WO2015115371A1 - 蓄電デバイス用端子フィルム、及び蓄電デバイス - Google Patents

蓄電デバイス用端子フィルム、及び蓄電デバイス Download PDF

Info

Publication number
WO2015115371A1
WO2015115371A1 PCT/JP2015/052042 JP2015052042W WO2015115371A1 WO 2015115371 A1 WO2015115371 A1 WO 2015115371A1 JP 2015052042 W JP2015052042 W JP 2015052042W WO 2015115371 A1 WO2015115371 A1 WO 2015115371A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
layer
insulating
terminal
film
Prior art date
Application number
PCT/JP2015/052042
Other languages
English (en)
French (fr)
Inventor
健央 高田
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014014574A external-priority patent/JP6233060B2/ja
Priority claimed from JP2014014573A external-priority patent/JP6183231B2/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to KR1020167023029A priority Critical patent/KR102292142B1/ko
Priority to CN201580005708.9A priority patent/CN105940521B/zh
Priority to EP15743904.3A priority patent/EP3101711B1/en
Publication of WO2015115371A1 publication Critical patent/WO2015115371A1/ja
Priority to US15/218,651 priority patent/US9960392B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a terminal film for an electricity storage device and an electricity storage device, in particular, a packaging material for packaging an electricity storage device body, a metal terminal that is electrically connected to the electricity storage device body and extends outside the packaging material,
  • the present invention relates to a terminal film for an electricity storage device and an electricity storage device interposed therebetween.
  • metal cans have been often used as packaging materials for the lithium ion secondary batteries.
  • a laminate in which a metal layer (for example, aluminum foil) and a resin film are laminated because the manufacturing cost is low in response to demands for thinning and diversification of products to which lithium ion secondary batteries are applied.
  • a packaging material having a body formed in a bag shape is often used.
  • the lithium ion secondary battery includes a battery body, a packaging material that wraps the battery body, a metal terminal (tab lead) that is connected to the negative electrode or the positive electrode of the battery body, and extends to the outside of the packaging material. And a terminal film for an electricity storage device (also referred to as “tab sealant”) covering each of the outer peripheral side surfaces.
  • a part of the terminal film for the electricity storage device is covered with the packaging material, and the remaining part of the terminal film for the electricity storage device is exposed from the packaging material.
  • the terminal film for an electricity storage device is bonded to a metal terminal by performing a fusion treatment.
  • the electricity storage device terminal film is a film for insulating the metal layer and the metal terminal constituting the packaging material. For this reason, in addition to the adhesion between the terminal film for electricity storage device and the packaging material and the adhesion between the terminal film for electricity storage device and the metal terminal, after the heat sealing treatment, it has sufficient insulation (in other words, sufficient It is desirable that the thickness be able to have a good insulating property.
  • the color of the terminal film for the electricity storage device is transparent, it is determined whether or not the terminal film for the electricity storage device is present when performing an inspection to determine whether the terminal film for the electricity storage device is interposed between the packaging material and the metal terminal. Becomes difficult. Furthermore, when the color of the terminal film for the electricity storage device is transparent, it is difficult to accurately determine the attachment position of the terminal film for the electricity storage device when performing the inspection of the position of the terminal film for the electricity storage device with respect to the metal terminal. turn into.
  • Patent Document 1 discloses a terminal film for an electricity storage device (lead wire film) in which polypropylene graft-deformed with an unsaturated carboxylic acid or polyethylene graft-deformed with an unsaturated carboxylic acid is laminated in three layers.
  • the terminal film for an electricity storage device for example, an extrusion method using a round die such as an inflation molding method, a push die method using a T die, or the like is known.
  • the said terminal film for electrical storage devices is manufactured using the film extrusion manufacturing apparatus which has dice
  • the terminal film for an electricity storage device manufactured by such an apparatus (specifically, a film extrusion manufacturing apparatus or the like) is wound around a winding roller constituting the apparatus, and is transported and stored. And when using (processing) the terminal film for electrical storage devices wound by the roller in roll shape, it processes while pulling out one end of the terminal film for electrical storage device of roll shape.
  • Patent Document 1 discloses a terminal film for a power storage device (lead wire film) in order to accurately determine whether or not a power storage device terminal film is interposed between the packaging material and the metal terminal. Coloring with pigments or dyes is disclosed.
  • Patent Document 1 as a pigment for coloring the terminal film for an electricity storage device, inorganic pigments such as calcium carbonate, anhydrous silica, alumina, cobalt blue and other extender pigments, titanium dioxide, zinc oxide and other white pigments, Using black pigments such as iron black and graphite, organic pigments such as insoluble azo pigments, azo pigments such as azo lake pigments, phthalocyanine pigments such as copper phthalocyanine and metal-free phthalocyanine lakes, anthraquinone pigments, and thioindigo pigments.
  • black pigments such as iron black and graphite
  • organic pigments such as insoluble azo pigments, azo pigments such as azo lake pigments, phthalocyanine pigments such as copper phthalocyanine and metal-free phthalocyanine lakes, anthraquinone pigments, and thioindigo pigments
  • synthetic polycyclic pigments, other nitroso pigments, daylight fluorescent pigments, and the like is
  • the present invention provides a terminal film for an electricity storage device that can suppress the occurrence of a blocking phenomenon when one end of the terminal film for an electricity storage device wound around a roller in a roll shape is pulled out, and an electricity storage device The purpose is to do.
  • the present invention provides a power storage device by coloring the intermediate layer with a dark color by adding carbon black, graphite or the like as a conductive pigment to the insulating layer constituting the intermediate layer disposed between the two outermost layers.
  • Terminal film for power storage device capable of improving the inspection accuracy of the terminal film for power storage and ensuring sufficient insulation between the metal terminal to which the terminal film for power storage device is fused and the intermediate layer And it aims at providing an electrical storage device.
  • the terminal film for an electricity storage device is disposed so as to cover a part of the outer peripheral surface of the metal terminal that is electrically connected to the electricity storage device body constituting the electricity storage device.
  • a terminal film for an electricity storage device, the first outermost layer including the first insulating layer, the second outermost layer including the second insulating layer, the first insulating layer, and the second insulating layer An amorphous insulating filler added to at least one of the insulating layers, and a part of the amorphous insulating filler is added to the amorphous insulating filler. It protrudes from the outer surface of the insulating layer.
  • a part of the amorphous insulating filler added to at least one of the first insulating layer and the second insulating layer is formed. It protrudes from the outer surface of the insulating layer.
  • the insulating layer includes an insulating filler
  • the insulating filler functions as a spacer when the power storage device terminal film is fused to the metal terminal. For this reason, since it becomes possible to suppress that the thickness of an insulating layer becomes thin, the insulation of the outermost layer which consists of an insulating layer containing an amorphous insulating filler can be improved.
  • the average particle diameter of the amorphous insulating filler may be in the range of 0.1 to 20 ⁇ m.
  • the average particle size of the amorphous insulating filler is smaller than 0.1 ⁇ m, the size of the amorphous insulating filler protruding from the outer surface of the insulating layer becomes too small, and it is difficult to obtain a sufficient anti-blocking effect. turn into.
  • the average particle size of the amorphous insulating filler is larger than 20 ⁇ m, the size of the amorphous insulating filler is too large, so that the contact area with the metal terminal (in other words, tab lead) or the packaging material is small. As a result, the adhesiveness is lowered. Therefore, by setting the average particle size of the amorphous insulating filler within the range of 0.1 to 20 ⁇ m, it is possible to obtain a sufficient anti-blocking effect and improve the adhesion of the terminal film for power storage devices. Can do.
  • the thickness of the insulating layer to which the amorphous insulating filler is added is 2 of the average particle diameter of the amorphous insulating filler. It may be a value of up to 30 times.
  • the thickness of the insulating layer to which the amorphous insulating filler is added is smaller than twice the average particle size of the amorphous insulating filler, the amorphous insulating filler protruding from the outer surface of the insulating layer Therefore, the adhesion between the metal terminal (in other words, the tab lead) and the terminal film for the electricity storage device and the adhesion between the packaging material and the terminal film for the electricity storage device are deteriorated.
  • the thickness of the insulating layer to which the amorphous insulating filler is added is larger than 30 times the average particle size of the amorphous insulating filler, the ratio of the amorphous insulating filler protruding from the insulating layer Is extremely low, it becomes difficult to obtain a sufficient anti-blocking effect. Therefore, a sufficient anti-blocking effect can be obtained by setting the thickness of the insulating layer to which the amorphous insulating filler is added to a value that is 2 to 30 times the average particle diameter of the amorphous insulating filler. While being able to improve, the adhesiveness of the terminal film for electrical storage devices can be improved.
  • the amount of the amorphous insulating filler added may be 0.1 to 20 wt%.
  • the amount of amorphous insulating filler added is less than 0.1%, the number of amorphous insulating fillers protruding from the outer surface of the insulating layer is too small, so the contact area between terminal films for power storage devices is reduced. Effect is insufficient. Thereby, it becomes difficult to improve the slipperiness (in other words, to improve the anti-blocking effect) between the terminal films for power storage devices that are in contact with each other.
  • the amount of the amorphous insulating filler added is more than 20%, the number of amorphous insulating fillers protruding from the outer surface of the insulating layer becomes too large. Will reduce the contact area between the insulating layers. Thereby, it becomes difficult to ensure sufficient adhesion between the terminal film for electricity storage device and the metal terminal or packaging material after fusion bonding of the terminal film for electricity storage device and the metal terminal or packaging material.
  • the amount of the amorphous insulating filler contained in the insulating layer is 0.1 to 20%, the adhesion between the terminal film for power storage device and the metal terminal or packaging material is lowered.
  • the slipperiness between the terminal films for power storage devices that are in contact with each other can be improved (in other words, the antiblocking effect can be improved).
  • the amorphous insulating filler is added only to one of the first insulating layer and the second insulating layer. May be.
  • the amorphous insulating filler is added to only one of the first insulating layer and the second insulating layer, the slipping property between the terminal films for power storage devices that are in contact with each other is improved. It is possible to improve (in other words, improve the anti-blocking effect).
  • the insulating filler functions as a spacer, it is possible to suppress the thickness of the insulating layer from being reduced, so that it is possible to improve the insulation of the outermost layer made of an insulating layer containing an amorphous insulating filler. it can.
  • a third insulating layer disposed between the first outermost layer and the second outermost layer, and the third insulation You may have an intermediate layer containing pigment added to the layer.
  • the intermediate layer includes the third insulating layer disposed between the first outermost layer and the second outermost layer, and the intermediate layer containing the pigment added to the third insulating layer. Can be colored with a pigment.
  • the terminal film for an electricity storage device between the intermediate layer and the first outermost layer and between the intermediate layer and the second outermost layer, respectively.
  • Four insulating layers may be arranged.
  • the pigment has conductivity.
  • the insulation between the intermediate layer and the metal layer constituting the packaging material and the insulation between the intermediate layer and the metal terminal can be further improved.
  • an electricity storage device is electrically connected to the electricity storage device terminal film of the first aspect, an electricity storage device body to be charged and discharged, and the electricity storage device body, It has a pair of said metal terminal partly covered with the said terminal film for electrical storage devices, a part of said terminal film for electrical storage devices, and the packaging material which covers the said electrical storage device main body.
  • the electricity storage device terminal film of the first aspect covers a part of the metal terminal, so that a sufficient anti-blocking effect can be obtained, and for the electricity storage device.
  • the adhesion between the terminal film and the metal terminal can be improved.
  • the first outermost layer is disposed so as to cover a part of the outer peripheral surface of the metal terminal, and the second outermost layer is formed of the packaging material. It may be arranged so as to contact with.
  • the adhesion between the other outermost layer and the packaging material can be improved.
  • the inventor of the present invention has developed a conductive film in an insulating layer constituting an intermediate layer located between two outermost layers in a power storage device terminal film in which three or more insulating layers are laminated.
  • conductive pigment carbon black or graphite
  • the present inventor found that when the storage device terminal film having the intermediate layer colored with the conductive pigment was disposed so as to cover the outer peripheral side surface of the metal terminal, the conductive pigment was In order to ensure the insulation between the conductive intermediate layer and the metal terminal, heat sealing treatment for fusing the terminal film for the electricity storage device and the metal terminal (applying a predetermined temperature and pressure) After the fusion process), it has been thought that it is important that the thickness of the outermost layer disposed between the intermediate layer and the metal terminal is not too thin.
  • the terminal film for an electricity storage device is disposed so as to cover a part of the outer peripheral surface of the metal terminal that is electrically connected to the electricity storage device body constituting the electricity storage device.
  • a terminal film for an electricity storage device the first outermost layer including the first insulating layer, the second outermost layer including the second insulating layer, the first outermost layer, and the second outer layer.
  • a third insulating layer disposed between the outermost layer and an intermediate layer containing a conductive pigment which is added to the third insulating layer and can be colored in black, and the first insulating layer
  • An insulating filler is added to at least one of the second insulating layers.
  • the conductive pigment that can be colored black is added to the third insulating layer, so that it has a dark color (specifically, black).
  • the intermediate layer can be colored.
  • the insulating filler can function as a spacer for securing the thickness of the outermost layer to which the insulating filler is added.
  • the outermost layer disposed between the metal layer and the intermediate layer constituting the packaging material can improve the insulation between the metal layer and the intermediate layer. Can do.
  • the conductive pigment is added to the insulating layer that constitutes the intermediate layer disposed between the two outermost layers, and the intermediate layer is dark in color (black).
  • the inspection accuracy of the electricity storage device terminal film can be improved, and insulation between the metal terminal to which the electricity storage device terminal film is fused and the intermediate layer can be sufficiently secured.
  • an insulating filler may be added to only one of the first insulating layer and the second insulating layer.
  • the inspection accuracy of the terminal film for the electricity storage device can be improved, and the electricity storage
  • the insulation between the metal terminal to which the device terminal film is fused and the intermediate layer can be sufficiently secured.
  • the content of the conductive pigment contained in the intermediate layer may be 0.01 wt% or more and 3.00 wt% or less.
  • the content (concentration) of the conductive pigment contained in the intermediate layer is less than 0.01 wt%, it will be difficult to color the intermediate layer with a dark hue.
  • the content of the conductive pigment added to the third insulating layer is more than 3.00 wt%, the conductivity of the intermediate layer becomes too high, so that an electrical connection between the intermediate layer and the metal terminal is caused. It will be difficult to ensure sufficient insulation. Therefore, by setting the content (concentration) of the conductive pigment added to the third insulating layer to 0.01 wt% or more and 3.00 wt% or less, the visibility of the terminal film for an electricity storage device can be improved and the electrical Sufficient insulation can be ensured.
  • the average particle diameter of the insulating filler is 1/30 to 1 / th of the thickness of the insulating layer to which the insulating filler is added. It may be a double value.
  • the outermost layer (insulating filler) with respect to the metal terminal Insulating fillers can function satisfactorily as spacers without lowering the fusibility of the outermost layer.
  • the content (concentration) of the insulating filler may be 0.1 wt% or more and 20 wt% or less.
  • the content of the insulating filler added to the insulating layer is less than 0.1 wt%, the content of the insulating filler is too small (because the insulating filler does not function as a spacer).
  • the thickness of the outermost layer including the insulating filler becomes too thin. Therefore, it becomes difficult to insulate between the intermediate layer and the metal terminal by the outermost layer disposed between the intermediate layer and the metal terminal.
  • the content of the insulating filler added to the insulating layer is more than 20 wt%, the proportion of the insulating layer is reduced, so that the fusion between the outermost layer containing the insulating filler and the metal terminal (in other words, In this case, the adhesiveness is reduced. Therefore, the fusion property between the outermost layer to which the insulating filler is added and the metal terminal is lowered by setting the content of the insulating filler added to the insulating layer to 0.1 wt% or more and 20 wt% or less. In addition, it is possible to insulate between the conductive intermediate layer and the metal terminal.
  • the shape of the insulating filler may be spherical.
  • the shape of the insulating filler is spherical, it is possible to improve the function of the insulating filler as a spacer as compared with the case where an amorphous filler is used as the insulating filler. After the heat sealing treatment, the thickness of the outermost layer containing the insulating filler can be increased.
  • the terminal film for an electricity storage device between the intermediate layer and the first outermost layer and between the intermediate layer and the second outermost layer, respectively.
  • Four insulating layers may be arranged.
  • the fourth insulating layer is disposed between the intermediate layer and the first outermost layer and between the intermediate layer and the second outermost layer, so that the intermediate layer and the packaging material are It is possible to improve the insulation between the constituent metal layers and the insulation between the intermediate layer and the metal terminals.
  • an electricity storage device is electrically connected to the electricity storage device terminal film of the third aspect, an electricity storage device body to be charged / discharged, and the electricity storage device body, It has a pair of said metal terminal partly covered with the said terminal film for electrical storage devices, a part of said terminal film for electrical storage devices, and the packaging material which covers the said electrical storage device main body.
  • the electricity storage device terminal film of the third aspect covers a part of the metal terminal, whereby the inspection accuracy of the electricity storage device terminal film can be improved. Insulation between the metal terminal to which the terminal film for power storage device is fused and the intermediate layer can be sufficiently secured.
  • the first outermost layer is disposed so as to cover a part of the outer peripheral surface of the metal terminal, and the second outermost layer is formed of the packaging material.
  • the first outermost layer may include the insulating filler.
  • the outermost layer disposed so as to cover a part of the outer peripheral surface of the metal terminal includes an insulating filler, so that the terminal film for the electricity storage device is bonded between the metal terminal and the intermediate layer. It is possible to sufficiently secure the insulation property.
  • blocking occurs when one end of the terminal film for an electricity storage device wound around a roller in a roll shape is pulled out. The occurrence of the phenomenon can be suppressed.
  • the terminal film for an electricity storage device it is possible to improve the inspection accuracy of the terminal film for an electricity storage device and between the intermediate layer containing the conductive pigment that can be colored black and the metal terminal. A sufficient electrical insulation can be ensured.
  • FIG. 1 is a perspective view illustrating a schematic configuration of an electricity storage device according to a first embodiment of the present invention. It is sectional drawing which shows an example of the cut surface of the packaging material shown in FIG.
  • FIG. 2 is a cross-sectional view of the electricity storage device terminal film and metal terminal shown in FIG. It is typical sectional drawing which expanded a part of terminal film for electrical storage devices wound by roll shape. It is a perspective view which shows schematic structure of the electrical storage device which concerns on 2nd Embodiment of this invention. It is sectional drawing which shows an example of the cut surface of the packaging material shown in FIG.
  • FIG. 6 is a cross-sectional view of the electricity storage device terminal film and metal terminal shown in FIG. 5 in the BB line direction.
  • FIG. 1 is a perspective view showing a schematic configuration of the electricity storage device according to the first embodiment of the present invention.
  • a lithium ion secondary battery is illustrated as an example, and the following description is given.
  • the lithium ion secondary battery configured as shown in FIG. 1 is sometimes called a battery pack or a battery cell.
  • an electricity storage device 10 is a lithium ion secondary battery, and may be called an electricity storage device body 11, a packaging material 13, and a pair of metal terminals 14 (“tab leads”). ) And a terminal film 16 for an electricity storage device (sometimes referred to as “tab sealant”).
  • the power storage device body 11 is a battery body that performs charging and discharging.
  • the packaging material 13 is disposed so as to cover the surface of the electricity storage device body 11 and to be in contact with a part of the electricity storage device terminal film 16.
  • FIG. 2 is a cross-sectional view showing an example of a cut surface of the packaging material shown in FIG. 2, the same components as those in the structure shown in FIG.
  • the packaging material 13 includes an inner layer 21, an inner layer-side adhesive layer 22, a corrosion prevention treatment layer 23-1, a barrier layer 24 that is a metal layer, and a corrosion prevention treatment layer 23 from the inside that contacts the power storage device body 11. -2, an outer layer-side adhesive layer 25, and an outer layer 26 are sequentially formed into a seven-layer structure.
  • an acid-modified polyolefin resin obtained by graft-modifying maleic anhydride or the like on a polyolefin resin or a polyolefin resin can be used.
  • the polyolefin resin include low density, medium density, and high density polyethylene; ethylene- ⁇ olefin copolymer; homo, block, or random polypropylene; propylene- ⁇ olefin copolymer. These polyolefin resins may be used individually by 1 type, and may use 2 or more types together.
  • the inner layer 21 may be configured by using a single layer film or a multilayer film in which a plurality of layers are laminated according to a required function. Specifically, for example, in order to impart moisture resistance, a multilayer film in which a resin such as an ethylene-cyclic olefin copolymer or polymethylpentene is interposed may be used. Furthermore, the inner layer 21 may contain various additives (for example, a flame retardant, a slip agent, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, etc.), for example.
  • additives for example, a flame retardant, a slip agent, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, etc.
  • the thickness of the inner layer 21 is preferably set within a range of 10 to 150 ⁇ m, for example, but more preferably 30 to 80 ⁇ m. If the thickness of the inner layer 21 is less than 10 ⁇ m, the heat seal adhesion between the packaging materials 13 and the adhesion between the packaging material 13 and the terminal film 16 for an electricity storage device may be reduced. Moreover, since it will become a factor of the cost increase of the packaging material 13 when the thickness of the inner layer 21 is thicker than 150 micrometers, it is unpreferable.
  • the corrosion prevention treatment layers 23-1 and 23-2 are preferably formed on both surfaces of the barrier layer 24 in terms of performance.
  • the corrosion prevention treatment layer 23-1 may be disposed only on the surface of the barrier layer 24 positioned.
  • the barrier layer 24 is a conductive metal layer.
  • Examples of the material of the barrier layer 24 include aluminum and stainless steel, but aluminum is preferable from the viewpoint of cost, weight (density), and the like.
  • the outer layer 26 for example, a single film such as nylon or polyethylene terephthalate (PET), or a multilayer film can be used.
  • the outer layer 26 may contain, for example, various additives (for example, a flame retardant, a slip agent, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, and the like) like the inner layer 21.
  • the outer layer 26 may have a protective layer formed by laminating a resin insoluble in the electrolytic solution or coating a resin component insoluble in the electrolytic solution as a countermeasure against liquid leakage, for example. .
  • FIG. 3 is a cross-sectional view of the storage device terminal film and metal terminal shown in FIG. In FIG. 3, the same components as those in the structure shown in FIG.
  • a pair (two in FIG. 1) of metal terminals 14 includes a metal terminal body 14-1 and a corrosion prevention layer 14-2.
  • one metal terminal body 14-1 is electrically connected to the positive electrode of the electricity storage device body 11, and the other metal terminal body 14-1 is electrically connected to the electricity storage device body 11. Is electrically connected to the negative electrode.
  • the pair of metal terminal bodies 14-1 extends in a direction away from the electricity storage device body 11, and part of the metal terminal bodies 14-1 is exposed from the packaging material 13.
  • the shape of the pair of metal terminal bodies 14-1 can be, for example, a flat plate shape.
  • a metal can be used as the material of the metal terminal body 14-1.
  • the metal used as the material of the metal terminal body 14-1 is preferably determined in consideration of the structure of the power storage device body 11 and the material of each component of the power storage device body 11.
  • the electricity storage device 10 is a lithium ion secondary battery
  • aluminum is used as the positive electrode current collector
  • copper is used as the negative electrode current collector.
  • aluminum it is preferable to use aluminum as the material of the metal terminal body 14-1 connected to the positive electrode of the electricity storage device body 11.
  • an aluminum material having a purity of 97% or more such as 1N30 as the material of the metal terminal body 14-1 connected to the positive electrode of the electricity storage device body 11. is there.
  • the metal terminal body 14-1 when the metal terminal body 14-1 is bent, it is preferable to use an O material tempered by sufficient annealing for the purpose of adding flexibility.
  • the thickness of the metal terminal body 14-1 depends on the size and capacity of the lithium ion secondary battery. When the lithium ion secondary battery is small, the thickness of the metal terminal body 14-1 is preferably 50 ⁇ m or more, for example. In the case of a large-sized lithium ion secondary battery for power storage and in-vehicle use, the thickness of the metal terminal body 14-1 can be set as appropriate within a range of 100 to 500 ⁇ m, for example.
  • the corrosion prevention layer 14-2 is disposed so as to cover the surface of the metal terminal body 14-1.
  • a corrosive component such as LiPF 6 is included in the electrolytic solution.
  • the corrosion prevention layer 14-2 is a layer for preventing the metal terminal body 14-1 from being corroded by a corrosive component such as LiPF 6 contained in the electrolytic solution.
  • the power storage device terminal film 16 is disposed so as to cover a part of the outer peripheral surface of the metal terminal 14.
  • the power storage device terminal film 16 includes a first outermost layer 31 that contacts the outer peripheral side surface of the metal terminal 14, a second outermost layer 32 that contacts the packaging material 13, a first outermost layer 31, and a second outermost layer.
  • the intermediate layer 33 disposed between the outer layer 32 and the outer layer 32 is laminated.
  • the first outermost layer 31 is disposed so as to cover one surface (first surface) of the intermediate layer 33 including the pigment 42.
  • the first outermost layer 31 is configured to include a first insulating layer 35 that is an insulating resin layer, and an amorphous insulating filler 36 (an insulating filler having an irregular shape).
  • the first insulating layer 35 (in other words, the first outermost layer 31) is disposed so as to cover a part of the outer peripheral surface of the metal terminal 14.
  • the first outermost layer 31 is disposed so as to cover the outer peripheral surface of the metal terminal 14 (a part of the outer peripheral surface of the metal terminal), thereby sealing the circumferential direction of the metal terminal 14 and the terminal for the electricity storage device It has a function of bringing the film 16 and the metal terminal 14 into close contact.
  • a resin having excellent adhesiveness may be used as a material constituting the first insulating layer 35.
  • a resin having excellent adhesiveness may be used as the resin material constituting the first insulating layer 35.
  • an acid-modified polyolefin resin obtained by graft-modifying maleic anhydride or the like on a polyolefin resin can be used as the resin material constituting the first insulating layer 35.
  • the second outermost layer 32 is disposed so as to cover the other surface (the second surface, the surface opposite to the first surface) of the intermediate layer 33 including the pigment 42.
  • the second outermost layer 32 includes a second insulating layer 38 that is an insulating resin layer and an amorphous insulating filler 36 (an insulating filler having an irregular shape).
  • the second insulating layer 38 (in other words, the second outermost layer 32) is brought into contact with the packaging material 13 by being fused with the packaging material 13 (specifically, the inner layer 21 shown in FIG. 2). Yes.
  • the first insulating layer 35 is fused to the packaging material 13 to seal the inside of the packaging material 13, and the storage device terminal film 16 and the packaging material 13 (specifically, the inner layer shown in FIG. 2). 21). Therefore, from the viewpoint of adhesion between the electricity storage device terminal film 16 and the packaging material 13, the first insulating layer 35 is made of a resin (for example, a polyolefin-based resin) of the same system as the resin serving as the base material of the inner layer 21. Use it.
  • a resin for example, a polyolefin-based resin
  • the thickness of the first insulating layer 35 is preferably 2 to 30 times the average particle size (for example, 0.1 to 20 ⁇ m) of the amorphous insulating filler 36.
  • the thickness of the first insulating layer 35 to which the amorphous insulating filler 36 is added is smaller than twice the average particle size of the amorphous insulating filler 36, the outer surface 35a of the first insulating layer 35 is obtained.
  • the ratio of the insulative insulating filler 36 protruding from is too large. For this reason, the adhesion between the metal terminal 14 (in other words, the tab lead) and the first insulating layer 35 is lowered.
  • the thickness of the first insulating layer 35 to which the amorphous insulating filler 36 is added is larger than 30 times the average particle size of the amorphous insulating filler 36, the outer surface 35a of the first insulating layer 35 is obtained.
  • the ratio of the amorphous insulating filler 36 protruding from the region becomes extremely low, it becomes difficult to obtain a sufficient anti-blocking effect. Therefore, by setting the thickness of the first insulating layer 35 to which the amorphous insulating filler 36 is added to a value 2 to 30 times the average particle diameter of the amorphous insulating filler 36, a sufficient anti-blocking effect is achieved. Can be obtained, and adhesion can be improved.
  • FIG. 4 is a schematic cross-sectional view in which a part of the terminal film for an electricity storage device wound in a roll shape is enlarged.
  • the same components as those of the structure shown in FIG. 4 are enlarged.
  • the amorphous insulating filler 36 is added to the first insulating layer 35.
  • the amorphous insulating filler 36 is disposed so that a part thereof protrudes from the outer surface 35a of the first insulating layer 35 (the surface in contact with the corrosion prevention layer 14-2 shown in FIG. 3).
  • the part which protruded from the outer surface 35a among the amorphous insulating fillers 36 functions as an antiblocking agent.
  • the insulative insulating filler 36 is subjected to a fusion process (after a process of applying a predetermined temperature and pressure to melt-bond the packaging material 13 and the second outermost layer 32), and then to the first outermost layer 31. It also functions as a spacer for securing the thickness. For this reason, since it becomes possible to suppress that the thickness of the 1st outermost layer 31 becomes thinner than predetermined thickness after a melt
  • the amorphous insulating filler 36 may be an amorphous transparent insulating filler or a colored amorphous insulating filler.
  • a filler made of a metal oxide (for example, alumina or silica), a filler made of an organic material (for example, polycarbonate or epoxy resin), or the like can be used.
  • the amorphous insulating filler 36 is preferably an inexpensive amorphous silica filler.
  • the average particle diameter of the amorphous insulating filler 36 is preferably in the range of 0.1 to 20 ⁇ m, for example. If the average particle size of the amorphous insulating filler 36 is smaller than 0.1 ⁇ m, the size of the amorphous insulating filler 36 that protrudes from the outer surface 35a of the first insulating layer 35 becomes too small. It becomes difficult to obtain. On the other hand, if the average particle size of the amorphous insulating filler 36 is larger than 20 ⁇ m, the size of the amorphous insulating filler 36 is too large, so that the contact area with the metal terminal 14 (in other words, tab lead) is reduced. Adhesiveness will decrease. Therefore, by setting the average particle size of the amorphous insulating filler 36 within the range of 0.1 to 20 ⁇ m, a sufficient anti-blocking effect can be obtained and the adhesion can be improved.
  • the addition amount of the amorphous insulating filler 36 added to the first insulating layer 35 can be appropriately set within a range of 0.1 to 20 wt%, for example. If the amount of the amorphous insulating filler 36 added is less than 0.1 wt%, the number of the amorphous insulating fillers 36 protruding from the outer surface 35a of the first insulating layer 35 is too small. The effect of reducing the contact area between them becomes insufficient. Thereby, it becomes difficult to improve the slipping property (in other words, to improve the anti-blocking effect) between the terminal films 16 for power storage devices that are in contact with each other.
  • the amount of the amorphous insulating filler 36 added is more than 20 wt%, the number of the amorphous insulating fillers 36 protruding from the outer surface 35a of the first insulating layer 35 becomes too large.
  • the contact area between the layers is considerably reduced. This makes it difficult to ensure sufficient adhesion between the storage device terminal film 16 and the metal terminal 14 after the storage device terminal film 16 and the metal terminal 14 are fused (see FIG. 1). ).
