34とのいずれか一方からパイロット圧が入力された場合に油圧ポンプ10の吐出流量を減少させるように調整する吐出流量調整装置としての吐出流量調整機構50と、を備える。ここでは、操作弁21~23又は操作弁31~34を切り換えるパイロット圧が切換信号に該当する。
 制御システム100は、油圧ショベル1の複数のアクチュエータの動作を制御するものである。制御システム100は、油圧ポンプ10の他に、旋回モータ等の他のアクチュエータを有する第三回路系統(図示省略)に作動油を供給する他のポンプ(図示省略)を備える。
 油圧ポンプ10は、エンジン(図示省略)によって駆動される。油圧ポンプ10は、単一のシリンダブロック(図示省略)に第一吐出ポート12と第二吐出ポート13とが二段に分けて配設されて同時に二系統の作動油の吐出が可能なスプリットフロー型のポンプである。油圧ポンプ10は、第一吐出ポート12と第二吐出ポート13とから作動油を按分して吐出する。
 油圧ポンプ10は、パイロット圧で制御されるレギュレータ11によって傾転角が調整される斜板(図示省略)を備え、斜板の傾転角によって吐出流量が調整される可変容量型ポンプである。油圧ポンプ10は、吐出流量調整機構50によって調整された作動油の圧力をパイロット圧として、当該パイロット圧が高いほど吐出流量が多くなるように斜板の傾転角が調整される。油圧ポンプ10では、単一のレギュレータ11によって、第一吐出ポート12と第二吐出ポート13とから吐出される作動油の吐出流量が調整される。
 油圧ポンプ10から吐出された作動油は、第一吐出ポート12に接続される第一吐出通路15と、第二吐出ポート13に接続される第二吐出通路16と、を通じて、第一回路系統20と第二回路系統30とにそれぞれ供給される。
 第一吐出通路15と第二吐出通路16との下流には、所定のメインリリーフ圧を超えると開弁して作動油圧をメインリリーフ圧以下に保つメインリリーフ弁18が設けられる。第一吐出通路15と第二吐出通路16とには、メインリリーフ弁18への作動油の流れのみを許容するチェック弁15a,16aがそれぞれ設けられる。所定のメインリリーフ圧は、後述する各操作弁21~23,31~34の最低作動圧を充分に確保できる程度に高く設定される。
 第一回路系統20は、上流側から順に、左側のクローラ2aの走行モータを制御する操作弁21と、ブームシリンダ6aを制御する操作弁22と、バケットシリンダ8aを制御する操作弁23と、を備える。これらの操作弁21~23が第一操作弁に該当し、走行用モータとブームシリンダ6aとバケットシリンダ8aとが第一アクチュエータに該当する。第一回路系統20は、操作弁21~23が全てノーマル位置にある状態で第一吐出通路15をタンク19に連通させる第一中立通路25と、第一中立通路25と並列に設けられるパラレル通路26と、を備える。
 各操作弁21~23は、油圧ポンプ10から各アクチュエータへ導かれる作動油の流量を制御して、各アクチュエータの動作を制御する。各操作弁21~23は、油圧ショベル1のオペレータが操作レバーを手動操作することに伴って供給されるパイロット圧によって操作される。
 操作弁21は、通常は一対のセンタリングスプリングの付勢力によってノーマル位置にあり、パイロット通路21a,21bから供給されるパイロット圧によって第一切換位置,第二切換位置に切り換えられる。操作弁22は、通常は一対のセンタリングスプリングの付勢力によってノーマル位置にあり、パイロット通路22a,22bから供給されるパイロット圧によって第一切換位置,第二切換位置に切り換えられる。操作弁23は、通常は一対のセンタリングスプリングの付勢力によってノーマル位置にあり、パイロット通路23a,23bから供給されるパイロット圧によって第一切換位置,第二切換位置に切り換えられる。
 第一中立通路25における操作弁23の下流側には、第二回路系統30の操作弁31~34に作用するパイロット圧によって切り換えられて第一中立通路25を遮断する第一中立カット弁としての中立カット弁27が設けられる。中立カット弁27は、第二回路系統30の操作弁31~34が切り換えられた場合に、第一中立通路25とタンク19との連通を遮断する。
 中立カット弁27は、第一中立通路25を連通させる連通位置27aと、第一中立通路25を遮断する遮断位置27bと、を有する。中立カット弁27は、通常はリターンスプリングの付勢力によって連通位置27aにある。中立カット弁27は、パイロット室27cに供給されるパイロット圧によって遮断位置27bに切り換えられる。
 パイロット室27cの上流には、後述する第二パイロット通路75のパイロット圧が第一パイロット通路65のパイロット圧と比較して予め設定された所定の差圧よりも高くなった場合に開弁する開閉弁28が設けられる。この予め設定された所定の差圧は、操作弁31~34のみが切り換えられている場合の第一パイロット通路65と第二パイロット通路75との差圧である。
 第二回路系統30は、上流側から順に、右側のクローラ2aの走行モータを制御する操作弁31と、予備のアクチュエータを制御する操作弁32と、同じく予備のアクチュエータを制御する操作弁33と、アームシリンダ7aを制御する操作弁34と、を備える。これらの操作弁31~34が第二操作弁に該当し、走行用モータと予備のアクチュエータとアームシリンダ7aとが第二アクチュエータに該当する。第二回路系統30は、操作弁31~34が全てノーマル位置にある状態で第二吐出通路16をタンク19に連通させる第二中立通路35と、第二中立通路35と並列に設けられるパラレル通路36と、を備える。
 各操作弁31~34は、油圧ポンプ10から各アクチュエータへ導かれる作動油の流量を制御して、各アクチュエータの動作を制御する。各操作弁31~34は、油圧ショベル1のオペレータが操作レバーを手動操作することに伴って供給されるパイロット圧によって操作される。
 操作弁31は、通常は一対のセンタリングスプリングの付勢力によってノーマル位置にあり、パイロット通路31a,31bから供給されるパイロット圧によって第一切換位置,第二切換位置に切り換えられる。操作弁32は、通常は一対のリターンスプリングの付勢力によってノーマル位置にあり、パイロット通路32a,32bから供給されるパイロット圧によって第一切換位置,第二切換位置に切り換えられる。操作弁33は、通常は一対のリターンスプリングの付勢力によってノーマル位置にあり、パイロット通路33a,33bから供給されるパイロット圧によって第一切換位置,第二切換位置に切り換えられる。操作弁34は、通常は一対のリターンスプリングの付勢力によってノーマル位置にあり、パイロット通路34a,34bから供給されるパイロット圧によって第一切換位置,第二切換位置に切り換えられる。
 第二中立通路35における操作弁34の下流側には、第一回路系統20の操作弁21~23に作用するパイロット圧によって切り換えられて第二中立通路35を遮断する第二中立カット弁としての中立カット弁37が設けられる。中立カット弁37は、第一回路系統20の操作弁21~23が切り換えられた場合に、第二中立通路35とタンク19との連通を遮断する。
