WO2015114954A1 - 作業車両及びその制御方法 - Google Patents

作業車両及びその制御方法 Download PDF

Info

Publication number
WO2015114954A1
WO2015114954A1 PCT/JP2014/082549 JP2014082549W WO2015114954A1 WO 2015114954 A1 WO2015114954 A1 WO 2015114954A1 JP 2014082549 W JP2014082549 W JP 2014082549W WO 2015114954 A1 WO2015114954 A1 WO 2015114954A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
engine
flow rate
work implement
hydraulic pump
Prior art date
Application number
PCT/JP2014/082549
Other languages
English (en)
French (fr)
Inventor
山田 賢一
正雄 吉澤
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to EP14880430.5A priority Critical patent/EP2982849B1/en
Priority to US14/889,200 priority patent/US9605414B2/en
Priority to CN201480026759.5A priority patent/CN105229282B/zh
Publication of WO2015114954A1 publication Critical patent/WO2015114954A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1886Controlling power supply to auxiliary devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/283Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a single arm pivoted directly on the chassis
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/202Mechanical transmission, e.g. clutches, gears
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2066Control of propulsion units of the type combustion engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5151Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a work vehicle and a control method thereof.
  • the work vehicle is equipped with a relief valve to prevent the discharge pressure of the hydraulic pump from becoming excessive when a heavy load is applied to the work implement.
  • the relief valve is opened when the discharge pressure of the hydraulic pump rises and reaches a predetermined relief pressure. As a result, a part of the hydraulic oil discharged from the hydraulic pump is relieved to prevent the discharge pressure of the hydraulic pump from rising excessively.
  • the discharge flow rate from the hydraulic pump is preferably as small as possible during relief.
  • the engine speed at the time of relief is limited according to the discharge pressure of the hydraulic pump. That is, the discharge flow rate of the hydraulic pump is reduced by reducing the engine speed during relief.
  • the discharge flow rate from the hydraulic pump be as small as possible during relief.
  • it is preferable to maintain the discharge pressure of the hydraulic pump at a predetermined pressure for example, a pressure in the vicinity of the relief pressure.
  • a predetermined pressure for example, a pressure in the vicinity of the relief pressure.
  • An object of the present invention is to provide a work vehicle capable of stably controlling the discharge pressure and the discharge flow rate of a hydraulic pump at the time of relief regardless of the engine rotation speed, and a control method thereof.
  • a work vehicle includes an engine, a hydraulic pump, a work machine, a pump capacity control device, a pump pressure detection unit, a relief valve, a travel device, a power transmission device, and an accelerator operation member. And a work implement operating member and a control unit.
  • the hydraulic pump is driven by the engine.
  • the hydraulic pump is a variable displacement pump.
  • the work machine is driven by hydraulic oil discharged from a hydraulic pump.
  • the pump capacity control device controls the capacity of the hydraulic pump.
  • the pump pressure detection unit detects the discharge pressure of the hydraulic pump.
  • the relief valve is opened when the discharge pressure of the hydraulic pump is equal to or higher than a predetermined relief pressure.
  • the traveling device causes the vehicle to travel.
  • the driving force from the engine is input to the power transmission device.
  • the power transmission device outputs a driving force for driving the traveling device.
  • the control unit controls the power transmission device.
  • the control unit includes a transmission request determining unit, a work implement request determining unit, an engine request determining unit, a request throttle determining unit, and a pump capacity determining unit.
  • the transmission request determination unit determines the required tractive force based on the operation amount of the accelerator operation member.
  • the required traction force is a target traction force in the traveling device.
  • the work implement request determining unit determines the required flow rate based on the operation amount of the work implement operating member.
  • the required flow rate is a target flow rate at the work machine.
  • the engine request determination unit determines the engine request horsepower based on the transmission request horsepower determined based on the required traction force and the work implement request horsepower determined based on the required flow rate.
  • the required throttle determining unit determines a command throttle value for the engine based on the engine required horsepower.
  • the pump capacity determination unit determines a target capacity of the hydraulic pump based on the required flow rate. When the discharge pressure of the hydraulic pump is greater than or equal to a predetermined pressure threshold, the work implement request determination unit limits the upper limit of the required flow rate to a predetermined flow rate limit value.
  • the work implement request determination unit limits the upper limit of the required flow rate to a predetermined flow rate limit value, thereby reducing the discharge flow rate of the hydraulic pump.
  • the loss of energy at the relief valve can be reduced.
  • the command throttle value for the engine is determined based on the required tractive force, the required tractive force must be set to a large value when a large driving force is required for vehicle travel even during relief.
  • the engine speed can be kept high.
  • the engine speed is reduced by reducing the engine required horsepower.
  • the discharge pressure and the discharge flow rate of the hydraulic pump at the time of relief can be stably controlled regardless of the engine rotation speed.
  • the work implement request determining unit determines the work implement required engine rotation speed based on the required flow rate and the capacity of the hydraulic pump.
  • the required throttle determining unit determines the first throttle value based on the engine required horsepower.
  • the required throttle determining unit determines the second throttle value based on the work machine required engine rotation speed.
  • the requested throttle determining unit determines a larger one of the first throttle value and the second throttle value as a command throttle value for the engine.
  • the engine speed is increased.
  • the operator can adjust the speed of the work implement by operating the work implement operating member without depending on the operation of the accelerator operating member.
  • the speed of a working machine and a vehicle speed can be adjusted with easy operation.
  • the upper limit of the required flow rate is limited to a predetermined flow rate limit value during relief, so that energy loss can be suppressed.
  • the command throttle value for the engine is determined based on the limited required flow rate, it is possible to suppress an increase in the engine rotation speed. Thereby, fuel consumption can be improved.
  • the work vehicle further includes an engine rotation speed detection unit that detects the engine rotation speed.
  • the pump capacity determination unit determines the target capacity of the hydraulic pump based on the required flow rate and the engine rotation speed. In this case, the capacity of the hydraulic pump can be controlled so that a desired discharge flow rate can be obtained regardless of the engine speed.
  • the work implement request determination unit increases the predetermined flow rate limit value when the vehicle is excavating.
  • the amount of reduction in the discharge flow rate of the hydraulic pump during relief can be kept small. Therefore, even if the state of the work machine frequently changes during excavation work, the discharge flow rate can be quickly recovered. Thereby, the responsiveness of the work machine can be improved.
  • the pump displacement control device changes the displacement of the hydraulic pump in accordance with a command signal input to the pump displacement control device.
  • the pump capacity determination unit determines a command signal to the pump capacity control device according to the target capacity of the hydraulic pump.
  • the target capacity of the hydraulic pump is determined based on the required flow rate, and a command signal to the pump capacity control device is determined according to the target capacity of the hydraulic pump.
  • a desired discharge flow rate can be obtained by controlling the capacity of the hydraulic pump.
  • the work vehicle further includes a tilt angle detector that detects a tilt angle of the hydraulic pump.
  • the pump capacity determination unit determines a command signal to the pump capacity control device by feedback control based on the actual capacity of the hydraulic pump corresponding to the tilt angle of the hydraulic pump and the target capacity of the hydraulic pump. In this case, the discharge flow rate of the hydraulic pump can be controlled more accurately.
  • the power transmission device further includes an input shaft, an output shaft, and a motor.
  • the power transmission device is configured to change the rotation speed ratio of the output shaft to the input shaft by changing the rotation speed of the motor.
  • a control method is a work vehicle control method.
  • the work vehicle includes an engine, a hydraulic pump, a work implement, a pump capacity control device, a pump pressure detection unit, a relief valve, a travel device, a power transmission device, an accelerator operation member, and a work implement operation member.
  • the hydraulic pump is driven by the engine.
  • the hydraulic pump is a variable displacement pump.
  • the work machine is driven by hydraulic oil discharged from a hydraulic pump.
  • the pump capacity control device controls the capacity of the hydraulic pump.
  • the pump pressure detection unit detects the discharge pressure of the hydraulic pump.
  • the relief valve is opened when the discharge pressure of the hydraulic pump is equal to or higher than a predetermined relief pressure.
  • the traveling device causes the vehicle to travel.
  • the driving force from the engine is input to the power transmission device.
  • the power transmission device outputs a driving force for driving the traveling device.
  • the control method includes first to fifth steps.
  • the required traction force is determined based on the operation amount of the accelerator operation member.
  • the required traction force is a target traction force in the traveling device.
  • the required flow rate is determined based on the operation amount of the work implement operation member.
  • the required flow rate is a target flow rate at the work machine.
  • the engine required horsepower is determined based on the transmission required horsepower determined based on the required traction force and the work machine required horsepower determined based on the required flow rate.
  • a command throttle value for the engine is determined based on the engine required horsepower.
  • the target capacity of the hydraulic pump is determined based on the required flow rate.
  • the second step when the discharge pressure of the hydraulic pump is equal to or higher than a predetermined pressure threshold, the upper limit of the required flow rate is limited to a predetermined flow rate limit value.
  • the work machine request determination unit limits the upper limit of the required flow rate to a predetermined flow rate limit value, thereby reducing the discharge flow rate of the hydraulic pump.
  • the loss of energy at the relief valve can be reduced.
  • the command throttle value for the engine is determined based on the required tractive force, the required tractive force must be set to a large value when a large driving force is required for vehicle travel even during relief.
  • the engine speed can be kept high.
  • the engine speed is reduced by reducing the engine required horsepower.
  • the discharge pressure and the discharge flow rate of the hydraulic pump at the time of relief can be stably controlled regardless of the engine rotation speed.
  • FIG. 6 is a control block diagram showing processing for determining a command signal to the first capacity control device. It is a timing chart which shows an example of a change of a parameter in relief flow restriction control.
  • FIG. 6 is a schematic diagram showing a power transmission device according to a first modification.
  • FIG. 10 is a schematic diagram showing a power transmission device according to a second modification.
  • FIG. 1 is a side view of a work vehicle 1 according to an embodiment of the present invention.
  • the work vehicle 1 includes a body frame 2, a work implement 3, traveling wheels 4 and 5, and a cab 6.
  • the work vehicle 1 is a wheel loader and travels when the traveling wheels 4 and 5 are rotationally driven.
  • the work vehicle 1 can perform work such as excavation using the work machine 3.
  • the work frame 3 and traveling wheels 4 and 5 are attached to the body frame 2.
  • the work machine 3 is driven by hydraulic oil from a work machine pump 23 (see FIG. 2) described later.
  • the work machine 3 includes a boom 11 and a bucket 12.
  • the boom 11 is attached to the vehicle body frame 2.
  • the work machine 3 includes a lift cylinder 13 and a bucket cylinder 14.
  • the lift cylinder 13 and the bucket cylinder 14 are hydraulic cylinders.
  • One end of the lift cylinder 13 is attached to the vehicle body frame 2.
  • the other end of the lift cylinder 13 is attached to the boom 11.
  • the boom 11 rotates up and down as the lift cylinder 13 expands and contracts with the hydraulic oil from the work implement pump 23.
  • the bucket 12 is attached to the tip of the boom 11.
  • One end of the bucket cylinder 14 is attached to the vehicle body frame 2.
  • the other end of the bucket cylinder 14 is attached to the bucket 12 via a bell crank 15. As the bucket cylinder 14 expands and contracts with hydraulic oil from the work implement pump 23, the bucket 12
  • the driver's cab 6 is attached to the body frame 2.
  • the cab 6 is placed on the vehicle body frame 2.
  • a seat on which an operator is seated, an operation device to be described later, and the like are arranged.
  • the vehicle body frame 2 has a front frame 16 and a rear frame 17.
  • the front frame 16 and the rear frame 17 are attached so as to be rotatable in the left-right direction.
  • the work vehicle 1 has a steering cylinder 18.
  • the steering cylinder 18 is attached to the front frame 16 and the rear frame 17.
  • the steering cylinder 18 is a hydraulic cylinder. As the steering cylinder 18 expands and contracts with hydraulic oil from a steering pump 30 described later, the traveling direction of the work vehicle 1 is changed to the left and right.
  • FIG. 2 is a schematic diagram showing the configuration of the work vehicle 1.
  • the work vehicle 1 includes an engine 21, a power take-out device 22 (hereinafter referred to as “PTO22”), a power transmission device 24, a travel device 25, an operation device 26, a control unit 27, and the like. .
  • Engine 21 is, for example, a diesel engine.
  • the output of the engine 21 is controlled by adjusting the amount of fuel injected into the cylinder of the engine 21.
  • the adjustment of the fuel amount is performed by the control unit 27 controlling the fuel injection device 28 attached to the engine 21.
  • the work vehicle 1 includes an engine rotation speed detection unit 31.
  • the engine rotation speed detection unit 31 detects the engine rotation speed and sends a detection signal indicating the engine rotation speed to the control unit 27.
  • the work vehicle 1 includes a work machine pump 23, a steering pump 30, and a transmission pump 29.
  • the work machine pump 23, the steering pump 30, and the transmission pump 29 are hydraulic pumps.
  • PTO22 Power Take Off transmits a part of the driving force from the engine 21 to these hydraulic pumps 23, 30, and 29. That is, the PTO 22 distributes the driving force from the engine 21 to these hydraulic pumps 23, 30, 29 and the power transmission device 24.
  • the work machine pump 23 is driven by the driving force from the engine 21.
  • the hydraulic oil discharged from the work implement pump 23 is supplied to the lift cylinder 13 and the bucket cylinder 14 described above via the work implement control valve 41.
  • the work vehicle 1 includes a work machine pump pressure detection unit 32.
  • the work machine pump pressure detection unit 32 detects the discharge pressure of hydraulic oil from the work machine pump 23 (hereinafter referred to as “work machine pump pressure”), and sends a detection signal indicating the work machine pump pressure to the control unit 27. .
  • the work machine pump 23 is a variable displacement hydraulic pump. By changing the tilt angle of the swash plate or the oblique axis of the work implement pump 23, the capacity of the work implement pump 23 is changed.
  • the capacity of the work implement pump 23 means the amount of hydraulic oil discharged from the work implement pump 23 every rotation.
  • the capacity of the work implement pump 23 corresponds to the tilt angle.
  • the discharge flow rate of the work implement pump 23 described later means the amount of hydraulic oil discharged by the work implement pump 23 per unit time.
  • the first capacity control device 42 is connected to the work machine pump 23.
  • the first capacity control device 42 is controlled by the control unit 27 and changes the tilt angle of the work implement pump 23.
  • the capacity of the work implement pump 23 is controlled by the control unit 27.
  • the first capacity control device 42 changes the capacity of the work implement pump 23 in accordance with a command signal input from the control unit 27.
  • the work vehicle 1 includes a first tilt angle detection unit 33.
  • the first tilt angle detection unit 33 detects the tilt angle of the work implement pump 23 and sends a detection signal indicating the tilt angle to the control unit 27.
  • the work machine control valve 41 includes a boom control valve 41a and a bucket control valve 41b.
  • FIG. 3 is a schematic diagram showing a hydraulic circuit connected to the work implement pump 23.
  • the boom control valve 41a controls the hydraulic oil supplied to the lift cylinder 13.
  • the bucket control valve 41b controls the hydraulic oil supplied to the bucket cylinder 14.
  • the hydraulic circuit connected to the work machine pump 23 has a relief valve 48.
  • the relief valve 48 is opened when the work implement pump pressure becomes equal to or higher than a predetermined relief pressure. Thereby, the work machine pump pressure is adjusted so as not to exceed the relief pressure.
  • the first capacity control device 42 includes a load sensing valve 46 (hereinafter referred to as “LS valve 46”) and a pump capacity control valve 47 (hereinafter referred to as “PC valve 47”).
  • the LS valve 46 controls the capacity of the work implement pump 23 so that the differential pressure between the discharge pressure of the work implement pump 23 and the outlet hydraulic pressure between the boom control valve 41a and the bucket control valve 41b becomes a predetermined value.
  • the maximum outlet hydraulic pressure (hereinafter referred to as “LS pressure”) of the outlet hydraulic pressure of the boom control valve 41a and the outlet hydraulic pressure of the bucket control valve 41b is input to the LS valve 46.
  • the LS valve 46 controls the capacity of the work implement pump 23 so that the differential pressure between the work implement pump pressure and the LS pressure becomes a predetermined value.
  • the boom control valve 41a and the bucket control valve 41b are each provided with a pressure compensation valve (not shown) on the inlet side.
  • the pressure compensation valve generates a pressure difference corresponding to the differential pressure between the LS pressure and each outlet pressure.
  • the PC valve 47 is an electromagnetic control valve that is controlled by a command signal from the control unit 27.
  • the work machine pump pressure is input to the PC valve 47.
  • the PC valve 47 can change the relationship between the capacity of the work implement pump 23 and the work implement pump pressure in accordance with a command signal from the control unit 27. Therefore, the control unit 27 can control the capacity of the work implement pump 23 by controlling the PC valve 47.
  • the work vehicle 1 has a boom position detection unit 38.
  • the boom position detection unit 38 detects the position of the boom 11.
  • the boom position detection unit 38 detects the position of the boom 11 by detecting the angle of the boom 11.
  • the boom position detection unit 38 may be a sensor that directly detects the angle of the boom 11.
  • the boom position detection unit 38 may detect the angle of the boom 11 by detecting the stroke amount of the lift cylinder 13.
  • the boom position detection unit 38 outputs a detection signal indicating the position of the boom 11 to the control unit 27.
  • the boom pressure detection unit 39 detects the bottom pressure of the lift cylinder 13.
  • the bottom pressure of the lift cylinder 13 is the pressure of the hydraulic oil in the bottom oil chamber on the side facing the lift cylinder 13.
  • hydraulic oil is supplied to the oil chamber on the bottom side of the lift cylinder 13.
  • the lift cylinder 13 contracts, the hydraulic oil is discharged from the bottom oil chamber of the lift cylinder 13.
  • the boom pressure detection unit 39 inputs a detection signal indicating the bottom pressure of the lift cylinder 13 to the control unit 27.
  • the hydraulic oil discharged from the steering pump 30 is supplied to the above-described steering cylinder 18 via the steering control valve 43.
  • the work vehicle 1 includes a steering pump pressure detection unit 34.
  • the steering pump pressure detection unit 34 detects the discharge pressure of hydraulic oil from the steering pump 30 (hereinafter referred to as “steering pump pressure”), and sends a detection signal indicating the steering pump pressure to the control unit 27.
  • the steering pump 30 is a variable displacement hydraulic pump. By changing the tilt angle of the swash plate or the oblique axis of the steering pump 30, the capacity of the steering pump 30 is changed.
  • a second capacity control device 44 is connected to the steering pump 30. The second capacity control device 44 is controlled by the control unit 27 and changes the tilt angle of the steering pump 30. Accordingly, the capacity of the steering pump 30 is controlled by the control unit 27.
  • the work vehicle 1 includes a second tilt angle detection unit 35. The second tilt angle detection unit 35 detects the tilt angle of the steering pump 30, and sends a detection signal indicating the tilt angle to the control unit 27.
  • the transmission pump 29 is driven by the driving force from the engine 21.
  • the transmission pump 29 is a fixed displacement hydraulic pump.
  • the hydraulic oil discharged from the transmission pump 29 is supplied to the clutches CF, CR, CL, and CH of the power transmission device 24 via clutch control valves VF, VR, VL, and VH described later.
  • the PTO 22 transmits a part of the driving force from the engine 21 to the power transmission device 24. That is, a part of the driving force from the engine 21 is input to the power transmission device 24.
  • the power transmission device 24 transmits the driving force from the engine 21 to the traveling device 25. That is, the power transmission device 24 shifts and outputs the driving force from the engine 21 for driving the traveling device 25.
  • the configuration of the power transmission device 24 will be described in detail later.
  • the traveling device 25 has an axle 45 and traveling wheels 4 and 5.
  • the axle 45 transmits the driving force from the power transmission device 24 to the traveling wheels 4 and 5.
  • the work vehicle 1 includes a vehicle speed detection unit 37.
  • the vehicle speed detector 37 detects the rotational speed of the output shaft 63 of the power transmission device 24 (hereinafter referred to as “output rotational speed”). Since the output rotation speed corresponds to the vehicle speed, the vehicle speed detection unit 37 detects the vehicle speed by detecting the output rotation speed. Further, the vehicle speed detection unit 37 detects the rotation direction of the output shaft 63.
  • the vehicle speed detection unit 37 detects the traveling direction of the work vehicle 1 by detecting the rotation direction of the output shaft 63. It functions as a part.
  • the vehicle speed detection unit 37 sends a detection signal indicating the output rotation speed and the rotation direction to the control unit 27.
  • the operating device 26 is operated by an operator.
  • the operating device 26 includes an accelerator operating device 51, a work implement operating device 52, a shift operating device 53, a forward / reverse operating device 54 (hereinafter referred to as “FR operating device 54”), a steering operating device 57, and a brake operating device. 58.