  • the storage device terminal film 16 and the metal terminal 14 or the packaging material 13 are added.
  • the second outermost layer 32 is disposed so as to cover the other surface of the intermediate layer 33 including the pigment 42.
  • the second outermost layer 32 is configured to include a second insulating layer 38 that is an insulating resin layer, and an amorphous insulating filler 39 (an insulating filler having an irregular shape).
  • the second insulating layer 38 (in other words, the second outermost layer 32) is brought into contact with the packaging material 13 by being fused with the packaging material 13 (specifically, the inner layer 21 shown in FIG. 2). Yes.
  • the second insulating layer 38 is fused to the packaging material 13 to seal the inside of the packaging material 13, and the storage device terminal film 16 and the packaging material 13 (specifically, the inner layer shown in FIG. 2). 21). Therefore, from the viewpoint of the adhesion between the electricity storage device terminal film 16 and the packaging material 13, the second insulating layer 38 is made of the same resin as the base material of the inner layer 21 (for example, a polyolefin resin). Use it.
  • the amorphous insulating filler 39 is added to the second insulating layer 38.
  • the amorphous insulating filler 39 is arranged so that a part thereof protrudes from the outer surface 38 a of the second insulating layer 38.
  • the part which protruded from the outer surface 38a among the amorphous insulating fillers 39 functions as an antiblocking agent.
  • the amorphous insulating filler 39 arranged so that a part protrudes from the outer surface 38a of the second insulating layer 38 is arranged so that a part protrudes from the outer surface 35a of the first insulating layer 35. It is possible to obtain the same effect as that of the amorphous insulating filler 36 (specifically, the effect of improving the slipping property between the storage device terminal films 16 in contact with each other (in other words, improving the anti-blocking effect)). it can. Therefore, it can suppress that a blocking phenomenon generate
  • the amorphous insulating filler 39 has a thickness of the second outermost layer 32 after the fusion process (after the process of applying a predetermined temperature and pressure to bond the packaging material 13 and the second outermost layer 32). It also functions as a spacer to ensure the thickness. For this reason, since it becomes possible to suppress that the thickness of the 2nd outermost layer 32 becomes thinner than predetermined thickness after a melt
  • the amorphous insulating filler 39 may be an amorphous transparent insulating filler or a colored amorphous insulating filler.
  • a filler made of a metal oxide (for example, alumina or silica), a filler made of an organic material (for example, polycarbonate or epoxy resin), or the like can be used.
  • the amorphous insulating filler 39 is preferably an inexpensive amorphous silica filler.
  • the average particle size of the amorphous insulating filler 39 is smaller than 0.1 ⁇ m, the size of the amorphous insulating filler 39 that protrudes from the outer surface 38a of the second insulating layer 38 becomes too small. It becomes difficult to obtain.
  • the average particle diameter of the amorphous insulating filler 39 is larger than 20 ⁇ m, the size of the amorphous insulating filler 39 is too large, so that the contact area with the packaging material 13 is reduced and the adhesiveness is lowered. End up. Therefore, by setting the average particle size of the amorphous insulating filler 39 within the range of 0.1 to 20 ⁇ m, a sufficient anti-blocking effect can be obtained and adhesion can be improved.
  • the addition amount of the amorphous insulating filler 39 included in the second insulating layer 38 can be appropriately set within a range of 0.1 to 20 wt%, for example.
  • the addition amount of the amorphous insulating filler 39 contained in the second insulating layer 38 is less than 0.1 wt%, the number of the amorphous insulating filler 39 protruding from the outer surface 38a of the second insulating layer 38 is small. Therefore, the effect of reducing the contact area between the power storage device terminal films 16 is insufficient. Thereby, it becomes difficult to improve the slipping property (in other words, to improve the anti-blocking effect) between the terminal films 16 for power storage devices that are in contact with each other.
  • the amount of the amorphous insulating filler 39 included in the second insulating layer 38 is more than 20 wt%, the number of the amorphous insulating fillers 39 protruding from the outer surface 38a of the second insulating layer 38 is large. Therefore, the contact area between the terminal films for power storage devices (specifically, the insulating layer) is considerably reduced. Thereby, it is difficult to sufficiently secure the adhesion between the storage device terminal film 16 and the packaging material 13 after the fusion of the storage device terminal film 16 and the packaging material 13 (after heat sealing). (See FIG. 1).
  • the storage device terminal film 16 and the metal terminal 14 or the packaging material 13 are added.
  • the average particle size Ra of the amorphous insulating filler 39 may be the same value as or different from the average particle size Ra of the amorphous insulating filler 36 depending on the purpose.
  • the intermediate layer 33 is disposed between the first outermost layer 31 and the second outermost layer 32.
  • the intermediate layer 33 has one surface covered with the first outermost layer 31 and the other surface covered with the second outermost layer 32.
  • the intermediate layer 33 includes a third insulating layer 41 that is an insulating resin layer disposed between the first outermost layer 31 and the second outermost layer 32, and a pigment 42 added to the third insulating layer 41. (Colorant).
  • the third insulating layer 41 As a material of the third insulating layer 41, it is preferable to use a resin material having a high melting point that is difficult to melt at the time of fusion bonding and heat sheet processing.
  • a resin material having a high melting point that is difficult to melt at the time of fusion bonding and heat sheet processing.
  • the material of the third insulating layer 41 for example, polyolefin may be used from the viewpoint of adhesion with the first outermost layer 31 and the second outermost layer 32.
  • the material of the third insulating layer 41 may be, for example, polyester such as PET (Polyethylene terephthalate) or a heat resistant resin (for example, polycarbonate). Good.
  • the third insulating layer 41 constituting the intermediate layer 33 does not need to have a single layer structure, and may have a multilayer structure in which a plurality of polyester layers are bonded together with an adhesive, for example.
  • the thickness of the intermediate layer 33 (in other words, the thickness of the third insulating layer 41) can be appropriately set within a range of 10 to 200 ⁇ m, for example, and preferably 20 to 100 ⁇ m.
  • the balance between the metal terminal 14 and the first outermost layer 31 is important, and when the first outermost layer 31 and the metal terminal 14 are thick, the thickness of the intermediate layer 33 is also increased. The thickness may be increased accordingly.
  • the pigment 42 is used for coloring the intermediate layer 33.
  • coloring the intermediate layer 33 it is possible to improve the visibility of the terminal film 16 for an electricity storage device as compared with the terminal film for an electricity storage device having an intermediate layer to which the pigment 42 is not added. Become. Thereby, the inspection of the terminal film 16 for the electricity storage device (specifically, for example, the inspection whether or not the terminal film 16 for the electricity storage device is attached to the metal terminal 14, the attachment of the terminal film 16 for the electricity storage device to the metal terminal 14) The accuracy of position inspection, etc.) can be improved.
  • an organic pigment, an inorganic pigment, or the like can be used.
  • organic pigments include azo, phthalocyanine, quinacridone, anthraquinone, dioxazine, indigothioindigo, perinone-perylene, and isoindolenin
  • inorganic pigments include carbon black.
  • titanium oxide-based, cadmium-based, lead-based, chromium oxide-based, and the like can be used.
  • mica (mica) fine powder, fish scale foil, and the like can be used.
  • organic pigment for example, the following pigments can be used.
  • organic pigments that can be colored yellow include isoindolinone, isoindoline, quinophthalone, anthraquinone (flavavatron), azomethine, xanthene, and the like.
  • organic pigments that can be colored orange include diketopyrrolopyrrole, perylene, anthraquinone, perinone, quinacridone, and the like.
  • organic pigments that can be colored red include anthraquinone, quinacridone, diketopyrrolopyrrole, perylene, and indigoid.
  • organic pigments that can be colored purple include oxazine (dioxazine), quinacridone, perylene, indigoid, anthraquinone, xanthene, benzimidazolone, violanthrone, and the like.
  • organic pigment that can be colored blue for example, phthalocyanine, anthraquinone, indigoid and the like can be used.
  • organic pigments that can be colored green include phthalocyanine, perylene, azomethine, and the like.
  • the inorganic pigment for example, the following pigments can be used.
  • examples of inorganic pigments that can be colored white include zinc white, lead white, lithopone, titanium dioxide, precipitated barium sulfate, barite powder, and the like.
  • examples of inorganic pigments that can be colored red include red lead, iron oxide red, and the like.
  • As an inorganic pigment that can be colored yellow for example, yellow lead, zinc yellow (zinc yellow 1 type, zinc yellow 2 type) and the like can be used.
  • As an inorganic pigment that can be colored blue for example, ultramarine blue, prussian blue (potassium ferrocyanide), or the like can be used.
  • As the inorganic pigment that can be colored black for example, carbon black or the like can be used.
  • the contents of the organic pigment and the inorganic pigment contained in the third insulating layer 41 can be appropriately set within a range of 0.01 wt% or more and 3.00 wt% or less.
  • the pigment 42 for example, carbon black is preferably used.
  • the intermediate layer 33 can be colored with a deep hue (specifically, black).
  • the visibility of the electricity storage device terminal film 16 is further improved, so that the inspection of the electricity storage device terminal film 16 (specifically, for example, whether the electricity storage device terminal film 16 is attached to the metal terminal 14 or not). And the inspection of the mounting position of the storage device terminal film 16 with respect to the metal terminal 14) can be performed with higher accuracy. In particular, it is effective when the width of the metal terminal 14 is narrow and the width of the terminal film 16 for an electricity storage device is narrow.
  • the particle size of the carbon black used as the pigment 42 can be appropriately selected within a range of 1 nm to 1 ⁇ m, for example.
  • the amount of carbon black added to the third insulating layer 41 is preferably 0.01 wt% or more and 3.00 wt% or less, for example. If the added amount of carbon black contained in the third insulating layer 41 is less than 0.01 wt% or more, it becomes difficult to color the intermediate layer 33 with a deep hue. In addition, if the content of carbon black contained in the third insulating layer 41 is more than 3.00 wt%, the conductivity of the intermediate layer 33 becomes too high, so that the electricity between the intermediate layer 33 and the metal terminal 14 is increased. It is difficult to ensure sufficient insulation.
  • the addition amount of carbon black contained in the third insulating layer 41 not less than 0.01 wt% and not more than 3.00 wt%, the visibility of the terminal film 16 for an electricity storage device can be improved and electrical insulation can be achieved. Sufficient sex can be secured.
  • an insulating filler may be added to the third insulating layer 41. That is, the intermediate layer 33 may include an insulating filler (not shown) as a component. In this manner, by adding an insulating filler (not shown) to the third insulating layer 41, the insulating filler functions as a spacer. Therefore, after the fusion, the intermediate layer 33 (specifically, the first insulating layer 41) It is possible to suppress the thickness of the third insulating layer 41) from becoming thinner than a predetermined thickness.
  • the insulating filler for example, a filler made of a metal oxide (for example, alumina or silica), a filler made of an organic material (for example, polycarbonate or epoxy resin), or the like can be used. From the viewpoint of the cost of the terminal film 16 for an electricity storage device, a silica filler is preferable as the insulating filler.
  • a spherical shape or an indefinite shape can be used as the shape of the insulating filler.
  • the amorphous insulating filler 36 added to the first insulating layer 35 is disposed so as to protrude from the outer surface 35a of the first insulating layer 35, and the first The amorphous insulating filler 39 added to the second insulating layer 38 is disposed so as to protrude from the outer surface 38 a of the second insulating layer 38.
  • the first insulating layer 35 includes an insulating filler 36
  • the second insulating layer 38 includes an insulating filler 39.
  • the first outermost layer 31 and the second outermost layer 32 make the conductive It is possible to electrically insulate the intermediate layer 33 having the property from the metal terminal 14 and the barrier layer 24.
  • the electricity storage device 10 according to this embodiment having the electricity storage device terminal film 16 can obtain the same effects as the electricity storage device terminal film 16.
  • the amorphous insulating fillers 36 and 39 are added to the first insulating layer 35 and the second insulating layer 38 that constitute the first outermost layer 31 and the second outermost layer 32, respectively.
  • the case where part of the regular insulating fillers 36 and 39 protrudes from the outer surfaces 35a and 38a has been described as an example. If the amorphous insulating fillers 36 and 39 are added to only one of the first insulating layer 35 and the second insulating layer 38 and disposed so as to partially protrude from the outer surface of the insulating layer. Good.
  • the amorphous insulating fillers 36 and 39 may be added to at least one of the first insulating layer 35 and the second insulating layer 38.
  • the same effect as that of the terminal film 16 for electric devices according to the above-described embodiment specifically, the slipping property between the terminal films 16 for power storage devices in contact with each other is improved (in other words, the anti-blocking effect is improved).
  • the effect that it can be improved) can be obtained. Thereby, it can suppress that a blocking phenomenon generate
  • the first outermost layer 31 arranged so as to cover a part of the outer peripheral surface of the metal terminal 14 and the packaging material 13 for packaging the power storage device body 11 are arranged.
  • the first outermost layer 31 that is arranged so as to cover a part of the outer peripheral surface of the metal terminal 14 is formed.
  • the first outermost layer 31 and the second outermost layer 32 can be distinguished by adding the amorphous insulating filler 36 capable of coloring the first insulating layer 36 only to the first insulating layer 36.
  • the amorphous insulating fillers 36 and 39 are added to only one of the first insulating layer 35 and the second insulating layer 38, and the pigment 42 is added to the third insulating layer 41.
  • carbon black is added (in other words, when the intermediate layer 33 has conductivity)
  • the metal terminal 14 may be fused to the metal terminal 14 in a state where the two terminal films 16 for an electricity storage device shown in FIG. That is, you may arrange
  • the intermediate layer 33 is colored using the pigment 42 has been described as an example, but the first insulating layer is not the third insulating layer 41 constituting the intermediate layer 33.
  • a pigment 42 having no conductivity may be added to at least one of 35 and the second insulating layer 38.
  • the visibility of the power storage device terminal film 16 can be improved. Accuracy can be improved.
  • the power storage device terminal film 16 having a three-layer structure has been described as an example.
  • the intermediate layer 33 and the first outermost layer 31 and the intermediate layer 33 are described.
  • a fourth insulating layer (not shown) made of an insulating resin may be disposed between the first outermost layer 32 and the second outermost layer 32.
  • a fourth insulating layer (not shown) between the intermediate layer 33 and the first outermost layer 31 and between the intermediate layer 33 and the second outermost layer 32, respectively. Moreover, the insulation between the intermediate layer 33 and the barrier layer 24 (metal layer) constituting the packaging material 13 and the insulation between the intermediate layer 33 and the metal terminal 14 can be improved.
  • the power storage device terminal film 16 may be manufactured using, for example, a film extrusion manufacturing apparatus having a die such as a round die used when using the inflation molding method or a T die used when using the press die method.
  • a multi-layer inflation molding method is preferred.
  • the material for the terminal film 16 for an electricity storage device a material having a melt mass flow rate (hereinafter referred to as “MFR”) of 5 g / 10 min or less is often used. For this reason, when the T-die method is used, the film formation is not stable and the manufacture is often difficult.
  • the inflation molding method is suitable for the production of the terminal film 16 for an electricity storage device because the film can be stably formed even with the above-mentioned material (a material having an MFR value of 5 g / 10 min or less).
  • the base materials of the first outermost layer 31, the second outermost layer 32, and the intermediate layer 33 are prepared. Specifically, as a base material of the first outermost layer 31, an amorphous insulating filler 36 is added to a material obtained by melting an insulating resin to be the first insulating layer 35 so that a predetermined addition amount is obtained. An insulating filler-containing resin kneaded uniformly is prepared. In addition, as a base material of the second outermost layer 32, an insulating filler 39 is uniformly kneaded into a material obtained by melting an insulating resin to be the second insulating layer 38 so that a predetermined addition amount is obtained. An insulating filler-containing resin is prepared.
  • a pigment-containing resin in which the pigment 42 is uniformly kneaded so as to have a predetermined addition amount in a material obtained by melting the insulating resin to be the third insulating layer 41 is prepared. To do.
  • the base materials of the first outermost layer 31, the second outermost layer 32, and the intermediate layer 33 are supplied to an inflation molding apparatus (not shown).
  • an inflation molding apparatus not shown
  • the three base materials from the extrusion part of the inflation molding apparatus so as to have a three-layer structure (a structure in which the first outermost layer 31, the second outermost layer 32, and the intermediate layer 33 are laminated).
  • air is supplied from the inside of the extruded laminate having the three-layer structure.
  • the cylindrical power storage device terminal film 16 inflated into a cylindrical shape it is deformed into a flat shape by the guide portion, and then the power storage device terminal film 16 is folded into a sheet shape by a pair of pinch rolls. .
  • the terminal film 16 for an electricity storage device wound around the roller in a roll shape is manufactured. .
  • the extrusion temperature at the time of producing the electricity storage device terminal film 16 is preferably in the range of 170 to 300 ° C., and more preferably 200 to 250 ° C., for example.
  • the extrusion temperature is less than 170 ° C., the melt of the insulating resin becomes insufficient, and the melt viscosity becomes considerably large, so that the extrusion from the screw may be unstable.
  • the extrusion temperature exceeds 300 ° C., oxidation and deterioration of the insulating resin become severe, so that the quality of the terminal film 16 for an electricity storage device is deteriorated.
  • the number of rotations of the screw, the blow ratio, the take-off speed, etc. can be appropriately set in consideration of the set film thickness. Moreover, the film thickness ratio of each layer of the terminal film 16 for electrical storage devices can be easily adjusted by changing the rotation speed of each screw.
  • the terminal film 16 for electrical storage devices which concerns on this embodiment using the method of laminating
  • the fusion process which melt-bonds the terminal film 16 for electrical storage devices which concerns on this embodiment, and the metal terminal 14 is demonstrated.
  • the first outermost layer 31 is melted by heating, and the first outermost layer 31 and the metal terminal 14 are simultaneously bonded by pressurization. Is heat-sealed.
  • insulating resin (1st insulating layer) which comprises the 1st outermost layer 31 35 base material) is heated to a temperature equal to or higher than the melting point.
  • the heating temperature of the power storage device terminal film 16 140 to 170 ° C. can be used as the heating temperature of the power storage device terminal film 16. Further, the treatment time (total time of heating time and pressurization time) needs to be determined in consideration of the peel strength and productivity.
  • the processing time can be appropriately set within a range of 1 to 60 seconds, for example.
  • heat fusion may be performed at a temperature exceeding 170 ° C. for a short pressurization time.
  • the heating temperature can be, for example, 170 to 200 ° C.
  • the pressurization time can be, for example, 3 to 20 seconds.
  • FIG. 5 is a perspective view showing a schematic configuration of the electricity storage device according to the second embodiment of the present invention.
  • a lithium ion secondary battery is illustrated as an example of the electricity storage device 110, and the following description is given. Note that the lithium ion secondary battery configured as shown in FIG. 5 is sometimes called a battery pack or a battery cell.
  • an electricity storage device 110 of this embodiment is a lithium ion secondary battery, and includes an electricity storage device body 111, a packaging material 113, and a pair of metal terminals 114 (sometimes referred to as “tab leads”). And a terminal film 116 for an electricity storage device (sometimes referred to as “tab sealant”).
  • the power storage device body 111 is a battery body that performs charging and discharging.
  • the packaging material 113 is disposed so as to cover the surface of the power storage device body 111 and to be in contact with part of the power storage device terminal film 116.
  • FIG. 6 is a cross-sectional view showing an example of a cut surface of the packaging material shown in FIG. In FIG. 6, the same components as those of the structure shown in FIG.
  • the packaging material 113 includes an inner layer 121, an inner layer-side adhesive layer 122, a corrosion prevention treatment layer 123-1, a barrier layer 124 that is a metal layer, and a corrosion prevention treatment layer 123 from the inner side in contact with the power storage device body 111. -2, an outer-layer-side adhesive layer 125, and an outer layer 126 are sequentially laminated.
  • the inner layer 121, the inner layer side adhesive layer 122, the corrosion prevention treatment layer 123-1, the barrier layer 124, the corrosion prevention treatment layer 123-2, the outer layer side adhesive layer 125, and the outer layer 126 are each an inner layer of the first embodiment. 21, the inner layer side adhesive layer 22, the corrosion prevention treatment layer 23-1, the barrier layer 24, the corrosion prevention treatment layer 23-2, the outer layer side adhesive layer 25, and the outer layer 26, and thus description thereof is omitted.
  • FIG. 7 is a cross-sectional view of the storage device terminal film and metal terminal shown in FIG. 5 in the BB line direction.
  • the same components as those of the structure shown in FIG. 7
  • the pair (two in FIG. 5) of metal terminals 114 includes a metal terminal body 114-1 and a corrosion prevention layer 114-2.
  • one metal terminal body 114-1 is electrically connected to the positive electrode of the electricity storage device body 111
  • the other metal terminal body 114-1 is electrically connected to the electricity storage device body 111. Is electrically connected to the negative electrode.
  • the pair of metal terminal bodies 114-1 extends in a direction away from the electricity storage device body 111, and a part of the metal terminal bodies 114-1 is exposed from the packaging material 113.
  • the shape of the pair of metal terminal bodies 114-1 can be, for example, a flat plate shape.
  • Metal can be used as the material of the metal terminal body 114-1.
  • the metal used as the material of the metal terminal body 114-1 is preferably determined in consideration of the structure of the power storage device body 111, the material of each component of the power storage device body 111, and the like.
  • the electricity storage device 110 is a lithium ion secondary battery
  • aluminum is used as the current collector for the positive electrode
  • copper is used as the current collector for the negative electrode.
  • aluminum is preferably used as the material of the metal terminal body 114-1 connected to the positive electrode of the electricity storage device body 111.
  • an aluminum material having a purity of 97% or more such as 1N30 as the material of the metal terminal body 114-1.
  • the metal terminal body 114-1 when the metal terminal body 114-1 is bent, it is preferable to use an O material that has been tempered by sufficient annealing for the purpose of adding flexibility.
  • As a material of the metal terminal main body 114-1 connected to the negative electrode of the electricity storage device main body 111 it is preferable to use copper having a nickel plating layer formed on the surface or nickel.
  • the thickness of the metal terminal body 114-1 depends on the size and capacity of the lithium ion secondary battery. When the lithium ion secondary battery is small, the thickness of the metal terminal body 114-1 is preferably 50 ⁇ m or more, for example. In the case of a large-sized lithium ion secondary battery for power storage and in-vehicle use, the thickness of the metal terminal body 114-1 can be appropriately set within a range of 100 to 500 ⁇ m, for example.
  • the corrosion prevention layer 114-2 is disposed so as to cover the surface of the metal terminal body 114-1.
  • a corrosive component such as LiPF 6 is included in the electrolytic solution.
  • the corrosion prevention layer 114-2 is a layer for preventing the metal terminal body 114-1 from being corroded by a corrosive component such as LiPF 6 contained in the electrolytic solution.
  • the electrical storage device terminal film 116 is disposed so as to cover a part of the outer peripheral surface of the metal terminal 114.
  • the power storage device terminal film 116 includes a first outermost layer 131 that contacts the outer peripheral side surface of the metal terminal 114, a second outermost layer 132 that contacts the packaging material 113, a first outermost layer 131, and a second outermost layer 131.
  • the intermediate layer 133 disposed between the outer layer 132 and the outer layer 132 is laminated.
  • the first outermost layer 131 is disposed so as to cover one surface (first surface) of the conductive intermediate layer 133 by including the conductive pigment 142 that can be colored black.
  • the first outermost layer 131 includes a first insulating layer 135 that is an insulating resin layer and an insulating filler 136.
  • the first insulating layer 135 (in other words, the first outermost layer 131) is disposed so as to cover a part of the outer peripheral surface of the metal terminal 114.
  • the first outermost layer 131 is disposed so as to cover the outer peripheral surface of the metal terminal 114, thereby sealing the circumferential direction of the metal terminal 114 and bringing the power storage device terminal film 116 and the metal terminal 114 into close contact with each other. It has a function.
  • the first insulating layer 135 for example, a resin having excellent adhesiveness may be used.
  • a resin material constituting the first insulating layer 135 for example, an acid-modified polyolefin resin obtained by graft-modifying maleic anhydride or the like on a polyolefin resin can be used.
  • the thickness of the first insulating layer 135 can be set to 10 to 50 ⁇ m, for example.
  • the insulating filler 136 is added to the first insulating layer 135.
  • the insulating filler 136 has a thickness of the first outermost layer 131 after the heat sealing process (after the process of applying a predetermined temperature and pressure to fuse the packaging material 113 and the second outermost layer 132). It functions as a spacer for securing.
  • a filler made of a metal oxide (for example, alumina or silica), a filler made of an organic material (for example, polycarbonate or epoxy resin), or the like can be used.
  • the shape of the insulating filler 136 for example, an indeterminate shape or a spherical shape can be used, but a spherical shape is preferable.
  • a spherical shape is preferable.
  • the thickness of the 1st outermost layer 131 can be made thicker than the case where an amorphous filler is used after a heat sheet process. Therefore, the intermediate layer 133 including the conductive pigment 142 and the metal terminal 114 can be electrically insulated by the first outermost layer 131.
  • the particle size of the insulating filler 136 may be set to a value 1/30 to 1/2 times the thickness of the first insulating layer 135, for example. In this way, by setting the particle size of the insulating filler 136 to a value that is 1/30 to 1/2 times the thickness of the first insulating layer 135, the first outermost layer 131 is fused to the metal terminal 114.
  • the insulating filler 136 can be made to function as a spacer without lowering the properties.
  • the content (concentration) of the insulating filler 136 added to the first insulating layer 135 is preferably 0.1 wt% or more and 20 wt% or less, for example.
  • the content of the insulating filler 136 added to the first insulating layer 135 is less than 0.1 wt%, the content of the insulating filler 136 is too small.
  • the terminal 114 and the first outermost layer 131 are fused (when heat-sealed), the thickness of the first outermost layer 131 becomes too thin. Therefore, it becomes difficult to insulate between the conductive intermediate layer 133 and the metal terminal 114 by the first outermost layer 131.
  • the content of the insulating filler 136 added to the first insulating layer 135 is more than 20 wt%, the ratio of the first insulating layer 135 decreases, so the first outermost layer 131 and the metal terminal 114 are reduced.
  • the adhesiveness (in other words, adhesiveness) between the two decreases. Therefore, the content of the insulating filler 136 added to the first insulating layer 135 is 0.1 wt% or more and 20 wt% or less, so that the fusion between the first outermost layer 131 and the metal terminal 114 can be improved. Without lowering, it is possible to electrically insulate between the conductive intermediate layer 133 and the metal terminal 114.
  • the second outermost layer 132 is disposed so as to cover the other surface (the second surface, the surface opposite to the first surface) of the intermediate layer 133 having conductivity by including the conductive pigment 142.
  • the second outermost layer 132 includes a second insulating layer 138 that is an insulating resin layer, and an insulating filler 139.
  • the second insulating layer 138 (in other words, the second outermost layer 132) is brought into contact with the packaging material 113 by being fused with the packaging material 113 (specifically, the inner layer 121 shown in FIG. 6). Yes.
  • the second insulating layer 138 is fused to the packaging material 113 to seal the inside of the packaging material 113, and the storage device terminal film 116 and the packaging material 113 (specifically, the inner layer shown in FIG. 6). 121). Therefore, from the viewpoint of adhesion between the power storage device terminal film 116 and the packaging material 113, the second insulating layer 138 is made of a resin of the same system as the base material of the inner layer 121 (for example, a polyolefin-based resin). Use it.
  • the thickness of the second insulating layer 138 can be set to 10 to 50 ⁇ m, for example.
  • the insulating filler 139 is added to the second insulating layer 138.
  • the insulating filler 139 is used as a spacer for securing the thickness of the second outermost layer 132 when the packaging material 113 and the second outermost layer 132 are fused by applying a predetermined temperature and pressure. Function.
  • a filler made of a metal oxide (for example, alumina or silica), a filler made of an organic material (for example, polycarbonate, epoxy resin, or the like) can be used as the insulating filler 139.
  • the insulating fillers 136 and 39 for example, fillers of the same type and the same shape may be used. In this way, by using fillers of the same type and the same shape as the insulating fillers 136 and 39, the preparation of the insulating fillers 136 and 39 is facilitated as compared with the case of preparing two different types of fillers. It can be carried out.
  • the insulating fillers 136 and 39 for example, fillers having different particle sizes (sizes) may be used. In this way, by using insulating fillers having different shapes as the insulating fillers 136 and 39, the thicknesses of the first outermost layer 131 and the second outermost layer 132 can be adjusted according to the purpose. Can do.
  • the shape of the insulating filler 139 for example, an indeterminate shape or a spherical shape can be used, but a spherical shape is preferable.
  • the function of the insulating filler 139 as a spacer can be improved.
  • bonding the packaging material 113 and the 2nd outermost layer 132 by applying a predetermined pressure and temperature (in other words, after a heat sheet process) compared with the case where an amorphous filler is used.
  • the thickness of the second outermost layer 132 can be increased. Therefore, the second outermost layer 132 can electrically insulate the intermediate layer 133 including the conductive pigment 142 from the barrier layer 124 constituting the packaging material 113.
  • the particle size of the insulating filler 139 is preferably set to a value 1/30 to 1/2 times the thickness of the second insulating layer 138, for example. As described above, the particle size of the insulating filler 139 is set to 1/30 to 1/2 times the thickness of the second insulating layer 138, so that the second outermost layer 132 can be fused to the packaging material 113.
  • the insulating filler 139 can be made to function as a spacer without lowering the properties.
  • the content (concentration) of the insulating filler 139 added to the second insulating layer 138 is preferably 0.1 wt% or more and 20 wt% or less, for example. If the content of the insulating filler 139 added to the second insulating layer 138 is less than 0.1 wt%, the content of the insulating filler 38 is too small. When the outermost layer 132 is fused, the thickness of the second outermost layer 132 may be reduced.
  • the content of the insulating filler 139 added to the second insulating layer 138 is more than 20 wt%, the ratio of the second insulating layer 138 decreases, so that the second outermost layer 132 and the packaging material 113 are reduced. There is a risk that the fusing property (in other words, adhesion) between the two will decrease. Therefore, by making the content of the insulating filler 139 added to the second insulating layer 138 0.1 wt% or more and 20 wt% or less, the fusion property between the second outermost layer 132 and the packaging material 113 is achieved. The electrical insulation between the conductive intermediate layer 133 and the barrier layer 124 can be sufficiently ensured without lowering.
  • the intermediate layer 133 is disposed between the first outermost layer 131 and the second outermost layer 132.
  • the intermediate layer 133 has one surface covered with the first outermost layer 131 and the other surface covered with the second outermost layer 132.
  • the intermediate layer 133 includes a third insulating layer 141 that is an insulating resin layer disposed between the first outermost layer 131 and the second outermost layer 132, and a conductive material that functions as a colorant that can be colored black. And a pigment 142.
  • the third insulating layer 141 As a material of the third insulating layer 141, it is preferable to use a resin material having a high melting point that hardly melts during heat sheet processing.
  • a resin material having a high melting point that hardly melts during heat sheet processing.
  • polyolefin may be used from the viewpoint of adhesion with the first outermost layer 131 and the second outermost layer 132.
  • a polyester such as PET (Polyethylene terephthalate) or a heat resistant resin (eg, polycarbonate) may be used as the material of the third insulating layer 141. Good.
  • the third insulating layer 141 constituting the intermediate layer 133 does not need to have a single layer structure, and may be a multilayer structure in which a plurality of polyester layers are bonded together with an adhesive, for example.
  • the thickness of the intermediate layer 133 (in other words, the thickness of the third insulating layer 141) can be appropriately set within a range of 10 to 200 ⁇ m, for example, and is preferably 20 to 100 ⁇ m.
  • the balance between the metal terminal 114 and the first outermost layer 131 is important. When the first outermost layer 131 and the metal terminal 114 are thick, the thickness of the intermediate layer 133 is also increased. The thickness may be increased accordingly.
  • the conductive pigment 142 functions as a colorant that colors the intermediate layer 133 black by being added to the third insulating layer 141.
  • the conductive pigment 142 for example, carbon black or graphite can be used.
  • the intermediate layer 133 has a dark color (specifically, black) and an intermediate layer.
  • the layer 133 can be colored.
  • the visibility of the electricity storage device terminal film 116 is improved, so that the inspection of the electricity storage device terminal film 116 (specifically, for example, whether or not the electricity storage device terminal film 116 is attached to the metal terminal 114). Inspection, inspection of the attachment position of the storage device terminal film 116 with respect to the metal terminal 114, etc.) can be performed with high accuracy. This is particularly effective when the width of the metal terminal 114 is narrow and the width of the terminal film 116 for an electricity storage device is narrow.