 中立カット弁37は、第二中立通路35を連通させる連通位置37aと、第二中立通路35を遮断する遮断位置37bと、を有する。中立カット弁37は、通常はリターンスプリングの付勢力によって連通位置37aにある。中立カット弁37は、パイロット室37cに供給されるパイロット圧によって遮断位置37bに切り換えられる。
 パイロット室37cの上流には、後述する第一パイロット通路65のパイロット圧が第二パイロット通路75のパイロット圧と比較して予め設定された所定の差圧よりも高くなった場合に開弁する開閉弁38が設けられる。この予め設定された所定の差圧は、操作弁21~23のみが切り換えられている場合の第一パイロット通路65と第二パイロット通路75との差圧である。
 なお、例えば、第一回路系統20の操作弁21~23のみが単独で切り換えられ、第二回路系統30の操作弁31~34は操作弁21~23と同時にしか切り換えられない場合には、中立カット弁27を設ける必要はなく、中立カット弁37のみが設けられればよい。このように、中立カット弁27,37は、第一回路系統20と第二回路系統30との少なくとも一方に設けられればよい。
 連通切換弁40は、第一中立通路25と第二中立通路35とを遮断するノーマル位置40aと、第一中立通路25から第二中立通路35への作動油の流れのみを許容する第一連通位置40bと、第二中立通路35から第一中立通路25への作動油の流れのみを許容する第二連通位置40cと、を有する。連通切換弁40は、通常は一対のセンタリングスプリングの付勢力によってノーマル位置40aにある。連通切換弁40は、第一パイロット室40dに供給されるパイロット圧によって第一連通位置40bに切り換えられ、第二パイロット室40eに作用するパイロット圧によって第二連通位置40cに切り換えられる。
 第一パイロット室40dの上流には、第二パイロット通路75のパイロット圧が第一パイロット通路65のパイロット圧と比較して予め設定された所定の差圧よりも高くなった場合に開弁する開閉弁42が設けられる。開閉弁42は、中立カット弁27のパイロット室27cに作用するパイロット圧を切り換える開閉弁28と同じタイミングで開閉される。
 同様に、第二パイロット室40eの上流には、後述する第一パイロット通路65のパイロット圧が第二パイロット通路75のパイロット圧と比較して予め設定された所定の差圧よりも高くなった場合に開弁する開閉弁41が設けられる。開閉弁41は、中立カット弁37のパイロット室37cに作用するパイロット圧を切り換える開閉弁38と同じタイミングで開閉される。
 吐出流量調整機構50は、操作弁21~23を切り換えるパイロット圧のうち最も高圧のパイロット圧を選択して連通させる第一高圧選択回路60と、操作弁31~34を切り換えるパイロット圧のうち最も高圧のパイロット圧を選択して連通させる第二高圧選択回路70と、第一高圧選択回路60と第二高圧選択回路70とから連通するパイロット圧のうち高圧側のパイロット圧を選択してレギュレータ11に作用させる高圧選択弁としてのシャトル弁80と、第一高圧選択回路60から連通するパイロット圧と第二高圧選択回路70から連通するパイロット圧とによって切り換えられる切換弁81と、第一高圧選択回路60と第二高圧選択回路70とから連通するパイロット圧の差圧が大きいほどレギュレータ11に作用するパイロット圧を低くする差圧減圧弁82と、を備える。
 第一高圧選択回路60は、パイロット通路21aとパイロット通路21bとのうち高圧側のパイロット圧を選択して連通させるシャトル弁61と、パイロット通路22aとパイロット通路22bとのうち高圧側のパイロット圧を選択して連通させるシャトル弁62と、パイロット通路23aとパイロット通路23bとのうち高圧側のパイロット圧を選択して連通させるシャトル弁63と、を備える。シャトル弁61~63から導かれるパイロット圧は、作動油の逆流を防止するチェック弁61a~63aを介して第一パイロット通路65に合流する。第一高圧選択回路60は、パイロット通路21a,21b,22a,22b,23a,23bのうち最も高圧のパイロット圧を選択して、連通切換弁40の第二パイロット室40eと中立カット弁37のパイロット室37cとに導く。
 第二高圧選択回路70は、パイロット通路31aとパイロット通路31bとのうち高圧側のパイロット圧を選択して連通させるシャトル弁71と、パイロット通路32aとパイロット通路32bとのうち高圧側のパイロット圧を選択して連通させるシャトル弁72と、パイロット通路33aとパイロット通路33bとのうち高圧側のパイロット圧を選択して連通させるシャトル弁73と、パイロット通路34aとパイロット通路34bとのうち高圧側のパイロット圧を選択して連通させるシャトル弁74と、を備える。シャトル弁71~74から導かれるパイロット圧は、作動油の逆流を防止するチェック弁71a~74aを介して第二パイロット通路75に合流する。第二高圧選択回路70は、パイロット通路31a,31b,32a,32b,33a,33b,34a,34bのうち最も高圧のパイロット圧を選択して、連通切換弁40の第一パイロット室40dと中立カット弁27のパイロット室27cとに導く。
 図3に示すように、シャトル弁80は、第一パイロット通路65と第二パイロット通路75とのうち高圧側のいずれか一方の作動油を選択してパイロット通路80aを通じてレギュレータ11のパイロット通路11aに導く。
 切換弁81は、第一パイロット通路65から連通するパイロット圧と、第二パイロット通路75から連通するパイロット圧とのうち、高圧側を遮断して低圧側を差圧減圧弁82に作用させる。
 切換弁81は、第一パイロット通路65及び第二パイロット通路75からの作動油を遮断してパイロット通路80aからの作動油のみを連通させるノーマル位置81aと、第二パイロット通路75からの作動油とパイロット通路80aからの作動油とを連通させる第一切換位置81bと、第一パイロット通路65からの作動油とパイロット通路80aからの作動油とを連通させる第二切換位置81cと、を備える。切換弁81は、一方にセンタリングスプリング81dの付勢力とパイロット通路81fのパイロット圧とが作用し、他方にセンタリングスプリング81eの付勢力とパイロット通路81gのパイロット圧とが作用するスプール(図示省略)を備える。パイロット通路81fには、第一パイロット通路65の作動油圧が導かれ、パイロット通路81gには、第二パイロット通路75の作動油圧が導かれる。
 切換弁81は、第一パイロット通路65と第二パイロット通路75とにパイロット圧が供給されていない場合には、センタリングスプリング81d,81eの付勢力によってノーマル位置81aに切り換えられる。
 切換弁81は、第一パイロット通路65のパイロット圧が第二パイロット通路75のパイロット圧と比較して高い場合には、パイロット通路81fのパイロット圧によって第一切換位置81bに切り換えられる。これにより、第二パイロット通路75と比較して圧力が高い第一パイロット通路65のパイロット圧が、シャトル弁80を通過してパイロット通路80aからパイロット通路11aに導かれるとともに、第一パイロット通路65と比較して圧力が低い第二パイロット通路75のパイロット圧が、パイロット通路82cを通じて差圧減圧弁82に導かれる。