  • the accelerator operating device 51 includes an accelerator operating member 51a and an accelerator operation detecting unit 51b.
  • the accelerator operation member 51a is operated to set a required traction force described later. By operating the accelerator operating member 51a, the rotational speed of the engine 21 is changed.
  • the accelerator operation detection unit 51b detects an operation amount of the accelerator operation member 51a (hereinafter referred to as “accelerator operation amount”).
  • the accelerator operation detection unit 51b sends a detection signal indicating the accelerator operation amount to the control unit 27.
  • the work machine operation device 52 includes a work machine operation member 52a and a work machine operation detection unit 52b.
  • the work implement operating member 52a is operated to operate the work implement 3.
  • the work machine operation detection unit 52b detects the position of the work machine operation member 52a.
  • the work machine operation detection unit 52b outputs a detection signal indicating the position of the work machine operation member 52a to the control unit 27.
  • the work machine operation detection unit 52b detects the operation amount of the work machine operation member 52a (hereinafter referred to as “work machine operation amount”) by detecting the position of the work machine operation member 52a.
  • the shift operation device 53 includes a shift operation member 53a and a shift operation detecting unit 53b.
  • the operator can select the speed range of the power transmission device 24 by operating the speed change operation member 53a.
  • the shift operation detecting unit 53b detects the position of the shift operation member 53a.
  • the position of the speed change operation member 53a corresponds to a plurality of speed ranges such as first speed and second speed.
  • the shift operation detection unit 53b outputs a detection signal indicating the position of the shift operation member 53a to the control unit 27.
  • the FR operation device 54 includes a forward / reverse operation member 54a (hereinafter “FR operation member 54a”) and a forward / reverse position detection unit 54b (hereinafter “FR position detection unit 54b”).
  • the operator can switch between forward and reverse travel of the work vehicle 1 by operating the FR operation member 54a.
  • the FR operation member 54a is selectively switched between a forward position (F), a neutral position (N), and a reverse position (R).
  • the FR position detector 54b detects the position of the FR operation member 54a.
  • the FR position detection unit 54b outputs a detection signal indicating the position of the FR operation member 54a to the control unit 27.
  • the steering operation device 57 has a steering operation member 57a.
  • the steering operation device 57 drives the steering control valve 43 by supplying pilot hydraulic pressure to the steering control valve 43 based on the operation of the steering operation member 57a.
  • the steering operation member 57 may drive the steering control valve 43 by converting the operation of the steering operation member 57a into an electric signal. The operator can change the traveling direction of the work vehicle 1 to the left and right by operating the steering operation member 57a.
  • the brake operation device 58 includes a brake operation member 58a and a brake operation detection unit 58b.
  • the operator can operate the braking force of the work vehicle 1 by operating the brake operation member 58a.
  • the brake operation detection unit 58b detects an operation amount of the brake operation member 58a (hereinafter referred to as “brake operation amount”).
  • the brake operation detection unit 58b outputs a detection signal indicating the amount of brake operation to the control unit 27.
  • the brake oil pressure may be used as the brake operation amount.
  • the control unit 27 includes an arithmetic device such as a CPU and memories such as RAM and ROM, and performs processing for controlling the work vehicle 1.
  • the control unit 27 includes a storage unit 56.
  • the storage unit 56 stores a program and data for controlling the work vehicle 1.
  • the control unit 27 sends a command signal indicating a command throttle value to the fuel injection device 28 so that a predetermined target rotation speed of the engine 21 is obtained.
  • the control of the engine 21 by the control unit 27 will be described in detail later.
  • the control unit 27 controls the hydraulic pressure supplied to the hydraulic cylinders 13 and 14 by controlling the work implement control valve 41 based on the detection signal from the work implement operation detecting unit 52b. Thereby, the hydraulic cylinders 13 and 14 expand and contract, and the work machine 3 operates.
  • the storage unit 56 stores work implement control valve command value information that defines the relationship between the work implement operation amount and the command current value to the work implement control valve 41.
  • the work implement control valve command value information is a map that defines the relationship between the work implement operation amount and the command current value to the work implement control valve 41.
  • the work implement control valve command value information may be in a form different from the map such as a table or a mathematical expression.
  • the opening area of the work implement control valve 41 is determined according to the command current value.
  • the work implement control valve command value information defines the command current value so that the opening area of the work implement control valve 41 increases as the work implement operation amount increases.
  • the control unit 27 refers to the work implement control valve command value information and determines a command current value to the work implement control valve 41 from the work implement operation amount.
  • control unit 27 controls the power transmission device 24 based on the detection signal from each detection unit.
  • the control of the power transmission device 24 by the control unit 27 will be described in detail later.
  • FIG. 4 is a schematic diagram showing the configuration of the power transmission device 24.
  • the power transmission device 24 includes an input shaft 61, a gear mechanism 62, an output shaft 63, a first motor MG1, a second motor MG2, and a capacitor 64.
  • the input shaft 61 is connected to the PTO 22 described above.
  • the rotation from the engine 21 is input to the input shaft 61 via the PTO 22.
  • the gear mechanism 62 transmits the rotation of the input shaft 61 to the output shaft 63.
  • the output shaft 63 is connected to the traveling device 25 described above, and transmits the rotation from the gear mechanism 62 to the traveling device 25 described above.
  • the gear mechanism 62 is a mechanism that transmits the driving force from the engine 21.
  • the gear mechanism is configured to change the rotation speed ratio of the output shaft 63 to the input shaft 61 in accordance with the change in the rotation speed of the motors MG1 and MG2.
  • the gear mechanism 62 includes an FR switching mechanism 65 and a speed change mechanism 66.
  • the FR switching mechanism 65 includes a forward clutch CF (hereinafter referred to as “F clutch CF”), a reverse clutch CR (hereinafter referred to as “R clutch CR”), and various gears (not shown). Yes.
  • the F clutch CF and the R clutch CR are hydraulic clutches, and hydraulic fluid from the transmission pump 29 is supplied to the clutches CF and CR.
  • the hydraulic fluid to the F clutch CF is controlled by the F clutch control valve VF.
  • the hydraulic oil for the R clutch CR is controlled by the R clutch control valve VR.
  • Each clutch control valve CF, CR is controlled by a command signal from the control unit 27.
  • the direction of rotation output from the FR switching mechanism 65 is switched by switching between connection / disconnection of the F clutch CF and connection / disconnection of the R clutch CR. Specifically, when the vehicle moves forward, the F clutch CF is connected and the R clutch CR is disconnected. When the vehicle moves backward, the F clutch CF is disconnected and the R clutch CR is connected.
  • the transmission mechanism 66 has a transmission shaft 67, a first planetary gear mechanism 68, a second planetary gear mechanism 69, a Hi / Lo switching mechanism 70, and an output gear 71.
  • the transmission shaft 67 is connected to the FR switching mechanism 65.
  • the first planetary gear mechanism 68 and the second planetary gear mechanism 69 are arranged coaxially with the transmission shaft 67.
  • the first planetary gear mechanism 68 includes a first sun gear S1, a plurality of first planetary gears P1, a first carrier C1 that supports the plurality of first planetary gears P1, and a first ring gear R1. .
  • the first sun gear S1 is coupled to the transmission shaft 67.
  • the plurality of first planetary gears P1 mesh with the first sun gear S1 and are rotatably supported by the first carrier C1.
  • a first carrier gear Gc1 is provided on the outer periphery of the first carrier C1.
  • the first ring gear R1 meshes with the plurality of planetary gears P1 and is rotatable.
  • a first ring outer peripheral gear Gr1 is provided on the outer periphery of the first ring gear R1.
  • the second planetary gear mechanism 69 includes a second sun gear S2, a plurality of second planetary gears P2, a second carrier C2 that supports the plurality of second planetary gears P2, and a second ring gear R2. .
  • the second sun gear S2 is connected to the first carrier C1.
  • the plurality of second planetary gears P2 mesh with the second sun gear S2 and are rotatably supported by the second carrier C2.
  • the second ring gear R2 meshes with the plurality of planetary gears P2 and is rotatable.
  • a second ring outer peripheral gear Gr2 is provided on the outer periphery of the second ring gear R2.
  • the second ring outer peripheral gear Gr2 meshes with the output gear 71, and the rotation of the second ring gear R2 is output to the output shaft 63 via the output gear 71.
  • the Hi / Lo switching mechanism 70 is a mechanism for switching the driving force transmission path in the power transmission device 24 between a high speed mode (Hi mode) where the vehicle speed is high and a low speed mode (Lo mode) where the vehicle speed is low.
  • the Hi / Lo switching mechanism 70 has an H clutch CH connected in the Hi mode and an L clutch CL connected in the Lo mode.
  • the H clutch CH connects or disconnects the first ring gear R1 and the second carrier C2.
  • the L clutch CL connects or disconnects the second carrier C2 and the fixed end 72, and prohibits or allows the rotation of the second carrier C2.
  • Each clutch CH, CL is a hydraulic clutch, and hydraulic oil from the transmission pump 29 is supplied to each clutch CH, CL.
  • the hydraulic oil for the H clutch CH is controlled by the H clutch control valve VH.
  • the hydraulic fluid to the L clutch CL is controlled by the L clutch control valve VL.
  • Each clutch control valve VH, VL is controlled by a command signal from the control unit 27.
  • the first motor MG1 and the second motor MG2 function as driving motors that generate driving force by electric energy.
  • the first motor MG1 and the second motor MG2 also function as generators that generate electrical energy using the input driving force.
  • first motor MG1 functions as a generator.
  • a first motor gear Gm1 is fixed to the output shaft of the first motor MG1, and the first motor gear Gm1 meshes with the first carrier gear Gc1.
  • a first inverter I1 is connected to the first motor MG1, and a command signal for controlling the motor torque of the first motor MG1 is given to the first inverter I1 from the control unit 27.
  • the second motor MG2 has the same configuration as the first motor MG1.
  • a second motor gear Gm2 is fixed to the output shaft of the second motor MG2, and the second motor gear Gm2 meshes with the first ring outer peripheral gear Gr1.
  • the second inverter I2 is connected to the second motor MG2, and a command signal for controlling the motor torque of the second motor MG2 is given to the second inverter I2 from the control unit 27.
  • Capacitor 64 functions as an energy storage unit that stores energy generated by motors MG1 and MG2. That is, the capacitor 64 stores the electric power generated by the motors MG1 and MG2 when the total power generation amount of the motors MG1 and MG2 is large. Capacitor 64 discharges power when the total power consumption of motors MG1 and MG2 is large. In other words, each motor MG1, MG2 is driven by the electric power stored in capacitor 64. Alternatively, each motor MG1, MG2 can be driven by the electric power stored in the capacitor 64. A battery may be used instead of the capacitor.
  • the control unit 27 receives detection signals from various detection units, and gives a command signal indicating a command torque to the motors MG1 and MG2 to the inverters I1 and I2. Note that the control unit 27 may output rotational speed commands for the motors MG1 and MG2. In this case, the inverters I1 and I2 calculate a command torque corresponding to the rotation speed command, and control the motors MG1 and MG2. Further, the control unit 27 gives a command signal for controlling the clutch hydraulic pressure of each clutch CF, CR, CH, CL to each clutch control valve VF, VR, VH, VL. Thereby, the gear ratio and output torque of the power transmission device 24 are controlled. Hereinafter, the operation of the power transmission device 24 will be described.
  • FIG. 5 shows the rotational speeds of the motors MG1 and MG2 with respect to the vehicle speed.
  • the rotation speed ratio is the ratio of the rotation speed of the output shaft 63 to the rotation speed of the input shaft 61. Therefore, in FIG. 5, the change in the vehicle speed coincides with the change in the rotational speed ratio of the power transmission device 24. That is, FIG.
  • FIG. 5 shows the relationship between the rotational speeds of the motors MG1 and MG2 and the rotational speed ratio of the power transmission device 24.
  • the solid line indicates the rotational speed of the first motor MG1
  • the broken line indicates the rotational speed of the second motor MG2.
  • the L clutch CL is connected and the H clutch CH is disconnected (Lo mode).
  • Lo mode since the H clutch CH is disconnected, the second carrier C2 and the first ring gear R1 are disconnected. Further, since the L clutch CL is connected, the second carrier C2 is fixed.
  • the driving force from the engine 21 is input to the first sun gear S1 via the transmission shaft 67, and this driving force is output from the first carrier C1 to the second sun gear S2.
  • the driving force input to the first sun gear S1 is transmitted from the first planetary gear P1 to the first ring gear R1, and is output to the second motor MG2 via the first ring outer peripheral gear Gr1 and the second motor gear Gm2.
  • the second motor MG2 mainly functions as a generator in the Lo mode, and a part of the electric power generated by the second motor MG2 is stored in the capacitor 64. Further, part of the electric power generated by the second motor MG2 is consumed for driving the first motor MG1.
  • the first motor MG1 mainly functions as an electric motor.
  • the driving force of the first motor MG1 is output to the second sun gear S2 through the path of the first motor gear Gm1 ⁇ first carrier gear Gc1 ⁇ first carrier C1 ⁇ .
  • the driving force output to the second sun gear S2 as described above is transmitted to the output shaft 63 through the path of the second planetary gear P2, the second ring gear R2, the second ring outer peripheral gear Gr2, and the output gear 71.
  • the H clutch CH In the region where the vehicle speed exceeds V1, the H clutch CH is connected and the L clutch CL is disconnected (Hi mode). In this Hi mode, since the H clutch CH is connected, the second carrier C2 and the first ring gear R1 are connected. Further, since the L clutch CL is disconnected, the second carrier C2 is disconnected. Accordingly, the rotation speeds of the first ring gear R1 and the second carrier C2 coincide.
  • the driving force from the engine 21 is input to the first sun gear S1, and this driving force is output from the first carrier C1 to the second sun gear S2.
  • the driving force input to the first sun gear S1 is output from the first carrier C1 to the first motor MG1 via the first carrier gear Gc1 and the first motor gear Gm1.
  • the first motor MG1 mainly functions as a generator, so that part of the electric power generated by the first motor MG1 is stored in the capacitor 64. A part of the electric power generated by the first motor MG1 is consumed for driving the second motor MG2.
  • the driving force of the second motor MG2 is output to the second carrier C2 through the path of the second motor gear Gm2 ⁇ the first ring outer gear Gr1 ⁇ the first ring gear R1 ⁇ the H clutch CH.
  • the driving force output to the second sun gear S2 as described above is output to the second ring gear R2 via the second planetary gear P2, and the driving force output to the second carrier C2 is the second planetary gear.
  • the driving force combined by the second ring gear R2 in this way is transmitted to the output shaft 63 via the second ring outer peripheral gear Gr2 and the output gear 71.
  • the control unit 27 controls the output torque of the power transmission device 24 by controlling the motor torque of the first motor MG1 and the second motor MG2. That is, the control unit 27 controls the traction force of the work vehicle 1 by controlling the motor torque of the first motor MG1 and the second motor MG2.
  • command torque a command value for the motor torque to the first motor MG1 and the second motor MG2
  • FIG. 6 is a control block diagram showing processing executed by the control unit 27.
  • the control unit 27 includes a transmission request determination unit 84, an energy management request determination unit 85, and a work implement request determination unit 86.
  • the transmission request determination unit 84 determines the required tractive force Tout based on the accelerator operation amount Aac and the output rotation speed Nout.
  • the required traction force is a target traction force in the traveling device 25.
  • the transmission request determination unit 84 determines the required tractive force Tout from the output rotation speed Nout based on the required tractive force characteristic information D1 stored in the storage unit 56.
  • the required tractive force characteristic information D1 is data indicating a required tractive force characteristic that defines the relationship between the output rotation speed Nout and the required tractive force Tout.
  • the storage unit 56 stores data Lout1 (hereinafter referred to as “reference traction force characteristic Lout1”) indicating the required traction force characteristic as a reference.
  • the reference traction force characteristic Lout1 is a required traction force characteristic when the accelerator operation amount Aac is the maximum value, that is, 100%.
  • the reference traction force characteristic Lout1 is determined according to the speed range selected by the speed change operation member 53a.
  • the transmission request determination unit 84 determines the current required traction force characteristic Lout2 by multiplying the reference traction force characteristic Lout1 by the traction force ratio FWR and the vehicle speed ratio VR.
  • the storage unit 56 stores traction force ratio information D2 and vehicle speed ratio information D3.
  • the tractive force ratio information D2 defines the tractive force ratio FWR with respect to the accelerator operation amount Aac.
  • the vehicle speed ratio information D3 defines the vehicle speed ratio VR with respect to the accelerator operation amount Aac.
  • the transmission request determination unit 84 determines the traction force ratio FWR and the vehicle speed ratio VR according to the accelerator operation amount Aac.
  • the transmission request determination unit 84 multiplies the accelerator operation amount Aac by multiplying the reference traction force characteristic Lout1 by the traction force ratio FWR in the vertical axis direction indicating the required traction force and the vehicle speed ratio VR in the horizontal axis direction indicating the output rotation speed Nout.
  • the current required tractive force characteristic information Lout2 is determined in response.
  • the tractive force ratio information D2 defines a tractive force ratio FWR that increases as the accelerator operation amount Aac increases.
  • the vehicle speed ratio information D3 defines a vehicle speed ratio VR that increases as the accelerator operation amount Aac increases.
  • the traction force ratio FWR when the accelerator operation amount Aac is 0 is larger than 0.
  • the vehicle speed ratio VR when the accelerator operation amount Aac is 0 is larger than 0.
  • the required tractive force Tout becomes a value larger than zero. That is, the traction force is output from the power transmission device 24 even when the accelerator operation member 51a is not operated.
  • the EMT type power transmission device 24 realizes the same behavior as the creep that occurs in the torque converter type transmission.
  • the required tractive force characteristic information D1 defines a required tractive force Tout that increases as the output rotation speed Nout decreases.
  • the transmission request determination unit 84 changes the required tractive force characteristic in accordance with the speed range selected by the shift operation member 53a. For example, when a downshift is performed by the speed change operation member 53a, the required tractive force characteristic information is changed from Lout2 to Lout2 'as shown in FIG. Thereby, the upper limit value of the output rotation speed Nout is reduced. That is, the upper limit value of the vehicle speed is reduced.
  • the required tractive force characteristic information D1 defines a negative required tractive force Tout with respect to an output rotation speed Nout that is equal to or higher than a predetermined speed. For this reason, when the output rotation speed Nout is larger than the upper limit value of the output rotation speed in the selected speed range, the required tractive force Tout is determined to be a negative value. When the required tractive force Tout is a negative value, a braking force is generated. As a result, the EMT type power transmission device 24 realizes the same behavior as the engine brake generated in the torque converter type transmission.
  • the 6 determines an energy management required horsepower Hem based on the remaining amount of power in the capacitor 64.
  • the energy management required horsepower Hem is the horsepower required for the power transmission device 24 to charge the capacitor 64.
  • the energy management request determination unit 85 determines the current capacitor charge amount from the voltage Vca of the capacitor 64.
  • the energy management request determination unit 85 increases the energy management request horsepower Hem as the current capacitor charge amount decreases.
  • the work implement request determining unit 86 determines the work implement required horsepower Hpto based on the work implement pump pressure Pwp and the operation amount Awo of the work implement operating member 52a (hereinafter referred to as “work implement operation amount Awo”).
  • the work machine required horsepower Hpto is a horsepower distributed to the work machine pump 23.
  • the work machine required horsepower Hpto may include horsepower distributed to the steering pump 30 and / or the transmission pump 29.
  • the work implement request determination unit 86 determines the required flow rate Qdm of the work implement pump 23 from the work implement operation amount Awo based on the request flow rate information D4.
  • the required flow rate information D4 is stored in the storage unit 56, and defines the relationship between the required flow rate Qdm and the work implement operation amount Awo.
  • the required flow rate information D4 defines the relationship between the required flow rate Qdm and the work implement operating amount Awo such that the required flow rate Qdm increases as the work implement operating amount Awo increases.
  • the work implement request determining unit 86 determines the work implement required horsepower Hpto from the request flow rate Qdm and the work implement pump pressure Pwp.
  • the work implement request determining unit 86 determines the work implement required engine rotation speed Nedm based on the required flow rate Qdm and the capacity of the work implement pump 23. Specifically, the work implement request determination unit 86 determines the work implement request pump rotation speed by dividing the request flow rate Qdm by the capacity of the work implement pump 23. Then, the work implement request determining unit 86 considers factors such as the number of teeth of the rotating element between the engine 21 and the work implement pump 23 and transmission efficiency, and calculates the work implement request engine rotation speed from the work implement request pump rotation speed. Determine Nedm.
  • the control unit 27 includes a target output shaft torque determining unit 82, a target input shaft torque determining unit 81, and a command torque determining unit 83.