  • the particle size of the conductive pigment 142 can be appropriately selected within a range of 1 nm to 1 ⁇ m, for example.
  • the content (concentration) of the conductive pigment 142 added to the third insulating layer 141 is preferably 0.01 wt% or more and 3.00 wt% or less, for example.
  • the content of the conductive pigment 142 added to the third insulating layer 141 is less than 0.01 wt%, it becomes difficult to color the intermediate layer with a dark hue.
  • the content of the conductive pigment 142 added to the third insulating layer 141 is more than 3.00 wt%, the conductivity of the intermediate layer 133 becomes too high, so that the intermediate layer 133 and the metal terminal 114 are not electrically connected. It is difficult to ensure sufficient electrical insulation.
  • the content of the conductive pigment 142 added to the third insulating layer to 0.01 wt% or more and 3.00 wt% or less, the visibility of the terminal film 116 for an electricity storage device can be improved, and electrical Insulation can be sufficiently secured.
  • the terminal film for an electricity storage device of this embodiment it is added to the third insulating layer 141 and the third insulating layer 141 disposed between the first outermost layer 131 and the second outermost layer 132.
  • the intermediate layer 133 including the conductive pigment 142 the intermediate layer 133 can be colored with a dark shade (black).
  • the visibility of the power storage device terminal film 116 is improved, so that the power storage device terminal film 116 is inspected (for example, whether the power storage device terminal film 116 is attached to the metal terminal 114, the metal terminal 114). And the like can be improved. This is particularly effective when the width of the metal terminal 114 is narrow and the width of the terminal film 116 for an electricity storage device is narrow.
  • the functional filler 136 can be made to function.
  • the intermediate layer 133 and the metal terminal having conductivity by including the conductive pigment 142 by disposing the terminal film 116 for the electricity storage device so that the first outermost layer 131 and the metal terminal 114 are in contact with each other. It is possible to ensure sufficient insulation between the first and second electrodes 114.
  • the second outermost layer 132 in which the insulating filler 139 is added to the second insulating layer 138 it is possible to suppress the thickness of the second outermost layer 132 from being reduced after the heat sealing process. It becomes. Thereby, the insulating property between the barrier layer 124 (metal layer) and the intermediate layer 133 constituting the packaging material 113 can be improved by the second outermost layer 132.
  • the electricity storage device 110 of the present embodiment having the electricity storage device terminal film 116 can obtain the same effects as the electricity storage device terminal film 116.
  • the case where the first outermost layer 131 and the second outermost layer 132 include an insulating filler has been described as an example. However, in the case of the configuration illustrated in FIG. 7, the first outermost layer 131 is used. Only need to contain the insulating filler (in this case, the insulating filler 136) (in other words, the second outermost layer 132 may not contain the insulating filler 139).
  • the inspection accuracy of the storage device terminal film 116 is improved.
  • the insulation between the metal terminal 114 to which the power storage device terminal film 116 is fused and the intermediate layer 133 can be sufficiently secured.
  • the two power storage device terminal films 116 shown in FIG. 7 may be fused to the metal terminals 114 in a state where the two terminal films 116 are turned upside down. That is, two power storage device terminal films 116 may be arranged so that the second outermost layer 132 and the metal terminal 114 are in contact with each other. In this case, an effect similar to that of the terminal film for an electricity storage device of the present embodiment described above can be obtained.
  • an insulating filler in this case, the insulating filler 139 is added only to the second outermost layer 132.
  • the first outermost layer 131 may not include the insulating filler 136.
  • the first insulating layer 135 constituting the first outermost layer 131 disposed so as to cover a part of the outer peripheral surface of the metal terminal 114 and the packaging material 113 for packaging the power storage device main body 111 are brought into contact with each other. Even when a resin material having different characteristics is used for the second insulating layer 138 that constitutes the arranged second outermost layer 132, by adding an insulating filler only to the first insulating layer 36, The first outermost layer 131 and the second outermost layer 132 can be identified.
  • the terminal film for an electricity storage device having such a structure is obtained by adding the conductive pigment 142 to the third insulating layer 141 constituting the intermediate layer 133 and coloring the intermediate layer 133 with a dark color (black).
  • the inspection accuracy of the electricity storage device terminal film 116 can be improved, and insulation between the metal terminal 114 and the intermediate layer 133 to which the electricity storage device terminal film 116 is fused can be sufficiently secured.
  • an insulating filler may be added to at least one of the first insulating layer 135 and the second insulating layer 138.
  • the power storage device terminal film 116 can be manufactured using, for example, an extrusion molding method such as a T-die method or a round die method, or an inflation molding method, and a multilayer inflation molding method is preferable.
  • the terminal film 116 for an electricity storage device a material having a melt mass flow rate (hereinafter referred to as “MFR”) of 5 g / 10 min or less is often used. For this reason, when the T-die method is used, the film formation is not stable and the manufacture is often difficult.
  • the inflation molding method is suitable for the production of the terminal film 116 for an electricity storage device because the film can be stably formed even with the above-described material (a material having an MFR value of 5 g / 10 min or less).
  • an insulating filler 136 is uniformly kneaded into a material obtained by melting an insulating resin to be the first insulating layer 135 so as to have a predetermined content.
  • a filler-containing resin is prepared.
  • an insulating filler 139 is uniformly kneaded into a material obtained by melting an insulating resin to be the second insulating layer 138 so as to have a predetermined content.
  • An insulating filler-containing resin is prepared.
  • the extrusion temperature at the time of producing the electricity storage device terminal film 116 is preferably within the range of 170 to 300 ° C., and more preferably 200 to 250 ° C., for example.
  • the extrusion temperature is less than 170 ° C., the melt of the insulating resin becomes insufficient, and the melt viscosity becomes considerably large, so that the extrusion from the screw may be unstable.
  • the extrusion temperature exceeds 300 ° C., oxidation and deterioration of the insulating resin become severe, so that the quality of the terminal film 116 for an electricity storage device is degraded.
  • the number of rotations of the screw, the blow ratio, the take-off speed, etc. can be appropriately set in consideration of the set film thickness. Moreover, the film thickness ratio of each layer of the electrical storage device terminal film 116 can be easily adjusted by changing the rotational speed of each screw.
  • the terminal film 116 for electrical storage devices of this embodiment may manufacture the terminal film 116 for electrical storage devices of this embodiment using the method of laminating
  • attaches the terminal film 116 for electrical storage devices and the metal terminal 114 of this embodiment is demonstrated.
  • the fusing process while the first outermost layer 131 is melted by heating and the first outermost layer 131 and the metal terminal 114 are simultaneously pressed, the storage device terminal film 116 and the metal terminal 114 are Is heat-sealed.
  • an insulating resin (first insulating layer) constituting the first outermost layer 131 is used.
  • the base material is heated to a temperature equal to or higher than the melting point of the base material No. 135.
  • the heating temperature of the power storage device terminal film 116 140 to 170 ° C. can be used as the heating temperature of the power storage device terminal film 116.
  • the treatment time total time of heating time and pressurization time
  • the processing time can be appropriately set within a range of 1 to 60 seconds, for example.
  • the heating temperature can be, for example, 170 to 200 ° C.
  • the pressurization time can be, for example, 3 to 20 seconds.
  • the present invention is not limited to such specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims. Deformation / change is possible.
  • the outermost layer indicated by reference numerals 31 and 131 may be referred to as the second outermost layer of the present invention.
  • the outermost layer indicated by reference numerals 32 and 132 is referred to as the first outermost layer of the present invention.
  • a fourth insulating layer (not shown) made of an insulating resin is disposed between the intermediate layer 133 and the first outermost layer 131 and between the intermediate layer 133 and the second outermost layer 132, respectively. May be.
  • a fourth insulating layer (not shown) between the intermediate layer 133 and the first outermost layer 131 and between the intermediate layer 133 and the second outermost layer 132, respectively. Further, the insulation between the intermediate layer 133 and the barrier layer 124 (metal layer) constituting the packaging material 113 and the insulation between the intermediate layer 133 and the metal terminal 114 can be improved (FIGS. 5 to 5). 7).
  • Example A1 ⁇ Preparation of positive electrode tab and negative electrode tab> Referring to FIG. 3, the positive electrode tab and the negative electrode tab of Example A1 (in other words, metal terminal 14 (also referred to as “tab lead”) and a pair of power storage device terminal films 16 (also referred to as “tab sealant”). A manufacturing method of the structure will be described.
  • an aluminum thin plate member having a width of 5 mm, a length of 20 mm, and a thickness of 100 ⁇ m was prepared as the metal terminal body 14-1 for the positive electrode.
  • the surface of the aluminum thin plate member was subjected to non-chromium surface treatment to form a corrosion prevention layer 14-2 (non-chromium surface treatment layer).
  • a metal terminal 14 on the positive electrode side including an aluminum thin plate member and a non-chromium-based surface treatment layer hereinafter referred to as “positive electrode metal terminal 14 ⁇ / b> A” for convenience of description
  • a nickel thin plate member having a width of 5 mm, a length of 20 mm, and a thickness of 100 ⁇ m was prepared as the metal terminal main body 14-1 for the negative electrode.
  • a non-chromium surface treatment was performed on the surface of the nickel thin plate member to form a corrosion prevention layer 14-2 (non-chromium surface treatment layer).
  • a negative electrode-side metal terminal 14 hereinafter referred to as “negative electrode metal terminal 14B” including a nickel thin plate member and a non-chromium surface treatment layer was produced.
  • amorphous silica having an average particle diameter of 5.0 ⁇ m (amorphous insulation) with a concentration of 5.0 wt% with respect to the acid-modified polypropylene that is the base material of the first insulating layer 35.
  • the base material of the 1st outermost layer 31 was produced by adding and mixing the property filler 36).
  • amorphous silica having an average particle diameter of 5.0 ⁇ m (amorphous insulation) with a concentration of 5.0 wt% with respect to the acid-modified polypropylene which is the base material of the second insulating layer 38.
  • the base material of the second outermost layer 32 was produced by adding and mixing the conductive filler 39).
  • carbon black (pigment 42) having an average particle size of 50 nm is added to and mixed with polypropylene as a base material of the intermediate layer 33 so that the concentration becomes 0.1 wt%.
  • a base material for the layer 33 was produced.
  • the base material of the first outermost layer 31, the base material of the second outermost layer 32, and the base material of the intermediate layer 33 are put into an inflation type film extrusion manufacturing apparatus (Co-OI type) manufactured by Sumitomo Heavy Industries Modern Co., Ltd. I set it.
  • a laminated film (a film serving as a base material of the power storage device terminal film 16) was produced by extruding the three base materials using a film extrusion manufacturing apparatus. At this time, the laminated film was formed so that the thickness of the first insulating layer 35 was 30 ⁇ m, the thickness of the second insulating layer 38 was 30 ⁇ m, and the thickness of the third insulating layer 41 was 40 ⁇ m.
  • the melting temperature of the base material of the first outermost layer 31, the base material of the second outermost layer 32, and the base material of the intermediate layer 33 was 210 ° C.
  • the blow ratio was set to 2.2.
  • the positive electrode metal terminal 14 ⁇ / b> A was sandwiched between the two power storage device terminal films 16.
  • the two electricity storage device terminal films 16 were heated for 10 seconds under the condition of a heating temperature of 155 ° C., and the positive electrode metal terminal 14A and the two electricity storage device terminal films 16 were heat-sealed. This produced the positive electrode tab which consists of the metal terminal 14A for positive electrodes, and the terminal film 16 for two electrical storage devices.
  • the negative electrode metal terminal 14B and the two electric storage devices are bonded by heat-sealing the negative electrode metal terminal 14B and the two electric storage device terminal films 16 sandwiching the negative electrode metal terminal 14B in the same manner.
  • a negative electrode tab made of the terminal film 16 was prepared.
  • a nylon layer having a thickness of 25 ⁇ m
  • a polyester polyol-based adhesive having a thickness of 5 ⁇ m
  • an aluminum foil which is an A8079-O material having a thickness of 40 ⁇ m.
  • a first corrosion prevention treatment layer formed by subjecting one surface of the aluminum foil to a non-chromium surface treatment, and a non-chromium surface treatment of the other surface of the aluminum foil.
  • a second corrosion prevention treatment layer (corrosion prevention treatment layer 23-2), an acid-modified polypropylene layer (inner layer side adhesive layer 22) having a thickness of 30 ⁇ m, a polypropylene layer (inner layer 21) having a thickness of 40 ⁇ m, was prepared, and a packaging material 13 having a rectangular shape with a size of 50 mm ⁇ 90 mm was prepared.
  • the packaging material 13 was folded in half at the midpoint of the long side of the packaging material 13 to form two folded portions.
  • the packaging material 13, the positive electrode tab, and the negative electrode tab were fused together by sandwiching the positive electrode tab and the negative electrode tab on one of the two folded portions having a length of 45 mm.
  • the heat sealing conditions were a heating temperature of 190 ° C. and a treatment time of 5 seconds.
  • Example A2 the laminated film (terminal for power storage device) of Example A2 was prepared in the same manner as the laminated film of Example A1, except that the amorphous insulating filler 36 was not added to the first insulating layer 35. Film to be a base material of film 16) was produced. Then, the battery pack for evaluation of Example A2 was produced by the same method as Example A1.
  • Example A3 In Example A3, except that the amorphous insulating filler 39 was not added to the second insulating layer 38, the laminated film of Example A3 (terminal for power storage device) was obtained in the same manner as the laminated film of Example A1. Film to be a base material of film 16) was produced. Then, the battery pack for evaluation of Example A3 was produced by the same method as Example A1.
  • Example A4 In Example A4, except that the average particle size of the amorphous insulating fillers 36 and 39 was changed to 3.0 ⁇ m, and the addition concentration of the amorphous insulating fillers 36 and 39 was changed to 10.0 wt%, A laminated film of Example A4 (a film serving as a base material for the electricity storage device terminal film 16) was produced in the same manner as the laminated film of Example A1. Then, the battery pack for evaluation of Example A4 was produced by the same method as Example A1.
  • Example A5 In Example A5, except that the average particle diameter of the amorphous insulating fillers 36 and 39 was changed to 10.0 ⁇ m, and the addition concentration of the amorphous insulating fillers 36 and 39 was changed to 2.0 wt%, A laminated film of Example A5 (a film serving as a base material of the power storage device terminal film 16) was produced in the same manner as the laminated film of Example A1. Then, the battery pack for evaluation of Example A5 was produced by the same method as Example A1.
  • Example A6 In Example A6, the laminated film of Example A1 except that the thickness of the first insulating layer 35 and the second insulating layer 38 is 10 ⁇ m and the thickness of the third insulating layer 41 is 20 ⁇ m.
  • a laminated film of Example A6 film that becomes a base material of the electricity storage device terminal film 16 was produced in the same manner as described above. Then, the battery pack for evaluation of Example A6 was produced by the same method as Example A1.
  • Example A7 In Example A7, the thickness of the first insulating layer 35 and the second insulating layer 38 is 40 ⁇ m, the thickness of the third insulating layer 41 is 20 ⁇ m, and the average particle size of the amorphous insulating fillers 36 and 39 is 3
  • a laminated film of Example A7 (a film serving as a base material for the electricity storage device terminal film 16) was produced in the same manner as the laminated film of Example A1, except that the thickness was 0.0 ⁇ m. Then, the battery pack for evaluation of Example A7 was produced by the same method as Example A1.
  • Example A8 In Example A8, the laminated film of Example A8 was prepared in the same manner as the laminated film of Example A1 except that 0.5 wt% carbon black (pigment 42) was contained in the third insulating layer 41. A film serving as a base material of the terminal film 16 for an electricity storage device) was produced. Thereafter, an evaluation battery pack of Example A8 was produced in the same manner as in Example A1.
  • Example A9 In Example A9, the average particle diameter of the amorphous insulating fillers 36 and 39 is changed to 1.0 ⁇ m, and carbon black (pigment 42) is added to the third insulating layer 41 so as to have a concentration of 0.01 wt%.
  • a laminated film of Example A9 (a film serving as a base material of the electricity storage device terminal film 16) was produced in the same manner as the laminated film of Example A1, except that it was included. Then, the battery pack for evaluation of Example A9 was produced by the same method as Example A1.
  • Example A10 In Example A10, except that phthalocyanine blue (pigment 42) was added to the third insulating layer 41 so as to have a concentration of 0.2 wt%, the same method as in the laminated film of Example A1 was used. A laminated film of A10 (film that becomes a base material of the terminal film 16 for an electricity storage device) was produced. Then, the battery pack for evaluation of Example A10 was produced by the same method as Example A1.
  • Example A11 In Example A11, except that 0.2 wt% titanium dioxide (pigment 42) was contained in the third insulating layer 41, the laminated film of Example A11 (with the same method as the laminated film of Example A1) A film serving as a base material of the terminal film 16 for an electricity storage device) was produced. Then, the battery pack for evaluation of Example A11 was produced by the same method as Example A1.
  • Example A12 In Example A12, except that a polypropylene layer (10 ⁇ m) was formed between the intermediate layer 33 and the second outermost layer 32, the laminated film of Example A12 ( A film serving as a base material of the terminal film 16 for an electricity storage device) was produced. Then, the battery pack for evaluation of Example A12 was produced by the same method as Example A1.
  • Example A13 In Example A13, the average particle diameter of the amorphous insulating fillers 36 and 39 was set to 0.03 ⁇ m, and the same as the laminated film of Example A1 except that carbon black was not added to the third insulating layer 41.
  • a laminated film of Example A13 (a film serving as a base material of a terminal film for an electricity storage device) was produced by the method. Then, the battery pack for evaluation of Example A13 was produced by the same method as Example A1.
  • Example A14 In Example A14, the laminated film (terminal film for power storage device) of Example A14 was prepared in the same manner as the laminated film of Example A1, except that the concentration of the amorphous insulating fillers 36 and 39 was 0.03 wt%. Film as a base material). Then, the battery pack for evaluation of Example A14 was produced by the same method as Example A1.
  • Example A15 In Example A15, the concentration of the amorphous insulating fillers 36 and 39 is set to 0.03 wt%, and 5.0 wt% of carbon black (pigment 42) is added to the insulating layer 41.
  • a laminated film of Example A15 film serving as a base material for a terminal film for an electricity storage device was produced in the same manner as the laminated film. Then, the battery pack for evaluation of Example A15 was produced by the same method as Example A1.
  • Example A16 In Example A16, the thickness of the first insulating layer 35 and the second insulating layer 38 is 15 ⁇ m, the thickness of the third insulating layer 41 is 30 ⁇ m, and the average particle size of the amorphous insulating fillers 36 and 39 is 10 ⁇ m.
  • the laminated film of Example A16 (the base material of the terminal film for an electricity storage device) was prepared in the same manner as the laminated film of Example A16, except that carbon black was not added to the third insulating layer 41. Film). Thereafter, an evaluation battery pack of Example A16 was produced in the same manner as in Example A1.
  • Example A17 In Example A17, except that the average particle size of the amorphous insulating fillers 36 and 39 was 25.0 ⁇ m, the laminated film of Example A17 (terminal for power storage device) was obtained in the same manner as the laminated film of Example A1. Film as a base material of the film) was prepared. Then, the battery pack for evaluation of Example A17 was produced by the same method as Example A1.
  • Comparative Example A1 In Comparative Example A1, the first outermost layer 31 is formed only by the first insulating layer 35 without using the amorphous insulating fillers 36 and 39, and the second outermost layer 32 is formed only by the second insulating layer 38.
  • a laminated film of Comparative Example A1 (a film serving as a base material for a terminal film for an electricity storage device) was produced in the same manner as in the laminated film of Example A1, except that the film was formed as described above. Thereafter, an evaluation battery pack of Comparative Example A1 was produced in the same manner as in Example A1.
  • Comparative Example A2 In Comparative Example A2, a spherical silica having an average particle diameter of 0.5 ⁇ m was used instead of the amorphous insulating fillers 36 and 39, and the spherical silica was added so that the concentration of the spherical silica was 2 wt%.
  • a laminated film of Comparative Example A2 film serving as a base material for a terminal film for an electricity storage device
  • An evaluation battery pack of Comparative Example A2 was produced in the same manner as in Example A1.
  • ABS property anti-blocking property
  • the antiblocking properties of the laminated films of Examples A2 to A17 and the laminated films of Comparative Examples A1 and A2 were evaluated by the same method as the method for evaluating the antiblocking properties of the laminated film of Example A1.
  • Table 4 shows the evaluation results (determination results) of the antiblocking properties of the laminated films of Examples A1 to A17 and the laminated films of Comparative Examples A1 and A2.
  • Tables 1 to 3 show the thicknesses of the layers constituting the laminated films of Examples A1 to A17 and the laminated films of Comparative Examples A1 and A2, types of insulating fillers, average particle diameters, pigments (specific examples) Shows the concentration of carbon black, phthalocyanine blue, and titanium oxide).
  • the average particle diameter of the amorphous silica is too small with respect to the thickness of the first insulating layer and the second insulating layer (in this case, 0.03 ⁇ m (in Example A13). Value)) and the determination result of anti-blocking property is “ ⁇ ” (evaluation result of Example A9 in which the average particle size of the amorphous silica is 1.0 ⁇ m). ) was confirmed. From this, it was confirmed that the average particle diameter of the amorphous silica is preferably larger than 0.03 ⁇ m.
  • the thicknesses of the first insulating layer 35 and the second insulating layer 38 containing amorphous silica are in the range of 2 to 30 times the average particle diameter of the amorphous silica. With this value, very good results (all results are ⁇ ) were obtained in all items of anti-blocking properties, adhesion properties, insulating properties, and sensing properties.
  • Example B1 ⁇ Preparation of positive electrode tab and negative electrode tab> Referring to FIG. 7, the positive electrode tab and the negative electrode tab of Example B1 (in other words, metal terminal 114 (also referred to as “tab lead”) and a pair of power storage device terminal films 116 (also referred to as “tab sealant”). A manufacturing method of the structure will be described.
  • an aluminum thin plate member having a width of 5 mm, a length of 20 mm, and a thickness of 100 ⁇ m was prepared as the metal terminal body 114-1 for the positive electrode.
  • the surface of the aluminum thin plate member was subjected to non-chromium surface treatment to form a corrosion prevention layer 114-2 (non-chromium surface treatment layer).
  • a metal terminal 114 on the positive electrode side including an aluminum thin plate member and a non-chromium-based surface treatment layer hereinafter referred to as “positive metal terminal 114A” for convenience of description
  • a nickel thin plate member having a width of 5 mm, a length of 20 mm, and a thickness of 100 ⁇ m was prepared as the metal terminal main body 114-1 for the negative electrode.
  • a non-chromium surface treatment was performed on the surface of the nickel thin plate member to form a corrosion prevention layer 114-2 (non-chromium surface treatment layer).
  • a negative electrode-side metal terminal 114 including a nickel thin plate member and a non-chromium surface treatment layer hereinafter, referred to as “negative electrode metal terminal 114B”) was manufactured.
  • spherical silica (insulating) having an average particle size of 10.0 ⁇ m so as to have a concentration (content) of 3.0 wt% with respect to the acid-modified polypropylene serving as a base material of the first insulating layer 135.
  • the base material of the 1st outermost layer 131 was produced by adding and mixing the property filler 136).
  • spherical silica having an average particle diameter of 10.0 ⁇ m so as to have a concentration (content) of 3.0 wt% with respect to the acid-modified polypropylene serving as a base material of the second insulating layer 138.
  • the base material of the second outermost layer 132 was produced by adding and mixing the conductive filler 139).
  • carbon black having an average particle diameter of 20 nm is added to the polypropylene serving as the base material of the intermediate layer 133 so that the concentration (content) is 0.1 wt%. By mixing, the base material of the intermediate layer 133 was produced.
  • the base material of the first outermost layer 131, the base material of the second outermost layer 132, and the base material of the intermediate layer 133 are put into an inflation type film extrusion manufacturing apparatus (Co-OI type) manufactured by Sumitomo Heavy Industries Modern Co., Ltd. I set it.
  • a laminated film (a film serving as a base material of the power storage device terminal film 116) was produced by extruding the above three base materials using a film extrusion manufacturing apparatus. At this time, the laminated film was formed so that the thickness of the first insulating layer 135 was 30 ⁇ m, the thickness of the second insulating layer 138 was 30 ⁇ m, and the thickness of the third insulating layer 141 was 30 ⁇ m.
  • the melting temperature of the base material of the first outermost layer 131, the base material of the second outermost layer 132, and the base material of the intermediate layer 133 was 210 ° C.
  • the blow ratio was set to 2.2.
  • the negative electrode metal terminal 114B and the two electric storage devices are thermally fused to each other by a similar method by thermally bonding the negative electrode metal terminal 114B and the two electric storage device terminal films 116 sandwiching the negative electrode metal terminal 114B.
  • a negative electrode tab made of the terminal film 116 was prepared.
  • a 25 ⁇ m thick nylon layer (outer layer 126), a 5 ⁇ m thick polyester polyol-based adhesive (outer layer side adhesive layer 125), and an aluminum foil (barrier layer 124) that is an A8079-O material having a thickness of 40 ⁇ m.
  • a first corrosion prevention treatment layer (corrosion prevention treatment layer 123-1) formed by subjecting one surface of the aluminum foil to a non-chromium surface treatment, and a non-chromium surface treatment of the other surface of the aluminum foil.
  • the formed second corrosion prevention treatment layer (corrosion prevention treatment layer 123-2), an acid-modified polypropylene layer (inner layer side adhesive layer 122) having a thickness of 30 ⁇ m, and a polypropylene layer (inner layer 121) having a thickness of 40 ⁇ m
  • a packaging material 113 having a rectangular shape with a size of 50 mm ⁇ 90 mm was prepared.
  • the packaging material 113 was folded in half at the midpoint of the long side of the packaging material 113 to form two folded portions.
  • the packaging material 113, the positive electrode tab, and the negative electrode tab were fused to each other by sandwiching the positive electrode tab and the negative electrode tab on one of the two folded portions having a length of 45 mm.
  • the heat sealing conditions were a heating temperature of 190 ° C. and a treatment time of 5 seconds.
  • Example B2 In Example B2, the laminated film (electric storage device) of Example B2 was prepared in the same manner as the laminated film of Example B1, except that spherical silica (insulating filler 136) was not added to the first insulating layer 135. Film to be a base material of the terminal film 116 for use. Then, the battery pack for evaluation of Example B2 was produced by the same method as Example B1.
  • Example B3 In Example B3, except that spherical silica (insulating filler 139) was not added to the second insulating layer 138, the laminated film (electric storage device) of Example B3 was obtained in the same manner as the laminated film of Example B1. Film to be a base material of the terminal film 116 for use. Then, the battery pack for evaluation of Example B3 was produced by the same method as Example B1.
  • Example B4 In Example B4, the same method as in the laminated film of Example B1 was used except that carbon black was added to the third insulating layer 141 so that the concentration (content) was 1.0 wt%. A laminated film of B4 (film serving as a base material for the terminal film 116 for an electricity storage device) was produced. Then, the battery pack for evaluation of Example B4 was produced by the same method as Example B1.
  • Example B5 carbon black is added to the third insulating layer 141 and also added to the first insulating layer 135 and the second insulating layer 138 so that the concentration (content) is 0.01 wt%.
  • a laminated film of Example B5 (a film serving as a base material of the power storage device terminal film 116) was produced in the same manner as described above. Thereafter, an evaluation battery pack of Example B5 was produced in the same manner as in Example B1.
  • Example B6 In Example B6, except that the average particle diameter of the spherical silica (insulating filler 136, 39) was changed to 3.0 ⁇ m and the content of the insulating filler 136, 39 was changed to 20.0 wt% A laminated film of Example B6 (a film serving as a base material of the electricity storage device terminal film 116) was produced in the same manner as the laminated film of Example B1. Then, the battery pack for evaluation of Example B6 was produced by the same method as Example B1.
  • Example B7 In Example B7, amorphous alumina (insulating filler 136, 39) having an average particle diameter of 1.0 ⁇ m was used in place of the spherical silica, and the content of the insulating filler 136, 39 was changed to 1.0 wt%. Except for this, a laminated film of Example B7 (film serving as a base material for the storage device terminal film 116) was produced in the same manner as the laminated film of Example B1. Then, the battery pack for evaluation of Example B7 was produced by the same method as Example B1.
  • Example B8 In Example B8, the average particle diameter of the spherical silica (insulating filler 136, 39) was 1.0 ⁇ m, and the content of the insulating filler 136, 39 was changed to 5.0 wt%.
  • a laminated film of Example B8 (film serving as a base material for the power storage device terminal film 116) was produced in the same manner as the laminated film B1. Then, the battery pack for evaluation of Example B8 was produced by the same method as Example B1.
  • Example B9 In Example B9, a polypropylene layer (10 ⁇ m) is disposed between the intermediate layer 133 and the second outermost layer 132, and the thicknesses of the first insulating layer 135 and the second insulating layer 138 are changed to 20 ⁇ m.
  • a laminated film of Example B9 (a film serving as a base material for the electricity storage device terminal film 116) was produced in the same manner as in the laminated film of Example B1, except that this was done. Then, the battery pack for evaluation of Example B9 was produced by the same method as Example B1.
  • Example B10 In Example B10, except that the concentration (content) of carbon black added to the third insulating layer 141 was 0.005 wt%, the same method as in the laminated film of Example B1 was used. A laminated film (film serving as a base material for a terminal film for an electricity storage device) was produced. Then, the battery pack for evaluation of Example B10 was produced by the same method as Example B1.
  • Example B11 In Example B11, except that the concentration (content) of carbon black added to the third insulating layer 141 was 10.0 wt%, the same method as in the laminated film of Example B1 was used. A laminated film (film serving as a base material for a terminal film for an electricity storage device) was produced. Then, the battery pack for evaluation of Example B11 was produced by the same method as Example B1.
  • Example B12 In Example B12, except that the thickness of the first insulating layer 135 and the second insulating layer 138 was set to 15 ⁇ m, the laminated film (electric storage device) of Example B12 was obtained in the same manner as the laminated film of Example B1. Film as a base material of the terminal film for use. Then, the battery pack for evaluation of Example B12 was produced by the same method as Example B1.
  • Example B13 In Example B13, the average particle diameter of the spherical silica (insulating filler 136) added to the first insulating layer is 0.5 ⁇ m, and the concentration (content) of the spherical silica (insulating filler 136) is 0.05 wt%.
  • the laminated film of Example B13 (of the terminal film for power storage device) was used. Film as a base material) was produced. Thereafter, an evaluation battery pack of Example B13 was produced in the same manner as in Example B1.
  • Example B14 In Example B14, the average particle size of the spherical silica (insulating filler 136, 39) added to the first insulating layer and the second insulating layer is 10.0 ⁇ m, and the spherical silica (insulating filler 136, 39)
  • a laminated film of Example B14 film serving as a base material for a terminal film for an electricity storage device
  • the concentration (content) was 40.0 wt%.
  • an evaluation battery pack of Example B14 was produced in the same manner as in Example B1.
  • Comparative Example B In Comparative Example B, the laminated film of Comparative Example B (base material for terminal film for power storage device) was prepared in the same manner as the laminated film of Example B1, except that carbon black was not added to the third insulating layer 141. The film which becomes) was produced. Thereafter, a battery pack for evaluation of Comparative Example B was produced in the same manner as in Example B1.
  • Tables 5 to 7 show the thickness of each layer constituting the laminated film of Examples B1 to B14 and the laminated film of Comparative Example B, the type and average particle size of the insulating filler, and the concentration (containing) of carbon black. Amount) etc. are also shown.
  • Example B14 From the evaluation result of Example B14, when the particle size of the spherical silica is large (in this case, 10.0 ⁇ m) and the concentration of the insulating filler contained in the first insulating layer and the second insulating layer is high (this In the case of 40 wt%), it was found that the adhesiveness was lowered.
  • the present invention relates to a power storage device terminal film interposed between a packaging material for packaging a power storage device body, and a metal terminal electrically connected to the power storage device body and extending to the outside of the packaging material, and
  • the present invention can be applied to an electricity storage device having the electricity storage device terminal film.
  • first insulating layer 35a, 38a ... outer surface, 36, 39 ... amorphous insulating filler, 136, 139 ... insulating filler, 38, 138 ... second insulating layer, 41, 141 ... third Insulating layer 42, pigment, 42 ... conductive pigment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 本発明の蓄電デバイス用端子フィルムは、蓄電デバイスを構成する蓄電デバイス本体と電気的に接続される金属端子の一部の外周面を覆うように配置される蓄電デバイス用端子フィルムであって、第1の絶縁層を含む第1の最外層と、 第2の絶縁層を含む第2の最外層と、前記第1の絶縁層及び前記第2の絶縁層のうち、少なくとも一方の絶縁層に添加された不定形の絶縁性フィラーと、を有し、前記不定形の絶縁性フィラーの一部を前記絶縁層の外面から突出させて配置する。