 一方、切換弁81は、第二パイロット通路75のパイロット圧が第一パイロット通路65のパイロット圧と比較して高い場合には、パイロット通路81gのパイロット圧によって第二切換位置81cに切り換えられる。これにより、第一パイロット通路65と比較して圧力が高い第二パイロット通路75のパイロット圧が、シャトル弁80を通過してパイロット通路80aからパイロット通路11aに導かれるとともに、第二パイロット通路75と比較して圧力が低い第一パイロット通路65のパイロット圧が、パイロット通路82cを通じて差圧減圧弁82に導かれる。
 差圧減圧弁82は、パイロット通路80aとパイロット通路11aとを連通させる連通位置82aと、パイロット通路11aの作動油の一部をタンク19に還流してパイロット通路11aのパイロット圧を下げる減圧位置82bと、を備える。差圧減圧弁82は、通常はリターンスプリングの付勢力によって連通位置82aにある。差圧減圧弁82は、リターンスプリングの付勢力とパイロット通路82cのパイロット圧とによって連通位置82aに切り換えられ、パイロット通路11aから導かれるパイロット通路82dのパイロット圧によって減圧位置82bに切り換えられる。よって、差圧減圧弁82は、パイロット通路82dのパイロット圧がパイロット通路82cのパイロット圧と比較して大きくなるほどタンク19に還流する作動油を増加させる。
 差圧減圧弁82が連通位置82aにある場合、パイロット通路11aには、第一パイロット通路65と第二パイロット通路75とのうち高圧側のパイロット圧が導かれている。一方、パイロット通路82cには、第一パイロット通路65と第二パイロット通路75とのうち低圧側のパイロット圧が導かれている。よって、差圧減圧弁82は、第一パイロット通路65と第二パイロット通路75とから連通するパイロット圧の差圧が大きいほどレギュレータ11に作用するパイロット圧を低くする。
 以下、制御システム100の作用について説明する。
 まず、油圧ショベル1の全てのアクチュエータが動作しておらず、第一回路系統20の操作弁21~23と第二回路系統30の操作弁31~34とが全てノーマル位置にある場合について説明する。
 油圧ポンプ10から吐出された作動油は、第一吐出通路15と第二吐出通路16とに按分されて、第一中立通路25と第二中立通路35とに導かれる。
 このとき、吐出流量調整機構50では、操作弁21~23と操作弁31~34が全てノーマル位置であるため、第一高圧選択回路60と第二高圧選択回路70とに入力される全てのパイロット圧は零である。第一パイロット通路65と第二パイロット通路75との差圧がないため、開閉弁41,42はともに閉弁され、連通切換弁40はノーマル位置40aにある。また、開閉弁28,38はともに閉弁され、中立カット弁27,37はともに連通位置27a,37aにある。よって、第一中立通路25と第二中立通路35とに導かれた作動油は、タンク19に還流される。
 また、第一パイロット通路65と第二パイロット通路75とのパイロット圧はともに零であるため、パイロット通路11aにパイロット圧は供給されない。よって、油圧ポンプ10は、操作弁21~23,31~34が全て操作されていない場合には、パイロット通路11aからレギュレータ11に作用するパイロット圧が零であるため、最低限の吐出流量に調整される。
 次に、油圧ショベル1のブーム6とアーム7とがともに回動するように操作レバーがフルストロークまで操作された場合を例として、操作弁21~23と操作弁31~34とがともに切り換えられた場合について説明する。
 吐出流量調整機構50では、ブーム6を動作させる操作弁22が第一切換位置又は第二切換位置に切り換えられ、アーム7を操作させる操作弁34が第一切換位置又は第二切換位置に切り換えられている。第一高圧選択回路60には、パイロット通路22a又はパイロット通路22bからパイロット圧が入力される。第一高圧選択回路60では、パイロット通路22a又はパイロット通路22bのパイロット圧が第一パイロット通路65に導かれる。一方、第二高圧選択回路70には、パイロット通路34a又はパイロット通路34bからパイロット圧が入力される。第二高圧選択回路70では、パイロット通路34a又はパイロット通路34bのパイロット圧が第二パイロット通路75に導かれる。
 第一パイロット通路65のパイロット圧と第二パイロット通路75のパイロット圧とは、配管抵抗等によって大きさが異なる。ここでは、第一パイロット通路65のパイロット圧が第二パイロット通路75のパイロット圧よりも高い場合について説明する。
 第一パイロット通路65のパイロット圧と第二パイロット通路75のパイロット圧との差圧は、配管抵抗等による差であるため、予め設定された所定の差圧よりも高くなることはない。そのため、開閉弁41,42はともに閉弁され、連通切換弁40はノーマル位置40aにある。また、開閉弁28,38はともに閉弁され、中立カット弁27,37はともに連通位置27a,37aにある。よって、第一中立通路25と第二中立通路35とに導かれた作動油のうち、ブームシリンダ6a又はアームシリンダ7aに導かれなかった残りの作動油は、タンク19に還流される。
 また、第一パイロット通路65のパイロット圧の方が第二パイロット通路75のパイロット圧と比較して高いため、シャトル弁80は、第一パイロット通路65のパイロット圧を選択してパイロット通路80aに連通させる。切換弁81は、第一パイロット通路65からパイロット通路81fに導かれるパイロット圧が第二パイロット通路75からパイロット通路81gに導かれるパイロット圧に打ち勝って、第一切換位置81bに切り換えられる。
 これにより、シャトル弁80によって選択された第一パイロット通路65のパイロット圧が、パイロット通路80aとパイロット通路11aとを通じて、油圧ポンプ10のレギュレータ11に導かれる。
 また、差圧減圧弁82では、パイロット通路82dに第一パイロット通路65のパイロット圧が導かれ、パイロット通路82cに第二パイロット通路75のパイロット圧が導かれる。ここでは、パイロット通路82cとパイロット通路82dとの差圧が小さいため、リターンスプリングの付勢力とパイロット通路82cのパイロット圧とが、パイロット通路82dのパイロット圧に打ち勝つ。よって、差圧減圧弁82は連通位置82aに切り換えられ、パイロット通路11aからレギュレータ11に第一パイロット通路65のパイロット圧が導かれる。よって、油圧ポンプ10は、操作弁22と操作弁34とがともに操作されている場合には、最大の吐出流量となるように調整される。
 次に、油圧ショベル1のブーム6のみが回動するように操作された場合と、アーム7のみが回動するように操作された場合とを例として、操作弁21~23と操作弁31~34との一方のみが切り換えられた場合について説明する。
 ブーム6が回動する際には、オペレータが操作レバーを操作することによって、パイロット通路22a又はパイロット通路22bからパイロット圧が供給されて、操作弁22が第一切換位置又は第二切換位置に切り換えられる。これにより、油圧ポンプ10の第一吐出ポート12から第一回路系統20に導かれる作動油の一部が、操作弁22からブームシリンダ6aに導かれる。