  • the target output shaft torque determining unit 82 determines the target output shaft torque To_ref.
  • the target output shaft torque To_ref is a target value of torque output from the power transmission device 24.
  • the target output shaft torque determining unit 82 determines the target output shaft torque To_ref based on the required traction force Tout determined by the transmission request determining unit 84. That is, the target output torque To_ref is determined so that the tractive force output from the power transmission device 24 follows the required tractive force characteristic defined by the required tractive force characteristic information D1. Specifically, the target output shaft torque To_ref is determined by multiplying the required traction force Tout by a predetermined distribution rate.
  • the predetermined distribution ratio is set so that, for example, the total of the work machine required horsepower Hpto, the transmission required horsepower Htm, and the energy management required horsepower Hem does not exceed the output horsepower from the engine 21.
  • the target input shaft torque determining unit 81 determines the target input shaft torque Te_ref.
  • the target input shaft torque Te_ref is a target value of torque input to the power transmission device 24.
  • the target input shaft torque determining unit 81 determines the target input shaft torque Te_ref based on the transmission required horsepower Htm and the energy management required horsepower Hem. More specifically, the target input shaft torque determination unit 81 adds the value obtained by multiplying the transmission request horsepower Htm by a predetermined distribution ratio and the energy management request horsepower Hem and multiplies the engine rotation speed to obtain the target input shaft torque. Calculate Te_ref.
  • the transmission required horsepower Htm is calculated by multiplying the above-described required traction force Tout by the current output rotational speed Nout.
  • the command torque determining unit 83 determines the command torques Tm1_ref and Tm2_ref to the motors MG1 and MG2 from the target input shaft torque Te_ref and the target output shaft torque To_ref based on the torque balance information.
  • the torque balance information defines the relationship between the target input shaft torque Te_ref and the target output shaft torque To_ref so as to satisfy the torque balance in the power transmission device 24.
  • the torque balance information is stored in the storage unit 56.
  • the command torque determining unit 83 determines the command torques Tm1_ref and Tm2_ref to the motors MG1 and MG2 using different torque balance information in the Lo mode and the Hi mode. Specifically, the command torque determination unit 83 determines the command torques Tm1_Low and Tm2_Low for the motors MG1 and MG2 in the Lo mode using the first torque balance information shown in the following Equation 1.
  • the first torque balance information is a formula for balance of torque in the power transmission device 24.
  • the second torque balance information is a formula of torque balance in the power transmission device 24.
  • control unit 27 controls the engine 21 by sending a command signal to the fuel injection device 28.
  • a method for determining the command throttle value for the fuel injection device 28 will be described.
  • the control unit 27 includes an engine request determination unit 87 and a request throttle determination unit 89.
  • the engine request determination unit 87 determines the engine request horsepower Hdm based on the work machine request horsepower Hpto, the transmission request horsepower Htm, and the energy management request horsepower Hem. Specifically, the engine request determination unit 87 determines the engine request horsepower Hdm by adding the work machine request horsepower Hpto, the transmission request horsepower Htm, and the energy management request horsepower Hem.
  • the required throttle determining unit 89 determines the command throttle value Th_cm from the engine required horsepower Hdm, the accelerator operation amount Aac, and the work machine required engine rotational speed Nedm.
  • the storage unit 56 stores an engine torque line Let and a matching line Lma.
  • the engine torque line Let defines the relationship between the output torque of the engine 21 and the engine rotational speed Ne.
  • the engine torque line Let includes a regulation region La and a full load region Lb.
  • the regulation region La changes according to the command throttle value Th_cm (see La ′ in FIG. 8).
  • the full load region Lb includes a rated point Pr and a maximum torque point Pm located on the lower engine speed side than the rated point Pr.
  • the matching line Lma is information for determining the first required throttle value Th_tm1 from the engine required horsepower Hdm. Although the matching line Lma can be set arbitrarily, in the present embodiment, the matching line Lma passes through a position closer to the maximum torque point Pm than the rated point Pr in the entire load region Lb of the engine torque line Let. Is set.
  • the required throttle determining unit 89 sets the first required throttle value Th_tm1 so that the engine torque line Let and the matching line Lma match at the matching point Pma1 where the output torque of the engine 21 becomes a torque corresponding to the engine required horsepower Hdm. decide. That is, the intersection of the equal horsepower line Lhdm corresponding to the engine required horsepower Hdm and the matching line Lma is set as the first matching point Pma1, and the required throttle determining unit 89 is configured to regulate the engine torque line Let (see La ′).
  • the first required throttle value Th_tm1 is determined so that passes through the first matching point Pma1.
  • the requested throttle determining unit 89 determines the smaller one of the first requested throttle value Th_tm1 and the second requested throttle value Th_tm2 corresponding to the accelerator operation amount Aac as the third requested throttle value Th_tm3. Further, when speed control of the work implement 3 is performed based on an engine rotation speed, which will be described later, the request throttle determining unit 89 determines a fourth request throttle value Th_tm4 based on the work implement request engine rotation speed Nedm. More specifically, the required throttle determining unit 89 causes the regulation region of the engine torque line Let (see La ' ⁇ ') to pass through the point Pma2 where the engine rotational speed becomes the work implement required engine rotational speed Nedm on the equal horsepower line Lhdm.
  • the requested throttle determining unit 89 determines the larger of the third requested throttle value Th_tm3 and the fourth requested throttle value Th_tm4 as the command throttle value Th_cm.
  • the required throttle determining unit 89 determines the third required throttle value Th_tm3 as the command throttle value Th_cm.
  • FIG. 9 is a graph showing the relationship between the work machine operation amount Awo and the discharge flow rate of the work machine pump 23. As the discharge flow rate of the work implement pump 23 increases, the speed of the work implement 3 increases. Therefore, the change in the discharge flow rate of the work implement pump 23 in FIG. 9 indicates the change in the speed of the work implement 3. Note that the relationship between the work implement operation amount Awo and the discharge flow rate of the work implement pump is not necessarily linear as shown in FIG. 9, and may be changed.
  • the control unit 27 increases the discharge flow rate of the work implement pump 23 in accordance with the increase in the work implement operation amount Awo.
  • the control unit 27 controls the opening area of the work implement control valve 41 by determining a command current value to the work implement control valve 41 according to the work implement operation amount Awo.
  • the first capacity controller 42 uses the load sensing valve so that the differential pressure between the discharge pressure of the work implement pump 23 and the outlet hydraulic pressure of the work implement control valve 41 becomes a predetermined value. The capacity of the pump 23 is controlled.
  • FIG. 9 the control unit 27 increases the discharge flow rate of the work implement pump 23 in accordance with the increase in the work implement operation amount Awo.
  • the control unit 27 controls the opening area of the work implement control valve 41 by determining a command current value to the work implement control valve 41 according to the work implement operation amount Awo.
  • the first capacity controller 42 uses the load sensing valve so that the differential pressure between the discharge pressure of the work implement pump 23 and the outlet hydraulic pressure of the work implement control valve 41 becomes a predetermined
  • the control unit 27 determines a command throttle value Th_cm based on the work implement required engine rotational speed Nedm. That is, when the work implement operation amount Awo is equal to or greater than a1, the required throttle determination unit 89 increases the engine rotation speed in accordance with the increase in the operation amount of the work implement operation member 52a. Thereby, the speed of the work machine 3 increases.
  • the discharge flow rate is constant at the upper limit value Qmax.
  • the transmission request determination unit 84 reduces the required traction force from a value determined based on the operation amount of the accelerator operation member 51a. Let Specifically, as shown in FIG. 7, the transmission request determination unit 84 reduces the required traction force by multiplying the vehicle speed ratio VR by a predetermined reduction rate.
  • the predetermined reduction rate is a value smaller than 1.
  • the predetermined reduction rate is set so as to increase as the work implement operation amount Awo increases. Alternatively, the predetermined reduction rate may be a constant value.
  • FIG. 10 is a timing chart showing changes in parameters in the speed control of the work machine 3.
  • the accelerator operation amount is constant at Aac1.
  • the speed of the work implement 3 is 0 as shown in FIG. 10 (D).
  • the engine rotation speed is constant at Ne1
  • the traction force is constant at F1.
  • the speed of the work machine 3 is controlled by controlling the discharge capacity until the discharge capacity of the work machine 3 reaches the maximum capacity. Therefore, the engine rotation speed is constant at Ne1, but the speed of the work implement 3 increases (time t1 to t2). At this time, the tractive force is also constant at F1.
  • the speed of the work machine 3 is controlled by controlling the engine speed (time t2 to t3).
  • the engine speed increases and the speed of the work implement 3 increases.
  • the traction force decreases as the work implement operation amount Awo increases.
  • the engine rotation speed becomes constant at Ne2.
  • the speed of the work machine 3 is constant at V1.
  • the tractive force is constant at F2.
  • the control unit 27 restricts the upper limit of the discharge flow rate of the work implement pump 23 to a predetermined flow rate restriction value when the work implement pump pressure Pwp is equal to or higher than a predetermined pressure threshold value. Specifically, when the discharge pressure of the hydraulic pump is equal to or greater than a predetermined pressure threshold, the work implement request determination unit 86 described above limits the upper limit of the required flow rate to a predetermined flow rate limit value.
  • FIG. 11 is a control block diagram showing processing in relief flow rate restriction control.
  • the work machine request determination unit 86 determines the required flow rate Qdm of the work machine pump 23 from the work machine operation amount Awo based on the required flow rate information D4. Further, as shown in FIG. 11, the work implement request determining unit 86 determines the flow rate limit value Qdm_limit of the work implement pump 23 from the work implement pump pressure Pwp based on the flow rate restriction information D5.
  • the flow rate restriction information D5 is stored in the storage unit 56, and defines the relationship between the work machine pump pressure Pwp and the flow rate limit value Qdm_limit of the work machine pump 23.
  • FIG. 12 is a graph showing an example of the flow restriction information D5.
  • the flow restriction information D5 includes normal restriction information D5a and excavation restriction information D5b.
  • the normal time restriction information D5a is used when excavation work is not performed.
  • the excavation restriction information D5b is used during excavation work.
  • the flow rate limit value Qdm_limit is constant at the predetermined first limit value Q_Low.
  • the flow rate limit value Qdm_limit decreases as the work implement pump pressure Pwp increases.
  • the flow rate limit value Qdm_limit is constant at a predetermined second limit value Q_Hi1 smaller than the first limit value Q_Low.
  • the flow rate limit value Qdm_limit changes according to the work implement pump pressure Pwp, as in the normal time limit information D5a.
  • the predetermined second limit value Q_Hi2 in the excavation time limit information D5b is larger than the predetermined second limit value Q_Hi1 in the normal time limit information D5a. Accordingly, the work implement request determination unit 86 increases the predetermined flow rate limit value Qdm_limit when the vehicle is excavating.
  • the limit start pressure Pwp1 and the minimum limit pressure Pwp2 are values near the relief pressure described above.
  • the minimum limit pressure Pwp2 is larger than the limit start pressure Pwp1.
  • the limit start pressure Pwp1 and the minimum limit pressure Pwp2 are smaller than the relief pressure of the relief valve 48.
  • the work implement request determination unit 86 compares the flow rate limit value Qdm_limit with the request flow rate Qdm determined from the work implement operation amount Awo, and determines the smaller value as the request flow rate Qdm. Therefore, when the required flow rate Qdm determined from the work implement operation amount Awo exceeds the flow rate limit value Qdm_limit, the work implement request determination unit 86 determines the flow rate limit value Qdm_limit as the required flow rate Qdm. That is, the upper limit of the required flow rate Qdm is limited to the flow rate limit value Qdm_limit.
  • the work implement request determining unit 86 determines the above-described work implement required engine rotation speed Nedm from the required flow rate Qdm determined as described above and the discharge capacity of the work implement pump 23. Further, the work implement request determining unit 86 determines the work implement required horsepower Hpto from the request flow rate Qdm and the work implement pump pressure Pwp.
  • FIG. 13 is a control block diagram illustrating a process for determining a command signal to the first capacity control device 42.
  • the control unit 27 includes a pump capacity determination unit 88.
  • the pump capacity determination unit 88 determines the target capacity of the work implement pump 23 based on the required flow rate Qdm.
  • the target capacity of the work implement pump 23 corresponds to the target tilt angle Ang_target of the work implement pump 23.
  • the pump capacity determination unit 88 determines the target tilt angle Ang_target of the work implement pump 23 based on the required flow rate Qdm and the engine rotation speed Ne. More specifically, the pump displacement determination unit 88 calculates the target displacement of the work implement pump 23 by dividing the required flow rate Qdm by the engine rotation speed Ne, and the target tilt angle Ang_target of the work implement pump 23 from the target displacement. To decide. As described above, the PC valve 47 changes the relationship between the capacity of the work implement pump 23 and the work implement pump pressure Pwp according to the command signal from the control unit 27.
  • the pump capacity determination unit 88 determines a command value I_epc for the PC valve 47 that satisfies the relationship between the target capacity corresponding to the target tilt angle Ang_target and the current work machine pump pressure Pwp.
  • the command value I_epc is a command current value to the PC valve 47.
  • the pump capacity determination unit 88 determines the command signal I_epc by feedback control based on the target tilt angle Ang_target of the work implement pump 23 and the actual tilt angle Ang_current detected by the first tilt angle detection unit 33. .
  • the actual tilt angle Ang_current corresponds to the actual capacity of the work implement pump 23.
  • PI control is used as feedback control, but other methods may be used as feedback control.
  • FIG. 14 is a timing chart showing an example of a parameter change in the relief flow rate restriction control.
  • FIG. 14 (A) shows changes in vehicle speed.
  • FIG. 14B shows a change in the work machine operation amount Awo.
  • a solid line indicates a change in the work implement operation amount Awo of the boom 11, and a broken line indicates a change in the work implement operation amount Awo of the bucket 12.
  • FIG. 14C shows a change in the cylinder stroke of the hydraulic cylinder.
  • a solid line indicates a change in the cylinder stroke of the lift cylinder 13
  • a broken line indicates a change in the cylinder stroke of the bucket cylinder 14.
  • FIG. 14 (D) shows changes in work implement pump pressure.
  • FIG. 14 (D) shows changes in work implement pump pressure.
  • FIG. 14 (E) shows the change in engine speed.
  • the solid line indicates the change in the actual engine speed detected by the engine speed detector 31.
  • a broken line indicates a change in the work implement required engine rotational speed Nedm determined by the work implement request determining unit 86.
  • FIG. 14 (F) shows a change in the discharge flow rate of the work implement pump 23.
  • FIG. 14 when the bucket 12 rushes into an accumulation site such as earth and sand as an excavation target (time point T1), an operation of lifting the boom 11 is performed as shown in FIG. 14B (time point). T1-T2).
  • the work implement pump pressure increases as the load on the boom 11 increases.
  • the actual engine rotation speed increases as the work implement required engine rotation speed Nedm increases.
  • the discharge flow rate of work implement pump 23 also increases.
  • the work vehicle 1 according to the present embodiment has the following characteristics.
  • the work implement request determining unit 86 limits the upper limit of the requested flow rate Qdm to a predetermined flow rate limit value Qdm_limit, thereby reducing the discharge flow rate of the work implement pump 23 regardless of the engine rotation speed. .
  • the work implement pump pressure Pwp at the time of relief and the discharge flow rate of the work implement pump 23 can be stably controlled regardless of the engine speed.
  • the dredger work machine request determination unit 86 sets the flow rate limit value Qdm_limit to the second limit value Q_Hi2 at the time of excavation that is larger than the second limit value Q_Hi1 at the normal time. For this reason, during excavation work, the reduction amount of the discharge flow rate of the work machine pump 23 at the time of relief is suppressed to be smaller than the reduction amount at the normal time. Therefore, even if the state of the work implement 3 changes frequently during excavation work, the discharge flow rate can be quickly recovered. Thereby, the responsiveness of the work machine 3 can be improved.
  • the dredge pump capacity determination unit 88 determines the target capacity of the work machine pump 23 based on the required flow rate Qdm, and determines a command signal to the first capacity control device 42 according to the target capacity of the work machine pump 23 . For this reason, a desired discharge flow rate can be obtained by controlling the capacity of the work implement pump 23.
  • the command signal to the first capacity controller 42 is determined by feedback control based on the target tilt angle of the work implement pump 23 corresponding to the target capacity of the dredge work implement pump 23 and the actual tilt angle. . That is, a command signal to the first capacity control device 42 is determined by feedback control based on the actual capacity of the work machine pump 23 and the target capacity of the work machine pump 23. For this reason, the discharge flow rate of the work implement pump 23 can be controlled more accurately.
  • the present invention is not limited to the wheel loader described above, and may be applied to other types of work vehicles such as a bulldozer, a tractor, a forklift, or a motor grader.
  • the present invention is not limited to EMT but may be applied to other types of transmissions such as HMT.
  • the first motor MG1 functions as a hydraulic motor and a hydraulic pump.
  • the second motor MG2 functions as a hydraulic motor and a hydraulic pump.
  • the first motor MG1 and the second motor MG2 are variable displacement pumps / motors, and the displacement is controlled by the control unit 27 controlling the tilt angle of the swash plate or the oblique shaft. Then, the capacities of the first motor MG1 and the second motor MG2 are controlled so that the command torques Tm1_ref and Tm2_ref calculated in the same manner as in the above embodiment are output.
  • the configuration of the power transmission device 24 is not limited to the configuration of the above embodiment.
  • the connection and arrangement of the elements of the two planetary gear mechanisms 68 and 69 are not limited to the connection and arrangement of the above embodiment.
  • the number of planetary gear mechanisms provided in the power transmission device 24 is not limited to two.
  • the power transmission device 24 may have only one planetary gear mechanism.
  • the power transmission device 24 may have three or more planetary gear mechanisms.
  • the control of the power transmission device 24 is not limited to the control in the above embodiment.
  • the target input shaft torque Te_ref and the target output shaft torque To_ref are determined so that a predetermined vehicle speed-traction force characteristic in which the traction force continuously changes according to the vehicle speed is obtained.
  • the target input shaft torque Te_ref and the target output shaft torque To_ref can be arbitrarily set.
  • the torque balance information is not limited to the torque balance formula as in the above embodiment.
  • the torque balance information may be in the form of a table or a map.
  • the number of work implement pumps is not limited to one, and two or more work implement pumps may be provided.
  • the capacity described above is the sum of the capacities of the plurality of work implement pumps.
  • the tractive force does not need to be reduced.
  • the reduction of the traction force is not limited to a method of multiplying the vehicle speed ratio VR by a predetermined reduction rate, and other methods may be used.
  • the speed of the work implement 3 may be controlled by controlling the engine speed before the capacity of the work implement pump 23 reaches the maximum capacity.
  • the flow restriction information D5 includes normal restriction information D5a and excavation restriction information D5b, but one of the normal restriction information D5a and the excavation restriction information D5b. You may have only.
  • the command signal to the pump displacement control device is determined by feedback control, but the command signal to the pump displacement control device may be determined without using feedback control.
  • FIG. 15 is a schematic diagram showing a power transmission device 124 according to a first modification.
  • the power transmission device 124 shown in FIG. 15 is a so-called series-type power transmission device.
  • engine 21 is used only for power generation by first motor MG1.
  • Second motor MG2 drives the travel device using the electric power generated by first motor MG1. Further, the second motor MG2 regenerates energy during deceleration or the like to generate power.
  • FIG. 16 is a schematic diagram showing a power transmission device 324 according to a second modification.
  • the power transmission device 324 is a so-called HST (Hydro Static Transmission) type device.
  • the power transmission device 324 includes a traveling pump 301 and a traveling motor 302.
  • the traveling pump 301 is driven by the engine 21.
  • the traveling pump 301 is a variable displacement hydraulic pump, and the displacement of the traveling pump 301 is controlled by a pump capacity control device 303.
  • the traveling motor 302 is driven by the hydraulic oil discharged from the traveling pump 301 to drive the traveling device.
  • the travel motor 302 is a variable displacement hydraulic motor, and the capacity of the travel motor 302 is controlled by a motor capacity control device 304.
  • the vehicle speed and traction force are controlled by controlling the engine speed, the displacement of the traveling pump 301, the displacement of the traveling motor 302, and the like.
  • FIGS. 15 and 16 the same reference numerals are given to the same configurations as those in the above-described embodiment, and description of those configurations will be omitted.