Description

蓄電デバイス用端子フィルム、及び蓄電デバイス
 本発明は、蓄電デバイス用端子フィルム、及び蓄電デバイスに関し、特に、蓄電デバイス本体を包装する包装材と、蓄電デバイス本体と電気的に接続され、かつ包装材の外部に延在する金属端子と、の間に介在される蓄電デバイス用端子フィルム、及び蓄電デバイスに関する。
 本願は、2014年1月29日に日本に出願された特願2014-014573号及び2014年1月29日に日本に出願された特願2014-014574号に基づき優先権を主張し、その内容をここに援用する。
 近年、携帯機器の小型化や自然発電エネルギーの有効活用の要求が増しており、より高い電圧が得られエネルギー密度が高いリチウムイオン二次電池(蓄電デバイスのうちの1つ)の研究開発が行われている。
 上記リチウムイオン二次電池に用いられる包装材として、従来は金属製の缶が多く用いられてきた。しかしながら、リチウムイオン二次電池が適用される製品の薄型化や多様化等の要求に対し、製造コストが低いという理由から、金属層(例えば、アルミニウム箔)と、樹脂フィルムと、を積層した積層体が袋状に形成された包装材が多く用いられるようになってきている。
 リチウムイオン二次電池は、電池本体と、電池本体を包み込む包装材と、電池本体の負極または正極と接続され、包装材の外側に延在する金属端子(タブリード)と、金属端子の一部の外周側面をそれぞれ覆う蓄電デバイス用端子フィルム(「タブシーラント」と呼ばれることもある)と、を有する。
 蓄電デバイス用端子フィルムの一部は包装材で覆われており、蓄電デバイス用端子フィルムの残りの部分は包装材から露出されている。蓄電デバイス用端子フィルムは、融着処理することで、金属端子と接着される。
 蓄電デバイス用端子フィルムは、包装材を構成する金属層と金属端子とを絶縁させるためのフィルムである。このため、蓄電デバイス用端子フィルムと包装材との密着性及び蓄電デバイス用端子フィルムと金属端子との密着性の他に、上記ヒートシール処理後において、十分な絶縁性を有する(言い換えれば、十分な絶縁性を有することの可能な厚さである)ことが望まれる。
 また、蓄電デバイス用端子フィルムの色が透明であると、包装材と金属端子との間に、蓄電デバイス用端子フィルムが介在しているか検査を行う際に、蓄電デバイス用端子フィルムの有無の判定が難しくなってしまう。
 さらに、蓄電デバイス用端子フィルムの色が透明であると、金属端子に対する蓄電デバイス用端子フィルムの位置の検査を行う際に、蓄電デバイス用端子フィルムの取り付け位置の判定を精度良く行うことが困難となってしまう。
 蓄電デバイス用端子フィルムの構造としては、単層構造や積層構造(例えば、特許文献1参照)が知られている。
 特許文献1には、不飽和カルボン酸でグラフト変形したポリプロピレン、或いは不飽和カルボン酸でグラフト変形したポリエチレンを3層に積層させた蓄電デバイス用端子フィルム(リード線用フィルム)が開示されている。
 上記蓄電デバイス用端子フィルムの製造方法としては、例えば、インフレーション成型法等の丸ダイを用いた押し出し法や、Tダイを利用した押しダイ法等が知られている。丸ダイやTダイ等のダイスを有するフィルム押出製造装置を用いて、上記蓄電デバイス用端子フィルムは、製造される。
 このような装置(具体的には、フィルム押出製造装置等)で製造される蓄電デバイス用端子フィルムは、装置を構成する巻き取りローラに巻き取られ、搬送及び保管される。
 そして、ロール状にローラに巻き取られた蓄電デバイス用端子フィルムを使用(加工)する際には、ロール状の蓄電デバイス用端子フィルムの一方の端を引き出しながら加工を行う。
 また、特許文献1には、包装材と金属端子との間に、蓄電デバイス用端子フィルムが介在しているかどうかの判定を精度良く行うために、蓄電デバイス用端子フィルム(リード線用フィルム)を顔料または染料を用いて着色することが開示されている。
 さらに、特許文献1には、蓄電デバイス用端子フィルムを着色する顔料としては、無機顔料である炭酸カルシウム、無水ケイ酸、アルミナ、コバルトブルー等の体質顔料、二酸化チタン、酸化亜鉛等の白色顔料、鉄黒、黒鉛等の黒色顔料等を用いることや、有機顔料である不溶正アゾ顔料、アゾレーキ顔料等のアゾ顔料、銅フタロシアニン、無金属フタロシアニンレーキ等のフタロシアニン顔料、アントラキノン系顔料、チオインジゴ顔料等の総合多環顔料、その他ニトロソ顔料や昼光蛍光顔料等を用いることが開示されている。
日本国特開2003-123710号公報
 しかしながら、製造された蓄電デバイス用端子フィルムをロール状に巻き取ると、蓄電デバイス用端子フィルムの両面(一対の外面)が平坦であるため、互いに接触する蓄電デバイス用端子フィルム間の接触面積が大きくなり、蓄電デバイス用端子フィルム間の密着性が増加してしまう。
 このため、ロール状にローラに巻き取られた蓄電デバイス用端子フィルムの一方の端を引き出しながら加工を行うと、互いに接触する蓄電デバイス用端子フィルム間においてブロッキング現象が発生してしまうという問題があった。
 そこで、本発明は、ロール状にローラに巻き取られた蓄電デバイス用端子フィルムの一方の端を引き出した際にブロッキング現象が発生することを抑制可能な蓄電デバイス用端子フィルム、及び蓄電デバイスを提供することを目的とする。
 また、上記特許文献1に開示された顔料を用いて、蓄電デバイス用端子フィルムを着色した場合、濃い色合いで着色することが困難であった。
 このため、例えば、金属端子の幅が狭く(例えば、3mm以下)、蓄電デバイス用端子フィルムの幅も狭い(例えば、5mm以下)場合において、蓄電デバイス用端子フィルムの取り付け位置の判定を精度良く行うことが困難であった。
 そこで、本発明は、2つの最外層間に配置された中間層を構成する絶縁層に導電性顔料であるカーボンブラックや黒鉛等を添加して濃い色合いで中間層を着色することで、蓄電デバイス用端子フィルムの検査精度を向上させることが可能で、かつ蓄電デバイス用端子フィルムが融着される金属端子と中間層との間の絶縁性を十分に確保することの可能な蓄電デバイス用端子フィルム、及び蓄電デバイスを提供することを目的とする。
 上記課題を解決するため、本発明の第一態様に係る蓄電デバイス用端子フィルムは、蓄電デバイスを構成する蓄電デバイス本体と電気的に接続される金属端子の一部の外周面を覆うように配置される蓄電デバイス用端子フィルムであって、第1の絶縁層を含む第1の最外層と、第2の絶縁層を含む第2の最外層と、前記第1の絶縁層及び前記第2の絶縁層のうち、少なくとも一方の絶縁層に添加された不定形の絶縁性フィラーと、を有し、前記不定形の絶縁性フィラーの一部を、前記不定形の絶縁性フィラーが添加された前記絶縁層の外面から突出させて配置する。
 本発明の第一態様に係る蓄電デバイス用端子フィルムによれば、第1の絶縁層及び第2の絶縁層のうち、少なくとも一方の絶縁層に添加された不定形の絶縁性フィラーの一部が絶縁層の外面から突出させて配置される。これにより、蓄電デバイス用端子フィルム同士を接触させた際の蓄電デバイス用端子フィルム間の接触面積を少なくして(接触面積が減少)、互いに接触する蓄電デバイス用端子フィルム間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)させることが可能となる。
 これにより、例えば、ロール状に巻き取られた蓄電デバイス用端子フィルムの一端を引き出した際にブロッキング現象が発生することを抑制できる。
 さらに、絶縁層が絶縁性フィラーを含むことで、蓄電デバイス用端子フィルムを金属端子に融着させた際、絶縁性フィラーがスペーサーとして機能する。このため、絶縁層の厚さが薄くなることを抑制可能となるので、不定形の絶縁性フィラーを含む絶縁層よりなる最外層の絶縁性を向上させることができる。
 また、上記本発明の第一態様に係る蓄電デバイス用端子フィルムにおいて、前記不定形の絶縁性フィラーの平均粒径は、0.1~20μmの範囲内であってもよい。
 不定形の絶縁性フィラーの平均粒径が0.1μmよりも小さいと、絶縁層の外面から飛び出す不定形の絶縁性フィラーのサイズが小さくなりすぎるため、十分なアンチブロッキング効果を得ることが困難となってしまう。
 一方、不定形の絶縁性フィラーの平均粒径が20μmよりも大きいと、不定形の絶縁性フィラーの大きさが大きすぎるため、金属端子(言い換えれば、タブリード)や包装材との接触面積が少なくなり、接着性が低下してしまう。
 したがって、不定形の絶縁性フィラーの平均粒径を0.1~20μmの範囲内とすることで、十分なアンチブロッキング効果を得ることができると共に、蓄電デバイス用端子フィルムの密着性を向上させることができる。
 また、上記本発明の第一態様に係る蓄電デバイス用端子フィルムにおいて、前記不定形の絶縁性フィラーが添加された前記絶縁層の厚さは、前記不定形の絶縁性フィラーの平均粒径の2~30倍の値であってもよい。
 不定形の絶縁性フィラーが添加された絶縁層の厚さが、不定形の絶縁性フィラーの平均粒径の2倍の値よりも小さいと、絶縁層の外面から突出する不定形の絶縁性フィラーの比率が大きくなりすぎるため、金属端子(言い換えれば、タブリード)と蓄電デバイス用端子フィルムとの密着性や包装材と蓄電デバイス用端子フィルムとの密着性が低下してしまう。
 不定形の絶縁性フィラーが添加された絶縁層の厚さが、不定形の絶縁性フィラーの平均粒径の30倍の値よりも大きいと、不定形の絶縁性フィラーが絶縁層から突出する比率が極めて低くなるため、十分なアンチブロッキング効果を得ることが困難になってしまう。
 したがって、不定形の絶縁性フィラーが添加された絶縁層の厚さを、不定形の絶縁性フィラーの平均粒径の2~30倍の値とすることで、十分なアンチブロッキング効果を得ることができると共に、蓄電デバイス用端子フィルムの密着性を向上させることができる。
 また、上記本発明の第一態様に係る蓄電デバイス用端子フィルムにおいて、前記不定形の絶縁性フィラーの添加量は、0.1~20wt%であってもよい。
 不定形の絶縁性フィラーの添加量が0.1%よりも少ないと、絶縁層の外面から突出する不定形の絶縁性フィラーの数が少なすぎるため、蓄電デバイス用端子フィルム間の接触面積を少なくする効果が不十分となる。
 これにより、互いに接触する蓄電デバイス用端子フィルム間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)させることが困難となる。
 一方、不定形の絶縁性フィラーの添加量が20%よりも多いと、絶縁層の外面から突出する不定形の絶縁性フィラーの数が多くなりすぎるため、蓄電デバイス用端子フィルム間(具体的には、絶縁層間)の接触面積が少なくなってしまう。
 これにより、蓄電デバイス用端子フィルムと金属端子或いは包装材との融着後において、蓄電デバイス用端子フィルムと金属端子或いは包装材との間の接着性を十分に確保することが困難となる。
 したがって、絶縁層に含まれる不定形の絶縁性フィラーの添加量を、0.1~20%でとすることで、蓄電デバイス用端子フィルムと金属端子或いは包装材との間の接着性を低下させることなく、互いに接触する蓄電デバイス用端子フィルム間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)させることができる。
 また、上記本発明の第一態様に係る蓄電デバイス用端子フィルムにおいて、前記第1の絶縁層及び前記第2の絶縁層のうち、一方の絶縁層のみに前記不定形の絶縁性フィラーが添加されてもよい。
 このように、第1の絶縁層及び第2の絶縁層のうち、一方の絶縁層のみに不定形の絶縁性フィラーが添加された場合でも、互いに接触する蓄電デバイス用端子フィルム間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)させることが可能となる。
 これにより、例えば、ロール状に巻き取られた蓄電デバイス用端子フィルムの一端を引き出した際にブロッキング現象が発生することを抑制できる。
 さらに、絶縁性フィラーがスペーサーとして機能するため、絶縁層の厚さが薄くなることを抑制可能となるので、不定形の絶縁性フィラーを含む絶縁層よりなる最外層の絶縁性を向上させることができる。
 また、上記本発明の第一態様に係る蓄電デバイス用端子フィルムにおいて、前記第1の最外層と前記第2の最外層との間に配置された第3の絶縁層、及び前記第3の絶縁層に添加された顔料を含む中間層を有してもよい。
 このように、第1の最外層と第2の最外層との間に配置された第3の絶縁層、及び第3の絶縁層に添加された顔料を含む中間層を有することで、中間層を顔料により着色することが可能となる。
 これにより、蓄電デバイス用端子フィルムの視認性が向上するため、蓄電デバイス用端子フィルムが金属端子に付いているか否かの判定や金属端子に対する蓄電デバイス用端子フィルムの取り付け位置の判定を精度良く行うことができる。
 また、上記本発明の第一態様に係る蓄電デバイス用端子フィルムにおいて、前記中間層と前記第1の最外層との間、及び前記中間層と前記第2の最外層との間に、それぞれ第4の絶縁層が配置されてもよい。
 このように、中間層と第1の最外層との間、及び中間層と第2の最外層との間に、それぞれ第4の絶縁層を配置することで、例えば、顔料に導電性を有するカーボンブラックを用いた場合において、中間層と包装材を構成する金属層との間の絶縁性、及び中間層と金属端子との間の絶縁性をさらに向上させることができる。
 上記課題を解決するため、本発明の第二態様に係る蓄電デバイスは、上記第一態様の蓄電デバイス用端子フィルムと、充放電する蓄電デバイス本体と、前記蓄電デバイス本体と電気的に接続され、一部が前記蓄電デバイス用端子フィルムで覆われる一対の前記金属端子と、前記蓄電デバイス用端子フィルムの一部、及び前記蓄電デバイス本体を覆う包装材と、を有する。
 本発明の第二態様に係る蓄電デバイスによれば、上記第一態様の蓄電デバイス用端子フィルムが金属端子の一部を覆うことで、十分なアンチブロッキング効果を得ることができると共に、蓄電デバイス用端子フィルムと金属端子との密着性を向上させることができる。
 また、上記本発明の第二態様に係る蓄電デバイスにおいて、前記第1の最外層は、前記金属端子の一部の外周面を覆うように配置され、前記第2の最外層は、前記包装材と接触するように配置してもよい。
 このように、他方の最外層を包装材と接触するように配置させることで、他方の最外層と包装材との密着性を向上させることができる。
 更に、本発明者は、上記問題を解決するために、絶縁層が3層以上積層された蓄電デバイス用端子フィルムにおいて、2つの最外層の間に位置する中間層を構成する絶縁層に導電性顔料であるカーボンブラックや黒鉛(以下、「導電性顔料」という」)を添加させることで、中間層を黒色に着色して、従来よりも視認性を向上させるという考えに至った。
 そして、本発明者は、鋭意検討を行った結果、上記導電性顔料で着色された中間層を有する蓄電デバイス用端子フィルムを金属端子の外周側面を覆うように配置させた場合、導電性顔料を含むことで導電性を有する中間層と金属端子との間の絶縁性を確保するためには、蓄電デバイス用端子フィルムと金属端子とを融着させるヒートシール処理(所定の温度及び圧力を印加することで融着させる処理)後において、中間層と金属端子との間に配置された最外層の厚さが薄くなり過ぎないようにすることが重要であるという考えに至った。
 上記課題を解決するため、本発明の第三態様に係る蓄電デバイス用端子フィルムは、蓄電デバイスを構成する蓄電デバイス本体と電気的に接続される金属端子の一部の外周面を覆うように配置される蓄電デバイス用端子フィルムであって、第1の絶縁層を含む第1の最外層と、第2の絶縁層を含む第2の最外層と、前記第1の最外層と前記第2の最外層との間に配置された第3の絶縁層、及び前記第3の絶縁層に添加され、黒色に着色可能な導電性顔料を含む中間層と、を有し、前記第1の絶縁層及び前記第2の絶縁層のうち、少なくとも一方の絶縁層に絶縁性フィラーが添加されている。
 本発明の第三態様に係る蓄電デバイス用端子フィルムによれば、第3の絶縁層に黒色に着色可能な導電性顔料が添加されていることで、濃い色合い(具体的には、黒色)で中間層を着色することが可能となる。
 これにより、蓄電デバイス用端子フィルムの視認性が向上するため、蓄電デバイス用端子フィルムの検査(例えば、蓄電デバイス用端子フィルムが金属端子に付いているか否かの検査、金属端子に対する蓄電デバイス用端子フィルムの取り付け位置の検査等)の精度を向上させることができる。
 特に、金属端子の幅が狭く、蓄電デバイス用端子フィルムの幅が狭い場合に有効である。
 また、第1の絶縁層及び第2の絶縁層のうち、少なくとも一方の絶縁層に絶縁性フィラーを添加することで、ヒートシール処理(所定の温度及び圧力を印加して、金属端子と最外層とを融着させる処理)後、絶縁性フィラーが添加された最外層の厚さを確保するためのスペーサーとして絶縁性フィラーを機能させることが可能となる。
 これにより、絶縁性フィラーが添加された最外層と金属端子とが接触するように蓄電デバイス用端子フィルムを配置させることで、導電性顔料を含有することで導電性を有する中間層と金属端子との間の絶縁性を十分に確保することができる。
 さらに、2つの最外層が絶縁性フィラーを含む場合、包装材を構成する金属層と中間層との間に配置された最外層により、金属層と中間層との間の絶縁性を向上させることができる。
 つまり、本発明の第三態様に係る蓄電デバイス用端子フィルムによれば、2つの最外層間に配置された中間層を構成する絶縁層に導電性顔料を添加して濃い色合い(黒色)で中間層を着色することで、蓄電デバイス用端子フィルムの検査精度を向上でき、かつ蓄電デバイス用端子フィルムが融着される金属端子と中間層との間の絶縁性を十分に確保することができる。
 また、上記本発明の第三態様に係る蓄電デバイス用端子フィルムにおいて、前記第1の絶縁層及び前記第2の絶縁層のうち、一方の絶縁層のみに絶縁性フィラーが添加されていてもよい。
 このように、第1の絶縁層及び第2の絶縁層のうち、一方の絶縁層のみに絶縁性フィラーが添加されていている場合でも、蓄電デバイス用端子フィルムの検査精度を向上でき、かつ蓄電デバイス用端子フィルムが融着される金属端子と中間層との間の絶縁性を十分に確保することができる。
 また、上記本発明の第三態様に係る蓄電デバイス用端子フィルムにおいて、前記中間層に含まれる前記導電性顔料の含有量は、0.01wt%以上3.00wt%以下であってもよい。
 中間層に含まれる導電性顔料の含有量(濃度)が0.01wt%未満であると、中間層を濃い色合いで着色することが困難になってしまう。また、第3の絶縁層に添加された導電性顔料の含有量が3.00wt%よりも多いと、中間層の導電性が高くなりすぎるため、中間層と金属端子との間の電気的な絶縁性を十分に確保することが困難となってしまう。
 よって、第3の絶縁層に添加する導電性顔料の含有量(濃度)を0.01wt%以上3.00wt%以下とすることで、蓄電デバイス用端子フィルムの視認性を向上できると共に、電気的な絶縁性を十分に確保することができる。
 また、上記本発明の第三態様に係る蓄電デバイス用端子フィルムにおいて、前記絶縁性フィラーの平均粒径は、前記絶縁性フィラーが添加されている前記絶縁層の厚さの1/30~1/2倍の値であってもよい。
 このように、絶縁性フィラーの平均粒径を、絶縁性フィラーが添加される絶縁層の厚さの1/30~1/2倍の値にすることで、金属端子に対する最外層(絶縁性フィラーを含む最外層)の融着性を低下させることなく、絶縁性フィラーをスペーサーとして十分に機能させることができる。
 また、上記本発明の第三態様に係る蓄電デバイス用端子フィルムにおいて、前記絶縁性フィラーの含有量(濃度)は、0.1wt%以上20wt%以下であってもよい。
 絶縁層に添加された絶縁性フィラーの含有量が0.1wt%未満であると、絶縁性フィラーの含有量が少なすぎるため(絶縁性フィラーがスペーサーとしてあまり機能しないため)、融着処理後において、絶縁性フィラーを含む最外層の厚さが薄くなりすぎてしまう。
 したがって、中間層と金属端子との間に配置された最外層により、中間層と金属端子との間を絶縁することが困難となってしまう。
 また、絶縁層に添加された絶縁性フィラーの含有量が20wt%よりも多いと、絶縁層の割合が小さくなるため、絶縁性フィラーを含む最外層と金属端子との間の融着性(言い換えれば、密着性)が低下してしまう。
 よって、絶縁層に添加する絶縁性フィラーの含有量を0.1wt%以上20wt%以下にすることで、絶縁性フィラーが添加された最外層と金属端子との間の融着性を低下させることなく、導電性を有する中間層と金属端子との間を絶縁することができる。
 また、上記本発明の第三態様に係る蓄電デバイス用端子フィルムにおいて、前記絶縁性フィラーの形状は、球形であってもよい。
 このように、絶縁性フィラーの形状を球形とすることで、絶縁性フィラーとして不定形のフィラーを用いた場合と比較して、絶縁性フィラーのスペーサーとしての機能を向上させることが可能となるので、ヒートシール処理後において、絶縁性フィラーを含む最外層の厚さを厚くすることができる。
 また、上記本発明の第三態様に係る蓄電デバイス用端子フィルムにおいて、前記中間層と前記第1の最外層との間、及び前記中間層と前記第2の最外層との間に、それぞれ第4の絶縁層を配置してもよい。
 このように、中間層と第1の最外層との間、及び中間層と第2の最外層との間に、それぞれ第4の絶縁層が配置されていることで、中間層と包装材を構成する金属層との間の絶縁性、及び中間層と金属端子との間の絶縁性を向上させることができる。
 上記課題を解決するため、本発明の第四態様に係る蓄電デバイスは、上記第三態様の蓄電デバイス用端子フィルムと、充放電する蓄電デバイス本体と、前記蓄電デバイス本体と電気的に接続され、一部が前記蓄電デバイス用端子フィルムで覆われる一対の前記金属端子と、前記蓄電デバイス用端子フィルムの一部、及び前記蓄電デバイス本体を覆う包装材と、を有する。
 本発明の第四態様に係る蓄電デバイスによれば、上記第三態様の蓄電デバイス用端子フィルムが金属端子の一部を覆うことで、蓄電デバイス用端子フィルムの検査精度を向上させることができると共に、蓄電デバイス用端子フィルムが融着される金属端子と中間層との間の絶縁性を十分に確保することができる。
 また、上記本発明の第四態様に係る蓄電デバイスにおいて、前記第1の最外層は、前記金属端子の一部の外周面を覆うように配置され、前記第2の最外層は、前記包装材と接触するように配置され、前記第1の最外層は、前記絶縁性フィラーを含んでもよい。
 このように、金属端子の一部の外周面を覆うように配置された一方の最外層が絶縁性フィラーを含むことで、蓄電デバイス用端子フィルムが融着される金属端子と中間層との間の絶縁性を十分に確保することができる。
 本発明の第一態様に係る蓄電デバイス用端子フィルム、及び第二態様に係る蓄電デバイスによれば、ロール状にローラに巻き取られた蓄電デバイス用端子フィルムの一方の端を引き出した際にブロッキング現象が発生することを抑制できる。
 本発明の第三態様に係る蓄電デバイス用端子フィルムによれば、蓄電デバイス用端子フィルムの検査精度を向上でき、かつ黒色に着色可能な導電性顔料を含有する中間層と金属端子との間の電気的な絶縁性を十分に確保することができる。
本発明の第1実施形態に係る蓄電デバイスの概略構成を示す斜視図である。 図1に示す包装材の切断面の一例を示す断面図である。 図1に示す蓄電デバイス用端子フィルム及び金属端子のA-A線方向の断面図である。 ロール状に巻かれた蓄電デバイス用端子フィルムの一部を拡大した模式的な断面図である。 本発明の第2実施形態に係る蓄電デバイスの概略構成を示す斜視図である。 図5に示す包装材の切断面の一例を示す断面図である。 図5に示す蓄電デバイス用端子フィルム及び金属端子のB-B線方向の断面図である。
 以下、図面を参照して本発明を適用した実施形態について詳細に説明する。なお、以下の説明で用いる図面は、本発明の実施形態の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の蓄電デバイス用端子フィルム、及び蓄電デバイスの寸法関係とは異なる場合がある。
(第1実施形態)
 図1は、本発明の第1実施形態に係る蓄電デバイスの概略構成を示す斜視図である。図1では、蓄電デバイス10の一例として、リチウムイオン二次電池を例に挙げて図示し、以下の説明を行う。
 なお、図1に示す構成とされたリチウムイオン二次電池は、電池パック、或いは電池セルと呼ばれることがある。
 図1を参照するに、本実施形態に係る蓄電デバイス10は、リチウムイオン二次電池であり、蓄電デバイス本体11と、包装材13と、一対の金属端子14(「タブリード」と呼ばれることもある)と、蓄電デバイス用端子フィルム16(「タブシーラント」と呼ばれることもある)と、を有する。
 蓄電デバイス本体11は、充放電を行う電池本体である。包装材13は、蓄電デバイス本体11の表面を覆うと共に、蓄電デバイス用端子フィルム16の一部と接触するように配置されている。
 図2は、図1に示す包装材の切断面の一例を示す断面図である。図2において、図1に示す構造体と同一構成部分には、同一符号を付す。
 ここで、図2を参照して、包装材13の構成の一例について説明する。
 包装材13は、蓄電デバイス本体11に接触する内側から、内層21と、内層側接着剤層22と、腐食防止処理層23-1と、金属層であるバリア層24と、腐食防止処理層23-2と、外層側接着剤層25と、外層26と、が順次積層された7層構造とされている。
 内層21の母材としては、例えば、ポリオレフィン樹脂またはポリオレフィン樹脂に、無水マレイン酸等をグラフト変成させた酸変成ポリオレフィン樹脂を用いることができる。
 上記ポリオレフィン樹脂としては、例えば、低密度、中密度、高密度のポリエチレン;エチレン-αオレフィン共重合体;ホモ、ブロック、またはランダムポリプロピレン;プロピレン-αオレフィン共重合体等を用いることができる。これらポリオレフィン樹脂は、1種単独で用いてもよいし、2種以上を併用してもよい。
 また、内層21は、必要とされる機能に応じて、単層フィルムや、複数の層を積層させた多層フィルムを用いて構成してもよい。具体的には、例えば、防湿性を付与するために、エチレン-環状オレフィン共重合体やポリメチルペンテン等の樹脂を介在させた多層フィルムを用いてもよい。
 さらに、内層21は、例えば、各種添加剤(例えば、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等)を含んでもよい。
 内層21の厚さは、例えば、10~150μmの範囲内で設定することが好ましいが、30~80μmがより好ましい。
 内層21の厚さが10μmよりも薄いと、包装材13同士のヒートシール密着性、包装材13と蓄電デバイス用端子フィルム16との密着性が低下する恐れがある。また、内層21の厚さが150μmよりも厚いと、包装材13のコスト増加の要因となるため、好ましくない。
 内層側接着剤層22としては、例えば、一般的なドライラミネーション用接着剤や、酸変性された熱融着性樹脂等、公知の接着剤を適宜選択して用いることができる。
 図2に示すように、腐食防止処理層23-1,23-2は、バリア層24の両面に形成することが性能上好ましいが、コスト面を考慮して、内層側接着剤層22側に位置するバリア層24の面のみに腐食防止処理層23-1を配置してもよい。
 バリア層24は、導電性を有する金属層である。バリア層24の材料としては、例えば、アルミニウムやステンレス鋼等を例示することができるが、コストや重量(密度)等の観点から、アルミニウムが好適である。
 外層側接着剤層25としては、例えば、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール等を主剤としたポリウレタン系の一般的な接着剤を用いることができる。
 外層26としては、例えば、ナイロンやポリエチレンテレフタレート(PET)等の単膜、或いは多層膜を用いることができる。
 外層26は、内層21と同様に、例えば、各種添加剤(例えば、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等)を含んでもよい。
 また、外層26は、例えば、液漏れ時の対策として電解液に不溶な樹脂をラミネートしたり、電解液に不溶な樹脂成分をコーティングしたりすることで形成される保護層を有してもよい。
 図3は、図1に示す蓄電デバイス用端子フィルム及び金属端子のA-A線方向の断面図である。図3において、図1に示す構造体と同一構成部分には、同一符号を付す。
 図1及び図3を参照するに、一対(図1の場合、2つ)の金属端子14は、金属端子本体14-1と、腐食防止層14-2と、を有する。
 一対の金属端子本体14-1のうち、一方の金属端子本体14-1は、蓄電デバイス本体11の正極と電気的に接続されており、他方の金属端子本体14-1は、蓄電デバイス本体11の負極と電気的に接続されている。
 一対の金属端子本体14-1は、蓄電デバイス本体11から離間する方向に延在しており、その一部が包装材13から露出されている。一対の金属端子本体14-1の形状は、例えば、平板形状とすることができる。
 金属端子本体14-1の材料としては、金属を用いることができる。金属端子本体14-1の材料となる金属は、蓄電デバイス本体11の構造や蓄電デバイス本体11の各構成要素の材料等を考慮して決めることが好ましい。
 例えば、蓄電デバイス10がリチウムイオン二次電池の場合、正極用集電体としてアルミニウムが用いられ、負極用集電体として銅が用いられる。
 この場合、蓄電デバイス本体11の正極と接続される金属端子本体14-1の材料としては、アルミニウムを用いることが好ましい。また、電解液への耐食性を考慮すると、蓄電デバイス本体11の正極と接続される金属端子本体14-1の材料としては、例えば、1N30等の純度97%以上のアルミニウム素材を用いることが好適である。
 さらに、金属端子本体14-1を屈曲させる場合には、柔軟性を付加する目的で十分な焼鈍により調質したO材を用いることが好ましい。
 蓄電デバイス本体11の負極と接続される金属端子本体14-1の材料としては、表面にニッケルめっき層が形成された銅、もしくはニッケルを用いることが好ましい。
 金属端子本体14-1の厚さは、リチウムイオン二次電池のサイズや容量に依存する。リチウムイオン二次電池が小型の場合、金属端子本体14-1の厚さは、例えば、50μm以上にするとよい。
 また、蓄電・車載用途等の大型のリチウムイオン二次電池の場合、金属端子本体14-1の厚さは、例えば、100~500μmの範囲内で適宜設定することができる。
 腐食防止層14-2は、金属端子本体14-1の表面を覆うように配置されている。リチウムイオン二次電池の場合、電解液にLiPF等の腐食成分が含まれる。
 腐食防止層14-2は、電解液に含まれるLiPF等の腐食成分から金属端子本体14-1が腐食されることを抑制するための層である。
 図3を参照するに、蓄電デバイス用端子フィルム16は、金属端子14の一部の外周面を覆うように配置されている。蓄電デバイス用端子フィルム16は、金属端子14の外周側面と接触する第1の最外層31と、包装材13と接触する第2の最外層32と、第1の最外層31と第2の最外層32との間に配置された中間層33と、が積層された構成とされている。
 第1の最外層31は、顔料42を含む中間層33の一方の面(第1面)を覆うように配置されている。第1の最外層31は、絶縁樹脂層である第1の絶縁層35と、不定形絶縁性フィラー36(形状が不定形とされた絶縁性フィラー)と、を含んだ構成とされている。
 第1の絶縁層35(言い換えれば、第1の最外層31)は、金属端子14の一部の外周面を覆うように配置されている。