 このとき、吐出流量調整機構50では、操作弁22が第一切換位置又は第二切換位置に切り換えられているため、パイロット通路22a又はパイロット通路22bのパイロット圧が、シャトル弁62とチェック弁62aとを通過して第一パイロット通路65に導かれる。一方、操作弁31~34は全てノーマル位置にあるため、第二高圧選択回路70に入力される全てのパイロット圧は零である。よって、第二パイロット通路75のパイロット圧は零である。
 第一パイロット通路65のパイロット圧が第二パイロット通路75のパイロット圧と比較して予め設定された所定の差圧よりも高いため、開閉弁38と開閉弁41とが開弁される。よって、連通切換弁40が第二連通位置40cに切り換えられ、中立カット弁37が遮断位置37bに切り換えられる。
 このとき、第二中立通路35の作動油は、中立カット弁37が遮断位置37bに切り換えられているため、タンク19に還流されることはない。よって、油圧ポンプ10から第二吐出通路16を通じて第二中立通路35に供給された作動油は、連通切換弁40を通じて第一中立通路25に合流する。
 また、第一パイロット通路65のパイロット圧が高く、第二パイロット通路75のパイロット圧が零であるため、シャトル弁80は、第一パイロット通路65のパイロット圧を選択してパイロット通路80aに連通させる。切換弁81は、第一パイロット通路65からパイロット通路81fに導かれるパイロット圧が第二パイロット通路75からパイロット通路81gに導かれるパイロット圧に打ち勝って、第一切換位置81bに切り換えられる。
 これにより、シャトル弁80によって選択された第一パイロット通路65のパイロット圧が、パイロット通路80aとパイロット通路11aとを通じて、油圧ポンプ10のレギュレータ11に導かれる。
 また、差圧減圧弁82では、パイロット通路82dに第一パイロット通路65のパイロット圧が導かれ、パイロット通路82cに第二パイロット通路75のパイロット圧が導かれる。ここでは、パイロット通路82cとパイロット通路82dとの差圧が大きいため、差圧減圧弁82は減圧位置82bに切り換えられ、パイロット通路11aからタンク19に還流される作動油が増加する。よって、油圧ポンプ10は、操作弁22のみが操作されている場合には、レギュレータ11に作用するパイロット圧が低下して吐出流量が減少するように調整される。
 以上のように、操作弁31~34が操作されていない側の第二中立通路35から操作弁22が操作されている側の第一中立通路25へ作動油が合流するとともに、吐出流量調整機構50が油圧ポンプ10の吐出流量を減少させる。したがって、従来はタンク19に還流されていた作動油を使用することで、油圧ポンプ10の吐出流量を減少させてもアクチュエータの動作に必要な作動油の流量を確保することができるため、エネルギ効率を向上させることができる。
 一方、アーム7が回動する際には、オペレータが操作レバーを操作することによって、パイロット通路34a又はパイロット通路34bからパイロット圧が供給されて、操作弁34が第一切換位置又は第二切換位置に切り換えられる。これにより、油圧ポンプ10の第一吐出ポート12から第二回路系統30に導かれる作動油の一部が、操作弁34からアームシリンダ7aに導かれる。
 このとき、吐出流量調整機構50では、操作弁34が第一切換位置又は第二切換位置に切り換えられているため、パイロット通路34a又はパイロット通路34bのパイロット圧が、シャトル弁74とチェック弁74aとを通過して第二パイロット通路75に導かれる。一方、操作弁21~23は全てノーマル位置にあるため、第一高圧選択回路60に入力される全てのパイロット圧は零である。よって、第一パイロット通路65のパイロット圧は零である。
 第二パイロット通路75のパイロット圧が第一パイロット通路65のパイロット圧と比較して予め設定された所定の差圧よりも高いため、開閉弁28と開閉弁42とが開弁される。よって、連通切換弁40が第一連通位置40bに切り換えられ、中立カット弁27が遮断位置27bに切り換えられる。
 このとき、第一中立通路25の作動油は、中立カット弁27が遮断位置27bに切り換えられているため、タンク19に還流されることはない。よって、油圧ポンプ10から第一吐出通路15を通じて第一中立通路25に供給された作動油は、連通切換弁40を通じて第二中立通路35に合流する。
 また、第二パイロット通路75のパイロット圧が高く、第一パイロット通路65のパイロット圧が零であるため、シャトル弁80は、第二パイロット通路75のパイロット圧を選択してパイロット通路80aに連通させる。切換弁81は、第二パイロット通路75からパイロット通路81gに導かれるパイロット圧が第一パイロット通路65からパイロット通路81fに導かれるパイロット圧に打ち勝って、第二切換位置81cに切り換えられる。
 これにより、シャトル弁80によって選択された第二パイロット通路75のパイロット圧が、パイロット通路80aとパイロット通路11aとを通じて、油圧ポンプ10のレギュレータ11に導かれる。
 また、差圧減圧弁82では、パイロット通路82dに第二パイロット通路75のパイロット圧が導かれ、パイロット通路82cに第一パイロット通路65のパイロット圧が導かれる。ここでは、パイロット通路82cとパイロット通路82dとの差圧が大きいため、差圧減圧弁82は減圧位置82bに切り換えられ、パイロット通路11aからタンク19に還流される作動油が増加する。よって、油圧ポンプ10は、操作弁34のみが操作されている場合には、レギュレータ11に作用するパイロット圧が低下して吐出流量が減少するように調整される。
 以上のように、操作弁21~23が操作されていない側の第一中立通路25から操作弁34が操作されている側の第二中立通路35へ作動油が合流するとともに、吐出流量調整機構50が油圧ポンプ10の吐出流量を減少させる。したがって、従来はタンク19に還流されていた作動油を使用することで、油圧ポンプ10の吐出流量を減少させてもアクチュエータの動作に必要な作動油の流量を確保することができるため、エネルギ効率を向上させることができる。
 以上の第一の実施の形態によれば、以下に示す効果を奏する。
 第一回路系統20の操作弁21~23と第二回路系統30の操作弁31~34とのうち一方が操作されてアクチュエータが動作した場合には、操作弁21~23,31~34を切り換えるパイロット圧によって連通切換弁40が第一中立通路25と第二中立通路35とを連通させるとともに、第一中立通路25と第二中立通路35とのうち操作弁21~23,31~34が操作されていない側を中立カット弁27,37が遮断する。
 これにより、第一回路系統20と第二回路系統30とのうち操作弁21~23,31~34が操作されていない側から操作弁21~23,31~34が操作されている側へ作動油が合流する。また、このとき吐出流量調整機構50が油圧ポンプ10の吐出流量を減少させる。したがって、従来はタンク19に還流されていた作動油を使用することで、油圧ポンプ10の吐出流量を減少させてもアクチュエータの動作に必要な作動油の流量を確保することができるため、エネルギ効率を向上させることができる。