Abstract

 作業車両において、トランスミッション要求決定部は、アクセル操作量に基づいて要求牽引力を決定する。作業機要求決定部は、作業機操作量に基づいて要求流量を決定する。エンジン要求決定部は、要求牽引力に基づいて決定されるトランスミッション要求馬力と、要求流量に基づいて決定される作業機要求馬力と、に基づいてエンジン要求馬力を決定する。要求スロットル決定部は、エンジン要求馬力に基づいてエンジンへの指令スロットル値を決定する。ポンプ容量決定部は、要求流量に基づいて油圧ポンプの目標容量を決定する。作業機要求決定部は、油圧ポンプの吐出圧が所定の圧力閾値以上であるときには、要求流量の上限を所定の流量制限値に制限する。

Description

作業車両及びその制御方法
 本発明は、作業車両及びその制御方法に関する。
 作業車両は、作業機に高い負荷がかかったときに油圧ポンプの吐出圧が過大とならないようにするためのリリーフ弁を備えている。リリーフ弁は、油圧ポンプの吐出圧が上昇して所定のリリーフ圧に達したときに開かれる。これにより、油圧ポンプから吐出された作動油の一部がリリーフされることで、油圧ポンプの吐出圧が過剰に上昇することが防止される。
 しかし、リリーフ弁を介してリリーフされる作動油のエネルギーは熱に変換されるため、エネルギーの損失が生じる。従って、エネルギーの損失を抑える観点からは、リリーフ時には、油圧ポンプからの吐出流量は、できるだけ少ないことが好ましい。
 そこで、特許文献1に開示されている作業車両では、リリーフ時のエンジン回転速度を油圧ポンプの吐出圧に応じて制限している。すなわち、リリーフ時にはエンジン回転速度を低減させることで、油圧ポンプの吐出流量が低減されている。
特開2009-074405
 上述のように、エネルギーの損失を抑える観点からは、リリーフ時には、油圧ポンプからの吐出流量は、できるだけ少ないことが好ましい。一方、作業機の性能を維持する観点からは、油圧ポンプの吐出圧を所定の圧力(例えばリリーフ圧近傍の圧力)で維持することが好ましい。そのためには、リリーフ時の油圧ポンプの吐出圧と吐出流量とを安定的に制御できることが重要である。
 しかし、上述の作業車両のように、エンジン回転速度を低減することで油圧ポンプの吐出流量を低減する場合には、リリーフ時に油圧ポンプの吐出流量を迅速に低減することは容易ではなく、遅れが生じる。このため、油圧ポンプの吐出圧が安定せず、変動が生じ易い。また、油圧ポンプの吐出圧が安定しない場合には、油圧ポンプの吐出流量を安定して制御することは困難である。
 さらに、エンジン回転速度を低減することで油圧ポンプの吐出流量を低減する場合には、エンジン回転速度を高く維持しながら、油圧ポンプの吐出流量を低減することは困難である。すなわち、エンジン回転速度を低減することで油圧ポンプの吐出流量を低減すると、作業機以外のアクチュエータを駆動する場合や、車両の走行に駆動力が必要な場合にまで、エンジン回転速度が低下してしまうという問題がある。
 本発明の課題は、エンジン回転速度によらずにリリーフ時の油圧ポンプの吐出圧と吐出流量とを安定的に制御することができる作業車両及びその制御方法を提供することにある。
 本発明の一態様に係る作業車両は、エンジンと、油圧ポンプと、作業機と、ポンプ容量制御装置と、ポンプ圧検出部と、リリーフ弁と、走行装置と、動力伝達装置と、アクセル操作部材と、作業機操作部材と、制御部と、を備える。油圧ポンプは、エンジンによって駆動される。油圧ポンプは、可変容量型のポンプである。作業機は、油圧ポンプから吐出された作動油によって駆動される。ポンプ容量制御装置は、油圧ポンプの容量を制御する。ポンプ圧検出部は、油圧ポンプの吐出圧を検出する。リリーフ弁は、油圧ポンプの吐出圧が所定のリリーフ圧以上であるときに開かれる。走行装置は、車両を走行させる。動力伝達装置には、エンジンからの駆動力が入力される。動力伝達装置は、走行装置を駆動するための駆動力を出力する。制御部は、動力伝達装置を制御する。
 制御部は、トランスミッション要求決定部と、作業機要求決定部と、エンジン要求決定部と、要求スロットル決定部と、ポンプ容量決定部と、を有する。トランスミッション要求決定部は、アクセル操作部材の操作量に基づいて要求牽引力を決定する。要求牽引力は、走行装置での目標牽引力である。作業機要求決定部は、作業機操作部材の操作量に基づいて要求流量を決定する。要求流量は、作業機での目標流量である。エンジン要求決定部は、要求牽引力に基づいて決定されるトランスミッション要求馬力と、要求流量に基づいて決定される作業機要求馬力と、に基づいてエンジン要求馬力を決定する。要求スロットル決定部は、エンジン要求馬力に基づいてエンジンへの指令スロットル値を決定する。ポンプ容量決定部は、要求流量に基づいて油圧ポンプの目標容量を決定する。作業機要求決定部は、油圧ポンプの吐出圧が所定の圧力閾値以上であるときには、要求流量の上限を所定の流量制限値に制限する。
 本態様に係る作業車両では、リリーフ時には、作業機要求決定部が、要求流量の上限を所定の流量制限値に制限することで、油圧ポンプの吐出流量が低減される。これにより、リリーフ弁でのエネルギーのロスを低減することができる。また、要求牽引力に基づいてエンジンへの指令スロットル値が決定されるため、リリーフ時であっても、車両の走行に大きな駆動力が必要な場合には、要求牽引力が大きな値に設定されることで、エンジン回転速度を高く維持することができる。一方、車両が停止している場合、或いは、車両の走行に大きな駆動力が不要な場合には、エンジン要求馬力が減少することで、エンジン回転速度を低減することができる。このように、エンジン回転速度によらずにリリーフ時の油圧ポンプの吐出圧と吐出流量とを安定的に制御することができる。
 好ましくは、作業機要求決定部は、要求流量と油圧ポンプの容量とに基づいて、作業機要求エンジン回転速度を決定する。要求スロットル決定部は、エンジン要求馬力に基づいて第1のスロットル値を決定する。要求スロットル決定部は、作業機要求エンジン回転速度に基づいて第2のスロットル値を決定する。要求スロットル決定部は、第1のスロットル値と第2のスロットル値のうち大きい方をエンジンへの指令スロットル値として決定する。
 この場合、オペレータが作業機操作部材を大きく操作すると、エンジン回転速度が増大される。このため、オペレータは、アクセル操作部材の操作によらずに作業機操作部材の操作によって、作業機の速度を調整することができる。これにより、容易な操作で作業機の速度と車速とを調整することができる。また、オペレータが作業機操作部材を大きく操作しても、リリーフ時には要求流量の上限が所定の流量制限値に制限されるため、エネルギーの損失を抑えることができる。また、制限された要求流量に基づいてエンジンへの指令スロットル値が決定されるため、エンジン回転速度が増大することを抑えることができる。これにより、燃費を向上させることができる。
 好ましくは、作業車両は、エンジン回転速度を検出するエンジン回転速度検出部をさらに備える。ポンプ容量決定部は、要求流量とエンジン回転速度とに基づいて油圧ポンプの目標容量を決定する。この場合、エンジン回転速度によらずに所望の吐出流量が得られるように、油圧ポンプの容量を制御することができる。
 好ましくは、作業機要求決定部は、車両が掘削作業中であるときには、所定の流量制限値を増大させる。この場合、掘削作業中には、リリーフ時の油圧ポンプの吐出流量の低減量が小さく抑えられる。従って、掘削作業中に、作業機の状態が頻繁に変化しても、迅速に吐出流量を回復させることができる。これにより、作業機の応答性を向上させることができる。
 好ましくは、ポンプ容量制御装置は、ポンプ容量制御装置に入力される指令信号に応じて油圧ポンプの容量を変更する。ポンプ容量決定部は、油圧ポンプの目標容量に応じてポンプ容量制御装置への指令信号を決定する。この場合、要求流量に基づいて油圧ポンプの目標容量が決定され、油圧ポンプの目標容量に応じてポンプ容量制御装置への指令信号が決定される。これにより、油圧ポンプの容量を制御することで所望の吐出流量を得ることができる。
 好ましくは、作業車両は、油圧ポンプの傾転角を検出する傾転角検出部をさらに備える。ポンプ容量決定部は、油圧ポンプの傾転角に対応する油圧ポンプの実際の容量と、油圧ポンプの目標容量と、に基づくフィードバック制御により、ポンプ容量制御装置への指令信号を決定する。この場合、油圧ポンプの吐出流量をより精度よく制御することができる。
 好ましくは、動力伝達装置は、入力軸と出力軸とモータとをさらに有する。動力伝達装置は、モータの回転速度を変化させることによって、入力軸に対する出力軸の回転速度比を変化させるように構成されている。
 本発明の他の態様に係る制御方法は、作業車両の制御方法である。作業車両は、エンジンと、油圧ポンプと、作業機と、ポンプ容量制御装置と、ポンプ圧検出部と、リリーフ弁と、走行装置と、動力伝達装置と、アクセル操作部材と、作業機操作部材と、を備える。油圧ポンプは、エンジンによって駆動される。油圧ポンプは、可変容量型のポンプである。作業機は、油圧ポンプから吐出された作動油によって駆動される。ポンプ容量制御装置は、油圧ポンプの容量を制御する。ポンプ圧検出部は、油圧ポンプの吐出圧を検出する。リリーフ弁は、油圧ポンプの吐出圧が所定のリリーフ圧以上であるときに開かれる。走行装置は、車両を走行させる。動力伝達装置には、エンジンからの駆動力が入力される。動力伝達装置は、走行装置を駆動するための駆動力を出力する。
 本態様に係る制御方法は、第1~第5ステップを備える。第1ステップでは、アクセル操作部材の操作量に基づいて要求牽引力を決定する。要求牽引力は、走行装置での目標牽引力である。第2ステップでは、作業機操作部材の操作量に基づいて要求流量を決定する。要求流量は、作業機での目標流量である。第3ステップでは、要求牽引力に基づいて決定されるトランスミッション要求馬力と、要求流量に基づいて決定される作業機要求馬力と、に基づいてエンジン要求馬力を決定する。第4ステップでは、エンジン要求馬力に基づいてエンジンへの指令スロットル値を決定する。第5ステップでは、要求流量に基づいて油圧ポンプの目標容量を決定する。また、第2ステップにおいて、油圧ポンプの吐出圧が所定の圧力閾値以上であるときには、要求流量の上限を所定の流量制限値に制限する。
 本態様に係る制御方法では、リリーフ時には、作業機要求決定部が、要求流量の上限を所定の流量制限値に制限することで、油圧ポンプの吐出流量が低減される。これにより、リリーフ弁でのエネルギーのロスを低減することができる。また、要求牽引力に基づいてエンジンへの指令スロットル値が決定されるため、リリーフ時であっても、車両の走行に大きな駆動力が必要な場合には、要求牽引力が大きな値に設定されることで、エンジン回転速度を高く維持することができる。一方、車両が停止している場合、或いは、車両の走行に大きな駆動力が不要な場合には、エンジン要求馬力が減少することで、エンジン回転速度を低減することができる。このように、エンジン回転速度によらずにリリーフ時の油圧ポンプの吐出圧と吐出流量とを安定的に制御することができる。
 本発明によれば、エンジン回転速度によらずにリリーフ時の油圧ポンプの吐出圧と吐出流量とを安定的に制御することができる作業車両及びその制御方法を提供することができる。
実施形態に係る作業車両の側面図である。 作業車両の構成を示す模式図である。 作業機ポンプに接続された油圧回路を示す模式図である。 動力伝達装置の構成を示す模式図である。 車速に対する第1モータ及び第2モータの回転速度の変化を示す図である。 モータへの指令トルクの決定処理を示すブロック図である。 トランスミッション要求決定部による処理を示すブロック図である。 要求スロットル決定部による処理を示すブロック図である。 作業機操作量と作業機ポンプの吐出流量との関係を示すグラフである。 作業機の速度制御でのパラメータの変化の一例を示すタイミングチャートである。 リリーフ流量制限制御における処理を示す制御ブロック図である。 流量制限情報の一例を示すグラフである。 第1容量制御装置への指令信号を決定するための処理を示す制御ブロック図である。 リリーフ流量制限制御でのパラメータの変化の一例を示すタイミングチャートである。 第1変形例に係る動力伝達装置を示す模式図である。 第2変形例に係る動力伝達装置を示す模式図である。
 以下、図面を参照して、本発明の実施形態について説明する。図1は、本発明の実施形態に係る作業車両1の側面図である。図1に示すように、作業車両1は、車体フレーム2と、作業機3と、走行輪4,5と、運転室6とを備えている。作業車両1は、ホイールローダであり、走行輪4,5が回転駆動されることにより走行する。作業車両1は、作業機3を用いて掘削等の作業を行うことができる。
 車体フレーム2には、作業機3および走行輪4,5が取り付けられている。作業機3は、後述する作業機ポンプ23(図2参照)からの作動油によって駆動される。作業機3は、ブーム11とバケット12とを有する。ブーム11は、車体フレーム2に装着されている。作業機3は、リフトシリンダ13とバケットシリンダ14とを有している。リフトシリンダ13とバケットシリンダ14とは、油圧シリンダである。リフトシリンダ13の一端は車体フレーム2に取り付けられている。リフトシリンダ13の他端はブーム11に取り付けられている。リフトシリンダ13が作業機ポンプ23からの作動油によって伸縮することによって、ブーム11が上下に回動する。バケット12は、ブーム11の先端に取り付けられている。バケットシリンダ14の一端は車体フレーム2に取り付けられている。バケットシリンダ14の他端はベルクランク15を介してバケット12に取り付けられている。バケットシリンダ14が、作業機ポンプ23からの作動油によって伸縮することによって、バケット12が上下に回動する。
 車体フレーム2には、運転室6が取り付けられている。運転室6は、車体フレーム2上に載置されている。運転室6内には、オペレータが着座するシートや、後述する操作装置などが配置されている。車体フレーム2は、前フレーム16と後フレーム17とを有する。前フレーム16と後フレーム17とは互いに左右方向に回動可能に取り付けられている。
 作業車両1は、ステアリングシリンダ18を有している。ステアリングシリンダ18は、前フレーム16と後フレーム17とに取り付けられている。ステアリングシリンダ18は、油圧シリンダである。ステアリングシリンダ18が、後述するステアリングポンプ30からの作動油によって伸縮することによって、作業車両1の進行方向が左右に変更される。
 図2は、作業車両1の構成を示す模式図である。図2に示すように、作業車両1は、エンジン21、動力取り出し装置22(以下、「PTO22」と呼ぶ)、動力伝達装置24、走行装置25、操作装置26、制御部27などを備えている。
 エンジン21は、例えばディーゼルエンジンである。エンジン21の出力は、エンジン21のシリンダ内に噴射する燃料量を調整することにより制御される。燃料量の調整は、エンジン21に取り付けられた燃料噴射装置28を制御部27が制御することで行われる。作業車両1は、エンジン回転速度検出部31を備えている。エンジン回転速度検出部31は、エンジン回転速度を検出し、エンジン回転速度を示す検出信号を制御部27へ送る。
 作業車両1は、作業機ポンプ23と、ステアリングポンプ30と、トランスミッションポンプ29とを有する。作業機ポンプ23と、ステアリングポンプ30と、トランスミッションポンプ29とは、油圧ポンプである。PTO22(Power Take Off)は、これらの油圧ポンプ23,30,29に、エンジン21からの駆動力の一部を伝達する。すなわち、PTO22は、これらの油圧ポンプ23,30,29と、動力伝達装置24とにエンジン21からの駆動力を分配する。
 作業機ポンプ23は、エンジン21からの駆動力によって駆動される。作業機ポンプ23から吐出された作動油は、作業機制御弁41を介して、上述したリフトシリンダ13とバケットシリンダ14とに供給される。作業車両1は、作業機ポンプ圧検出部32を備えている。作業機ポンプ圧検出部32は、作業機ポンプ23からの作動油の吐出圧(以下、「作業機ポンプ圧」と呼ぶ)を検出し、作業機ポンプ圧を示す検出信号を制御部27へ送る。
 作業機ポンプ23は、可変容量型の油圧ポンプである。作業機ポンプ23の斜板或いは斜軸の傾転角が変更されることにより、作業機ポンプ23の容量が変更される。なお、作業機ポンプ23の容量とは、1回転ごとに作業機ポンプ23から吐出される作動油の量を意味する。作業機ポンプ23の容量は傾転角に対応している。また、後述する作業機ポンプ23の吐出流量とは、単位時間当たりに作業機ポンプ23が吐出する作動油の量を意味する。
 作業機ポンプ23には、第1容量制御装置42が接続されている。第1容量制御装置42は、制御部27によって制御され、作業機ポンプ23の傾転角を変更する。これにより、作業機ポンプ23の容量が制御部27によって制御される。第1容量制御装置42は、制御部27から入力される指令信号に応じて作業機ポンプ23の容量を変更する。作業車両1は、第1傾転角検出部33を備えている。第1傾転角検出部33は、作業機ポンプ23の傾転角を検出し、傾転角を示す検出信号を制御部27へ送る。
 詳細には、図3に示すように、作業機制御弁41は、ブーム制御弁41aとバケット制御弁41bとを有する。図3は、作業機ポンプ23に接続された油圧回路を示す模式図である。ブーム制御弁41aは、リフトシリンダ13に供給される作動油を制御する。バケット制御弁41bは、バケットシリンダ14に供給される作動油を制御する。
 また、作業機ポンプ23に接続された油圧回路は、リリーフ弁48を有している。リリーフ弁48は、作業機ポンプ圧が所定のリリーフ圧以上となったときに開かれる。これにより、作業機ポンプ圧がリリーフ圧を超えないように調整される。
 また、第1容量制御装置42は、ロードセンシング弁46(以下、「LS弁46」と呼ぶ)と、ポンプ容量制御弁47(以下、「PC弁47」と呼ぶ)を有している。LS弁46は、作業機ポンプ23の吐出圧と、ブーム制御弁41aとバケット制御弁41bとの出口油圧との差圧が所定の値となるように、作業機ポンプ23の容量を制御する。詳細には、ブーム制御弁41aの出口油圧とバケット制御弁41bの出口油圧との出口油圧とのうち最大出口油圧(以下、「LS圧」と呼ぶ)がLS弁46に入力される。LS弁46は、作業機ポンプ圧とLS圧との差圧が所定の値となるように、作業機ポンプ23の容量を制御する。
 なお、ブーム制御弁41aとバケット制御弁41bとは、それぞれ入口側に図示しない圧力補償弁を備える。圧力補償弁はLS圧とそれぞれの出口圧の差圧に相当する圧力差を発生させる。