 第1の最外層31は、金属端子14の外周面(金属端子の一部の外周面)を覆うように配置されることで、金属端子14の周方向を封止すると共に、蓄電デバイス用端子フィルム16と金属端子14とを密着させる機能を有する。
 したがって、第1の絶縁層35を構成する材料としては、例えば、接着性に優れた樹脂を用いるとよい。第1の絶縁層35を構成する樹脂材料としては、例えば、ポリオレフィン樹脂に、無水マレイン酸等をグラフト変性させた酸変性ポリオレフィン樹脂等を用いることができる。
 第2の最外層32は、顔料42を含む中間層33の他方の面(第2面、第1面とは反対の面)を覆うように配置されている。第2の最外層32は、絶縁樹脂層である第2の絶縁層38と、不定形絶縁性フィラー36(形状が不定形とされた絶縁性フィラー)と、を含んだ構成とされている。
 第2の絶縁層38(言い換えれば、第2の最外層32)は、包装材13(具体的には、図2に示す内層21)と融着されることで、包装材13と接触している。
 第1の絶縁層35は、包装材13と融着されることで、包装材13内を封止すると共に、蓄電デバイス用端子フィルム16と包装材13(具体的には、図2に示す内層21)とを密着させる機能を有する。
 したがって、蓄電デバイス用端子フィルム16と包装材13との密着性の観点から、第1の絶縁層35としては、内層21の母材となる樹脂と同系統の樹脂(例えば、ポリオレフィン系樹脂)を用いるとよい。
 第1の絶縁層35の厚さは、例えば、不定形絶縁性フィラー36の平均粒径(例えば、0.1~20μm)の2~30倍の値にするとよい。
 不定形絶縁性フィラー36が添加された第1の絶縁層35の厚さが、不定形絶縁性フィラー36の平均粒径の2倍の値よりも小さいと、第1の絶縁層35の外面35aから突出する不定形絶縁性フィラー36の比率が大きくなりすぎる。このため、金属端子14(言い換えれば、タブリード)と第1の絶縁層35との密着性が低下してしまう。
 不定形絶縁性フィラー36が添加された第1の絶縁層35の厚さが、不定形絶縁性フィラー36の平均粒径の30倍の値よりも大きいと、第1の絶縁層35の外面35aから突出する不定形絶縁性フィラー36の比率が極めて低くなるため、十分なアンチブロッキング効果を得ることが困難になってしまう。
 したがって、不定形絶縁性フィラー36が添加された第1の絶縁層35の厚さを、不定形絶縁性フィラー36の平均粒径の2~30倍の値とすることで、十分なアンチブロッキング効果を得ることができると共に、密着性を向上させることができる。
 図4は、ロール状に巻かれた蓄電デバイス用端子フィルムの一部を拡大した模式的な断面図である。図4において、図3に示す構造体と同一構成部分には、同一符号を付す。
 図3及び図4を参照するに、不定形絶縁性フィラー36は、第1の絶縁層35に添加されている。不定形絶縁性フィラー36は、その一部が第1の絶縁層35の外面35a(図3に示す腐食防止層14-2と接触する面)から突出するように配置されている。不定形絶縁性フィラー36のうち、外面35aから突出した部分は、アンチブロッキング剤として機能する。
 このように、不定形絶縁性フィラー36の一部を第1の絶縁層35の外面35aから突出させて配置することにより、例えば、図4に示すように、蓄電デバイス用端子フィルム16同士を接触させた際、外面35aから突出した不定形絶縁性フィラー36の周囲に位置する外面35aが第2の絶縁層38の外面38aと接触しなくなる。このため、蓄電デバイス用端子フィルム16間の接触面積(具体的には、第1の絶縁層35の外面35aと第2の絶縁層38の外面38aとの接触面積)を少なくすることが可能となる。これにより、互いに接触する蓄電デバイス用端子フィルム16間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)させることが可能となる。
 したがって、ロール状に巻き取られた蓄電デバイス用端子フィルム16の一端を引き出した際にブロッキング現象が発生することを抑制できる。
 上記不定形絶縁性フィラー36は、融着処理後(所定の温度及び圧力を印加して、包装材13と第2の最外層32とを溶融接着させる処理後)、第1の最外層31の厚さを確保するためのスペーサーとしても機能する。
 このため、融着処理後に、第1の最外層31の厚さが所定の厚さよりも薄くなることを抑制可能となるので、例えば、中間層33を構成する顔料42として導電性のカーボンブラックを用いた場合でも金属端子14と中間層33との間の電気的絶縁性を十分に確保することができる。
 不定形絶縁性フィラー36としては、不定形の透明の絶縁性フィラーでもよいし、着色された不定形の絶縁性フィラーであってもよい。具体的には、不定形絶縁性フィラー36としては、例えば、金属酸化物(例えば、アルミナやシリカ等)よりなるフィラー、有機材料(例えば、ポリカーボネートやエポキシ樹脂)よりなるフィラー等を用いることができる。
 蓄電デバイス用端子フィルム16のコストの観点から、不定形絶縁性フィラー36としては、安価な不定形のシリカフィラーが好ましい。
 不定形絶縁性フィラー36の平均粒径は、例えば、0.1~20μmの範囲内にするとよい。
 不定形絶縁性フィラー36の平均粒径が0.1μmよりも小さいと、第1の絶縁層35の外面35aから飛び出す不定形絶縁性フィラー36のサイズが小さくなりすぎるため、十分なアンチブロッキング効果を得ることが困難となってしまう。
 一方、不定形絶縁性フィラー36の平均粒径が20μmよりも大きいと、不定形絶縁性フィラー36の大きさが大きすぎるため、金属端子14(言い換えれば、タブリード)との接触面積が少なくなり、接着性が低下してしまう。
 したがって、不定形絶縁性フィラー36の平均粒径を0.1~20μmの範囲内とすることで、十分なアンチブロッキング効果を得ることができると共に、密着性を向上させることができる。
 第1の絶縁層35に添加される不定形絶縁性フィラー36の添加量は、例えば、0.1~20wt%の範囲内で適宜設定することができる。
 不定形絶縁性フィラー36の添加量が0.1wt%よりも少ないと、第1の絶縁層35の外面35aから突出する不定形絶縁性フィラー36の数が少なすぎるため、蓄電デバイス用端子フィルム16間の接触面積を少なくする効果が不十分となる。
 これにより、互いに接触する蓄電デバイス用端子フィルム16間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)させることが困難となる。
 一方、不定形絶縁性フィラー36の添加量が20wt%よりも多いと、第1の絶縁層35の外面35aから突出する不定形絶縁性フィラー36の数が多くなりすぎるため、蓄電デバイス用端子フィルム間(具体的には、絶縁層間)の接触面積がかなり少なくなってしまう。
 これにより、蓄電デバイス用端子フィルム16と金属端子14との融着後において、蓄電デバイス用端子フィルム16と金属端子14との間の接着性を十分に確保することが困難となる(図1参照)。
 したがって、第1の絶縁層35に添加する不定形絶縁性フィラー36の添加量を、0.1~20wt%の範囲内とすることで、蓄電デバイス用端子フィルム16と金属端子14或いは包装材13との間の接着性を低下させることなく、互いに接触する蓄電デバイス用端子フィルム16間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)させることができる。
 図3及び図4を参照するに、第2の最外層32は、顔料42を含む中間層33の他方の面を覆うように配置されている。第2の最外層32は、絶縁樹脂層である第2の絶縁層38と、不定形絶縁性フィラー39(形状が不定形とされた絶縁性フィラー)と、を含んだ構成とされている。
 第2の絶縁層38(言い換えれば、第2の最外層32)は、包装材13(具体的には、図2に示す内層21)と融着されることで、包装材13と接触している。
 第2の絶縁層38は、包装材13と融着されることで、包装材13内を封止すると共に、蓄電デバイス用端子フィルム16と包装材13(具体的には、図2に示す内層21)とを密着させる機能を有する。
 したがって、蓄電デバイス用端子フィルム16と包装材13との密着性の観点から、第2の絶縁層38としては、内層21の母材となる樹脂と同系統の樹脂(例えば、ポリオレフィン系樹脂)を用いるとよい。
 不定形絶縁性フィラー39は、第2の絶縁層38に添加されている。不定形絶縁性フィラー39は、その一部が第2の絶縁層38の外面38aから突出するように配置されている。不定形絶縁性フィラー39のうち、外面38aから突出した部分は、アンチブロッキング剤として機能する。
 これにより、第2の絶縁層38の外面38aから一部が突出するように配置された不定形絶縁性フィラー39は、第1の絶縁層35の外面35aから一部が突出するように配置された不定形絶縁性フィラー36と同様な効果(具体的には、互いに接触する蓄電デバイス用端子フィルム16間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)できるという効果)を得ることができる。
 よって、ロール状に巻き取られた蓄電デバイス用端子フィルム16の一端を引き出した際にブロッキング現象が発生することを抑制できる。
 上記不定形絶縁性フィラー39は、融着処理後(所定の温度及び圧力を印加して、包装材13と第2の最外層32とを接着させる処理後)、第2の最外層32の厚さを確保するためのスペーサーとしても機能する。
 このため、融着処理後に、第2の最外層32の厚さが所定の厚さよりも薄くなることを抑制可能となるので、例えば、中間層33を構成する顔料42として導電性のカーボンブラックを用いた場合でも包装材13を構成するバリア層24(金属層)と中間層33との間の電気的絶縁性を十分に確保することができる。
 不定形絶縁性フィラー39は、不定形の透明の絶縁性フィラーでもよいし、着色された不定形の絶縁性フィラーであってもよい。具体的には、不定形絶縁性フィラー39としては、例えば、金属酸化物(例えば、アルミナやシリカ等)よりなるフィラー、有機材料(例えば、ポリカーボネートやエポキシ樹脂)よりなるフィラー等を用いることができる。
 蓄電デバイス用端子フィルム16のコストの観点から、不定形絶縁性フィラー39としては、安価な不定形のシリカフィラーが好ましい。
 不定形絶縁性フィラー39の平均粒径が0.1μmよりも小さいと、第2の絶縁層38の外面38aから飛び出す不定形絶縁性フィラー39のサイズが小さくなりすぎるため、十分なアンチブロッキング効果を得ることが困難となってしまう。
 一方、不定形絶縁性フィラー39の平均粒径が20μmよりも大きいと、不定形絶縁性フィラー39の大きさが大きすぎるため、包装材13との接触面積が少なくなり、接着性が低下してしまう。
 したがって、不定形絶縁性フィラー39の平均粒径を0.1~20μmの範囲内とすることで、十分なアンチブロッキング効果を得ることができると共に、密着性を向上させることができる。
 第2の絶縁層38に含まれる不定形絶縁性フィラー39の添加量は、例えば、0.1~20wt%の範囲内で適宜設定することができる。
 第2の絶縁層38に含まれる不定形絶縁性フィラー39の添加量が0.1wt%よりも少ないと、第2の絶縁層38の外面38aから突出する不定形絶縁性フィラー39の数が少なすぎるため、蓄電デバイス用端子フィルム16間の接触面積を少なくする効果が不十分となる。
 これにより、互いに接触する蓄電デバイス用端子フィルム16間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)させることが困難となる。
 一方、第2の絶縁層38に含まれる不定形絶縁性フィラー39の添加量が20wt%よりも多いと、第2の絶縁層38の外面38aから突出する不定形絶縁性フィラー39の数が多くなりすぎるため、蓄電デバイス用端子フィルム間(具体的には、絶縁層間)の接触面積がかなり少なくなってしまう。
 これにより、蓄電デバイス用端子フィルム16と包装材13との融着後(ヒートシール後)において、蓄電デバイス用端子フィルム16と包装材13との間の接着性を十分に確保することが困難となる(図1参照)。
 したがって、第2の絶縁層38に含まれる不定形絶縁性フィラー39の添加量を、0.1~20wt%の範囲内とすることで、蓄電デバイス用端子フィルム16と金属端子14或いは包装材13との間の接着性を低下させることなく、互いに接触する蓄電デバイス用端子フィルム16間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)させることができる。
 なお、上記不定形絶縁性フィラー39の平均粒径Raは、目的に応じて、不定形絶縁性フィラー36の平均粒径Raと同じ値にしてもよいし、異ならせてもよい。
 中間層33は、第1の最外層31と第2の最外層32との間に配置されている。中間層33は、一方の面が第1の最外層31で覆われており、他方の面が第2の最外層32で覆われている。
 中間層33は、第1の最外層31と第2の最外層32との間に配置された絶縁樹脂層である第3の絶縁層41と、第3の絶縁層41に添加された顔料42(着色剤)と、を含んだ構成とされている。
 第3の絶縁層41の材料としては、融着及びヒートシート処理時に溶融しにくい、融点の高い樹脂材料を用いるとよい。具体的には、第3の絶縁層41の材料としては、例えば、第1の最外層31及び第2の最外層32との密着性の観点から、ポリオレフィンを用いるとよい。
 また、中間層33の絶縁性を向上させたい場合には、第3の絶縁層41の材料として、例えば、PET(Polyethylene terephthalate)等のポリエステルや耐熱性樹脂(例えば、ポリカーボネート等)を用いてもよい。
 中間層33を構成する第3の絶縁層41は、単層構造である必要はなく、例えば、接着剤を介して、複数のポリエステル層を貼り合せた多層構造にしてもよい。
 中間層33の厚さ(言い換えれば、第3の絶縁層41の厚さ)は、例えば、10~200μmの範囲内で適宜設定することができ、20~100μmが好ましい。
 なお、中間層33は、金属端子14と第1の最外層31とのバランスが重要であり、第1の最外層31や金属端子14の厚さが厚い場合には中間層33の厚さもそれに応じて厚くしてもよい。
 顔料42は、中間層33を着色するために用いられる。このように、中間層33を着色することで、顔料42が添加されていない中間層を有する蓄電デバイス用端子フィルムと比較して、蓄電デバイス用端子フィルム16の視認性を向上させることが可能となる。
 これにより、蓄電デバイス用端子フィルム16の検査(具体的には、例えば、蓄電デバイス用端子フィルム16が金属端子14に付いているか否かの検査、金属端子14に対する蓄電デバイス用端子フィルム16の取り付け位置の検査等)の精度を向上させることができる。
 顔料42としては、例えば、有機顔料や無機顔料等を用いることができる。
 有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系等が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系等が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等を用いることができる。
 有機顔料の具体例としては、例えば、以下の顔料を用いることができる。
 黄色に着色可能な有機顔料としては、例えば、イソインドリノン、イソインドリン、キノフタロン、アントラキノン(フラバトロン)、アゾメチン、キサンテン等を用いることができる。
 橙色に着色可能な有機顔料としては、例えば、ジケトピロロピロール、ペリレン、アントラキノン、ペリノン、キナクリドン等を用いることができる。
 赤色に着色可能な有機顔料としては、例えば、アントラキノン、キナクリドン、ジケトピロロピロール、ペリレン、インジゴイド等を用いることができる。
 紫色に着色可能な有機顔料としては、例えば、オキサジン(ジオキサジン)、キナクリドン、ペリレン、インジゴイド、アントラキノン、キサンテン、ベンツイミダゾロン、ビオランスロン等を用いることができる。
 青色に着色可能な有機顔料としては、例えば、フタロシアニン、アントラキノン、インジゴイド等を用いることができる。
 緑色に着色可能な有機顔料としては、例えば、フタロシアニン、ペリレン、アゾメチン等を用いることができる。
 無機顔料の具体例としては、例えば、以下の顔料を用いることができる。
 白色に着色可能な無機顔料としては、例えば、亜鉛華、鉛白、リトポン、二酸化チタン、沈降性硫酸バリウム、バライト粉等を用いることができる。
 赤色に着色可能な無機顔料としては、例えば、鉛丹、酸化鉄赤等を用いることができる。
 黄色に着色可能な無機顔料としては、例えば、黄鉛、亜鉛黄(亜鉛黄1種、亜鉛黄2種)等を用いることができる。
 青色に着色可能な無機顔料としては、例えば、ウルトラマリン青、プロシア青(フェロシアン化鉄カリウム)等を用いることができる。
 黒色に着色可能な無機顔料としては、例えば、カーボンブラック等を用いることができる。
 第3の絶縁層41に含まれる上記有機顔料及び無機顔料の含有量は、0.01wt%以上3.00wt%以下の範囲内で適宜設定することができる。
 また、顔料42としては、例えば、カーボンブラックを用いることが好ましい。
 このように、第3の絶縁層41にカーボンブラックを添加することで、濃い色合い(具体的には、黒色)で中間層33を着色することが可能となる。
 これにより、蓄電デバイス用端子フィルム16の視認性がさらに向上するため、蓄電デバイス用端子フィルム16の検査(具体的には、例えば、蓄電デバイス用端子フィルム16が金属端子14に付いているか否かの検査、金属端子14に対する蓄電デバイス用端子フィルム16の取り付け位置の検査等)をさらに精度良く行うことができる。
 特に、金属端子14の幅が狭く、蓄電デバイス用端子フィルム16の幅が狭い場合に有効である。
 顔料42となるカーボンブラックの粒径は、例えば、1nm~1μmの範囲内で適宜選択することができる。
 第3の絶縁層41に含まれるカーボンブラックの添加量は、例えば、0.01wt%以上3.00wt%以下にするとよい。
 第3の絶縁層41含まれるカーボンブラックの添加量が0.01wt%以上未満であると、中間層33を濃い色合いで着色することが困難になってしまう。また、第3の絶縁層41に含まれるカーボンブラックの含有量が3.00wt%よりも多いと、中間層33の導電性が高くなりすぎるため、中間層33と金属端子14との間の電気的な絶縁性を十分に確保することが困難となってしまう。
 よって、第3の絶縁層41に含まれるカーボンブラックの添加量を0.01wt%以上3.00wt%以下とすることで、蓄電デバイス用端子フィルム16の視認性を向上できると共に、電気的な絶縁性を十分に確保することができる。
 なお、第3の絶縁層41に絶縁性フィラー(図示せず)を添加してもよい。つまり、中間層33は、絶縁性フィラー(図示せず)を構成要素に含んでもよい。
 このように、第3の絶縁層41に絶縁性フィラー(図示せず)を添加することにより、絶縁性フィラーがスペーサーとして機能するため、融着後において、中間層33(具体的には、第3の絶縁層41)の厚さが所定の厚さよりも薄くなることを抑制できる。
 絶縁性フィラーとしては、例えば、金属酸化物(例えば、アルミナやシリカ等)よりなるフィラー、有機材料(例えば、ポリカーボネートやエポキシ樹脂)よりなるフィラー等を用いることができる。蓄電デバイス用端子フィルム16のコストの観点から、絶縁性フィラーとしては、シリカフィラーが好ましい。
 絶縁性フィラーの形状としては、例えば、球形や不定形等を用いることができる。
 本実施形態に係る蓄電デバイス用端子フィルムによれば、第1の絶縁層35に添加された不定形絶縁性フィラー36が第1の絶縁層35の外面35aから突出するように配置すると共に、第2の絶縁層38に添加された不定形絶縁性フィラー39が第2の絶縁層38の外面38aから突出するように配置される。これにより、蓄電デバイス用端子フィルム16同士を接触させた際の蓄電デバイス用端子フィルム16間の接触面積を少なくして(接触面積が減少)、互いに接触する蓄電デバイス用端子フィルム16間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)させることが可能となる。
 これにより、例えば、ロール状に巻き取られた蓄電デバイス用端子フィルム16の一端を引き出した際にブロッキング現象が発生することを抑制できる。
 また、第1の絶縁層35が絶縁性フィラー36を含み、第2の絶縁層38が絶縁性フィラー39を含む。これにより、蓄電デバイス用端子フィルム16を金属端子14に融着させた際、不定形絶縁性フィラー36,39がスペーサーとして機能する。
 これにより、第1の絶縁層35及び第2の絶縁層38の厚さが所定の厚さよりも薄くなることを抑制可能となるので、不定形絶縁性フィラー36,39を含む第1の最外層31及び第2の最外層32の絶縁性を向上させることができる。
 したがって、例えば、導電性を有するカーボンブラック(視認性に優れた顔料)を顔料42として第3の絶縁層41に添加した場合でも、第1の最外層31及び第2の最外層32により、導電性を有する中間層33と金属端子14及びバリア層24との間を電気的に絶縁することができる。
 また、上記蓄電デバイス用端子フィルム16を有する本実施形態に係る蓄電デバイス10は、蓄電デバイス用端子フィルム16と同様な効果を得ることができる。
 なお、本実施形態では、第1の最外層31及び第2の最外層32を構成する第1の絶縁層35及び第2の絶縁層38に不定形絶縁性フィラー36,39を添加させ、不定形絶縁性フィラー36,39の一部を外面35a,38aから突出させた場合を例に挙げて説明した。不定形絶縁性フィラー36,39は、第1の絶縁層35及び第2の絶縁層38のうち、一方の絶縁層にのみ添加させ、絶縁層の外面から一部が突出するように配置すればよい。
 つまり、不定形絶縁性フィラー36,39は、第1の絶縁層35及び第2の絶縁層38のうち、少なくとも一方の絶縁層に添加されていればよい。
 この場合、上記説明した本実施形態に係る電デバイス用端子フィルム16と同様な効果(具体的には、互いに接触する蓄電デバイス用端子フィルム16間の滑り性を向上(言い換えれば、アンチブロッキング効果を向上)させることができるという効果)を得ることができる。
 これにより、例えば、ロール状に巻き取られた蓄電デバイス用端子フィルム16の一端を引き出した際にブロッキング現象が発生することを抑制できる。
 また、別の効果として、例えば、金属端子14の一部の外周面を覆うように配置された第1の最外層31と、蓄電デバイス本体11を包装する包装材13と接触するように配置された第2の最外層32と、の材料として異なる特性を有する樹脂材料を用いた場合において、金属端子14の一部の外周面を覆うように配置された第1の最外層31を構成する第1の絶縁層36のみに第1の絶縁層36を着色可能な不定形絶縁性フィラー36を加えることで、第1の最外層31と第2の最外層32を識別することができる。
 また、第1の絶縁層35及び第2の絶縁層38のうち、一方の絶縁層のみに不定形絶縁性フィラー36,39を添加する場合で、かつ第3の絶縁層41に添加する顔料42としてカーボンブラックを添加する場合(言い換えれば、中間層33が導電性を有する場合)には、不定形絶縁性フィラー36,39が添加された絶縁層を構成要素とする最外層と金属端子14とを融着させるとよい。
 これにより、蓄電デバイス用端子フィルム16が融着される金属端子14と導電性を有する中間層33との間の絶縁性を十分に確保することができる。
 また、図3に示す2つの蓄電デバイス用端子フィルム16を上下反転させた状態で、金属端子14に融着させてもよい。つまり、第2の最外層32と金属端子14とが接触するように、2つの蓄電デバイス用端子フィルム16を配置してもよい。
 この場合、先に説明した本実施形態に係る蓄電デバイス用端子フィルム16と同様な効果を得ることができる。
 また、図3及び図4では、顔料42を用いて中間層33を着色する場合を例に挙げて説明したが、中間層33を構成する第3の絶縁層41ではなく、第1の絶縁層35及び第2の絶縁層38の少なくとも一方に導電性を有さない顔料42を添加してもよい。
 この場合、導電性を有さない顔料42で着色された中間層33と同様に、蓄電デバイス用端子フィルム16の視認性を向上させることが可能となるので、蓄電デバイス用端子フィルム16の検査の精度を向上させることができる。
 また、図3及び図4では、3層構造とされた蓄電デバイス用端子フィルム16を例に挙げて説明したが、例えば、中間層33と第1の最外層31との間、及び中間層33と第2の最外層32との間に、それぞれ、絶縁樹脂よりなる第4の絶縁層(図示せず)を配置してもよい。
 このように、中間層33と第1の最外層31との間、及び中間層33と第2の最外層32との間に、それぞれ第4の絶縁層(図示せず)を配置することで、中間層33と包装材13を構成するバリア層24(金属層)との間の絶縁性、及び中間層33と金属端子14との間の絶縁性を向上させることができる。
 次に、図3及び図4を参照して、本実施形態に係る蓄電デバイス用端子フィルム16の製造方法について簡単に説明する。
 蓄電デバイス用端子フィルム16の製造方法には、特に制限はない。蓄電デバイス用端子フィルム16は、例えば、インフレーション成型法を用いる際に使用する丸ダイや押しダイ法を用いる際に使用するTダイ等のダイスを有するフィルム押出製造装置等を用いて製造することができるが、多層のインフレーション成型法が好適である。
 一般に、蓄電デバイス用端子フィルム16の材料としては、メルトマスフローレイト(以下、「MFR」という)が5g/10min以下の値の材料が用いられる場合が多い。このため、Tダイ法を用いると、製膜が安定せず、製造が困難となる場合が多い。
 一方、インフレーション成型法では、上記材料(MFRが5g/10min以下の値の材料)でも皮膜を安定して形成することが可能となるので、蓄電デバイス用端子フィルム16の製造に好適である。
 また、インフレーション成形法でロールを作製する場合は、チューブを織り畳んで搬送し、巻取り直前に端部をカットして2ロールに分けて巻き取る事が一般的である。蓄電デバイス用端子フィルム16間の滑り性を向上させることによって、搬送時にチューブの内側での滑り性が向上し、搬送ジワ・折れ等を改善することが可能となるので、インフレーション成形時の製膜性を向上できる。
 以下の説明では、蓄電デバイス用端子フィルム16の製造方法の一例として、インフレーション成型法(言い換えれば、インフレーション成型装置)を用いて蓄電デバイス用端子フィルム16の製造する場合について説明する。
 始めに、第1の最外層31、第2の最外層32、及び中間層33の母材を準備する。
 具体的には、第1の最外層31の母材としては、第1の絶縁層35となる絶縁樹脂を溶融させた材料に、所定の添加量となるように、不定形絶縁性フィラー36を均一に練り込んだ絶縁性フィラー含有樹脂を準備する。
 また、第2の最外層32の母材としては、第2の絶縁層38となる絶縁樹脂を溶融させた材料に、所定の添加量となるように、絶縁性フィラー39を均一に練り込んだ絶縁性フィラー含有樹脂を準備する。
 また、中間層33の母材としては、第3の絶縁層41となる絶縁樹脂を溶融させた材料に、所定の添加量となるように、顔料42を均一に練り込んだ顔料含有樹脂を準備する。
 次いで、上記第1の最外層31、第2の最外層32、及び中間層33の母材をインフレーション成型装置(図示せず)に供給する。
 次いで、インフレーション成型装置の押し出し部から3層構造(第1の最外層31、第2の最外層32、及び中間層33が積層された構造)となるように、上記3つの母材を押し出しながら、押し出された3層構造の積層体の内側からエア(空気)を供給する。
 そして、円筒形状にインフレートされた円筒状の蓄電デバイス用端子フィルム16を搬送しながら、ガイド部により扁平状に変形させた後、一対のピンチロールにより蓄電デバイス用端子フィルム16をシート状に折り畳む。織り込んだチューブの両端部をスリットし、1対(2条)のフィルムを巻き取りコアにロール状に巻き取ることで、ロール状にローラに巻き取られた蓄電デバイス用端子フィルム16が製造される。
 蓄電デバイス用端子フィルム16を製造する際の押し出し温度は、例えば、170~300℃の範囲内が好ましく、200~250℃がより好ましい。
 押し出し温度が170℃未満の場合、絶縁樹脂の溶融が不十分となることで、溶融粘度がかなり大きくなるため、スクリューからの押し出しが不安定になる恐れがある。
 一方、押し出し温度が300℃を超える場合、絶縁樹脂の酸化や劣化が激しくなるため、蓄電デバイス用端子フィルム16の品質が低下してしまう。
 スクリューの回転数、ブロー比、及び引き取り速度等は、設定膜厚を考慮して適宜設定することができる。また、蓄電デバイス用端子フィルム16の各層の膜厚比は、各スクリューの回転数を変更する事で容易に調整することができる。
 なお、本実施形態に係る蓄電デバイス用端子フィルム16は、接着剤を用いたドライラミネーションや、製膜した絶縁層(絶縁フィルム)同士をサンドウィッチラミネーションにより積層する方法を用いて製造してもよい。
 ここで、図3を参照して、本実施形態に係る蓄電デバイス用端子フィルム16と金属端子14とを溶融接着する融着処理について説明する。
 融着処理では、加熱による第1の最外層31の溶融と、加圧による第1の最外層31と金属端子14との密着とを同時に行いながら、蓄電デバイス用端子フィルム16と金属端子14とを熱融着させる。
 また、上記ヒートシート処理では、蓄電デバイス用端子フィルム16と金属端子14との十分な密着性及び封止性を得るために、第1の最外層31を構成する絶縁樹脂(第1の絶縁層35の母材)の融点以上の温度まで加熱を行う。
 具体的には、蓄電デバイス用端子フィルム16を加熱温度として、例えば、140~170℃を用いることができる。また、処理時間(加熱時間及び加圧時間の合計の時間)は、剥離強度と生産性を考慮して決定する必要がある。処理時間は、例えば、1~60秒の範囲内で適宜設定することができる。
 なお、蓄電デバイス用端子フィルム16の生産タクト(生産性)を優先する場合には、170℃を超える温度で加圧時間を短時間にして熱融着してもよい。この場合、加熱温度としては、例えば、170~200℃を用いることができ、加圧時間としては、例えば、3~20秒を用いることができる。
(第2実施形態)
 図5は、本発明の第2実施形態に係る蓄電デバイスの概略構成を示す斜視図である。図5では、蓄電デバイス110の一例として、リチウムイオン二次電池を例に挙げて図示し、以下の説明を行う。
 なお、図5に示す構成とされたリチウムイオン二次電池は、電池パック、或いは電池セルと呼ばれることがある。
 図5を参照するに、本実施形態の蓄電デバイス110は、リチウムイオン二次電池であり、蓄電デバイス本体111と、包装材113と、一対の金属端子114(「タブリード」と呼ばれることもある)と、蓄電デバイス用端子フィルム116(「タブシーラント」と呼ばれることもある)と、を有する。
 蓄電デバイス本体111は、充放電を行う電池本体である。包装材113は、蓄電デバイス本体111の表面を覆うと共に、蓄電デバイス用端子フィルム116の一部と接触するように配置されている。
 図6は、図5に示す包装材の切断面の一例を示す断面図である。図6において、図5に示す構造体と同一構成部分には、同一符号を付す。
 ここで、図6を参照して、包装材113の構成の一例について説明する。