 次に、主に図4を参照して、吐出流量調整装置の変形例に係る吐出流量調整機構150について説明する。吐出流量調整機構150は、単一の切換弁81に代えて第一切換弁181と第二切換弁182とが設けられる点で、吐出流量調整機構50とは相違する。
 吐出流量調整機構150は、操作弁21~23を切り換えるパイロット圧のうち最も高圧のパイロット圧を選択して連通させる第一高圧選択回路60と、操作弁31~34を切り換えるパイロット圧のうち最も高圧のパイロット圧を選択して連通させる第二高圧選択回路70と、第一高圧選択回路60と第二高圧選択回路70とから連通するパイロット圧のうち高圧側のパイロット圧を選択してレギュレータ11に作用させる高圧選択弁としてのシャトル弁80と、シャトル弁80で選択された作動油の圧力と第一高圧選択回路60から連通するパイロット圧とによって切り換えられる切換弁としての第一切換弁181と、シャトル弁80で選択された作動油の圧力と第二高圧選択回路70から連通するパイロット圧とによって切り換えられる切換弁としての第二切換弁182と、第一高圧選択回路60と第二高圧選択回路70とから連通するパイロット圧の差圧が大きいほどレギュレータ11に作用するパイロット圧を低くする差圧減圧弁82と、を備える。
 第一切換弁181は、第一パイロット通路65からの作動油を遮断する遮断位置181aと、第一パイロット通路65からの作動油を連通させる連通位置181bと、を備える。第一切換弁181は、一方にパイロット通路80aのパイロット圧が作用し、他方にリターンスプリング181cの付勢力とパイロット通路181dのパイロット圧とが作用するスプール(図示省略)を備える。パイロット通路181dには、第一パイロット通路65の作動油圧が導かれる。
 同様に、第二切換弁182は、第二パイロット通路75からの作動油を遮断する遮断位置182aと、第二パイロット通路75からの作動油を連通させる連通位置182bと、を備える。第二切換弁182は、一方にパイロット通路80aのパイロット圧が作用し、他方にリターンスプリング182cの付勢力とパイロット通路182dのパイロット圧とが作用するスプール(図示省略)を備える。パイロット通路182dには、第二パイロット通路75の作動油圧が導かれる。
 第一切換弁181と第二切換弁182との一方は、シャトル弁80で選択された作動油の圧力によって連通位置181b又は連通位置182bに切り換えられ、通過した作動油がパイロット圧としてパイロット通路82cに導かれる。
 このように、吐出流量調整機構150を用いた場合にも、吐出流量調整機構50と同様に、差圧減圧弁82では、第一パイロット通路65のパイロット圧と第二パイロット通路75とのパイロット圧との高圧側がパイロット通路82dに導かれ、第一パイロット通路65のパイロット圧と第二パイロット通路75とのパイロット圧との低圧側がパイロット通路82cに導かれる。したがって、吐出流量調整機構150を用いた場合にも、吐出流量調整機構50と同様に油圧ポンプ10の吐出流量を調整することが可能である。
 (第二の実施の形態)
 以下、図5を参照して、本発明の第二の実施の形態に係る作業機の制御システム(以下、単に「制御システム」と称する。)200について説明する。以下に示す第二の実施の形態では、上述した第一の実施の形態と異なる点を中心に説明し、第一の実施の形態と同様の機能を有する構成には同一の符号を付して説明を省略する。
 制御システム200は、吐出流量調整機構50,150に代えて、コントローラ255によって制御される吐出流量調整装置としての吐出流量調整機構250を備える点で第一の実施の形態とは相違する。制御システム200では、操作弁21~23又は操作弁31~34の切り換え操作によって出力される電気信号が切換信号に該当する。この電気信号は、例えば、操作弁21~23,31~34に作用するパイロット圧を検出する圧力センサ(図示省略)からの信号や、オペレータによる操作レバーの操作を検出する変位センサ(図示省略)からの信号等である。
 吐出流量調整機構250は、パイロット圧を生成するパイロットポンプ251と、操作弁21~23のみから電気信号が入力された場合に制御される第一減圧弁260と、操作弁31~34のみから電気信号が入力された場合に制御される第二減圧弁270と、操作弁21~23と操作弁31~34との一方から電気信号が入力された場合に制御される第三減圧弁280と、第一パイロット通路65のパイロット圧,第二パイロット通路75のパイロット圧,又はレギュレータ11に作用するパイロット圧を下げる場合に作動油が排出されるドレン252と、を備える。
 第一減圧弁260は、パイロットポンプ251からのパイロット圧を第一パイロット通路65に導く連通位置261と、第一パイロット通路65の作動油の一部をドレン252に排出して第一パイロット通路65のパイロット圧を下げる減圧位置262と、を備える。第一減圧弁260は、通常はリターンスプリングの付勢力と第一パイロット通路65からのパイロット圧とによって減圧位置262にある。第一減圧弁260は、操作弁21~23のみから電気信号が入力された場合に、コントローラ255によって連通位置261に切り換えられ、パイロットポンプ251からのパイロット圧を連通切換弁40の第二パイロット室40eと中立カット弁37のパイロット室37cとに導く。
 第二減圧弁270は、パイロットポンプ251からのパイロット圧を第二パイロット通路75に導く連通位置271と、第二パイロット通路75の作動油の一部をドレン252に排出して第二パイロット通路75のパイロット圧を下げる減圧位置272と、を備える。第二減圧弁270は、通常はリターンスプリングの付勢力と第二パイロット通路75からのパイロット圧とによって減圧位置272にある。第二減圧弁270は、操作弁31~34のみから電気信号が入力された場合に、コントローラ255によって連通位置271に切り換えられ、パイロットポンプ251からのパイロット圧を連通切換弁40の第一パイロット室40dと中立カット弁27のパイロット室27cとに導く。
 第三減圧弁280は、パイロットポンプ251からのパイロット圧をパイロット通路11aに導く連通位置281と、パイロット通路11aの作動油の一部をドレン252に排出してパイロット通路11aのパイロット圧を下げる減圧位置282と、を備える。第三減圧弁280は、通常はリターンスプリングの付勢力とパイロット通路11aからのパイロット圧とによって減圧位置282にある。第三減圧弁280は、操作弁21~23と操作弁31~34との一方から電気信号が入力された場合に、コントローラ255によって減圧位置282に切り換えられ、パイロットポンプ251からレギュレータ11に導かれるパイロット圧を低くする。
 制御システム200では、コントローラ255が第一減圧弁260,第二減圧弁270,及び第三減圧弁280を制御することによって、第一パイロット通路65と第二パイロット通路75とパイロット通路11aとのパイロット圧を個別に調整することが可能である。よって、制御システム200では、第一の実施の形態にかかる制御システム100に設けられていた開閉弁28,38,41,42を設ける必要がない。
 以下、制御システム200の作用について説明する。