 PC弁47は、制御部27からの指令信号によって制御される電磁制御弁である。PC弁47には、作業機ポンプ圧が入力される。後述するように、PC弁47は、制御部27からの指令信号に応じて作業機ポンプ23の容量と作業機ポンプ圧との関係を変更することができる。従って、制御部27は、PC弁47を制御することによって作業機ポンプ23の容量を制御することができる。
 作業車両1は、ブーム位置検出部38を有する。ブーム位置検出部38は、ブーム11の位置を検出する。例えば、ブーム位置検出部38は、ブーム11の角度を検出することでブーム11の位置を検出する。ブーム位置検出部38は、ブーム11の角度を直接的に検出するセンサであってもよい。或いは、ブーム位置検出部38は、リフトシリンダ13のストローク量を検出することで、ブーム11の角度を検出してもよい。ブーム位置検出部38は、ブーム11の位置を示す検出信号を制御部27に出力する。
 作業車両1は、ブーム圧検出部39を有する。ブーム圧検出部39は、リフトシリンダ13のボトム圧を検出する。リフトシリンダ13のボトム圧は、リフトシリンダ13に対向する側のボトム側の油室内の作動油の圧力である。リフトシリンダ13が伸長するときには、リフトシリンダ13のボトム側の油室に作動油が供給される。リフトシリンダ13が収縮するときには、リフトシリンダ13のボトム側の油室から作動油が排出される。なお、ブーム11が保持状態であるときには、ブーム11を保持するための負荷に応じた油圧がリフトシリンダ13のボトム側の油室に作用する。ブーム圧検出部39は、リフトシリンダ13のボトム圧を示す検出信号を制御部27に入力する。
 図2に示すステアリングポンプ30は、エンジン21からの駆動力によって駆動される。ステアリングポンプ30から吐出された作動油は、ステアリング制御弁43を介して、上述したステアリングシリンダ18に供給される。作業車両1は、ステアリングポンプ圧検出部34を備えている。ステアリングポンプ圧検出部34は、ステアリングポンプ30からの作動油の吐出圧(以下、「ステアリングポンプ圧」と呼ぶ)を検出し、ステアリングポンプ圧を示す検出信号を制御部27へ送る。
 ステアリングポンプ30は、可変容量型の油圧ポンプである。ステアリングポンプ30の斜板或いは斜軸の傾転角が変更されることにより、ステアリングポンプ30の容量が変更される。ステアリングポンプ30には、第2容量制御装置44が接続されている。第2容量制御装置44は、制御部27によって制御され、ステアリングポンプ30の傾転角を変更する。これにより、ステアリングポンプ30の容量が制御部27によって制御される。作業車両1は、第2傾転角検出部35を備えている。第2傾転角検出部35は、ステアリングポンプ30の傾転角を検出し、傾転角を示す検出信号を制御部27へ送る。
 トランスミッションポンプ29は、エンジン21からの駆動力によって駆動される。トランスミッションポンプ29は、固定容量型の油圧ポンプである。トランスミッションポンプ29から吐出された作動油は、後述するクラッチ制御弁VF,VR,VL,VHを介して動力伝達装置24のクラッチCF,CR,CL,CHに供給される。
 PTO22は、エンジン21からの駆動力の一部を動力伝達装置24に伝達する。すなわち、動力伝達装置24には、エンジン21からの駆動力の一部が入力される。動力伝達装置24は、エンジン21からの駆動力を走行装置25に伝達する。すなわち、動力伝達装置24は、走行装置25を駆動するためのエンジン21からの駆動力を変速して出力する。動力伝達装置24の構成については後に詳細に説明する。
 走行装置25は、アクスル45と、走行輪4,5とを有する。アクスル45は、動力伝達装置24からの駆動力を走行輪4,5に伝達する。これにより、走行輪4,5が回転する。作業車両1は、車速検出部37を備えている。車速検出部37は、動力伝達装置24の出力軸63の回転速度(以下、「出力回転速度」と呼ぶ)を検出する。出力回転速度は車速に対応しているため、車速検出部37は、出力回転速度を検出することで車速を検出する。また、車速検出部37は、出力軸63の回転方向を検出する。出力軸63の回転方向は、作業車両1の進行方向に対応しているため、車速検出部37は、出力軸63の回転方向を検出することで作業車両1の進行方向を検出する進行方向検出部として機能する。車速検出部37は、出力回転速度及び回転方向を示す検出信号を制御部27に送る。
 操作装置26は、オペレータによって操作される。操作装置26は、アクセル操作装置51と、作業機操作装置52と、変速操作装置53と、前後進操作装置54(以下、「FR操作装置54」)と、ステアリング操作装置57と、ブレーキ操作装置58と、を有する。
 アクセル操作装置51は、アクセル操作部材51aと、アクセル操作検出部51bとを有する。アクセル操作部材51aは、後述する要求牽引力を設定するために操作される。アクセル操作部材51aが操作されることにより、エンジン21の回転速度が変更される。アクセル操作検出部51bは、アクセル操作部材51aの操作量(以下、「アクセル操作量」と呼ぶ)を検出する。アクセル操作検出部51bは、アクセル操作量を示す検出信号を制御部27へ送る。
 作業機操作装置52は、作業機操作部材52aと作業機操作検出部52bとを有する。作業機操作部材52aは、作業機3を動作させるために操作される。作業機操作検出部52bは、作業機操作部材52aの位置を検出する。作業機操作検出部52bは、作業機操作部材52aの位置を示す検出信号を制御部27に出力する。作業機操作検出部52bは、作業機操作部材52aの位置を検出することで、作業機操作部材52aの操作量(以下、「作業機操作量」と呼ぶ)を検出する。
 変速操作装置53は、変速操作部材53aと変速操作検出部53bとを有する。オペレータは、変速操作部材53aを操作することにより、動力伝達装置24の速度範囲を選択することができる。変速操作検出部53bは、変速操作部材53aの位置を検出する。変速操作部材53aの位置は、例えば1速及び2速など複数の速度範囲に対応している。変速操作検出部53bは、変速操作部材53aの位置を示す検出信号を制御部27に出力する。
 FR操作装置54は、前後進操作部材54a(以下、「FR操作部材54a」)と、前後進位置検出部54b(以下、「FR位置検出部54b」)とを有する。オペレータは、FR操作部材54aを操作することにより、作業車両1の前進と後進とを切り換えることができる。FR操作部材54aは、前進位置(F)と中立位置(N)と後進位置(R)とに選択的に切り換えられる。FR位置検出部54bは、FR操作部材54aの位置を検出する。FR位置検出部54bは、FR操作部材54aの位置を示す検出信号を制御部27に出力する。
 ステアリング操作装置57は、ステアリング操作部材57aを有する。ステアリング操作装置57は、ステアリング操作部材57aの操作に基づきパイロット油圧をステアリング制御弁43に供給することにより、ステアリング制御弁43を駆動する。なお、ステアリング操作部材57はステアリング操作部材57aの操作を電気信号に変換してステアリング制御弁43を駆動してもよい。オペレータは、ステアリング操作部材57aを操作することにより、作業車両1の進行方向を左右に変更することができる。
 ブレーキ操作装置58は、ブレーキ操作部材58aとブレーキ操作検出部58bとを有する。オペレータは、ブレーキ操作部材58aを操作することにより、作業車両1の制動力を操作することができる。ブレーキ操作検出部58bは、ブレーキ操作部材58aの操作量(以下、「ブレーキ操作量」と呼ぶ)を検出する。ブレーキ操作検出部58bは、ブレーキ操作量を示す検出信号を制御部27に出力する。なお、ブレーキ操作量として、ブレーキオイルの圧力が用いられてもよい。
 制御部27は、CPUなどの演算装置と、RAM及びROMなどのメモリとを有しており、作業車両1を制御するための処理を行う。また、制御部27は、記憶部56を有する。記憶部56は、作業車両1を制御するためのプログラム及びデータを記憶している。
 制御部27は、エンジン21の所定の目標回転速度が得られるように、指令スロットル値を示す指令信号を燃料噴射装置28に送る。制御部27によるエンジン21の制御については後に詳細に説明する。
 制御部27は、作業機操作検出部52bからの検出信号に基づいて作業機制御弁41を制御することにより、油圧シリンダ13,14に供給される油圧を制御する。これにより、油圧シリンダ13,14が伸縮して、作業機3が動作する。
 詳細には、記憶部56は、作業機操作量と作業機制御弁41への指令電流値との関係を規定する作業機制御弁指令値情報を記憶している。例えば、作業機制御弁指令値情報は、作業機操作量と作業機制御弁41への指令電流値との関係を規定するマップである。作業機制御弁指令値情報は、テーブル或いは数式などマップと異なる形態であってもよい。指令電流値に応じて作業機制御弁41の開口面積が決定される。作業機制御弁指令値情報は、作業機操作量が増大するほど作業機制御弁41の開口面積が増大するように、指令電流値を規定している。制御部27は、作業機制御弁指令値情報を参照して、作業機操作量から作業機制御弁41への指令電流値を決定する。
 また、制御部27は、各検出部からの検出信号に基づいて、動力伝達装置24を制御する。制御部27による動力伝達装置24の制御については後に詳細に説明する。
 次に、動力伝達装置24の構成について詳細に説明する。図4は、動力伝達装置24の構成を示す模式図である。図4に示すように、動力伝達装置24は、入力軸61と、歯車機構62と、出力軸63と、第1モータMG1と、第2モータMG2と、キャパシタ64と、を備えている。入力軸61は、上述したPTO22に接続されている。入力軸61には、PTO22を介してエンジン21からの回転が入力される。歯車機構62は、入力軸61の回転を出力軸63に伝達する。出力軸63は、上述した走行装置25に接続されており、歯車機構62からの回転を上述した走行装置25に伝達する。
 歯車機構62は、エンジン21からの駆動力を伝達する機構である。歯車機構は、モータMG1, MG2の回転速度の変化に応じて、入力軸61に対する出力軸63の回転速度比を変化させるように構成されている。歯車機構62は、FR切換機構65と、変速機構66と、を有する。
 FR切換機構65は、前進用クラッチCF(以下、「FクラッチCF」と呼ぶ)と、後進用クラッチCR(以下、「RクラッチCR」と呼ぶ)と、図示しない各種のギアとを有している。FクラッチCFとRクラッチCRとは、油圧式クラッチであり、各クラッチCF,CRには、トランスミッションポンプ29からの作動油が供給される。FクラッチCFへの作動油は、Fクラッチ制御弁VFによって制御される。RクラッチCRへの作動油は、Rクラッチ制御弁VRによって制御される。各クラッチ制御弁CF,CRは、制御部27からの指令信号によって制御される。
 FクラッチCFの接続/切断とRクラッチCRの接続/切断とが切り換えられることによって、FR切換機構65から出力される回転の方向が切り換えられる。詳細には、車両の前進時には、FクラッチCFが接続され、RクラッチCRが切断される。車両の後進時には、FクラッチCFが切断され、RクラッチCRが接続される。
 変速機構66は、伝達軸67と、第1遊星歯車機構68と、第2遊星歯車機構69と、Hi/Lo切替機構70と、出力ギア71と、を有している。伝達軸67は、FR切換機構65に連結されている。第1遊星歯車機構68及び第2遊星歯車機構69は、伝達軸67と同軸上に配置されている。
 第1遊星歯車機構68は、第1サンギアS1と、複数の第1遊星ギアP1と、複数の第1遊星ギアP1を支持する第1キャリアC1と、第1リングギアR1とを有している。第1サンギアS1は、伝達軸67に連結されている。複数の第1遊星ギアP1は、第1サンギアS1と噛み合い、第1キャリアC1に回転可能に支持されている。第1キャリアC1の外周部には、第1キャリアギアGc1が設けられている。第1リングギアR1は、複数の遊星ギアP1に噛み合うとともに回転可能である。また、第1リングギアR1の外周には、第1リング外周ギアGr1が設けられている。
 第2遊星歯車機構69は、第2サンギアS2と、複数の第2遊星ギアP2と、複数の第2遊星ギアP2を支持する第2キャリアC2と、第2リングギアR2とを有している。第2サンギアS2は第1キャリアC1に連結されている。複数の第2遊星ギアP2は、第2サンギアS2と噛み合い、第2キャリアC2に回転可能に支持されている。第2リングギアR2は、複数の遊星ギアP2に噛み合うとともに回転可能である。第2リングギアR2の外周には、第2リング外周ギアGr2が設けられている。第2リング外周ギアGr2は出力ギア71に噛み合っており、第2リングギアR2の回転は出力ギア71を介して出力軸63に出力される。
 Hi/Lo切替機構70は、動力伝達装置24における駆動力伝達経路を、車速が高い高速モード(Hiモード)と車速が低い低速モード(Loモード)で切り替えるための機構である。このHi/Lo切替機構70は、Hiモード時に接続されるHクラッチCHと、Loモード時に接続されるLクラッチCLとを有している。HクラッチCHは、第1リングギアR1と第2キャリアC2とを接続又は切断する。また、LクラッチCLは、第2キャリアC2と固定端72とを接続又は切断し、第2キャリアC2の回転を禁止又は許容する。
 なお、各クラッチCH,CLは油圧式クラッチであり、各クラッチCH,CLには、それぞれトランスミッションポンプ29からの作動油が供給される。HクラッチCHへの作動油は、Hクラッチ制御弁VHによって制御される。LクラッチCLへの作動油は、Lクラッチ制御弁VLによって制御される。各クラッチ制御弁VH,VLは制御部27からの指令信号によって制御される。
 第1モータMG1及び第2モータMG2は、電気エネルギーによって駆動力を発生させる駆動モータとして機能する。また、第1モータMG1及び第2モータMG2は、入力される駆動力を用いて電気エネルギーを発生させるジェネレータとしても機能する。第1モータMG1に回転方向と逆方向のトルクが作用するように制御部27から指令信号が与えられた場合は、第1モータMG1はジェネレータとして機能する。第1モータMG1の出力軸には第1モータギアGm1が固定されており、第1モータギアGm1は第1キャリアギアGc1に噛み合っている。また、第1モータMG1には第1インバータI1が接続されており、この第1インバータI1に、第1モータMG1のモータトルクを制御するための指令信号が制御部27から与えられる。
 第2モータMG2は、第1モータMG1と同様の構成である。第2モータMG2の出力軸には第2モータギアGm2が固定されており、第2モータギアGm2は第1リング外周ギアGr1に噛み合っている。また、第2モータMG2には第2インバータI2が接続されており、この第2インバータI2に、第2モータMG2のモータトルクを制御するための指令信号が制御部27から与えられる。
 キャパシタ64は、モータMG1,MG2で発生するエネルギーを蓄えるエネルギー貯留部として機能する。すなわち、キャパシタ64は、各モータMG1,MG2の合計発電量が多いときに、各モータMG1,MG2で発電された電力を蓄電する。また、キャパシタ64は、各モータMG1,MG2の合計電力消費量が多いときに、電力を放電する。すなわち、各モータMG1,MG2は、キャパシタ64に蓄えられた電力によって駆動される。或いは、キャパシタ64に蓄えられた電力によって、各モータMG1, MG2を駆動することもできる。なお、キャパシタに代えてバッテリーが用いられてもよい。
 制御部27は、各種の検出部からの検出信号を受けて、モータMG1,MG2への指令トルクを示す指令信号を各インバータI1,I2に与える。なお、制御部27は、モータMG1,MG2の回転速度指令を出力してもよい。この場合、インバータI1,I2が回転速度指令に応じた指令トルクを計算して、モータMG1,MG2を制御する。また、制御部27は、各クラッチCF,CR,CH,CLのクラッチ油圧を制御するための指令信号を各クラッチ制御弁VF,VR,VH,VLに与える。これにより、動力伝達装置24の変速比及び出力トルクが制御される。以下、動力伝達装置24の動作について説明する。
 ここでは、エンジン21の回転速度を一定に保ったまま車速が0から前進側に加速する場合における動力伝達装置24の概略動作を、図5を用いて説明する。図5は、車速に対する各モータMG1,MG2の回転速度を示したものである。エンジン21の回転速度が一定である場合には、車速は、動力伝達装置24の回転速度比に応じて変化する。回転速度比は、入力軸61の回転速度に対する出力軸63の回転速度の比である。従って、図5において車速の変化は、動力伝達装置24の回転速度比の変化に一致する。すなわち、図5は、各モータMG1,MG2の回転速度と動力伝達装置24の回転速度比との関係を示している。図5において、実線が第1モータMG1の回転速度、破線が第2モータMG2の回転速度を示している。
 車速が0以上V1以下の領域では、LクラッチCLが接続され、HクラッチCHが切断される(Loモード)。このLoモードでは、HクラッチCHが切断されているので、第2キャリアC2と第1リングギアR1とが切断される。また、LクラッチCLが接続されるので、第2キャリアC2が固定される。
 Loモードにおいては、エンジン21からの駆動力は、伝達軸67を介して第1サンギアS1に入力され、この駆動力は第1キャリアC1から第2サンギアS2に出力される。一方、第1サンギアS1に入力された駆動力は第1遊星ギアP1から第1リングギアR1に伝達され、第1リング外周ギアGr1及び第2モータギアGm2を介して第2モータMG2に出力される。第2モータMG2は、Loモードにおいては、主としてジェネレータとして機能しており、第2モータMG2によって発電された電力の一部は、キャパシタ64に蓄電される。また、第2モータMG2によって発電された電力の一部は、第1モータMG1の駆動に消費される。
 また、Loモードにおいては、第1モータMG1は、主として電動モータとして機能する。第1モータMG1の駆動力は、第1モータギアGm1→第1キャリアギアGc1→第1キャリアC1→の経路で第2サンギアS2に出力される。以上のようにして第2サンギアS2に出力された駆動力は、第2遊星ギアP2→第2リングギアR2→第2リング外周ギアGr2→出力ギア71の経路で出力軸63に伝達される。
 車速がV1を超える領域では、HクラッチCHが接続され、LクラッチCLが切断される(Hiモード)。このHiモードでは、HクラッチCHが接続されているので、第2キャリアC2と第1リングギアR1とが接続される。また、LクラッチCLが切断されるので、第2キャリアC2が切断される。従って、第1リングギアR1と第2キャリアC2の回転速度とは一致する。