 包装材113は、蓄電デバイス本体111に接触する内側から、内層121と、内層側接着剤層122と、腐食防止処理層123-1と、金属層であるバリア層124と、腐食防止処理層123-2と、外層側接着剤層125と、外層126と、が順次積層された7層構造とされている。内層121、内層側接着剤層122、腐食防止処理層123-1、バリア層124、腐食防止処理層123-2、外層側接着剤層125、及び外層126は、各々、第1実施形態の内層21、内層側接着剤層22、腐食防止処理層23-1、バリア層24、腐食防止処理層23-2、外層側接着剤層25、及び外層26に同じであるため、説明を省略する。
 図7は、図5に示す蓄電デバイス用端子フィルム及び金属端子のB-B線方向の断面図である。図7において、図5に示す構造体と同一構成部分には、同一符号を付す。
 図5及び図7を参照するに、一対(図5の場合、2つ)の金属端子114は、金属端子本体114-1と、腐食防止層114-2と、を有する。
 一対の金属端子本体114-1のうち、一方の金属端子本体114-1は、蓄電デバイス本体111の正極と電気的に接続されており、他方の金属端子本体114-1は、蓄電デバイス本体111の負極と電気的に接続されている。
 一対の金属端子本体114-1は、蓄電デバイス本体111から離間する方向に延在しており、その一部が包装材113から露出されている。一対の金属端子本体114-1の形状は、例えば、平板形状とすることができる。
 金属端子本体114-1の材料としては、金属を用いることができる。金属端子本体114-1の材料となる金属は、蓄電デバイス本体111の構造や蓄電デバイス本体111の各構成要素の材料等を考慮して決めることが好ましい。
 例えば、蓄電デバイス110がリチウムイオン二次電池の場合、正極用集電体としてアルミニウムが用いられ、負極用集電体として銅が用いられる。
 この場合、蓄電デバイス本体111の正極と接続される金属端子本体114-1の材料としては、アルミニウムを用いることが好ましい。また、電解液への耐食性を考慮すると、金属端子本体114-1の材料としては、例えば、1N30等の純度97%以上のアルミニウム素材を用いることが好適である。
 さらに、金属端子本体114-1を屈曲させる場合には、柔軟性を付加する目的で十分な焼鈍により調質したO材を用いることが好ましい。
 蓄電デバイス本体111の負極と接続される金属端子本体114-1の材料としては、表面にニッケルめっき層が形成された銅、もしくはニッケルを用いることが好ましい。
 金属端子本体114-1の厚さは、リチウムイオン二次電池のサイズや容量に依存する。リチウムイオン二次電池が小型の場合、金属端子本体114-1の厚さは、例えば、50μm以上にするとよい。また、蓄電・車載用途等の大型のリチウムイオン二次電池の場合、金属端子本体114-1の厚さは、例えば、100~500μmの範囲内で適宜設定することができる。
 腐食防止層114-2は、金属端子本体114-1の表面を覆うように配置されている。リチウムイオン二次電池の場合、電解液にLiPF等の腐食成分が含まれる。
 腐食防止層114-2は、電解液に含まれるLiPF等の腐食成分から金属端子本体114-1が腐食されることを抑制するための層である。
 蓄電デバイス用端子フィルム116は、金属端子114の一部の外周面を覆うように配置されている。蓄電デバイス用端子フィルム116は、金属端子114の外周側面と接触する第1の最外層131と、包装材113と接触する第2の最外層132と、第1の最外層131と第2の最外層132との間に配置された中間層133と、が積層された構成とされている。
 第1の最外層131は、黒色に着色可能な導電性顔料142を含むことで導電性を有する中間層133の一方の面(第1面)を覆うように配置されている。第1の最外層131は、絶縁樹脂層である第1の絶縁層135と、絶縁性フィラー136と、を含んだ構成とされている。
 第1の絶縁層135(言い換えれば、第1の最外層131)は、金属端子114の一部の外周面を覆うように配置されている。
 第1の最外層131は、金属端子114の外周面を覆うように配置されることで、金属端子114の周方向を封止すると共に、蓄電デバイス用端子フィルム116と金属端子114とを密着させる機能を有する。
 したがって、第1の絶縁層135を構成する材料としては、例えば、接着性に優れた樹脂を用いるとよい。第1の絶縁層135を構成する樹脂材料としては、例えば、ポリオレフィン樹脂に、無水マレイン酸等をグラフト変性させた酸変性ポリオレフィン樹脂等を用いることができる。
 第1の絶縁層135の厚さは、例えば、10~50μmとすることができる。
 絶縁性フィラー136は、第1の絶縁層135に添加されている。絶縁性フィラー136は、ヒートシール処理後(所定の温度及び圧力を印加して、包装材113と第2の最外層132とを融着させる処理後)、第1の最外層131の厚さを確保するためのスペーサーとして機能する。
 絶縁性フィラー136としては、例えば、金属酸化物(例えば、アルミナやシリカ等)よりなるフィラー、有機材料(例えば、ポリカーボネートやエポキシ樹脂)よりなるフィラー等を用いることができる。
 絶縁性フィラー136の形状としては、例えば、不定形や球形を用いることが可能であるが、球形が好ましい。
 このように、絶縁性フィラー136の形状を球形とすることで、絶縁性フィラー136のスペーサーとしての機能を向上させることが可能となる。これにより、ヒートシート処理後において、不定形のフィラーを用いた場合よりも第1の最外層131の厚さを厚くすることができる。したがって、第1の最外層131により、導電性顔料142を含む中間層133と金属端子114とを電気的に絶縁することができる。
 絶縁性フィラー136の粒径は、例えば、第1の絶縁層135の厚さの1/30~1/2倍の値にするとよい。
 このように、絶縁性フィラー136の粒径を第1の絶縁層135の厚さの1/30~1/2倍の値にすることで、金属端子114に対する第1の最外層131の融着性を低下させることなく、絶縁性フィラー136をスペーサーして十分に機能させることができる。
 第1の絶縁層135に添加された絶縁性フィラー136の含有量(濃度)は、例えば、0.1wt%以上20wt%以下にするとよい。
 第1の絶縁層135に添加された絶縁性フィラー136の含有量が0.1wt%未満であると、絶縁性フィラー136の含有量が少なすぎるため、所定の温度及び圧力を印加して、金属端子114と第1の最外層131とを融着させた際(ヒートシール処理した際)、第1の最外層131の厚さが薄くなりすぎてしまう。
 したがって、第1の最外層131により、導電性を有する中間層133と金属端子114との間を絶縁することが困難となってしまう。
 一方、第1の絶縁層135に添加された絶縁性フィラー136の含有量が20wt%よりも多いと、第1の絶縁層135の割合が少なくなるため、第1の最外層131と金属端子114との間の融着性(言い換えれば、密着性)が低下してしまう。
 よって、第1の絶縁層135に添加する絶縁性フィラー136の含有量を0.1wt%以上20wt%以下にすることで、第1の最外層131と金属端子114との間の融着性を低下させることなく、導電性を有する中間層133と金属端子114との間を電気的に絶縁することができる。
 第2の最外層132は、導電性顔料142を含むことで導電性を有する中間層133の他方の面(第2面、第1面とは反対の面)を覆うように配置されている。第2の最外層132は、絶縁樹脂層である第2の絶縁層138と、絶縁性フィラー139と、を含んだ構成とされている。
 第2の絶縁層138(言い換えれば、第2の最外層132)は、包装材113(具体的には、図6に示す内層121)と融着されることで、包装材113と接触している。
 第2の絶縁層138は、包装材113と融着されることで、包装材113内を封止すると共に、蓄電デバイス用端子フィルム116と包装材113(具体的には、図6に示す内層121)とを密着させる機能を有する。
 したがって、蓄電デバイス用端子フィルム116と包装材113との密着性の観点から、第2の絶縁層138としては、内層121の母材となる樹脂と同系統の樹脂(例えば、ポリオレフィン系樹脂)を用いるとよい。
 第2の絶縁層138の厚さは、例えば、10~50μmとすることができる。
 絶縁性フィラー139は、第2の絶縁層138に添加されている。絶縁性フィラー139は、所定の温度及び圧力を印加して、包装材113と第2の最外層132とを融着させた際、第2の最外層132の厚さを確保するためのスペーサーとして機能する。
 絶縁性フィラー139としては、例えば、金属酸化物(例えば、アルミナやシリカ等)よりなるフィラー、有機材料(例えば、ポリカーボネートやエポキシ樹脂等)よりなるフィラー等を用いることができる。
 また、絶縁性フィラー136,39として、例えば、同一種類で同形状とされたフィラーを用いてもよい。
 このように、絶縁性フィラー136,39として同一種類で同形状とされたフィラーを用いることで、2種類の異なるフィラーを準備する場合と比較して、絶縁性フィラー136,39の準備を容易に行うことができる。
 なお、絶縁性フィラー136,39として、例えば、異なる粒径(大きさ)とされたフィラーを用いてもよい。このように、絶縁性フィラー136,39として、異なる形状とされた絶縁性フィラーを用いることで、目的に応じて、第1の最外層131及び第2の最外層132の厚さを調節することができる。
 絶縁性フィラー139の形状としては、例えば、不定形や球形を用いることが可能であるが、球形が好ましい。
 このように、絶縁性フィラー139の形状を球形とすることで、絶縁性フィラー139のスペーサーとしての機能を向上させることが可能となる。これにより、所定の圧力及び温度を印加することで包装材113と第2の最外層132とを融着した後(言い換えれば、ヒートシート処理後)において、不定形のフィラーを用いた場合よりも第2の最外層132の厚さを厚くすることができる。
 したがって、第2の最外層132により、導電性顔料142を含む中間層133と包装材113を構成するバリア層124とを電気的に絶縁することができる。
 絶縁性フィラー139の粒径は、例えば、第2の絶縁層138の厚さの1/30~1/2倍の値にするとよい。
 このように、絶縁性フィラー139の粒径を第2の絶縁層138の厚さの1/30~1/2倍の値にすることで、包装材113に対する第2の最外層132の融着性を低下させることなく、絶縁性フィラー139をスペーサーして十分に機能させることができる。
 また、第2の絶縁層138に添加する絶縁性フィラー139の含有量(濃度)は、例えば、0.1wt%以上20wt%以下にするとよい。
 第2の絶縁層138に添加された絶縁性フィラー139の含有量が0.1wt%未満であると、絶縁性フィラー38の含有量が少なすぎるため、ヒートシール処理により、包装材113と第2の最外層132とを融着させた際、第2の最外層132の厚さが薄くなる恐れがある。
 一方、第2の絶縁層138に添加された絶縁性フィラー139の含有量が20wt%よりも多いと、第2の絶縁層138の割合が少なくなるため、第2の最外層132と包装材113との間の融着性(言い換えれば、密着性)が低下する恐れがある。
 よって、第2の絶縁層138に添加された絶縁性フィラー139の含有量を0.1wt%以上20wt%以下にすることで、第2の最外層132と包装材113との間の融着性を低下させることなく、導電性を有する中間層133とバリア層124との間の電気的絶縁性を十分に確保することができる。
 中間層133は、第1の最外層131と第2の最外層132との間に配置されている。中間層133は、一方の面が第1の最外層131で覆われており、他方の面が第2の最外層132で覆われている。
 中間層133は、第1の最外層131と第2の最外層132との間に配置された絶縁樹脂層である第3の絶縁層141と、黒色に着色可能な着色剤として機能する導電性顔料142と、を含んだ構成とされている。
 第3の絶縁層141の材料としては、ヒートシート処理時に溶融しにくい、融点の高い樹脂材料を用いるとよい。具体的には、第3の絶縁層141の材料としては、例えば、第1の最外層131及び第2の最外層132との密着性の観点から、ポリオレフィンを用いるとよい。
 また、中間層133の絶縁性を向上させたい場合には、第3の絶縁層141の材料として、例えば、PET(Polyethylene terephthalate)等のポリエステルや耐熱性樹脂(例えば、ポリカーボネート等)を用いてもよい。
 中間層133を構成する第3の絶縁層141は、単層構造である必要はなく、例えば、接着剤を介して、複数のポリエステル層を貼り合せた多層構造にしてもよい。
 中間層133の厚さ(言い換えれば、第3の絶縁層141の厚さ)は、例えば、10~200μmの範囲内で適宜設定することができ、20~100μmが好ましい。
 なお、中間層133は、金属端子114と第1の最外層131とのバランスが重要であり、第1の最外層131や金属端子114の厚さが厚い場合には中間層133の厚さもそれに応じて厚くしてもよい。
 導電性顔料142は、第3の絶縁層141に添加されることで、中間層133を黒色に着色する着色剤として機能する。導電性顔料142としては、例えば、カーボンブラックや黒鉛等を用いることができる。
 このように、絶縁樹脂層である第3の絶縁層141と、黒色に着色可能な導電性顔料142と、を含む中間層133を有することで、濃い色合い(具体的には、黒色)で中間層133を着色することが可能となる。
 これにより、蓄電デバイス用端子フィルム116の視認性が向上するため、蓄電デバイス用端子フィルム116の検査(具体的には、例えば、蓄電デバイス用端子フィルム116が金属端子114に付いているか否かの検査、金属端子114に対する蓄電デバイス用端子フィルム116の取り付け位置の検査等)を精度良く行うことができる。特に、金属端子114の幅が狭く、蓄電デバイス用端子フィルム116の幅が狭い場合に有効である。
 導電性顔料142の粒径は、例えば、1nm~1μmの範囲内で適宜選択することができる。
 第3の絶縁層141に添加する導電性顔料142の含有量(濃度)は、例えば、0.01wt%以上3.00wt%以下にするとよい。
 第3の絶縁層141に添加する導電性顔料142の含有量が0.01wt%未満であると、中間層を濃い色合いで着色することが困難になってしまう。また、第3の絶縁層141に添加する導電性顔料142の含有量が3.00wt%よりも多いと、中間層133の導電性が高くなりすぎるため、中間層133と金属端子114との間の電気的な絶縁性を十分に確保することが困難となってしまう。
 よって、第3の絶縁層に添加する導電性顔料142の含有量を0.01wt%以上3.00wt%以下とすることで、蓄電デバイス用端子フィルム116の視認性を向上できると共に、電気的な絶縁性を十分に確保することができる。
 本実施形態の蓄電デバイス用端子フィルムによれば、第1の最外層131と第2の最外層132との間に配置された第3の絶縁層141、及び第3の絶縁層141に添加された導電性顔料142を含む中間層133を有することで、濃い色合い(黒色)で中間層133を着色することが可能となる。
 これにより、蓄電デバイス用端子フィルム116の視認性が向上するため、蓄電デバイス用端子フィルム116の検査(例えば、蓄電デバイス用端子フィルム116が金属端子114に付いているか否かの検査、金属端子114に対する蓄電デバイス用端子フィルム116の取り付け位置の検査等)の精度を向上させることができる。
 特に、金属端子114の幅が狭く、蓄電デバイス用端子フィルム116の幅が狭い場合に有効である。
 また、第1の絶縁層135に絶縁性フィラー136が添加された第1の最外層131を有することで、ヒートシール処理後、第1の最外層131の厚さを確保するためのスペーサーとして絶縁性フィラー136を機能させることが可能となる。
 これにより、第1の最外層131と金属端子114とが接触するように蓄電デバイス用端子フィルム116を配置させることで、導電性顔料142を含有することで導電性を有する中間層133と金属端子114との間の絶縁性を十分に確保することができる。
 さらに、第2の絶縁層138に絶縁性フィラー139が添加された第2の最外層132を有することで、ヒートシール処理後において、第2の最外層132の厚さが薄くなることを抑制可能となる。これにより、第2の最外層132により、包装材113を構成するバリア層124(金属層)と中間層133との間の絶縁性を向上させることができる。
 また、上記蓄電デバイス用端子フィルム116を有する本実施形態の蓄電デバイス110は、蓄電デバイス用端子フィルム116と同様な効果を得ることができる。
 なお、本実施形態では、第1の最外層131及び第2の最外層132が絶縁性フィラーを含む場合を例に挙げて説明したが、図7に示す構成の場合、第1の最外層131のみが絶縁性フィラー(この場合、絶縁性フィラー136)を含んでいればよい(言い換えれば、第2の最外層132が絶縁性フィラー139を含んでいなくてもよい。)。
 この場合、中間層133を構成する第3の絶縁層141に導電性顔料142を添加して濃い色合い(黒色)で中間層133を着色することで、蓄電デバイス用端子フィルム116の検査精度を向上でき、かつ蓄電デバイス用端子フィルム116が融着される金属端子114と中間層133との間の絶縁性を十分に確保することができる。
 また、図7に示す2つの蓄電デバイス用端子フィルム116を上下反転させた状態で、金属端子114に融着させてもよい。つまり、第2の最外層132と金属端子114とが接触するように、2つの蓄電デバイス用端子フィルム116を配置してもよい。
 この場合、先に説明した本実施形態の蓄電デバイス用端子フィルムと同様な効果を得ることができる。
 さらに、この構成(具体的には、第2の最外層132と金属端子114とが接触する構成)において、第2の最外層132のみに絶縁性フィラー(この場合、絶縁性フィラー139)を添加してもよい(言い換えれば、第1の最外層131が絶縁性フィラー136を含んでいなくてもよい。)。
 例えば、金属端子114の一部の外周面を覆うように配置された第1の最外層131を構成する第1の絶縁層135と、蓄電デバイス本体111を包装する包装材113と接触するように配置された第2の最外層132を構成する第2の絶縁層138と、に異なる特性を有する樹脂材料を用いた場合においても、第1の絶縁層36のみに絶縁性フィラーを加えることで、第1の最外層131と第2の最外層132とを識別することができる。
 このような構成とされた蓄電デバイス用端子フィルムは、中間層133を構成する第3の絶縁層141に導電性顔料142を添加して濃い色合い(黒色)で中間層133を着色することで、蓄電デバイス用端子フィルム116の検査精度を向上でき、かつ蓄電デバイス用端子フィルム116が融着される金属端子114と中間層133との間の絶縁性を十分に確保することができる。
 以上説明したように、本発明では、第1の絶縁層135及び第2の絶縁層138のうち、少なくとも一方の絶縁層に絶縁性フィラーが添加されていればよい。
 次に、図7を参照して、本実施形態の蓄電デバイス用端子フィルム116の製造方法について簡単に説明する。
 蓄電デバイス用端子フィルム116の製造方法には、特に制限はない。蓄電デバイス用端子フィルム116は、例えば、Tダイ法や丸ダイ法等の押し出し成型法、或いはインフレーション成型法を用いて製造することができるが、多層のインフレーション成型法が好適である。
 一般に、蓄電デバイス用端子フィルム116の材料としては、メルトマスフローレイト(以下、「MFR」という)が5g/10min以下の値の材料が用いられる場合が多い。このため、Tダイ法を用いると、製膜が安定せず、製造が困難となる場合が多い。
 一方、インフレーション成型法では、上記材料(MFRが5g/10min以下の値の材料)でも皮膜を安定して形成することが可能となるので、蓄電デバイス用端子フィルム116の製造に好適である。
 第1の最外層131の母材としては、第1の絶縁層135となる絶縁樹脂を溶融させた材料に、所定の含有量となるように、絶縁性フィラー136を均一に練り込んだ絶縁性フィラー含有樹脂を準備する。
 また、第2の最外層132の母材としては、第2の絶縁層138となる絶縁樹脂を溶融させた材料に、所定の含有量となるように、絶縁性フィラー139を均一に練り込んだ絶縁性フィラー含有樹脂を準備する。
 また、中間層133の母材としては、第3の絶縁層141となる絶縁樹脂を溶融させた材料に、所定の含有量となるように、導電性顔料142を均一に練り込んだ導電性顔料含有樹脂を準備する。
 そして、上記2種類の絶縁性フィラー含有樹脂と、導電性顔料含有樹脂と、を装置に供給する。
 蓄電デバイス用端子フィルム116を製造する際の押し出し温度は、例えば、170~300℃の範囲内が好ましく、200~250℃がより好ましい。
 押し出し温度が170℃未満の場合、絶縁樹脂の溶融が不十分となることで、溶融粘度がかなり大きくなるため、スクリューからの押し出しが不安定になる恐れがある。
 一方、押し出し温度が300℃を超える場合、絶縁樹脂の酸化や劣化が激しくなるため、蓄電デバイス用端子フィルム116の品質が低下してしまう。
 スクリューの回転数、ブロー比、及び引き取り速度等は、設定膜厚を考慮して適宜設定することができる。また、蓄電デバイス用端子フィルム116の各層の膜厚比は、各スクリューの回転数を変更する事で容易に調整することができる。
 なお、本実施形態の蓄電デバイス用端子フィルム116は、接着剤を用いたドライラミネーションや、製膜した絶縁層(絶縁フィルム)同士をサンドウィッチラミネーションにより積層する方法を用いて製造してもよい。
 ここで、図7を参照して、本実施形態の蓄電デバイス用端子フィルム116と金属端子114とを接着する融着処理について説明する。
 融着処理では、加熱による第1の最外層131の溶融と、加圧による第1の最外層131と金属端子114との密着とを同時に行いながら、蓄電デバイス用端子フィルム116と金属端子114とを熱融着させる。
 また、上記融着処理では、蓄電デバイス用端子フィルム116と金属端子114との十分な密着性及び封止性を得るために、第1の最外層131を構成する絶縁樹脂(第1の絶縁層135の母材)の融点以上の温度まで加熱を行う。
 具体的には、蓄電デバイス用端子フィルム116を加熱温度として、例えば、140~170℃を用いることができる。また、処理時間(加熱時間及び加圧時間の合計の時間)は、剥離強度と生産性を考慮して決定する必要がある。処理時間は、例えば、1~60秒の範囲内で適宜設定することができる。
 なお、蓄電デバイス用端子フィルム116の生産タクトを優先する場合には、170℃を超える温度で加圧時間を短時間にして熱融着してもよい。この場合、加熱温度としては、例えば、170~200℃を用いることができ、加圧時間としては、例えば、3~20秒を用いることができる。
 以上、本発明の好ましい実施形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、符号31、131で示された最外層を本発明の第2の最外層と称してもよい。この場合、符号32、132で示された最外層を本発明の第1の最外層と称する。
 例えば、中間層133と第1の最外層131との間、及び中間層133と第2の最外層132との間に、それぞれ絶縁樹脂よりなる第4の絶縁層(図示せず)を配置してもよい。
 このように、中間層133と第1の最外層131との間、及び中間層133と第2の最外層132との間に、それぞれ第4の絶縁層(図示せず)を配置することで、中間層133と包装材113を構成するバリア層124(金属層)との間の絶縁性、及び中間層133と金属端子114との間の絶縁性を向上させることができる(図5~図7参照)。
 以下、本発明の実施例について説明するが、本発明は、下記実施例により何ら限定されない。
 まず、実施例A1~実施例A17と比較例A1及び比較例A2を参照し、上述した第1実施形態に対応する実施例を説明する。
(実施例A1)
<正極用タブ、及び負極用タブの作製>
 図3を参照して、実施例A1の正極用タブ、及び負極用タブ(言い換えれば、金属端子14(「タブリード」ともいう)及び一対の蓄電デバイス用端子フィルム16(「タブシーラント」ともいう)よりなる構造体)の作製方法について説明する。
 始めに、正極用の金属端子本体14-1として、幅が5mm、長さが20mm、厚さが100μmのアルミニウム製の薄板部材を準備した。次いで、アルミニウム製の薄板部材の表面に対してノンクロム系表面処理を実施して、腐食防止層14-2(ノンクロム系表面処理層)を形成した。これによって、アルミニウム製の薄板部材、及びノンクロム系表面処理層を含む正極側の金属端子14(以下、説明の便宜上、「正極用金属端子14A」という)を作製した。
 次いで、負極用の金属端子本体14-1として、幅が5mm、長さが20mm、厚さが100μmのニッケル製の薄板部材を準備した。次いで、ニッケル製の薄板部材の表面に対してノンクロム系表面処理を実施して、腐食防止層14-2(ノンクロム系表面処理層)を形成した。これによって、ニッケル製の薄板部材、及びノンクロム系表面処理層を含む負極側の金属端子14(以下、説明の便宜上、「負極用金属端子14B」という)を作製した。
 次いで、第1の絶縁層35の母材となる酸変性のポリプロピレンに対して、5.0wt%の濃度となるように、平均粒径が5.0μmとされた不定形のシリカ(不定形絶縁性フィラー36)を添加し、混合させることで、第1の最外層31の母材を作製した。
 次いで、第2の絶縁層38の母材となる酸変性のポリプロピレンに対して、5.0wt%の濃度となるように、平均粒径が5.0μmとされた不定形のシリカ(不定形絶縁性フィラー39)を添加し、混合させることで、第2の最外層32の母材を作製した。
 次いで、中間層33の母材となるポリプロピレンに対して、0.1wt%の濃度となるように、平均粒径が50nmとされたカーボンブラック(顔料42)を添加し、混合させることで、中間層33の母材を作製した。
 次いで、住友重機モダン社製のインフレーション式フィルム押出製造装置(Co-OI型)に、第1の最外層31の母材、第2の最外層32の母材、及び中間層33の母材をセットした。フィルム押出製造装置を用いて、上記3つの母材を押し出すことで積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 このとき、上記積層フィルムは、第1の絶縁層35の厚さが30μm、第2の絶縁層38の厚さが30μm、第3の絶縁層41の厚さが40μmとなるように形成した。
 また、第1の最外層31の母材、第2の最外層32の母材、及び中間層33の母材の溶融温度は、210℃とした。また、ブロー比を2.2とした。
 次いで、上記積層フィルムを切断することで、幅が9mmで、長さが5mmとされた4枚の蓄電デバイス用端子フィルム16を作製した。
 その後、2枚の蓄電デバイス用端子フィルム16間に、正極用金属端子14Aを挟み込んだ。2枚の蓄電デバイス用端子フィルム16を加熱温度155℃の条件で、10秒間加熱し、正極用金属端子14Aと2枚の蓄電デバイス用端子フィルム16とを熱融着した。これにより、正極用金属端子14A、及び2枚の蓄電デバイス用端子フィルム16よりなる正極用タブを作製した。
 次いで、同様な手法により、負極用金属端子14Bと負極用金属端子14Bを挟み込む2枚の蓄電デバイス用端子フィルム16とを熱融着させることで、負極用金属端子14B、及び2枚の蓄電デバイス用端子フィルム16よりなる負極用タブを作製した。
<評価用電池パックの作製>
 次いで、厚さ25μmのナイロン層(外層26)と、厚さ5μmのポリエステルポリオール系接着剤(外層側接着剤層25)と、厚さ40μmのA8079-O材であるアルミニウム箔(バリア層24)と、アルミニウム箔の一面をノンクロム系表面処理することで形成される第1の腐食防止処理層(腐食防止処理層23-1)と、アルミニウム箔の他面をノンクロム系表面処理することで形成される第2の腐食防止処理層(腐食防止処理層23-2)と、厚さ30μmの酸変性のポリプロピレン層(内層側接着剤層22)と、厚さ40μmのポリプロピレン層(内層21)と、が積層され、かつサイズが50mm×90mmの長方形とされた包装材13を準備した。
 次いで、上記包装材13を、包装材13の長辺の中点で2つ折りし、2つの折り部を形成した。長さ45mmの2つ折り部の一方に、正極用タブ及び負極用タブを挟んで、ヒートシールすることで、包装材13と正極用タブ及び負極用タブとを融着させた。このとき、ヒートシールの条件としては、加熱温度を190℃、処理時間を5秒とした。
 その後、包装材13内に、ジエチルカーボネートとエチレンカーボネートとの混合液に6フッ化リン酸リチウムを添加した電解液を2mL充填させた。
 次いで、包装材13の残りの辺をヒートシール処理した。このときのヒートシールの条件としては、加熱温度を190℃、処理時間を3秒とした。
 これにより、蓄電デバイス本体11が封入されていない、タブ評価可能な電池パックを作製した。
(実施例A2)
 実施例A2では、第1の絶縁層35に不定形絶縁性フィラー36を添加しなかったこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A2の積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A2の評価用電池パックを作製した。
(実施例A3)
 実施例A3では、第2の絶縁層38に不定形絶縁性フィラー39を添加しなかったこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A3の積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A3の評価用電池パックを作製した。
(実施例A4)
 実施例A4では、不定形絶縁性フィラー36,39の平均粒径を3.0μmに変更し、かつ、不定形絶縁性フィラー36,39の添加濃度を10.0wt%に変更したこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A4の積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A4の評価用電池パックを作製した。
(実施例A5)
 実施例A5では、不定形絶縁性フィラー36,39の平均粒径を10.0μmに変更し、かつ、不定形絶縁性フィラー36,39の添加濃度を2.0wt%に変更したこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A5の積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A5の評価用電池パックを作製した。
(実施例A6)
 実施例A6では、第1の絶縁層35及び第2の絶縁層38の厚さを10μmにすると共に、第3の絶縁層41の厚さを20μmにしたこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A6の積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A6の評価用電池パックを作製した。
(実施例A7)
 実施例A7では、第1の絶縁層35及び第2の絶縁層38の厚さを40μm、第3の絶縁層41の厚さを20μm、不定形絶縁性フィラー36,39の平均粒径を3.0μmにしたこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A7の積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A7の評価用電池パックを作製した。