 まず、油圧ショベル1の全てのアクチュエータが動作しておらず、第一回路系統20の操作弁21~23と第二回路系統30の操作弁31~34とが全てノーマル位置にある場合について説明する。
 油圧ポンプ10から吐出された作動油は、第一吐出通路15と第二吐出通路16とに按分されて、第一中立通路25と第二中立通路35とに導かれる。
 このとき、吐出流量調整機構250では、操作弁21~23と操作弁31~34が全てノーマル位置であるため、コントローラ255は、第一減圧弁260と第二減圧弁270とをともに減圧位置262と減圧位置272とにして、第一パイロット通路65と第二パイロット通路75とのパイロット圧をドレン252に排出させる。また、コントローラ255は、第三減圧弁280を減圧位置282にして、パイロット通路11aからパイロット圧をドレン252に排出させる。
 このとき、連通切換弁40はノーマル位置40aにある。よって、第一中立通路25と第二中立通路35とは連通しない。また、中立カット弁27,37はともに連通位置27a,37aにある。よって、第一中立通路25と第二中立通路35とに導かれた作動油は、タンク19に還流される。油圧ポンプ10は、操作弁21~23,31~34が全て操作されていない場合には、パイロット通路11aからレギュレータ11に作用するパイロット圧が零であるため、最低限の吐出流量に調整される。
 次に、油圧ショベル1のブーム6とアーム7とがともに回動するように操作された場合を例として、操作弁21~23と操作弁31~34とがともに切り換えられた場合について説明する。
 吐出流量調整機構250では、ブーム6を動作させる操作弁22を切り換える電気信号と、アーム7を動作させる操作弁34を切り換える電気信号とがコントローラ255に入力される。コントローラ255は、操作弁21~23のみから電気信号が入力されている状態ではないため、第一減圧弁260を減圧位置262にし、同様に、操作弁31~34のみから電気信号が入力されている状態ではないため、第二減圧弁270を減圧位置272にする。また、コントローラ255は、第三減圧弁280を連通位置281に切り換えて、パイロット通路11aからレギュレータ11にパイロット圧を供給する。
 このとき、連通切換弁40はノーマル位置40aにある。よって、第一中立通路25と第二中立通路35とは連通しない。また、中立カット弁27,37はともに連通位置27a,37aにある。よって、第一中立通路25と第二中立通路35とに導かれた作動油は、タンク19に還流される。油圧ポンプ10は、操作弁22と操作弁34とが操作されている場合には、パイロット通路11aからレギュレータ11に作用するパイロット圧が最大であるため、最大の吐出流量に調整される。
 なお、ここではレギュレータ11に作用するパイロット圧が最大になるように制御される場合を例として説明したが、これに限らず、コントローラ255は、アクチュエータの負荷の大きさに応じた電気信号を第三減圧弁280に出力して、パイロットポンプ251からレギュレータ11に導かれるパイロット圧を制御する。
 次に、油圧ショベル1のブーム6のみが回動するように操作された場合と、アーム7のみが回動するように操作された場合とを例として、操作弁21~23と操作弁31~34との一方のみが切り換えられた場合について説明する。
 ブーム6のみが回動するように操作された場合には、吐出流量調整機構250では、ブーム6を動作させる操作弁22を切り換える電気信号のみがコントローラ255に入力される。コントローラ255は、操作弁21~23のみから電気信号が入力されている状態であるため、第一減圧弁260を連通位置261に切り換え、操作弁31~34のみから電気信号が入力されている状態ではないため、第二減圧弁270を減圧位置272とする。
 これにより、パイロットポンプ251からのパイロット圧が、第一減圧弁260を通過して第一パイロット通路65に導かれる。よって、連通切換弁40が第二連通位置40cに切り換えられ、中立カット弁37が遮断位置37bに切り換えられる。
 第二中立通路35の作動油は、中立カット弁37が遮断位置37bに切り換えられているため、タンク19に還流されることはない。よって、油圧ポンプ10から第二吐出通路16を通じて第二中立通路35に供給された作動油は、連通切換弁40を通じて第一中立通路25に合流する。
 また、コントローラ255は、操作弁22の操作量に応じて第三減圧弁280を減圧位置282に切り換えてレギュレータ11のパイロット圧の一部をドレン252に導き、レギュレータ11に作用するパイロット圧を下げる。よって、油圧ポンプ10は、操作弁22のみが操作されている場合には、吐出流量が減少するように調整される。
 以上のように、操作弁31~34が操作されていない側の第二中立通路35から操作弁22が操作されている側の第一中立通路25へ作動油が合流するとともに、吐出流量調整機構250が油圧ポンプ10の吐出流量を減少させる。したがって、従来はタンク19に還流されていた作動油を使用することで、油圧ポンプ10の吐出流量を減少させてもアクチュエータの動作に必要な作動油の流量を確保することができるため、エネルギ効率を向上させることができる。
 一方、アーム7のみが回動するように操作された場合には、吐出流量調整機構50では、アーム7を動作させる操作弁34を切り換える電気信号のみがコントローラ255に入力される。コントローラ255は、操作弁21~23のみから電気信号が入力されている状態ではないため、第一減圧弁260を減圧位置262にし、操作弁31~34のみから電気信号が入力されている状態であるため、第二減圧弁270を連通位置271に切り換える。
 これにより、パイロットポンプ251からのパイロット圧が第二減圧弁270を通過して第二パイロット通路75に導かれる。よって、連通切換弁40が第一連通位置40bに切り換えられ、中立カット弁27が遮断位置27bに切り換えられる。
 第一中立通路25の作動油は、中立カット弁27が遮断位置27bに切り換えられているため、タンク19に還流されることはない。よって、油圧ポンプ10から第一吐出通路15を通じて第一中立通路25に供給された作動油は、連通切換弁40を通じて第二中立通路35に合流する。
 また、コントローラ255は、操作弁34の操作量に応じて第三減圧弁280を減圧位置282に切り換えてレギュレータ11のパイロット圧の一部をドレン252に導き、レギュレータ11に作用するパイロット圧を下げる。よって、油圧ポンプ10は、操作弁34のみが操作されている場合には、吐出流量が減少するように調整される。
 以上のように、操作弁21~23が操作されていない側の第一中立通路25から操作弁34が操作されている側の第二中立通路35へ作動油が合流するとともに、吐出流量調整機構250が油圧ポンプ10の吐出流量を減少させる。したがって、従来はタンク19に還流されていた作動油を使用することで、油圧ポンプ10の吐出流量を減少させてもアクチュエータの動作に必要な作動油の流量を確保することができるため、エネルギ効率を向上させることができる。
 以上の第二の実施の形態によれば、第一の実施の形態と同様の効果を奏する。また、第二の実施の形態に係る制御システム200では、コントローラ255によって制御を行うため、第一の実施の形態に係る制御システム100と比較して簡素な構成で同様の制御を実行することができる。