 Hiモードでは、エンジン21からの駆動力は第1サンギアS1に入力され、この駆動力は第1キャリアC1から第2サンギアS2に出力される。また、第1サンギアS1に入力された駆動力は、第1キャリアC1から第1キャリアギアGc1及び第1モータギアGm1を介して第1モータMG1に出力される。Hiモードでは、第1モータMG1は主としてジェネレータとして機能するので、この第1モータMG1で発電された電力の一部は、キャパシタ64に蓄電される。また、第1モータMG1で発電された電力の一部は、第2モータMG2の駆動に消費される。
 また、第2モータMG2の駆動力は、第2モータギアGm2→第1リング外周ギアGr1→第1リングギアR1→HクラッチCHの経路で第2キャリアC2に出力される。以上のようにして第2サンギアS2に出力された駆動力は第2遊星ギアP2を介して第2リングギアR2に出力されるとともに、第2キャリアC2に出力された駆動力は第2遊星ギアP2を介して第2リングギアR2に出力される。このようにして第2リングギアR2で合わさった駆動力が、第2リング外周ギアGr2及び出力ギア71を介して出力軸63に伝達される。
 なお、以上は前進駆動時の説明であるが、後進駆動時においても同様の動作となる。また、制動時には、第1モータMG1と第2モータMG2とのジェネレータ及びモータとしての役割は上記と逆になる。
 次に、制御部27による動力伝達装置24の制御について説明する。制御部27は、第1モータMG1及び第2モータMG2のモータトルクを制御することにより、動力伝達装置24の出力トルクを制御する。すなわち、制御部27は、第1モータMG1及び第2モータMG2のモータトルクを制御することにより、作業車両1の牽引力を制御する。以下、第1モータMG1及び第2モータMG2へのモータトルクの指令値(以下、「指令トルク」と呼ぶ)の決定方法について説明する。
 図6は、制御部27によって実行される処理を示す制御ブロック図である。図6に示すように、制御部27は、トランスミッション要求決定部84と、エネルギーマネジメント要求決定部85と、作業機要求決定部86と、を有する。
 トランスミッション要求決定部84は、アクセル操作量Aacと出力回転速度Noutとに基づいて、要求牽引力Toutを決定する。要求牽引力は、走行装置25での目標牽引力である。詳細には、トランスミッション要求決定部84は、記憶部56に記憶されている要求牽引力特性情報D1に基づいて、出力回転速度Noutから要求牽引力Toutを決定する。要求牽引力特性情報D1は、出力回転速度Noutと要求牽引力Toutとの関係を規定する要求牽引力特性を示すデータである。
 詳細には、図7に示すように、記憶部56は、基準となる要求牽引力特性を示すデータLout1(以下、「基準牽引力特性Lout1」と呼ぶ)を記憶している。基準牽引力特性Lout1は、アクセル操作量Aacが最大値すなわち100%であるときの要求牽引力特性である。基準牽引力特性Lout1は、変速操作部材53aによって選択される速度範囲に応じて定められる。トランスミッション要求決定部84は、基準牽引力特性Lout1に、牽引力比率FWRと車速比率VRとを乗じることによって、現在の要求牽引力特性Lout2を決定する。
 記憶部56は、牽引力比率情報D2と車速比率情報D3とを記憶している。牽引力比率情報D2は、アクセル操作量Aacに対する牽引力比率FWRを規定する。車速比率情報D3は、アクセル操作量Aacに対する車速比率VRを規定する。トランスミッション要求決定部84は、アクセル操作量Aacに応じて牽引力比率FWRと車速比率VRとを決定する。トランスミッション要求決定部84は、基準牽引力特性Lout1に対して、要求牽引力を示す縦軸方向に牽引力比率FWR、出力回転速度Noutを示す横軸方向に車速比率VRを乗じることによって、アクセル操作量Aacに応じた現在の要求牽引力特性情報Lout2を決定する。
 牽引力比率情報D2は、アクセル操作量Aacが大きくなるほど大きくなる牽引力比率FWRを規定している。車速比率情報D3は、アクセル操作量Aacが大きくなるほど大きくなる車速比率VRを規定している。ただし、アクセル操作量Aacが0であるときの牽引力比率FWRは0より大きい。同様に、アクセル操作量Aacが0であるときの車速比率VRは0より大きい。このため、アクセル操作部材51aの操作が行われていないときでも、要求牽引力Toutは、0より大きな値になる。すなわち、アクセル操作部材51aの操作が行われていないときでも、動力伝達装置24から牽引力が出力される。これにより、トルクコンバータ式の変速装置で生じるクリープと同様の挙動がEMT式の動力伝達装置24において実現される。
 なお、要求牽引力特性情報D1は、出力回転速度Noutの減少に応じて増大する要求牽引力Toutを規定している。また、上述した変速操作部材53aが操作されると、トランスミッション要求決定部84は、変速操作部材53aによって選択された速度範囲に対応して、要求牽引力特性を変更する。例えば、変速操作部材53aによってシフトダウンが行われると、図7に示すように、要求牽引力特性情報がLout2からLout2’に変更される。これにより、出力回転速度Noutの上限値が低減される。すなわち、車速の上限値が低減される。
 また、要求牽引力特性情報D1は、所定速度以上の出力回転速度Noutに対して、負の値の要求牽引力Toutを規定している。このため、選択されている速度範囲での出力回転速度の上限値よりも出力回転速度Noutが大きいときには、要求牽引力Toutが負の値に決定される。要求牽引力Toutが負の値であるときには、制動力が発生する。これにより、トルクコンバータ式の変速装置で生じるエンジンブレーキと同様の挙動がEMT式の動力伝達装置24において実現される。
 図6に示すエネルギーマネジメント要求決定部85は、キャパシタ64での電力の残量に基づいてエネルギーマネジメント要求馬力Hemを決定する。エネルギーマネジメント要求馬力Hemは、キャパシタ64を充電するために動力伝達装置24が必要とする馬力である。例えば、エネルギーマネジメント要求決定部85は、キャパシタ64の電圧Vcaから、現在のキャパシタ充電量を決定する。エネルギーマネジメント要求決定部85は、現在のキャパシタ充電量が少なくなるほど、エネルギーマネジメント要求馬力Hemを大きくする。
 作業機要求決定部86は、作業機ポンプ圧Pwpと作業機操作部材52aの操作量Awo(以下、「作業機操作量Awo」と呼ぶ)とに基づいて作業機要求馬力Hptoを決定する。本実施形態において、作業機要求馬力Hptoは、作業機ポンプ23に分配される馬力である。ただし、作業機要求馬力Hptoは、ステアリングポンプ30及び/又はトランスミッションポンプ29に分配される馬力を含んでもよい。
 詳細には、作業機要求決定部86は、要求流量情報D4に基づいて、作業機操作量Awoから作業機ポンプ23の要求流量Qdmを決定する。要求流量情報D4は、記憶部56に記憶されており、要求流量Qdmと作業機操作量Awoとの関係を規定する。要求流量情報D4は、作業機操作量Awoが増大するほど要求流量Qdmが増大するような要求流量Qdmと作業機操作量Awoとの関係を規定する。作業機要求決定部86は、要求流量Qdmと作業機ポンプ圧Pwpとから作業機要求馬力Hptoを決定する。
 また、作業機要求決定部86は、要求流量Qdmと作業機ポンプ23の容量とに基づいて、作業機要求エンジン回転速度Nedmを決定する。詳細には、作業機要求決定部86は、要求流量Qdmを作業機ポンプ23の容量で割ることによって、作業機要求ポンプ回転速度を決定する。そして、作業機要求決定部86は、エンジン21と作業機ポンプ23との間の回転要素の歯数及び伝達効率等の要因を考慮して、作業機要求ポンプ回転速度から作業機要求エンジン回転速度Nedmを決定する。
 制御部27は、目標出力軸トルク決定部82と、目標入力軸トルク決定部81と、指令トルク決定部83と、を有する。
 目標出力軸トルク決定部82は、目標出力軸トルクTo_refを決定する。目標出力軸トルクTo_refは、動力伝達装置24から出力されるトルクの目標値である。目標出力軸トルク決定部82は、トランスミッション要求決定部84によって決定された要求牽引力Toutに基づいて、目標出力軸トルクTo_refを決定する。すなわち、動力伝達装置24から出力される牽引力が、要求牽引力特性情報D1で規定されている要求牽引力特性に従うように、目標出力トルクTo_refが決定される。詳細には、要求牽引力Toutに所定の分配率を乗じることで、目標出力軸トルクTo_refを決定する。所定の分配率は、例えば、作業機要求馬力Hptoとトランスミッション要求馬力Htmとエネルギーマネジメント要求馬力Hemとの合計が、エンジン21からの出力馬力を超えないように設定される。
 目標入力軸トルク決定部81は、目標入力軸トルクTe_refを決定する。目標入力軸トルクTe_refは、動力伝達装置24に入力されるトルクの目標値である。目標入力軸トルク決定部81は、トランスミッション要求馬力Htmとエネルギーマネジメント要求馬力Hemとに基づいて、目標入力軸トルクTe_refを決定する。詳細には、目標入力軸トルク決定部81は、トランスミッション要求馬力Htmに所定の分配率を乗じた値と、エネルギーマネジメント要求馬力Hemとを合算してエンジン回転速度を乗じることにより、目標入力軸トルクTe_refを算出する。なお、トランスミッション要求馬力Htmは、上述した要求牽引力Toutに現在の出力回転速度Noutを乗じることで算出される。
 指令トルク決定部83は、目標入力軸トルクTe_refと目標出力軸トルクTo_refとから、トルクバランス情報により、モータMG1, MG2への指令トルクTm1_ref, Tm2_refを決定する。トルクバランス情報は、動力伝達装置24でのトルクの釣り合いを満たすように目標入力軸トルクTe_refと目標出力軸トルクTo_refとの関係を規定する。トルクバランス情報は、記憶部56に記憶されている。
 上述したように、LoモードとHiモードとでは、動力伝達装置24における駆動力の伝達経路が異なる。このため、指令トルク決定部83は、LoモードとHiモードとでは、異なるトルクバランス情報を用いてモータMG1, MG2への指令トルクTm1_ref, Tm2_refを決定する。詳細には、指令トルク決定部83は、以下の数1に示す第1のトルクバランス情報を用いてLoモードでのモータMG1, MG2への指令トルクTm1_Low, Tm2_Lowを決定する。本実施形態において、第1のトルクバランス情報は、動力伝達装置24でのトルクの釣り合いの式である。
[数1]
Ts1_Low = Te_ref * r_fr
Tc1_Low = Ts1_Low * (-1) * ( (Zr1/Zs1) + 1 )
Tr2_Low = To_ref * (Zod/Zo)
Ts2_Low = Tr2_Low * (Zs2/Zr2)
Tcp1_Low = Tc1_Low + Ts2_Low
Tm1_Low = Tcp1_Low * (-1) * (Zp1/Zp1d)
Tr1_Low = Ts1_Low * (Zr1/Zs1)
Tm2_Low = Tr1_Low * (-1) * (Zp2/Zp2d)
 また、指令トルク決定部83は、以下の数2に示す第2のトルクバランス情報を用いてHiモードでのモータMG1, MG2への指令トルクTm1_Hi,Tm2_ Hiを決定する。本実施形態において、第2のトルクバランス情報は、動力伝達装置24でのトルクの釣り合いの式である。
[数2]
Ts1_Hi = Te_ref * r_fr
Tc1_Hi = Ts1_Hi * (-1) * ( (Zr1/Zs1) + 1 )
Tr2_Hi = To_ref * (Zod/Zo)
Ts2_Hi = Tr2_Hi * (Zs2/Zr2)
Tcp1_Hi = Tc1_Hi + Ts2_Hi
Tm1_Hi = Tcp1_Hi * (-1) * (Zp1/Zp1d)
Tr1_Hi = Ts1_Hi * (Zr1/Zs1)
Tc2_Hi = Tr2_Hi * (-1) * ( (Zs2/Zr2) + 1 )
Tcp2_Hi = Tr1_Hi + Tc2_Hi
Tm2_Hi = Tcp2_Hi * (-1) * (Zp2/Zp2d)
 ここで、各トルクバランス情報のパラメータの内容は以下の表1の通りである。
Figure JPOXMLDOC01-appb-T000001
 次に、制御部27によるエンジン21の制御について説明する。上述したように、制御部27は、指令信号を燃料噴射装置28に送ることでエンジン21を制御する。以下、燃料噴射装置28への指令スロットル値の決定方法について説明する。制御部27は、エンジン要求決定部87と、要求スロットル決定部89とを有する。
 エンジン要求決定部87は、作業機要求馬力Hptoとトランスミッション要求馬力Htmとエネルギーマネジメント要求馬力Hemとに基づいて、エンジン要求馬力Hdmを決定する。詳細には、エンジン要求決定部87は、作業機要求馬力Hptoとトランスミッション要求馬力Htmとエネルギーマネジメント要求馬力Hemとを合算することにより、エンジン要求馬力Hdmを決定する。
 要求スロットル決定部89は、エンジン要求馬力Hdmと、アクセル操作量Aacと、作業機要求エンジン回転速度Nedmとから、指令スロットル値Th_cmを決定する。詳細には、図8に示すように、記憶部56は、エンジントルク線Letとマッチング線Lmaとを記憶している。エンジントルク線Letは、エンジン21の出力トルクとエンジン回転速度Neとの関係を規定する。エンジントルク線Letは、レギュレーション領域Laと全負荷領域Lbとを含む。レギュレーション領域Laは、指令スロットル値Th_cmに応じて変化する(図8のLa’参照)。全負荷領域Lbは、定格点Prと、定格点Prよりも低エンジン回転速度側に位置する最大トルク点Pmとを含む。
 マッチング線Lmaは、エンジン要求馬力Hdmから第1要求スロットル値Th_tm1を決定するための情報である。マッチング線Lmaは任意に設定することができるが、本実施形態においては、マッチング線Lmaは、エンジントルク線Letの全負荷領域Lbにおいて定格点Prよりも最大トルク点Pmに近い位置を通るように設定されている。
 要求スロットル決定部89は、エンジン21の出力トルクがエンジン要求馬力Hdmに相当するトルクとなるマッチング点Pma1において、エンジントルク線Letとマッチング線Lmaとがマッチングするように、第1要求スロットル値Th_tm1を決定する。すなわち、エンジン要求馬力Hdmに相当する等馬力線Lhdmと、マッチング線Lmaとの交点が第1マッチング点Pma1として設定され、要求スロットル決定部89は、エンジントルク線Letのレギュレーション領域(La’参照)が第1マッチング点Pma1を通るように、第1要求スロットル値Th_tm1を決定する。
 要求スロットル決定部89は、第1要求スロットル値Th_tm1と、アクセル操作量Aacに相当する第2要求スロットル値Th_tm2とのうち、小さい方を第3要求スロットル値Th_tm3として決定する。また、後述するエンジン回転速度による作業機3の速度制御が行われる場合には、要求スロットル決定部89は、作業機要求エンジン回転速度Nedmに基づいて第4要求スロットル値Th_tm4を決定する。詳細には、要求スロットル決定部89は、エンジントルク線Letのレギュレーション領域(La’ ’参照)が、等馬力線Lhdm上においてエンジン回転速度が作業機要求エンジン回転速度Nedmとなる点Pma2を通るように、第4要求スロットル値Th_tm4を決定する。要求スロットル決定部89は、第3要求スロットル値Th_tm3と第4要求スロットル値Th_tm4とのうちの大きいほうを指令スロットル値Th_cmとして決定する。なお、エンジン回転速度による作業機3の速度制御が行われない場合には、要求スロットル決定部89は、第3要求スロットル値Th_tm3を指令スロットル値Th_cmとして決定する。
 次に、作業機3の速度制御について説明する。図9は、作業機操作量Awoと作業機ポンプ23の吐出流量との関係を示すグラフである。作業機ポンプ23の吐出流量が増大するほど、作業機3の速度は増大する。従って、図9において作業機ポンプ23の吐出流量の変化は、作業機3の速度の変化を示している。なお、作業機操作量Awoと作業機ポンプの吐出流量との関係は、必ずしも図9のように線形である必要はなく、変更されてもよい。
 図9に示すように、制御部27は、作業機操作量Awoの増大に応じて作業機ポンプ23の吐出流量を増大させる。制御部27は、作業機操作量Awoに応じて作業機制御弁41への指令電流値を決定することで、作業機制御弁41の開口面積を制御する。上述したように、第1容量制御装置42は、ロードセンシング弁によって、作業機ポンプ23の吐出圧と、作業機制御弁41の出口油圧との差圧が所定の値となるように、作業機ポンプ23の容量を制御する。図9において、作業機操作量Awoが0以上、a1未満であるときには、作業機操作量Awoの増大に応じて作業機ポンプ23の容量を増大させることで、作業機ポンプ23の吐出流量を増大させる。すなわち、作業機ポンプ23の容量が制御されることによって、作業機3の速度が制御される。
 そして、作業機操作量Awoがa1に到達すると、作業機ポンプ23の容量が最大容量となる。作業機操作量Awoがa1以上になると、制御部27は、作業機要求エンジン回転速度Nedmに基づいて、指令スロットル値Th_cmを決定する。すなわち、作業機操作量Awoがa1以上であるときには、要求スロットル決定部89は、作業機操作部材52aの操作量の増大に応じてエンジン回転速度を増大させる。これにより、作業機3の速度が増大する。なお、作業機操作量Awoがa2以上では、吐出流量は上限値Qmaxで一定となる。
 なお、以上のようなエンジン回転速度による作業機3の速度制御が行われる場合には、トランスミッション要求決定部84は、要求牽引力をアクセル操作部材51aの操作量に基づいて決定される値よりも低減させる。詳細には、図7に示すように、トランスミッション要求決定部84は、車速比率VRに所定の削減率を乗じることによって、要求牽引力を低減させる。所定の低減率は1より小さい値である。所定の削減率は、作業機操作量Awoの増大に応じて増大するように設定される。或いは、所定の削減率は一定値であってもよい。
 図10は、作業機3の速度制御でのパラメータの変化を示すタイミングチャートである。図10(B)に示すように、アクセル操作量はAac1で一定とする。図10(A)に示すように、作業機操作量Awoが0であるときには(時点0~t1)、図10(D)に示すように、作業機3の速度は0である。また、図10(C)に示すように、エンジン回転速度はNe1で一定であり、図10(E)に示すように、牽引力はF1で一定である。