(実施例A8)
 実施例A8では、第3の絶縁層41に0.5wt%のカーボンブラック(顔料42)を含有させたこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A8の積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A8の評価用電池パックを作製した。
(実施例A9)
 実施例A9では、不定形絶縁性フィラー36,39の平均粒径を1.0μmに変更すると共に、第3の絶縁層41に0.01wt%の濃度となるようにカーボンブラック(顔料42)を含有させたこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A9の積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A9の評価用電池パックを作製した。
(実施例A10)
 実施例A10では、第3の絶縁層41に0.2wt%の濃度となるようにフタロシアニンブルー(顔料42)を含有させたこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A10の積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A10の評価用電池パックを作製した。
(実施例A11)
 実施例A11では、第3の絶縁層41に0.2wt%の二酸化チタン(顔料42)を含有させたこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A11の積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A11の評価用電池パックを作製した。
(実施例A12)
 実施例A12では、中間層33と第2の最外層32との間にポリプロピレン層(10μm)をさせたこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A12の積層フィルム(蓄電デバイス用端子フィルム16の母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A12の評価用電池パックを作製した。
(実施例A13)
 実施例A13では、不定形絶縁性フィラー36,39の平均粒径を0.03μmとし、第3の絶縁層41にカーボンブラックを添加しなかったこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A13の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A13の評価用電池パックを作製した。
(実施例A14)
 実施例A14では、不定形絶縁性フィラー36,39の濃度を0.03wt%としたこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A14の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A14の評価用電池パックを作製した。
(実施例A15)
 実施例A15では、不定形絶縁性フィラー36,39の濃度を0.03wt%にすると共に、絶縁層41に5.0wt%のカーボンブラック(顔料42)を添加したこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A15の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A15の評価用電池パックを作製した。
(実施例A16)
 実施例A16では、第1の絶縁層35及び第2の絶縁層38の厚さを15μm、第3の絶縁層41の厚さを30μm、不定形絶縁性フィラー36,39の平均粒径を10.0μmとし、第3の絶縁層41にカーボンブラックを添加しなかったこと以外は、実施例A16の積層フィルムと同様な手法により、実施例A16の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A16の評価用電池パックを作製した。
(実施例A17)
 実施例A17では、不定形絶縁性フィラー36,39の平均粒径を25.0μmとしたこと以外は、実施例A1の積層フィルムと同様な手法により、実施例A17の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、実施例A17の評価用電池パックを作製した。
(比較例A1)
 比較例A1では、不定形絶縁性フィラー36,39を使用しないで、第1の最外層31を第1の絶縁層35のみで形成し、第2の最外層32を第2の絶縁層38のみで形成したこと以外は、実施例A1の積層フィルムと同様な手法により、比較例A1の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、比較例A1の評価用電池パックを作製した。
(比較例A2)
 比較例A2では、不定形絶縁性フィラー36,39に替えて、平均粒径が0.5μmとされた球状シリカを用いると共に、球状シリカの濃度が2wt%となるように添加したこと以外は、実施例A1の積層フィルムと同様な手法により、比較例A2の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例A1と同様な手法により、比較例A2の評価用電池パックを作製した。
<実施例A1~A17の積層フィルム、及び比較例A1,A2の積層フィルムのアンチブロッキング性(AB性)の評価>
 始めに、実施例A1で作製した積層フィルム(蓄電デバイス用端子フィルム16の母材)を、第1の最外層31同士を対向させて重ね合わせた後、0.5MPaの圧力を印加し、温度が40℃の環境下で24時間保管し、積層フィルムの剥がれ具合を確認した。
 アンチブロッキング性(AB性)の評価としては、抵抗無くはがれた積層フィルムを◎(優)と判定し、やや抵抗があるが剥がれた積層フィルムを○(良)と判定し、剥がれ難く剥がれた際に剥離音が発生した積層フィルムを×(悪)と判定した。
 次いで、実施例A1の積層フィルムのアンチブロッキング性の評価方法と同様な手法により、実施例A2~A17の積層フィルム、及び比較例A1,A2の積層フィルムのアンチブロッキング性を評価した。
 表4に、実施例A1~A17の積層フィルム、及び比較例A1,A2の積層フィルムのアンチブロッキング性の評価結果(判定結果)を示す。
 また、表1~表3には、実施例A1~A17の積層フィルム、及び比較例A1,A2の積層フィルムを構成する各層の厚さ、絶縁性フィラーの種類や平均粒径、顔料(具体的には、カーボンブラック、フタロシアニンブルー、酸化チタン)の濃度等も示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<実施例A1~A17の評価用電池パック、及び比較例A1,A2の評価用電池パックの密着性の評価試験>
 実施例A1~A17の評価用電池パック、及び比較例A1,A2の評価用電池パックをそれぞれ100検体準備し、その後、温度が80℃に保持された室内に、100検体の実施例A1~A17の評価用電池パック、及び比較例A1,A2の評価用電池パックを4週間保管し、封入した電解液の液漏れの有無を確認した。
 ここでの評価は、液漏れが1検体も確認されなかった場合を◎(優)と判定し、液漏れが1検体でも確認された場合を×(悪)として判定した。
 表4に、実施例A1~A17の評価用電池パック、及び比較例A1,A2の評価用電池パックの密着性の評価結果(判定結果)を示す。
<実施例A1~A17の評価用電池パック、及び比較例A1,A2の評価用電池パックの絶縁性の評価試験>
 始めに、実施例A1の評価用電池パックを100検体準備し、次いで、耐電圧・絶縁抵抗試験機を用いて、実施例A1の評価用電池パックを構成する負極用金属端子14Bと包装材13との間の絶縁性を測定した。絶縁性の測定は、上記100検体に対して行った。このとき、ショートが1検体も発生しなかった電池パックを◎(優)と判定し、ショートが確認された検体の数が10未満だった電池パック○(良)と判定し、ショートが確認された検体の数が10以上だった電池パックを×(悪)として判定した。
 次いで、実施例A2~A17の評価用電池パック、及び比較例A1,A2の評価用電池パックをそれぞれ100検体準備し、実施例A1の評価用電池パックの絶縁性評価試験と同様な手法により、絶縁性の評価を行った。
 表4に、実施例A1~A17の評価用電池パック、及び比較例A1,A2の評価用電池パックの絶縁性の評価結果(判定結果)を示す。
<実施例A1~A17の負極用タブ及び正極用タブ、並びに比較例A1,A2の負極用タブ及び正極用タブのセンシング性の評価試験>
 始めに、実施例A1の評価用電池パックを500検体準備し、次いで、撮像検知器(株式会社キーエンス製、CV-X100)を用いて、検知器が検知する負極用タブ及び正極用タブの検知率(センシング性)を求めた。
 該検知率に関しては、検知率が95%以上であるタブを◎(優)と判定し、検知率が95%未満90%以上であるタブを○(良)と判定し、検知率が90%未満であるタブを×(悪)と判定した。
 次いで、実施例A2~A17の評価用電池パック、及び比較例A1,A2の評価用電池パックをそれぞれ500検体準備し、実施例A1の負極用タブ及び正極用タブのセンシング性評価試験と同様な手法により、実施例A2~A17及び比較例A1,A2の評価用電池パックを構成する負極用タブ及び正極用タブのセンシング性の評価を行った。
 表4に、実施例A1~A17の負極用タブ及び正極用タブのセンシング性の評価結果(判定結果)と、比較例A1,A2の負極用タブ及び正極用タブのセンシング性の評価結果(判定結果)と、を示す。
<表4に示す評価結果のまとめ>
 表4を参照するに、実施例A1~A3、及び比較例A1の評価結果から、第1の最外層31及び第2の最外層32の両方に不定形シリカが存在しないと、積層フィルムのアンチブロッキング性が悪くなると共に、負極用タブ及び正極用タブのセンシング性が低下することが確認できた。
 また、球状シリカを用いた比較例A2の評価結果から、球状シリカを用いると積層フィルムのアンチブロッキング性が悪くなることが確認できた。
 したがって、上記実施例A1~A3、及び比較例A1,A2の評価結果から、積層フィルムのアンチブロッキング性を向上させ、かつ負極用タブ及び正極用タブのセンシング性を高めるためには、第1及び第2の最外層のうち、少なくとも一方の最外層に、不定形シリカが含まれている必要があることが確認できた。
 実施例A9,A13の評価結果から、第1の絶縁層及び第2の絶縁層の厚さに対して、不定形シリカの平均粒径が小さすぎる(この場合、0.03μm(実施例A13の値))と、アンチブロッキング性の判定結果が判定「◎」(不定形シリカの平均粒径が1.0μmとされた実施例A9の評価結果)から判定「○」(実施例A13の評価結果)に低下することが確認できた。
 このことから、不定形シリカの平均粒径は、0.03μmよりも大きいことが好ましいことが確認できた。
 実施例A5,17の評価結果から、第1の絶縁層及び第2の絶縁層の厚さに対して、不定形シリカの平均粒径が大きすぎる(この場合、25.0μm)と、アンチブロッキング性の判定結果は非常に良好であるが、密着性の評価が判定「◎」(実施例A5の評価結果)から判定「×」(実施例A17の評価結果)になることが確認できた。
 この結果から、不定形シリカの平均粒径は、25.0μmよりも小さいことが好ましいことが確認できた。
 実施例A1~A9の評価結果から、不定形の絶縁性フィラーの平均粒径が、1.0~10.0μmの範囲内であると、アンチブロッキング性、密着性、絶縁性、及びセンシング性の全ての項目において、非常に良好な結果(全ての結果が◎)が得られることが確認できた。
 実施例A6,A9の評価結果から、不定形シリカを含有する第1の絶縁層35及び第2の絶縁層38の厚さは、該不定形シリカの平均粒径の2~30倍の範囲内の値にすることで、アンチブロッキング性、密着性、絶縁性、及びセンシング性の全ての項目において、非常に良好な結果(全ての結果が◎)が得られた。
 実施例A1~A9,A13,A16の結果から、第3の絶縁層にカーボンブラックが含有されていないとセンシング性の判定結果は悪く(言い換えれば、判定結果が×)なり、第3の絶縁層が0.01~0.5wt%のカーボンブラックを含んでいるとセンシング性の判定結果が非常に良好(言い換えれば、判定結果が◎)になることが確認できた。
 このことから、第3の絶縁層に0.01wt%以上のカーボンブラックが含有されていると、センシング性の判定結果が非常に良好(言い換えれば、判定結果が◎)になることが判った。
 実施例A1,A5,A14の評価結果から、不定形の絶縁性フィラーの添加量が0.03wt%になるとアンチブロッキング性の判定結果が低下する(言い換えれば、判定結果が○となる)ことが判った。
 実施例A10,A11の評価結果から、カーボンブラックに替えて、フタロシアニンブルー、或いは二酸化チタンを用いてもよいことが確認できた。
 実施例A1~A17のアンチブロッキング性の判定結果は、○または◎であり、良好な結果が得られた。
 次に、実施例B1~実施例B14と比較例Bを参照し、上述した第2実施形態に対応する実施例を説明する。
(実施例B1)
<正極用タブ、及び負極用タブの作製>
 図7を参照して、実施例B1の正極用タブ、及び負極用タブ(言い換えれば、金属端子114(「タブリード」ともいう)及び一対の蓄電デバイス用端子フィルム116(「タブシーラント」ともいう)よりなる構造体)の作製方法について説明する。
 始めに、正極用の金属端子本体114-1として、幅が5mm、長さが20mm、厚さが100μmのアルミニウム製の薄板部材を準備した。次いで、アルミニウム製の薄板部材の表面に対してノンクロム系表面処理を実施して、腐食防止層114-2(ノンクロム系表面処理層)を形成した。これによって、アルミニウム製の薄板部材、及びノンクロム系表面処理層を含む正極側の金属端子114(以下、説明の便宜上、「正極用金属端子114A」という)を作製した。
 次いで、負極用の金属端子本体114-1として、幅が5mm、長さが20mm、厚さが100μmのニッケル製の薄板部材を準備した。次いで、ニッケル製の薄板部材の表面に対してノンクロム系表面処理を実施して、腐食防止層114-2(ノンクロム系表面処理層)を形成した。これによって、ニッケル製の薄板部材、及びノンクロム系表面処理層を含む負極側の金属端子114(以下、説明の便宜上、「負極用金属端子114B」という)を作製した。
 次いで、第1の絶縁層135の母材となる酸変性のポリプロピレンに対して、3.0wt%の濃度(含有量)となるように、平均粒径が10.0μmとされた球状シリカ(絶縁性フィラー136)を添加し、混合させることで、第1の最外層131の母材を作製した。
 次いで、第2の絶縁層138の母材となる酸変性のポリプロピレンに対して、3.0wt%の濃度(含有量)となるように、平均粒径が10.0μmとされた球状シリカ(絶縁性フィラー139)を添加し、混合させることで、第2の最外層132の母材を作製した。
 次いで、中間層133の母材となるポリプロピレンに対して、0.1wt%の濃度(含有量)となるように、平均粒径が20nmとされたカーボンブラック(導電性顔料142)を添加し、混合させることで、中間層133の母材を作製した。
 次いで、住友重機モダン社製のインフレーション式フィルム押出製造装置(Co-OI型)に、第1の最外層131の母材、第2の最外層132の母材、及び中間層133の母材をセットした。フィルム押出製造装置を用いて、上記3つの母材を押し出すことで積層フィルム(蓄電デバイス用端子フィルム116の母材となるフィルム)を作製した。
 このとき、上記積層フィルムは、第1の絶縁層135の厚さが30μm、第2の絶縁層138の厚さが30μm、第3の絶縁層141の厚さが30μmとなるように形成した。
 また、第1の最外層131の母材、第2の最外層132の母材、及び中間層133の母材の溶融温度は、210℃とした。また、ブロー比を2.2とした。
 次いで、上記積層フィルムを切断することで、幅が9mmで、長さが5mmとされた4枚の蓄電デバイス用端子フィルム116を作製した。
 その後、2枚の蓄電デバイス用端子フィルム116間に、正極用金属端子114Aを挟み込んだ。2枚の蓄電デバイス用端子フィルム116を加熱温度155℃の条件で、10秒間加熱した。これにより、正極用金属端子114Aと2枚の蓄電デバイス用端子フィルム116とを熱融着させることで、正極用金属端子114A、及び2枚の蓄電デバイス用端子フィルム116よりなる正極用タブを作製した。
 次いで、同様な手法により、負極用金属端子114Bと負極用金属端子114Bを挟み込む2枚の蓄電デバイス用端子フィルム116とを熱融着させることで、負極用金属端子114B、及び2枚の蓄電デバイス用端子フィルム116よりなる負極用タブを作製した。
<評価用電池パックの作製>
 次いで、厚さ25μmのナイロン層(外層126)と、厚さ5μmのポリエステルポリオール系接着剤(外層側接着剤層125)と、厚さ40μmのA8079-O材であるアルミニウム箔(バリア層124)と、該アルミニウム箔の一面をノンクロム系表面処理することで形成される第1の腐食防止処理層(腐食防止処理層123-1)と、該アルミニウム箔の他面をノンクロム系表面処理することで形成される第2の腐食防止処理層(腐食防止処理層123-2)と、厚さ30μmの酸変性のポリプロピレン層(内層側接着剤層122)と、厚さ40μmのポリプロピレン層(内層121)と、が積層され、かつサイズが50mm×90mmの長方形とされた包装材113を準備した。
 次いで、上記包装材113を、包装材113の長辺の中点で2つ折りし、2つの折り部を形成した。長さ45mmの2つ折り部の一方に、正極用タブ及び負極用タブを挟んで、ヒートシールすることで、包装材113と正極用タブ及び負極用タブとを融着させた。このとき、ヒートシールの条件としては、加熱温度を190℃、処理時間を5秒とした。
 その後、包装材113内に、ジエチルカーボネートとエチレンカーボネートとの混合液に6フッ化リン酸リチウムを添加した電解液を2mL充填させた。
 次いで、包装材113の残りの辺をヒートシール処理した。このときのヒートシールの条件としては、加熱温度を190℃、処理時間を3秒とした。
 これにより、蓄電デバイス本体111が封入されていない、タブ評価可能な電池パックを作製した。
(実施例B2)
 実施例B2では、第1の絶縁層135に球状シリカ(絶縁性フィラー136)を添加しなかったこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B2の積層フィルム(蓄電デバイス用端子フィルム116の母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B2の評価用電池パックを作製した。
(実施例B3)
 実施例B3では、第2の絶縁層138に球状シリカ(絶縁性フィラー139)を添加しなかったこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B3の積層フィルム(蓄電デバイス用端子フィルム116の母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B3の評価用電池パックを作製した。
(実施例B4)
 実施例B4では、1.0wt%の濃度(含有量)となるように、第3の絶縁層141にカーボンブラックを添加したこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B4の積層フィルム(蓄電デバイス用端子フィルム116の母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B4の評価用電池パックを作製した。
(実施例B5)
 実施例B5では、0.01wt%の濃度(含有量)となるように、第3の絶縁層141にカーボンブラックを添加すると共に、第1の絶縁層135及び第2の絶縁層138に添加する球状シリカ(絶縁性フィラー136,39)の平均粒径を3.0μmに変更し、かつ絶縁性フィラー136,39の含有量を1.0wt%に変更したこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B5の積層フィルム(蓄電デバイス用端子フィルム116の母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B5の評価用電池パックを作製した。
(実施例B6)
 実施例B6では、球状シリカ(絶縁性フィラー136,39)の平均粒径を3.0μmに変更し、かつ絶縁性フィラー136,39の含有量を20.0wt%に変更したこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B6の積層フィルム(蓄電デバイス用端子フィルム116の母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B6の評価用電池パックを作製した。
(実施例B7)
 実施例B7では、球状シリカに替えて、平均粒径が1.0μmの不定形アルミナ(絶縁性フィラー136,39)を用い、絶縁性フィラー136,39の含有量を1.0wt%に変更したこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B7の積層フィルム(蓄電デバイス用端子フィルム116の母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B7の評価用電池パックを作製した。
(実施例B8)
 実施例B8では、球状シリカ(絶縁性フィラー136,39)の平均粒径を1.0μmにすると共に、絶縁性フィラー136,39の含有量を5.0wt%に変更したこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B8の積層フィルム(蓄電デバイス用端子フィルム116の母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B8の評価用電池パックを作製した。
(実施例B9)
 実施例B9では、中間層133と第2の最外層132との間にポリプロピレン層(10μm)を配置し、さらに、第1の絶縁層135及び第2の絶縁層138の厚さを20μmに変更させたこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B9の積層フィルム(蓄電デバイス用端子フィルム116の母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B9の評価用電池パックを作製した。
(実施例B10)
 実施例B10では、第3の絶縁層141に添加されたカーボンブラックの濃度(含有量)を0.005wt%にしたこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B10の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B10の評価用電池パックを作製した。
(実施例B11)
 実施例B11では、第3の絶縁層141に添加されたカーボンブラックの濃度(含有量)を10.0wt%にしたこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B11の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B11の評価用電池パックを作製した。
(実施例B12)
 実施例B12では、第1の絶縁層135及び第2の絶縁層138の厚さを15μmとしたこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B12の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B12の評価用電池パックを作製した。
(実施例B13)
 実施例B13では、第1の絶縁層に添加する球状シリカ(絶縁性フィラー136)の平均粒径を0.5μmとし、球状シリカ(絶縁性フィラー136)の濃度(含有量)を0.05wt%とし、第2の絶縁層に球状シリカ(絶縁性フィラー139)を添加しなかったこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B13の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B13の評価用電池パックを作製した。
(実施例B14)
 実施例B14では、第1の絶縁層及び第2の絶縁層に添加する球状シリカ(絶縁性フィラー136,39)の平均粒径を10.0μmとし、球状シリカ(絶縁性フィラー136,39)の濃度(含有量)を40.0wt%としたこと以外は、実施例B1の積層フィルムと同様な手法により、実施例B14の積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、実施例B14の評価用電池パックを作製した。
(比較例B)
 比較例Bでは、第3の絶縁層141にカーボンブラックを添加しなかったこと以外は、実施例B1の積層フィルムと同様な手法により、比較例Bの積層フィルム(蓄電デバイス用端子フィルムの母材となるフィルム)を作製した。
 その後、実施例B1と同様な手法により、比較例Bの評価用電池パックを作製した。
<実施例B1~B14の負極用タブ及び正極用タブ、並びに比較例Bの負極用タブ及び正極用タブのセンシング性の評価>
 始めに、実施例B1の評価用電池パックを500検体準備し、次いで、撮像検知器(株式会社キーエンス製、CV-X100)を用いて、該検知器が検知する負極用タブ及び正極用タブの検知率(センシング性)を求めた。
 検知率に関しては、検知率が95%以上であるタブを◎(優)と判定し、検知率が95%未満90%以上であるタブを○(良)と判定し、検知率が90%未満であるタブを×(悪)と判定した。
 次いで、実施例B2~B14の評価用電池パック、及び比較例Bの評価用電池パックをそれぞれ500検体準備し、実施例B1の負極用タブ及び正極用タブのセンシング性評価試験と同様な手法により、実施例B2~B14及び比較例Bの評価用電池パックを構成する負極用タブ及び正極用タブのセンシング性の評価を行った。
 表8に、実施例B1~B14の負極用タブ及び正極用タブのセンシング性の評価結果(判定結果)と、比較例Bの負極用タブ及び正極用タブのセンシング性の評価結果(判定結果)と、を示す。また、表5~表7には、実施例B1~B14の積層フィルム、及び比較例Bの積層フィルムを構成する各層の厚さ、絶縁性フィラーの種類や平均粒径、カーボンブラックの濃度(含有量)等も示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
<実施例B1~B14の評価用電池パック、及び比較例Bの評価用電池パックの絶縁性の評価>
 始めに、実施例B1の評価用電池パックを100検体準備し、次いで、耐電圧・絶縁抵抗試験機を用いて、実施例B1の評価用電池パックを構成する負極用金属端子114Bと包装材113との間の絶縁性を測定した。
 該絶縁性の測定は、上記100検体に対して行った。このとき、ショートが1検体も発生しなかった場合を◎(優)と判定し、ショートが確認された検体の数が10未満だった場合を○(良)と判定し、ショートが確認された検体の数が10以上だった場合を×(悪)として判定した。
 次いで、実施例B2~B14の評価用電池パック、及び比較例Bの評価用電池パックをそれぞれ100検体準備し、実施例B1の評価用電池パックの絶縁性評価試験と同様な手法により、絶縁性の評価を行った。
 表8に、実施例B1~B14の評価用電池パック、及び比較例Bの評価用電池パックの絶縁性の評価結果(判定結果)を示す。
<実施例B1~B14の評価用電池パック、及び比較例Bの評価用電池パックの密着性の評価>
 実施例B1~B14の評価用電池パック、及び比較例Bの評価用電池パックをそれぞれ100検体準備し、その後、温度が80℃に保持された室内に、100検体の実施例B1~B14の評価用電池パック、及び比較例Bの評価用電池パックを4週間保管し、封入した電解液の液漏れの有無を確認した。
 ここでの評価は、液漏れが1検体も確認されなかった場合を◎(優)と判定し、液漏れが5検体未満の場合を○(良)と判定し、5検体以上の場合を×(悪)と判定した。
 表8に、実施例B1~B14の評価用電池パック、及び比較例Bの評価用電池パックの密着性の評価結果(判定結果)を示す。
<表8に示す評価結果のまとめ>
 表8を参照するに、実施例B1~B14については、センシング性、絶縁性、及び密着性において、良好な結果(判定結果が◎または○)が得られた。また、実施例B1~B6,B8,B9については、センシング性、絶縁性、及び密着性の全てにおいて、非常に良好な結果(判定結果が◎)が得られた。
 また、実施例B1~B14の結果から、絶縁性フィラーの形状は、球形でも不定形でもよいことが確認できた。
 実施例B1~B3の評価結果から、第1の最外層131及び第2の最外層132の少なくとも一方に球状シリカが含まれていれば、センシング性、絶縁性、及び密着性において、非常に良好な結果が得られることが確認できた。
 実施例B1~B9の評価結果から、絶縁性フィラー136,39の平均粒径を、該絶縁性フィラー136,39が添加される第1の絶縁層135及び第2の絶縁層138の厚さの1/30~1/2の値にすることで、センシング性、絶縁性、及び密着性が良好となることが確認できた。
 実施例B1~B9の評価結果から、絶縁性フィラー136,39の含有量は、1.0~20wt%の範囲内にすると、センシング性、絶縁性、及び密着性が良好となることが確認できた。
 また、実施例B1~B12、及び比較例Bの評価結果から、中間層133に含まれるカーボンブラックの含有量が0.01wt%よりも少なくなる(具体的には、カーボンブラックの含有量が0.005wt%になる)と、センシング性が低下し(具体的には、センシング性の判定結果が○となり)、中間層133に含まれるカーボンブラックの含有量が0.1wt%以上になるとセンシング性が向上することが確認できた。
 実施例B14の評価結果から、球状シリカの粒径が大きく(この場合、10.0μm)、かつ第1の絶縁層及び第2の絶縁層に含有される絶縁性フィラーの濃度が高い場合(この場合、40wt%)、密着性が低下してしまうことが分かった。
 本発明は、蓄電デバイス本体を包装する包装材と、蓄電デバイス本体と電気的に接続され、かつ包装材の外部に延在する金属端子と、の間に介在される蓄電デバイス用端子フィルム、及び該蓄電デバイス用端子フィルムを有する蓄電デバイスに適用できる。
 10,110…蓄電デバイス、11,111…蓄電デバイス本体、13,113…包装材、14,114…金属端子、14-1,114-1…金属端子本体、14-2,114-2…腐食防止層、16,116…蓄電デバイス用端子フィルム、21,121…内層、22,122…内層側接着剤層、23-1,23-2,123-1,123-2…腐食防止処理層、24,124…バリア層、25,125…外層側接着剤層、26,126…外層、31,131…第1の最外層、32,132…第2の最外層、33,133…中間層、35,135…第1の絶縁層、35a,38a…外面、36,39…不定形絶縁性フィラー、136,139…絶縁性フィラー、38,138…第2の絶縁層、41,141…第3の絶縁層、42…顔料、142…導電性顔料

Claims (18)

  1.  蓄電デバイスを構成する蓄電デバイス本体と電気的に接続される金属端子の一部の外周面を覆うように配置される蓄電デバイス用端子フィルムであって、
     第1の絶縁層を含む第1の最外層と、
     第2の絶縁層を含む第2の最外層と、
     前記第1の絶縁層及び前記第2の絶縁層のうち、少なくとも一方の絶縁層に添加された不定形の絶縁性フィラーと、
     を有し、
     前記不定形の絶縁性フィラーの一部を、前記不定形の絶縁性フィラーが添加された前記絶縁層の外面から突出させて配置する蓄電デバイス用端子フィルム。
  2.  前記不定形の絶縁性フィラーの平均粒径は、0.1~20μmの範囲内である請求項1記載の蓄電デバイス用端子フィルム。
  3.  前記不定形の絶縁性フィラーが添加された前記絶縁層の厚さは、前記不定形の絶縁性フィラーの平均粒径の2~30倍の値である請求項1又は請求項2に記載の蓄電デバイス用端子フィルム。
  4.  前記不定形の絶縁性フィラーの添加量は、0.1~20wt%である請求項1から請求項3のいずれか一項に記載の蓄電デバイス用端子フィルム。
  5.  前記第1の絶縁層及び前記第2の絶縁層のうち、一方の絶縁層のみに前記不定形の絶縁性フィラーが添加されている請求項1から請求項4のいずれか一項に記載の蓄電デバイス用端子フィルム。
  6.  前記第1の最外層と前記第2の最外層との間に配置された第3の絶縁層、及び前記第3の絶縁層に添加された顔料を含む中間層を有する請求項1から請求項5のいずれか一項に記載の蓄電デバイス用端子フィルム。
  7.  前記中間層と前記第1の最外層との間、及び前記中間層と前記第2の最外層との間に、それぞれ第4の絶縁層が配置されている請求項6に記載の蓄電デバイス用端子フィルム。
  8.  請求項1から請求項7のいずれか一項に記載の蓄電デバイス用端子フィルムと、
     充放電する蓄電デバイス本体と、
     前記蓄電デバイス本体と電気的に接続され、一部が前記蓄電デバイス用端子フィルムで覆われる一対の前記金属端子と、
     前記蓄電デバイス用端子フィルムの一部、及び前記蓄電デバイス本体を覆う包装材と、
     を有する蓄電デバイス。
  9.  前記第1の最外層は、前記金属端子の一部の外周面を覆うように配置され、
     前記第2の最外層は、前記包装材と接触するように配置される請求項8に記載の蓄電デバイス。
  10.  蓄電デバイスを構成する蓄電デバイス本体と電気的に接続される金属端子の一部の外周面を覆うように配置される蓄電デバイス用端子フィルムであって、
     第1の絶縁層を含む第1の最外層と、
     第2の絶縁層を含む第2の最外層と、
     前記第1の最外層と前記第2の最外層との間に配置された第3の絶縁層、及び前記第3の絶縁層に添加され、黒色に着色可能な導電性顔料を含む中間層と、
     を有し、
     前記第1の絶縁層及び前記第2の絶縁層のうち、少なくとも一方の絶縁層に絶縁性フィラーが添加されている蓄電デバイス用端子フィルム。
  11.  前記第1の絶縁層及び前記第2の絶縁層のうち、一方の絶縁層のみに絶縁性フィラーが添加されている請求項10に記載の蓄電デバイス用端子フィルム。
  12.  前記中間層に含まれる前記導電性顔料の含有量は、0.01wt%以上3.00wt%以下である請求項10又は請求項11に記載の蓄電デバイス用端子フィルム。
  13.  前記絶縁性フィラーの平均粒径は、前記絶縁性フィラーが添加されている絶縁層の厚さの1/30~1/2倍の値である請求項10から請求項12のいずれか一項に記載の蓄電デバイス用端子フィルム。
  14.  前記絶縁性フィラーの含有量は、0.1wt%以上20wt%以下である請求項10から請求項13のいずれか一項に記載の蓄電デバイス用端子フィルム。
  15.  前記絶縁性フィラーの形状は、球形である請求項10から請求項14のいずれか一項に記載の蓄電デバイス用端子フィルム。
  16.  前記中間層と前記第1の最外層との間、及び前記中間層と前記第2の最外層との間に、それぞれ第4の絶縁層が配置されている請求項10から請求項15のいずれか一項に記載の蓄電デバイス用端子フィルム。
  17.  請求項10から請求項16のいずれか一項に記載の蓄電デバイス用端子フィルムと、
     充放電する蓄電デバイス本体と、
     前記蓄電デバイス本体と電気的に接続され、一部が前記蓄電デバイス用端子フィルムで覆われる一対の前記金属端子と、
     前記蓄電デバイス用端子フィルムの一部、及び前記蓄電デバイス本体を覆う包装材と、
     を有する蓄電デバイス。
  18.  前記第1の最外層は、前記金属端子の一部の外周面を覆うように配置され、前記第2の最外層は、前記包装材と接触するように配置され、
     前記第1の最外層は、前記絶縁性フィラーを含む請求項17に記載の蓄電デバイス。
PCT/JP2015/052042 2014-01-29 2015-01-26 蓄電デバイス用端子フィルム、及び蓄電デバイス WO2015115371A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167023029A KR102292142B1 (ko) 2014-01-29 2015-01-26 축전 디바이스용 단자 필름 및 축전 디바이스
CN201580005708.9A CN105940521B (zh) 2014-01-29 2015-01-26 蓄电装置用端子薄膜及蓄电装置
EP15743904.3A EP3101711B1 (en) 2014-01-29 2015-01-26 Terminal film for electricity storage devices, and electricity storage device
US15/218,651 US9960392B2 (en) 2014-01-29 2016-07-25 Electrical storage device terminal film, and electrical storage device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014014574A JP6233060B2 (ja) 2014-01-29 2014-01-29 蓄電デバイス用端子フィルム、及び蓄電デバイス
JP2014014573A JP6183231B2 (ja) 2014-01-29 2014-01-29 蓄電デバイス用端子フィルム、及び蓄電デバイス
JP2014-014573 2014-01-29
JP2014-014574 2014-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/218,651 Continuation US9960392B2 (en) 2014-01-29 2016-07-25 Electrical storage device terminal film, and electrical storage device

Publications (1)

Publication Number Publication Date
WO2015115371A1 true WO2015115371A1 (ja) 2015-08-06

Family

ID=53756944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052042 WO2015115371A1 (ja) 2014-01-29 2015-01-26 蓄電デバイス用端子フィルム、及び蓄電デバイス

Country Status (6)

Country Link
US (1) US9960392B2 (ja)
EP (1) EP3101711B1 (ja)
KR (1) KR102292142B1 (ja)
CN (1) CN105940521B (ja)
TW (1) TWI645599B (ja)
WO (1) WO2015115371A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021174697A (ja) * 2020-04-27 2021-11-01 凸版印刷株式会社 蓄電装置用端子フィルム及び蓄電装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD788030S1 (en) * 2015-01-13 2017-05-30 Lg Chem, Ltd. Battery for portable terminal
JP2017220331A (ja) * 2016-06-06 2017-12-14 住友電気工業株式会社 リード部材
CN110178247A (zh) * 2016-11-04 2019-08-27 株式会社杰士汤浅国际 蓄电元件用电极、蓄电元件和蓄电元件用电极的制造方法
EP3776613A4 (en) * 2018-03-30 2022-04-20 KYOCERA AVX Components Corporation SUPERCAPACITOR ASSEMBLY INCLUDING A BARRIER LAYER
CN108878169A (zh) * 2018-06-22 2018-11-23 湖南耐普恩科技有限公司 一种超级电容器便于安装保护装置
CN113785374A (zh) * 2019-05-15 2021-12-10 凸版印刷株式会社 蓄电装置用封装材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123710A (ja) 2001-10-19 2003-04-25 Dainippon Printing Co Ltd リード線用フィルム
JP2008235256A (ja) * 2007-02-21 2008-10-02 Riken Technos Corp ラミネート外装材を用いたリチウム二次電池
JP2011054563A (ja) * 2009-08-07 2011-03-17 Dainippon Printing Co Ltd 電気化学セル用包装材
JP2013157286A (ja) * 2012-01-31 2013-08-15 Toppan Printing Co Ltd 蓄電デバイス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062022A1 (ja) * 2002-12-27 2004-07-22 Matsushita Electric Industrial Co., Ltd. 電気化学素子およびその製造方法
JP5061417B2 (ja) * 2004-04-23 2012-10-31 パナソニック株式会社 リチウムイオン二次電池
JP2007157412A (ja) * 2005-12-02 2007-06-21 Dainippon Printing Co Ltd リチウムイオン電池タブ及びその製造方法並びにそれを用いたリチウムイオン電池
JP5314837B2 (ja) * 2006-07-06 2013-10-16 昭和電工パッケージング株式会社 電池用リート゛線被覆フィルム材および電池用フィルム被覆リード線
JP5226332B2 (ja) * 2007-02-21 2013-07-03 リケンテクノス株式会社 ラミネート外装材を用いたリチウム二次電池
JP2009032668A (ja) * 2007-06-22 2009-02-12 Panasonic Corp 非水系二次電池、電池パック、電源システム、及び電動機器
CN102473866B (zh) * 2009-08-07 2015-09-09 大日本印刷株式会社 电化学电池用包装材料
JP5849433B2 (ja) * 2011-05-11 2016-01-27 凸版印刷株式会社 二次電池用電極端子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123710A (ja) 2001-10-19 2003-04-25 Dainippon Printing Co Ltd リード線用フィルム
JP2008235256A (ja) * 2007-02-21 2008-10-02 Riken Technos Corp ラミネート外装材を用いたリチウム二次電池
JP2011054563A (ja) * 2009-08-07 2011-03-17 Dainippon Printing Co Ltd 電気化学セル用包装材
JP2013157286A (ja) * 2012-01-31 2013-08-15 Toppan Printing Co Ltd 蓄電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3101711A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021174697A (ja) * 2020-04-27 2021-11-01 凸版印刷株式会社 蓄電装置用端子フィルム及び蓄電装置
WO2021220818A1 (ja) * 2020-04-27 2021-11-04 凸版印刷株式会社 蓄電装置用端子フィルム及び蓄電装置
JP7425970B2 (ja) 2020-04-27 2024-02-01 Toppanホールディングス株式会社 蓄電装置用端子フィルム及び蓄電装置

Also Published As

Publication number Publication date
CN105940521B (zh) 2019-03-22
KR102292142B1 (ko) 2021-08-20
US9960392B2 (en) 2018-05-01
TWI645599B (zh) 2018-12-21
US20160336553A1 (en) 2016-11-17
EP3101711A1 (en) 2016-12-07
EP3101711B1 (en) 2018-12-05
CN105940521A (zh) 2016-09-14
TW201541690A (zh) 2015-11-01
EP3101711A4 (en) 2017-11-01
KR20160113650A (ko) 2016-09-30

Similar Documents

Publication Publication Date Title
JP6648400B2 (ja) 端子用樹脂フィルム、それを用いたタブ及び蓄電デバイス
JP6349986B2 (ja) 蓄電デバイス用端子フィルム及び蓄電デバイス
WO2015115371A1 (ja) 蓄電デバイス用端子フィルム、及び蓄電デバイス
JP6281176B2 (ja) 電極端子およびその製造方法ならびに電池パック
KR102507154B1 (ko) 이차 전지용 단자 피복 수지 필름, 이차 전지용 탭 부재, 및 이차 전지
JP2017033820A (ja) 端子用樹脂フィルム、それを用いたタブ及び蓄電デバイス
JP6233060B2 (ja) 蓄電デバイス用端子フィルム、及び蓄電デバイス
WO2022102606A1 (ja) 端子用樹脂フィルム、及びそれを用いた蓄電デバイス
JP6183231B2 (ja) 蓄電デバイス用端子フィルム、及び蓄電デバイス
JP2015215960A (ja) 蓄電デバイス用端子フィルム、及び蓄電デバイス
WO2021220561A1 (ja) 端子用樹脂フィルム及びそれを用いた蓄電デバイス
WO2023238823A1 (ja) 蓄電デバイス用端子フィルム及びそれを用いた蓄電デバイス
WO2021166529A1 (ja) 端子用樹脂フィルム及びそれを用いた蓄電デバイス
WO2022014140A1 (ja) 端子用樹脂フィルム、及びそれを用いた蓄電デバイス
WO2023276928A1 (ja) タブシーラント及びこれを用いた蓄電デバイス
JP2022182409A (ja) 端子用樹脂フィルム、及びそれを用いた蓄電デバイス
JP2022165772A (ja) 端子用樹脂フィルム、及びそれを用いた蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743904

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015743904

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015743904

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167023029

Country of ref document: KR

Kind code of ref document: A