 なお、上述した第二の実施の形態では、コントローラ255が第三減圧弁280を制御することによって、レギュレータ11に作用するパイロット圧を調整し、油圧ポンプ10の吐出流量を調整している。これに代えて、油圧ポンプ10を駆動するエンジンの回転数を調整する装置を吐出流量調整装置として適用し、エンジンの回転数に応じて油圧ポンプ10の吐出流量を調整可能にしてもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2014年1月31日に日本国特許庁に出願された特願2014-016495に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  第一アクチュエータと第二アクチュエータとを有する作業機を制御する作業機の制御システムであって、
     作動流体を第一吐出ポートと第二吐出ポートとから吐出するスプリットフロー型の流体圧ポンプと、
     前記第一吐出ポートから吐出された作動流体が供給され、前記第一アクチュエータを制御する第一操作弁と当該第一操作弁がノーマル位置にある状態で前記第一吐出ポートをタンクに連通させる第一中立通路とを有する第一回路系統と、
     前記第二吐出ポートから吐出された作動流体が供給され、前記第二アクチュエータを制御する第二操作弁と当該第二操作弁がノーマル位置にある状態で前記第二吐出ポートをタンクに連通させる第二中立通路とを有する第二回路系統と、
     前記第一操作弁と前記第二操作弁とのいずれか一方が切り換えられたときの切換信号によって切り換えられて前記第一中立通路と前記第二中立通路とを連通させる連通切換弁と、
     前記第一回路系統と前記第二回路系統との少なくとも一方に設けられ、前記切換信号によって切り換えられて前記第一中立通路と前記第二中立通路とのうち前記第一操作弁又は前記第二操作弁が切り換えられていない側の前記タンクとの連通を遮断する中立カット弁と、
     前記第一操作弁と前記第二操作弁とのいずれか一方から前記切換信号が入力された場合に前記流体圧ポンプの吐出流量を減少させるように調整する吐出流量調整装置と、を備える作業機の制御システム。
  2.  請求項1に記載の作業機の制御システムであって、
     前記流体圧ポンプは、パイロット圧によって制御される単一のレギュレータによって傾転角が調整される斜板を備え、前記レギュレータに作用するパイロット圧が高いほど吐出流量が多くなるように調整される作業機の制御システム。
  3.  請求項2に記載の作業機の制御システムであって、
     前記切換信号は、前記第一操作弁又は前記第二操作弁を切り換えるパイロット圧であり、
     前記中立カット弁は、前記第一回路系統に設けられる第一中立カット弁と、前記第二回路系統に設けられる第二中立カット弁と、を有し、
     前記吐出流量調整装置は、
     前記第一操作弁を切り換えるパイロット圧のうち最も高圧のパイロット圧を選択して連通させて前記連通切換弁と前記第二中立カット弁とに導き、前記第一中立通路と前記第二中立通路とを連通させ前記第二中立通路と前記タンクとの連通を遮断させる第一高圧選択回路と、
     前記第二操作弁を切り換えるパイロット圧のうち最も高圧のパイロット圧を選択して連通させて前記連通切換弁と前記第一中立カット弁とに導き、前記第一中立通路と前記第二中立通路とを連通させ前記第一中立通路と前記タンクとの連通を遮断させる第二高圧選択回路と、
     前記第一高圧選択回路と前記第二高圧選択回路とから連通するパイロット圧のうち高圧側のパイロット圧を選択して前記レギュレータに作用させる高圧選択弁と、
     前記第一高圧選択回路と前記第二高圧選択回路とから連通するパイロット圧の差圧が大きいほど前記レギュレータに作用するパイロット圧を低くする差圧減圧弁と、を備える作業機の制御システム。
  4.  請求項3に記載の作業機の制御システムであって、
     前記吐出流量調整装置は、前記第一高圧選択回路から連通するパイロット圧と前記第二高圧選択回路から連通するパイロット圧とによって切り換えられ前記第一高圧選択回路から連通するパイロット圧と前記第二高圧選択回路から連通するパイロット圧とのうち高圧側を遮断し低圧側を前記差圧減圧弁に作用させる切換弁を更に備え、
     前記差圧減圧弁は、前記レギュレータに作用するパイロット圧と前記切換弁から作用するパイロット圧との差圧が大きいほど前記レギュレータに作用するパイロット圧を低くする作業機の制御システム。
  5.  請求項2に記載の作業機の制御システムであって、
     前記切換信号は、前記第一操作弁又は前記第二操作弁の切り換え操作によって出力される電気信号であり、
     前記中立カット弁は、前記第一回路系統に設けられる第一中立カット弁と、前記第二回路系統に設けられる第二中立カット弁と、を有し、
     前記吐出流量調整装置は、
     パイロット圧を生成するパイロットポンプと、
     前記第一操作弁のみから前記電気信号が入力された場合に、前記パイロットポンプからのパイロット圧を前記連通切換弁と前記第二中立カット弁とに導き、前記第一中立通路と前記第二中立通路とを連通させ前記第二中立通路と前記タンクとの連通を遮断させる第一減圧弁と、
     前記第二操作弁のみから前記電気信号が入力された場合に、前記パイロットポンプからのパイロット圧を前記連通切換弁と前記第一中立カット弁とに導き、前記第一中立通路と前記第二中立通路とを連通させ前記第一中立通路と前記タンクとの連通を遮断させる第二減圧弁と、
     前記第一操作弁と前記第二操作弁とのいずれか一方から前記電気信号が入力された場合に、前記パイロットポンプから前記レギュレータに導かれるパイロット圧を低くする第三減圧弁と、を備える作業機の制御システム。
PCT/JP2015/052207 2014-01-31 2015-01-27 作業機の制御システム WO2015115429A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167016760A KR101828195B1 (ko) 2014-01-31 2015-01-27 작업기의 제어 시스템
DE112015000577.3T DE112015000577T5 (de) 2014-01-31 2015-01-27 Steuersystem einer Arbeitsmaschine
CN201580003630.7A CN105899816B (zh) 2014-01-31 2015-01-27 作业机的控制系统
US15/113,486 US10072396B2 (en) 2014-01-31 2015-01-27 Working machine control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014016495A JP6307292B2 (ja) 2014-01-31 2014-01-31 作業機の制御システム
JP2014-016495 2014-01-31