 作業機操作量Awoが0から増大すると、作業機3の吐出容量が最大容量になるまでは、吐出容量の制御によって作業機3の速度が制御される。このため、エンジン回転速度は、Ne1で一定であるが、作業機3の速度は増大する(時点t1~t2)。このとき、牽引力もF1で一定である。
 作業機操作量Awoがさらに増大して、作業機3の吐出容量が最大容量に達すると、エンジン回転速度を制御することで、作業機3の速度が制御される(時点t2~t3)。このとき、作業機操作量Awoが増大するほど、エンジン回転速度が増大して、作業機3の速度が増大する。また、作業機操作量Awoが増大するほど、牽引力が低減される。
 そして、作業機操作量Awoがa2以上に達すると、エンジン回転速度はNe2で一定となる。作業機3の速度はV1で一定となる。牽引力はF2で一定となる。
 次に、リリーフ流量制限制御について説明する。リリーフ流量制限制御において、制御部27は、作業機ポンプ圧Pwpが所定の圧力閾値以上であるときに、作業機ポンプ23の吐出流量の上限を所定の流量制限値に制限する。詳細には、油圧ポンプの吐出圧が所定の圧力閾値以上であるときに、上述した作業機要求決定部86が、要求流量の上限を所定の流量制限値に制限する。
 図11は、リリーフ流量制限制御における処理を示す制御ブロック図である。上述したように、作業機要求決定部86は、要求流量情報D4に基づいて、作業機操作量Awoから作業機ポンプ23の要求流量Qdmを決定する。また、図11に示すように、作業機要求決定部86は、流量制限情報D5に基づいて、作業機ポンプ圧Pwpから作業機ポンプ23の流量制限値Qdm_limitを決定する。流量制限情報D5は、記憶部56に記憶されており、作業機ポンプ圧Pwpと作業機ポンプ23の流量制限値Qdm_limitとの関係を規定する。
 図12は、流量制限情報D5の一例を示すグラフである。図12に示すように、流量制限情報D5は、通常時制限情報D5aと掘削時制限情報D5bとを有する。通常時制限情報D5aは、掘削作業が行われていないときに用いられる。掘削時制限情報D5bは、掘削作業中に用いられる。通常時制限情報D5aでは、作業機ポンプ圧Pwpが所定の制限開始圧Pwp1以下であるときには、流量制限値Qdm_limitは、所定の第1制限値Q_Lowで一定である。作業機ポンプ圧Pwpが、所定の制限開始圧Pwp1より大きく、且つ、所定の最小制限圧Pwp2より小さいときには、作業機ポンプ圧Pwpが大きくなるほど、流量制限値Qdm_limitは小さくなる。作業機ポンプ圧Pwpが、所定の最小制限圧Pwp2以上であるときには、流量制限値Qdm_limitは、第1制限値Q_Lowよりも小さい所定の第2制限値Q_Hi1で一定である。
 掘削時制限情報D5bでは、通常時制限情報D5aと同様に、流量制限値Qdm_limitが作業機ポンプ圧Pwpに応じて変化する。ただし、掘削時制限情報D5bでの所定の第2制限値Q_Hi2は、通常時制限情報D5aでの所定の第2制限値Q_Hi1よりも大きい。従って、作業機要求決定部86は、車両が掘削作業中であるときには、所定の流量制限値Qdm_limitを増大させる。
 なお、制限開始圧Pwp1と最小制限圧Pwp2とは、上述したリリーフ圧近傍の値である。最小制限圧Pwp2は、制限開始圧Pwp1よりも大きい。好ましくは、制限開始圧Pwp1と最小制限圧Pwp2とは、リリーフ弁48のリリーフ圧より小さい。
 図11に示すように、作業機要求決定部86は、流量制限値Qdm_limitと、作業機操作量Awoから決定した要求流量Qdmとを比較し、小さい方の値を要求流量Qdmとして決定する。従って、作業機操作量Awoから決定した要求流量Qdmが流量制限値Qdm_limitを超えているときには、作業機要求決定部86は、流量制限値Qdm_limitを要求流量Qdmとして決定する。すなわち、要求流量Qdmの上限が流量制限値Qdm_limitに制限される。なお、作業機要求決定部86は、以上のように決定された要求流量Qdmと作業機ポンプ23の吐出容量とから上述した作業機要求エンジン回転速度Nedmを決定する。また、作業機要求決定部86は、要求流量Qdmと作業機ポンプ圧Pwpとから作業機要求馬力Hptoを決定する。
 次に、第1容量制御装置42への指令信号の決定方法について説明する。図13は、第1容量制御装置42への指令信号を決定するための処理を示す制御ブロック図である。図13に示すように、制御部27は、ポンプ容量決定部88を有する。ポンプ容量決定部88は、要求流量Qdmに基づいて作業機ポンプ23の目標容量を決定する。作業機ポンプ23の目標容量は、作業機ポンプ23の目標傾転角Ang_targetに対応している。
 詳細には、ポンプ容量決定部88は、要求流量Qdmとエンジン回転速度Neとに基づいて作業機ポンプ23の目標傾転角Ang_targetを決定する。より詳細には、ポンプ容量決定部88は、要求流量Qdmをエンジン回転速度Neで除することで、作業機ポンプ23の目標容量を算出し、目標容量から作業機ポンプ23の目標傾転角Ang_targetを決定する。上述したように、PC弁47は、制御部27からの指令信号に応じて作業機ポンプ23の容量と作業機ポンプ圧Pwpとの関係を変更する。ポンプ容量決定部88は、目標傾転角Ang_targetに対応する目標容量と現在の作業機ポンプ圧Pwpとの関係を満たすPC弁47への指令値I_epcを決定する。指令値I_epcは、PC弁47への指令電流値である。
 ポンプ容量決定部88は、作業機ポンプ23の目標傾転角Ang_targetと、第1傾転角検出部33が検出した実際の傾転角Ang_currentとに基づいてフィードバック制御により、指令信号I_epcを決定する。なお、実際の傾転角Ang_currentは、作業機ポンプ23の実際の容量に対応している。本実施形態では、フィードバック制御としてPI制御が用いられているが、フィードバック制御として他の手法が用いられてもよい。
 図14は、リリーフ流量制限制御でのパラメータの変化の一例を示すタイミングチャートである。図14(A)は、車速の変化を示している。図14(B)は、作業機操作量Awoの変化を示している。特に、図14(B)において、実線はブーム11の作業機操作量Awoの変化を示しており、破線はバケット12の作業機操作量Awoの変化を示している。図14(C)は、油圧シリンダのシリンダストロークの変化を示している。特に、図14(C)において、実線はリフトシリンダ13のシリンダストロークの変化を示しており、破線はバケットシリンダ14のシリンダストロークの変化を示している。図14(D)は、作業機ポンプ圧の変化を示している。図14(E)は、エンジン回転速度の変化を示している。特に図14(E)において、実線は、エンジン回転速度検出部31が検出した実際のエンジン回転速度の変化を示している。図14(E)において、破線は、作業機要求決定部86が決定した作業機要求エンジン回転速度Nedmの変化を示している。図14(F)は、作業機ポンプ23の吐出流量の変化を示している。
 図14に示すように、バケット12が、掘削対象物である土砂等の堆積地に突入すると(時点T1)、図14(B)に示すように、ブーム11をリフトする操作が行われる(時点T1~T2)。このとき、図14(D)に示すように、ブーム11への負荷の増大にともなって作業機ポンプ圧が上昇する。また、図14(E)に示すように、作業機要求エンジン回転速度Nedmが増大することにより、実際のエンジン回転速度が上昇する。さらに、図14(F)に示すように、作業機ポンプ23の吐出流量も増大する。
 ブーム11への負荷が大きくなると、ブーム11をリフトする操作が行われていているにも関らず、図14(C)に示すようにブーム11が上昇しないストール状態となる(時点T2~T3)。このとき、図14(D)に示すように、作業機ポンプ圧が上昇してリリーフ圧P_reliefに達することで、リリーフ弁48が開かれる。これにより、作業機ポンプ圧がリリーフ圧P_reliefを超えないように調整される。また、リリーフ流量制限制御が実行されることで、図14(F)に示すように、作業機ポンプ23の吐出流量が流量制限値Qdm_limitに制限される。
 なお、時点T2~T3では、図14(A)に示すように車速が低下して作業車両1がほとんど走行していない走行ストール状態となっている。この場合、出力回転速度Noutが低下するので、エンジン要求馬力Hdmも減少する。これにより、指令スロットル値Th_cmが低減されるので、図14(E)に示すように、エンジン回転速度が低下する。これにより、燃費を向上させることができる。
 同様に、時点T5~T6及び時点T7~T8においても、ブーム11をリフトする操作が行われていているにも関らず、図14(C)に示すようにブーム11が上昇しないストール状態となっている。この場合も図14(D)に示すように作業機ポンプ圧がリリーフ圧P_reliefに達しており、図14(F)に示すようにリリーフ流量制限制御によって作業機ポンプ23の吐出流量が流量制限値Qdm_limitに制限される。
 なお、時点T5~T6、及び、時点T7~T8では、図14(A)に示すように作業車両1はある程度の車速で走行している。このため、図14(E)に示すように、エンジン回転速度が増大しているが、この場合も時点T2~T3と同様に、作業機ポンプ23の吐出流量が流量制限値Qdm_limitに制限される。
 また、時点T3~T4、時点T6~T7、及び時点T8~T9では、バケット12をチルトする操作が行われていている。すなわち、ブーム11をリフトする操作とバケット12をリフトする操作とが交互に行われている。バケット12への負荷はブーム11への負荷と比べて小さい。従って、バケット12をリフトする操作が行われていているときには、図14(D)に示すように作業機ポンプ圧はリリーフ圧P_reliefよりも小さい。このため、バケット12をリフトする操作が行われていているときには、図14(F)に示すように、リリーフ流量制限制御が解除されることで、作業機ポンプ23の吐出流量が増大している。なお、時点T9以降のように、シリンダストロークがストロークエンドに達している場合も、リリーフ流量制限制御が実施される。
 本実施形態に係る作業車両1は以下の特徴を有する。
 (1) 上述の時点T3以降のように、作業車両1が走行しており、走行に大きな駆動力が必要な場合には、要求牽引力Toutが大きな値に設定される。これにより、エンジン回転速度を高く維持することができる。一方、時点T2~T3のように、作業車両1が停止している場合には、出力回転速度Noutが低下するので、エンジン要求馬力Hdmが減少する。これにより、エンジン回転速度を低減することができる。これにより燃費を向上させることができる。
 (2) リリーフ時には、作業機要求決定部86が、要求流量Qdmの上限を所定の流量制限値Qdm_limitに制限することで、エンジン回転速度によらずに作業機ポンプ23の吐出流量が低減される。これにより、エンジン回転速度によらずにリリーフ時の作業機ポンプ圧Pwpと作業機ポンプ23の吐出流量とを安定的に制御することができる。
 (3) オペレータが作業機操作部材52aを大きく操作すると、作業機要求エンジン回転速度Nedmが増大することで、エンジン回転速度が増大する。このため、オペレータは、アクセル操作部材51aの操作によらずに作業機操作部材52aの操作によって、作業機3の速度を調整することができる。これにより、容易な操作で作業機3の速度と車速とを調整することができる。
 (4) オペレータが作業機操作部材52aを大きく操作しても、リリーフ時には要求流量Qdmの上限が所定の流量制限値Qdm_limitに制限されるため、エネルギーの損失を抑えることができる。また、制限された要求流量Qdmに基づいてエンジン21への指令スロットル値Th_cmが決定されるため、エンジン回転速度が増大することを抑えることができる。これにより、燃費を向上させることができる。
 (5) 作業機要求決定部86は、作業車両1が掘削作業中であるときには、流量制限値Qdm_limitを通常時の第2制限値Q_Hi1よりも大きい掘削時の第2制限値Q_Hi2に設定する。このため、掘削作業中には、リリーフ時の作業機ポンプ23の吐出流量の低減量が通常時の低減量よりも小さく抑えられる。従って、掘削作業中に、作業機3の状態が頻繁に変化しても、迅速に吐出流量を回復させることができる。これにより、作業機3の応答性を向上させることができる。
 (6) ポンプ容量決定部88は、要求流量Qdmに基づいて作業機ポンプ23の目標容量を決定し、作業機ポンプ23の目標容量に応じて第1容量制御装置42への指令信号を決定する。このため、作業機ポンプ23の容量を制御することで所望の吐出流量を得ることができる。
 (7) 作業機ポンプ23の目標容量に対応する作業機ポンプ23の目標傾転角と、実際の傾転角とに基づくフィードバック制御により、第1容量制御装置42への指令信号が決定される。すなわち、作業機ポンプ23の実際の容量と、作業機ポンプ23の目標容量と、に基づくフィードバック制御により、第1容量制御装置42への指令信号が決定される。このため、作業機ポンプ23の吐出流量をより精度よく制御することができる。
 本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。
 本発明は、上述したホイールローダに限らず、ブルドーザ、トラクタ、フォークリフト、或いはモータグレーダ等の他の種類の作業車両に適用されてもよい。
 本発明は、EMTに限らずHMTなどの他の種類の変速装置に適用されてもよい。この場合、第1モータMG1は、油圧モータ及び油圧ポンプとして機能する。また、第2モータMG2は、油圧モータ及び油圧ポンプとして機能する。第1モータMG1と第2モータMG2とは、可変容量型のポンプ/モータであり、斜板或いは斜軸の傾転角が制御部27によって制御されることにより、容量が制御される。そして、上記の実施形態と同様にして算出された指令トルクTm1_ref, Tm2_refが出力されるように、第1モータMG1と第2モータMG2との容量が制御される。
 動力伝達装置24の構成は上記の実施形態の構成に限られない。例えば、2つの遊星歯車機構68,69の各要素の連結、配置は、上記の実施形態の連結、配置に限定されるものではない。また、動力伝達装置24が備える遊星歯車機構の数は、2つに限らない。動力伝達装置24は1つの遊星歯車機構のみを有してもよい。あるいは、動力伝達装置24は、3つ以上の遊星歯車機構を有してもよい。
 動力伝達装置24の制御は、上記の実施形態の制御に限られない。すなわち、上記の実施形態では、車速に応じて牽引力が連続的に変化する所定の車速-牽引力特性が得られるように、目標入力軸トルクTe_refと目標出力軸トルクTo_refとが決定される。しかし、目標入力軸トルクTe_refと目標出力軸トルクTo_refとは任意に設定されることができる。
 トルクバランス情報は、上記の実施形態のようなトルクの釣り合いの式に限られない。例えば、トルクバランス情報は、表或いはマップなどの形式であってもよい。
 作業機ポンプは1つに限らず、2つ以上の作業機ポンプが備えられてもよい。この場合、上述した容量は、複数の作業機ポンプの容量の合計となる。
 エンジン回転速度の制御による作業機3の速度制御が行われる場合に、牽引力の低減が行われなくてもよい。或いは、牽引力の低減は、車速比率VRに所定の削減率を乗じる方法に限らず、他の方法が用いられてもよい。
 作業機ポンプ23の容量が最大容量に到達する前に、エンジン回転速度の制御による作業機3の速度制御が行われてもよい。
 上記の実施形態において、リリーフ流量制限制御において、流量制限情報D5は、通常時制限情報D5aと掘削時制限情報D5bとを有しているが、通常時制限情報D5a及び掘削時制限情報D5bの一方のみを有してもよい。
 上記の実施形態では、フィードバック制御により、ポンプ容量制御装置への指令信号が決定されているが、フィードバック制御によらずにポンプ容量制御装置への指令信号が決定されてもよい。
 動力伝達装置は、上述したような遊星歯車機構を用いた所謂スプリット方式の装置に限られず、他の方式の装置が採用されてもよい。例えば、図15は、第1変形例に係る動力伝達装置124を示す模式図である。図15に示す動力伝達装置124は、所謂シリーズ方式の動力伝達装置である。動力伝達装置124では、エンジン21は第1モータMG1での発電のみに使用される。第2モータMG2は、第1モータMG1で発電された電力を利用して、走行装置を駆動する。また、第2モータMG2は、減速時等にエネルギーを回生して発電を行う。
 或いは、動力伝達装置は、上述したようなモータを利用する所謂ハイブリッド型の動力伝達装置に限られない。例えば、図16は第2変形例に係る動力伝達装置324を示す模式図である。動力伝達装置324は、所謂HST(Hydro Static Transmission)方式の装置である。動力伝達装置324は、走行用ポンプ301と走行用モータ302とを有している。走行用ポンプ301はエンジン21によって駆動される。走行用ポンプ301は、可変容量型の油圧ポンプであり、ポンプ容量制御装置303によって走行用ポンプ301の容量が制御される。走行用モータ302は、走行用ポンプ301から吐出された作動油によって駆動されることにより、走行装置を駆動する。走行用モータ302は、可変容量型の油圧モータであり、モータ容量制御装置304によって走行用モータ302の容量が制御される。そして、エンジン回転速度、走行用ポンプ301の容量、走行用モータ302の容量などを制御することによって、車速および牽引力が制御される。
 なお、図15,16においては、上述した実施形態と同様の構成については同じ符号を付しており、それらの構成についての説明は省略する。
 本発明によれば、エンジン回転速度によらずにリリーフ時の油圧ポンプの吐出圧と吐出流量とを安定的に制御することができる作業車両及びその制御方法を提供することができる。
21…エンジン, 25…走行装置, 24…動力伝達装置, 61…入力軸, 63…出力軸, 27…制御部, 3…作業機, 23…作業機ポンプ, 52a…作業機操作部材, 51a…アクセル操作部材, MG1…第1モータ, MG2…第2モータ, 42…第1容量制御装置, 32…作業機ポンプ圧検出部, 48…リリーフ弁, 84…トランスミッション要求決定部, 86…作業機要求決定部, 87…エンジン要求決定部, 89…要求スロットル決定部, 88…ポンプ容量決定部, 31…エンジン回転速度検出部, 33…第1傾転角検出部
 