Publications (1)

Publication Number Publication Date
WO2015115429A1 true WO2015115429A1 (ja) 2015-08-06

Family

ID=53757002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052207 WO2015115429A1 (ja) 2014-01-31 2015-01-27 作業機の制御システム

Country Status (6)

Country Link
US (1) US10072396B2 (ja)
JP (1) JP6307292B2 (ja)
KR (1) KR101828195B1 (ja)
CN (1) CN105899816B (ja)
DE (1) DE112015000577T5 (ja)
WO (1) WO2015115429A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015211704A1 (de) * 2015-06-24 2016-12-29 Robert Bosch Gmbh Ventilbaugruppe mit zumindest zwei Pumpenleitungen für eine Pumpe
JP6600386B1 (ja) * 2018-07-06 2019-10-30 Kyb株式会社 弁装置
CN112639298B (zh) * 2019-03-06 2023-02-21 日立建机株式会社 工程机械

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230112A (ja) * 1998-02-18 1999-08-27 Hitachi Constr Mach Co Ltd 油圧駆動回路
JP3974076B2 (ja) * 2003-05-21 2007-09-12 カヤバ工業株式会社 液圧駆動装置
WO2009123047A1 (ja) * 2008-03-31 2009-10-08 株式会社不二越 建設機械の油圧回路
JP2012031753A (ja) * 2010-07-29 2012-02-16 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JP2013002241A (ja) * 2011-06-21 2013-01-07 Kubota Corp 作業機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2360530A1 (de) * 1973-12-05 1975-06-19 Rexroth Gmbh G L Hydraulikanlage
KR100200028B1 (ko) * 1994-10-29 1999-06-15 토니 헬샴 중장비의 직진주행장치
GB9425273D0 (en) * 1994-12-14 1995-02-08 Trinova Ltd Hydraulic control system
JP3681833B2 (ja) 1996-09-19 2005-08-10 ヤンマー株式会社 掘削旋回作業機の油圧回路
JP3612256B2 (ja) * 1999-12-22 2005-01-19 新キャタピラー三菱株式会社 作業機械の油圧回路
KR100518770B1 (ko) * 2003-02-12 2005-10-05 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 중장비 옵션장치용 유압시스템
JP4100425B2 (ja) * 2005-11-22 2008-06-11 コベルコ建機株式会社 作業機械の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230112A (ja) * 1998-02-18 1999-08-27 Hitachi Constr Mach Co Ltd 油圧駆動回路
JP3974076B2 (ja) * 2003-05-21 2007-09-12 カヤバ工業株式会社 液圧駆動装置
WO2009123047A1 (ja) * 2008-03-31 2009-10-08 株式会社不二越 建設機械の油圧回路
JP2012031753A (ja) * 2010-07-29 2012-02-16 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JP2013002241A (ja) * 2011-06-21 2013-01-07 Kubota Corp 作業機

Also Published As

Publication number Publication date
JP6307292B2 (ja) 2018-04-04
US10072396B2 (en) 2018-09-11
US20170009430A1 (en) 2017-01-12
CN105899816A (zh) 2016-08-24
KR20160089470A (ko) 2016-07-27
DE112015000577T5 (de) 2016-11-03
CN105899816B (zh) 2017-07-28
KR101828195B1 (ko) 2018-02-09
JP2015143533A (ja) 2015-08-06

Similar Documents

Publication Publication Date Title
KR101820324B1 (ko) 파이프 레이어용 유압회로
US10526767B2 (en) Construction machine
US9828746B2 (en) Hydraulic driving system for construction machine
US11078646B2 (en) Shovel and control valve for shovel
JP2014031827A (ja) 建設機械の油圧回路システム
WO2015115429A1 (ja) 作業機の制御システム
JP6196567B2 (ja) 建設機械の油圧駆動システム
WO2015115430A1 (ja) 作業機の制御システム
JP6286216B2 (ja) 作業機の制御システム及び低圧選択回路
JP2009167659A (ja) 作業機械の油圧制御回路
JP2009179983A (ja) 作業機械の油圧制御回路
JP2010065413A (ja) 作業機械の油圧制御回路
WO2021124767A1 (ja) 建設機械の油圧回路
JP6989548B2 (ja) 建設機械
JP2006322472A (ja) 作業機械におけるロードセンシング制御回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167016760

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15113486

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015000577

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743082

Country of ref document: EP

Kind code of ref document: A1