Claims (8)

  1.  エンジンと、
     前記エンジンによって駆動される可変容量型の油圧ポンプと、
     前記油圧ポンプから吐出された作動油によって駆動される作業機と、
     前記油圧ポンプの容量を制御するポンプ容量制御装置と、
     前記油圧ポンプの吐出圧を検出するポンプ圧検出部と、
     前記油圧ポンプの吐出圧が所定のリリーフ圧以上であるときに開かれるリリーフ弁と、
     車両を走行させる走行装置と、
     前記エンジンからの駆動力が入力され、前記走行装置を駆動するための駆動力を出力する動力伝達装置と、
     アクセル操作部材と、
     作業機操作部材と、
     前記動力伝達装置を制御する制御部と、
    を備え、
     前記制御部は、
      前記アクセル操作部材の操作量に基づいて前記走行装置での目標牽引力である要求牽引力を決定するトランスミッション要求決定部と、
      前記作業機操作部材の操作量に基づいて前記作業機での目標流量である要求流量を決定する作業機要求決定部と、
      前記要求牽引力に基づいて決定されるトランスミッション要求馬力と、前記要求流量に基づいて決定される作業機要求馬力と、に基づいてエンジン要求馬力を決定するエンジン要求決定部と、
      前記エンジン要求馬力に基づいて前記エンジンへの指令スロットル値を決定する要求スロットル決定部と、
      前記要求流量に基づいて前記油圧ポンプの目標容量を決定するポンプ容量決定部と、
     を有し、
     前記作業機要求決定部は、前記油圧ポンプの吐出圧が所定の圧力閾値以上であるときには、前記要求流量の上限を所定の流量制限値に制限する、
    作業車両。
  2.  前記作業機要求決定部は、前記要求流量と前記油圧ポンプの容量とに基づいて、作業機要求エンジン回転速度を決定し、
     前記要求スロットル決定部は、前記エンジン要求馬力に基づいて第1のスロットル値を決定し、
     前記要求スロットル決定部は、前記作業機要求エンジン回転速度に基づいて第2のスロットル値を決定し、
     前記要求スロットル決定部は、前記第1のスロットル値と前記第2のスロットル値のうち大きい方を前記エンジンへの指令スロットル値として決定する、
    請求項1に記載の作業車両。
  3.  エンジン回転速度を検出するエンジン回転速度検出部をさらに備え、
     前記ポンプ容量決定部は、前記要求流量と前記エンジン回転速度とに基づいて前記油圧ポンプの目標容量を決定する、
    請求項1又は2に記載の作業車両。
  4.  前記作業機要求決定部は、車両が掘削作業中であるときには、前記所定の流量制限値を増大させる、
    請求項1から3のいずれかに記載の作業車両。
  5.  前記ポンプ容量制御装置は、前記ポンプ容量制御装置に入力される指令信号に応じて前記油圧ポンプの容量を変更し、
     前記ポンプ容量決定部は、前記油圧ポンプの目標容量に応じて前記ポンプ容量制御装置への指令信号を決定する、
    請求項1から4のいずれかに記載の作業車両。
  6.  前記油圧ポンプの傾転角を検出する傾転角検出部をさらに備え、
     前記ポンプ容量決定部は、前記油圧ポンプの傾転角に対応する前記油圧ポンプの実際の容量と、前記油圧ポンプの目標容量と、に基づくフィードバック制御により、前記ポンプ容量制御装置への指令信号を決定する、
    請求項5に記載の作業車両。
  7.  前記動力伝達装置は、入力軸と出力軸とモータとをさらに有し、
     前記動力伝達装置は、前記モータの回転速度を変化させることによって、前記入力軸に対する前記出力軸の回転速度比を変化させるように構成されている、
    請求項1から6のいずれかに記載の作業車両。
  8.  エンジンと、前記エンジンによって駆動される可変容量型の油圧ポンプと、前記油圧ポンプから吐出された作動油によって駆動される作業機と、前記油圧ポンプの容量を制御するポンプ容量制御装置と、前記油圧ポンプの吐出圧を検出するポンプ圧検出部と、前記油圧ポンプの吐出圧が所定のリリーフ圧以上であるときに開かれるリリーフ弁と、車両を走行させる走行装置と、前記エンジンからの駆動力が入力され前記走行装置を駆動するための駆動力を出力する動力伝達装置と、アクセル操作部材と、作業機操作部材と、を備える作業車両の制御方法であって、
      前記アクセル操作部材の操作量に基づいて前記走行装置での目標牽引力である要求牽引力を決定するステップと、
      前記作業機操作部材の操作量に基づいて前記作業機での目標流量である要求流量を決定するステップと、
      前記要求牽引力に基づいて決定されるトランスミッション要求馬力と、前記要求流量に基づいて決定される作業機要求馬力と、に基づいてエンジン要求馬力を決定するステップと、
      前記エンジン要求馬力に基づいて前記エンジンへの指令スロットル値を決定するステップと、
      前記要求流量に基づいて前記油圧ポンプの目標容量を決定するステップと、
     を有し、
     前記要求流量を決定するステップにおいて、前記油圧ポンプの吐出圧が所定の圧力閾値以上であるときには、前記要求流量の上限を所定の流量制限値に制限する、
    作業車両の制御方法。
     
PCT/JP2014/082549 2014-01-29 2014-12-09 作業車両及びその制御方法 WO2015114954A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14880430.5A EP2982849B1 (en) 2014-01-29 2014-12-09 Working vehicle and control method therefor
US14/889,200 US9605414B2 (en) 2014-01-29 2014-12-09 Working vehicle and control method therefor
CN201480026759.5A CN105229282B (zh) 2014-01-29 2014-12-09 作业车辆及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-014214 2014-01-29
JP2014014214A JP6368495B2 (ja) 2014-01-29 2014-01-29 作業車両及びその制御方法

Publications (1)

Publication Number Publication Date
WO2015114954A1 true WO2015114954A1 (ja) 2015-08-06

Family

ID=53756548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082549 WO2015114954A1 (ja) 2014-01-29 2014-12-09 作業車両及びその制御方法

Country Status (5)

Country Link
US (1) US9605414B2 (ja)
EP (1) EP2982849B1 (ja)
JP (1) JP6368495B2 (ja)
CN (1) CN105229282B (ja)
WO (1) WO2015114954A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102130179B1 (ko) * 2014-01-16 2020-07-03 두산인프라코어 주식회사 하이브리드 건설기계의 휠 구동장치 및 휠 구동방법
JP6364194B2 (ja) * 2014-01-29 2018-07-25 株式会社小松製作所 作業車両及びその制御方法
DE112016000011B4 (de) * 2016-02-29 2020-10-01 Komatsu Ltd. Arbeitsmaschinensteuervorrichtung, Arbeitsmaschine und Arbeitsmaschinensteuerverfahren
DE102016220964A1 (de) * 2016-10-25 2018-04-26 Schaeffler Technologies AG & Co. KG Hydraulikkreislauf für einen Hybridantriebsstrang
WO2018184663A1 (en) * 2017-04-04 2018-10-11 Volvo Construction Equipment Ab A method for controlling a powertrain
KR102004391B1 (ko) * 2017-04-24 2019-07-26 가부시키가이샤 고마쓰 세이사쿠쇼 제어 시스템 및 작업 기계
WO2019003761A1 (ja) * 2017-06-27 2019-01-03 株式会社小松製作所 作業車両、及び、作業車両の制御方法
JP7021210B2 (ja) * 2017-06-27 2022-02-16 株式会社小松製作所 作業車両、及び、作業車両の制御方法
JP7156806B2 (ja) * 2018-02-23 2022-10-19 株式会社小松製作所 作業車両、及び、作業車両の制御方法
DE102018202844B4 (de) * 2018-02-26 2021-07-01 Magna Pt B.V. & Co. Kg Verfahren zur Diagnose eines Hydrauliksystems eines Kraftfahrzeugs
JP7236917B2 (ja) * 2019-04-04 2023-03-10 株式会社小松製作所 作業車両、作業車両の制御装置および制御方法
US11066074B2 (en) * 2019-08-07 2021-07-20 Caterpillar Inc. Control of an engine of a machine based on detected load requirements of the machine
CN110644564B (zh) * 2019-09-11 2021-07-13 徐州徐工挖掘机械有限公司 一种液压挖掘机控制系统及方法
JP7396838B2 (ja) * 2019-09-12 2023-12-12 住友建機株式会社 ショベル
CA3151727A1 (en) 2019-09-24 2021-04-01 Charles Young System and methods for cycle time management
US11846088B2 (en) 2021-08-03 2023-12-19 Caterpillar Inc. Automatic vehicle speed control system
WO2023025412A1 (en) * 2021-08-26 2023-03-02 Caterpillar Sarl Hydraulic control system and setting method and calibration method of target engine torque during relief in hydraulic control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063882A (ja) * 2004-08-26 2006-03-09 Hitachi Constr Mach Co Ltd 建設機械
JP2006329244A (ja) * 2005-05-24 2006-12-07 Komatsu Ltd 変速装置
JP2009074405A (ja) 2007-09-19 2009-04-09 Komatsu Ltd エンジンの制御装置
JP2011047317A (ja) * 2009-08-26 2011-03-10 Kcm:Kk 油圧回路、及びそれを備える車両
JP2012153174A (ja) * 2011-01-24 2012-08-16 Hitachi Constr Mach Co Ltd 建設機械
JP2012158932A (ja) * 2011-02-01 2012-08-23 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JP2013166482A (ja) * 2012-02-15 2013-08-29 Hitachi Constr Mach Co Ltd ハイブリッド式作業車両

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539720B2 (ja) * 2000-03-02 2004-07-07 新キャタピラー三菱株式会社 建設機械の制御装置
JP4667083B2 (ja) * 2005-03-09 2011-04-06 株式会社加藤製作所 油圧制御装置
JP5129493B2 (ja) * 2007-03-12 2013-01-30 日立建機株式会社 作業車両の走行制御装置
JPWO2010147121A1 (ja) * 2009-06-19 2012-12-06 住友重機械工業株式会社 ハイブリッド型建設機械及びハイブリッド型建設機械の制御方法
US8899143B2 (en) * 2011-06-28 2014-12-02 Caterpillar Inc. Hydraulic control system having variable pressure relief
JP5106694B1 (ja) * 2012-03-15 2012-12-26 株式会社小松製作所 作業車両及び作業車両の制御方法
US9096989B2 (en) * 2012-05-25 2015-08-04 Caterpillar Inc. On demand displacement control of hydraulic power system
US9145660B2 (en) * 2012-08-31 2015-09-29 Caterpillar Inc. Hydraulic control system having over-pressure protection
JP6134614B2 (ja) * 2013-09-02 2017-05-24 日立建機株式会社 作業機械の駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063882A (ja) * 2004-08-26 2006-03-09 Hitachi Constr Mach Co Ltd 建設機械
JP2006329244A (ja) * 2005-05-24 2006-12-07 Komatsu Ltd 変速装置
JP2009074405A (ja) 2007-09-19 2009-04-09 Komatsu Ltd エンジンの制御装置
JP2011047317A (ja) * 2009-08-26 2011-03-10 Kcm:Kk 油圧回路、及びそれを備える車両
JP2012153174A (ja) * 2011-01-24 2012-08-16 Hitachi Constr Mach Co Ltd 建設機械
JP2012158932A (ja) * 2011-02-01 2012-08-23 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JP2013166482A (ja) * 2012-02-15 2013-08-29 Hitachi Constr Mach Co Ltd ハイブリッド式作業車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2982849A4

Also Published As

Publication number Publication date
JP6368495B2 (ja) 2018-08-01
CN105229282A (zh) 2016-01-06
EP2982849A1 (en) 2016-02-10
EP2982849B1 (en) 2018-08-01
CN105229282B (zh) 2018-12-07
JP2015140727A (ja) 2015-08-03
US9605414B2 (en) 2017-03-28
EP2982849A4 (en) 2017-01-25
US20160145836A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6368495B2 (ja) 作業車両及びその制御方法
JP6364194B2 (ja) 作業車両及びその制御方法
JP6427489B2 (ja) 作業車両及び作業車両の制御方法
JP6416787B2 (ja) 作業車両及びその制御方法
JP6297821B2 (ja) 作業車両
JP6327846B2 (ja) 作業車両及びその制御方法
JP6403386B2 (ja) 作業車両及び作業車両の制御方法
JP6271270B2 (ja) 作業車両及び作業車両の制御方法
JP6313965B2 (ja) 作業車両及びその制御方法
JPWO2015056492A1 (ja) 作業車両及び作業車両の制御方法
WO2015114979A1 (ja) 作業車両及び作業車両の制御方法
WO2015111317A1 (ja) 作業車両及び作業車両の制御方法
JP2018105114A (ja) 作業車両及びその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480026759.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014880430

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14889200

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE