JP2011047317A - 油圧回路、及びそれを備える車両 - Google Patents

油圧回路、及びそれを備える車両 Download PDF

Info

Publication number
JP2011047317A
JP2011047317A JP2009195877A JP2009195877A JP2011047317A JP 2011047317 A JP2011047317 A JP 2011047317A JP 2009195877 A JP2009195877 A JP 2009195877A JP 2009195877 A JP2009195877 A JP 2009195877A JP 2011047317 A JP2011047317 A JP 2011047317A
Authority
JP
Japan
Prior art keywords
operation amount
flow rate
hydraulic
hydraulic pump
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009195877A
Other languages
English (en)
Other versions
JP5588136B2 (ja
Inventor
Shuichi Matsuba
秀一 松葉
Hiroyasu Kodera
裕康 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KCM Corp
Original Assignee
KCM Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KCM Corp filed Critical KCM Corp
Priority to JP2009195877A priority Critical patent/JP5588136B2/ja
Publication of JP2011047317A publication Critical patent/JP2011047317A/ja
Application granted granted Critical
Publication of JP5588136B2 publication Critical patent/JP5588136B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 操作レバー等の操作手段の操作量に応じた速度で油圧アクチュエータを駆動でき、且つエネルギーロスが少ない油圧回路を提供する。
【解決手段】 油圧回路20は、エンジン3により駆動する可変容量型の前記油圧ポンプ18から吐出される作動油をバケットシリンダ16に供給して、バケットシリンダ16を駆動するようになっている。油圧回路20は、エンジン3の回転数を検出する回転数センサ54と、バケット用操作弁31の操作量を検出する操作量検出手段41と、油圧ポンプ18の容量を変更する容量調整装置50とを有する。油圧回路20は、更にコントローラ13を備えており、コントローラ13は、検出された操作量に基づいて目標吐出流量を演算し、この目標吐出流量と検出されるエンジン3の回転数とに応じて容量調整装置50を制御するようになっている。
【選択図】 図1

Description

本発明は、エンジンにより駆動する可変容量型の油圧ポンプから吐出される作動油を油圧アクチュエータに供給して、該油圧アクチュエータを駆動する油圧回路、及びそれを備える車両に関する。
ホイルローダ等の産業車両は、ブーム及びバケット等の作業機を駆動するために作業機駆動用油圧システムを有している。作業機駆動用油圧システムは、作業機を動かすべく複数の油圧アクチュエータを備えており、これらの油圧アクチュエータは、油圧回路から供給される作動油により駆動するようになっている。油圧回路としては、例えば特許文献1に記載されるような油圧回路がある。この油圧回路は、作動油を吐出する油圧ポンプを備えている。油圧ポンプは、いわゆる固定容量型の油圧ポンプであり、エンジンの回転数に応じて一定流量の作動油を吐出するようになっている。油圧ポンプと油圧アクチュエータとの間には、制御弁が設けられている。制御弁は、操作レバーに接続されており、その操作レバーの操作量に応じた開度に調整できるようになっている。
このように構成される作業機駆動用油圧システムにおいて、作業機の操作速度(駆動速度)は、油圧アクチュエータに供給される作動油の流量により決まり、供給される作動油の流量は、制御弁の開度及び油圧ポンプからの吐出流量に応じて制御される。即ち、作業機の操作速度は、操作レバーの操作量及びエンジン回転数により調整することができる。作業機の操作速度を早くしたい場合、操作レバーの操作量を増やすと共にアクセルペダルを踏み込んでエンジン回転数を上げ、作業機の操作速度を遅くしたい場合は、その逆の操作を行う。このように、操作レバー及びアクセルペダルの両方を操作して操作速度を調整することで、作業機の操作速度を変えることができる。
また、油圧回路として、特許文献2に記載されるような油圧回路もある。この油圧回路は、可変容量型の油圧ポンプを備えており、制御弁の前後の差圧に応じて吐出流量を制御するロードセンシング機能を有している。それ故、エンジンの回転数の変動に係わらず操作レバーの操作量に応じた流量が油圧ポンプから吐出され、操作レバーの操作量に応じた操作速度で作業機を動かすことができる。
特開昭61−221425号公報 特開昭59−70245号公報
特許文献1に記載の油圧回路では、油圧ポンプを駆動するエンジンは、車両本体を走行駆動させる変速機も駆動するようになっており、走行速度を上げるべくアクセルペダルを操作すると、エンジンの回転数が上がり、それに伴って油圧ポンプの吐出流量が増加する。つまり、アクセルペダルの操作量に係わらず、操作レバーの操作量だけで作業機の操作速度を調整することができない。
このように動作する特許文献1に記載の油圧回路は、産業車両等において適用が検討されているエンジン及びモータにより車両を駆動するハイブリッド車両において採用しにくい。というのも、ハイブリッド車両は、エンジンにより発電機を動かして蓄電池に蓄電し、蓄電池の電気によりモータを駆動して車両を走行するようになっている。それ故、ハイブリッド車両において、エンジンの回転数は、アクセルペダルの操作量だけでなく蓄電池の蓄電量に応じて制御され、アクセルペダルに関して同一の操作量でも同じエンジン回転数になるとは限らない。即ち、ハイブリッド車両では、アクセルペダルの操作量とエンジン回転数が連動していない。それ故、アクセルペダルの操作量が同一であっても、蓄電量に応じて作業機の操作速度が変わってしまい、運転者は作業機を良好に操作することができなくなる。
このように、ハイブリッド車両では、アクセルペダルの操作量とエンジン回転数が連動していないため、アクセルペダルの操作量に係わらず操作レバーの操作量だけで作業機の操作速度を調整することができる油圧回路とすることが好ましい。このような油圧回路として特許文献2に記載の油圧回路がある。この油圧回路は、アクセルペダルの操作量に係わらず、操作レバーの操作量だけで作業機の操作速度を調整することができるが、その調整は、ロードセンシング機能により実現している。しかし、このロードセンシング機能では、制御弁の前後にて差圧を生じさせているため、制御弁で生じるエネルギーロスが大きくなってしまう。
なお、特許文献1に記載の油圧回路もまたエネルギーロスが大きい。というのも、固定容量型の油圧ポンプからエンジン回転数に応じた流量の作動油が常に吐出されており、油圧アクチュエータに不必要な作動油が大量に発生し、それら作動油をドレンに排出している。それ故、油圧回路におけるエネルギーロスが大きい。
そこで本発明は、操作レバー等の操作手段の操作量に応じた速度で油圧アクチュエータを駆動でき、且つエネルギーロスが少ない油圧回路を提供することを目的としている。
本発明の油圧回路は、エンジンにより駆動する可変容量型の油圧ポンプから吐出される作動油を油圧アクチュエータに供給して、該油圧アクチュエータを駆動する油圧回路であって、前記エンジンの回転数を検出する回転数検出手段と、前記油圧アクチュエータに流れる作動油の量を操作する操作手段の操作量を検出する操作量検出手段と、前記油圧ポンプの容量を調整する容量調整装置と、前記油圧ポンプの吐出流量が前記操作量検出手段で検出された操作量に基づいて演算される目標吐出流量になるように、前記回転数検出手段で検出された前記回転数に応じて前記容量調整装置を制御する制御部とを備えるものである。
本発明に従えば、操作量検出手段及び回転数検出手段から得られる操作量とエンジンの回転数とに基づいて油圧ポンプの吐出量を制御するので、操作手段の操作量に応じた流量の作動油を油圧アクチュエータに導くことができ、操作手段の操作量に応じた操作速度で油圧アクチュエータを駆動することができる。また、操作量検出手段及び回転数検出手段から得られる操作量とエンジンの回転数とに基づいて油圧ポンプの吐出量を制御するので、従来技術のように差圧を生じさせる必要がなく、また作動油が無駄に吐出されることもないので、発生する圧力損失を抑えることができる。これにより、エネルギーロスを抑えることができる。
上記発明において、前記制御部は、前記操作量検出手段で検出される操作量だけに応じた流量が前記油圧ポンプから吐出されるように前記目標吐出流量を演算するようになっていることが好ましい。
上記構成に従えば、エンジンの回転数に係わらず、操作手段の操作量だけに応じて操作速度を調整することができる。これにより、操作速度の調整が簡単である。
上記発明において、前記エンジンにより走行する車両本体の速度を変えるアクセルの操作量を検出するアクセル操作量検出手段を更に備え、前記制御部は、前記操作量検出手段で検出される操作量と前記アクセル操作量検出手段で検出される操作量とに応じた流量が前記油圧ポンプから吐出されるように前記目標吐出流量を演算するようになっていることが好ましい。
上記構成に従えば、エンジンの回転数に係わらず、アクセルペダルの操作量と操作手段の操作量とに応じて操作速度を調整することができる。
上記発明において、前記エンジンにより走行する車両の速度を変えるためのアクセルの操作量を検出するアクセル操作量検出手段を更に備え、前記制御部は、ロードセンシングモードと、アクセル依存モードとをモード切替手段により切換えることができるようになっており、前記ロードセンシングモードで、前記操作量検出手段で検出される操作量にだけ応じた流量が前記油圧ポンプから吐出されるように前記目標吐出流量を演算し、前記油圧ポンプの吐出流量が前記目標吐出流量になるように前記油圧ポンプの容量を前記容量調整装置により制御し、前記アクセル依存モードで、前記操作量検出手段で検出される操作量と前記アクセル操作量検出手段で検出される操作量とに応じた流量が前記油圧ポンプから吐出されるように前記目標吐出流量を演算し、前記油圧ポンプの吐出流量が前記目標吐出流量になるように前記油圧ポンプの容量を前記容量調整装置により制御するようになっていることが好ましい。
上記構成に従えば、操作手段の操作量だけに応じて操作速度を調整したり、アクセルペダルの操作量と操作手段の操作量とに応じて操作速度を調整したりすることができる。モード切換手段により2つのモードを切換えることができるので、運転者は、作業内容に応じて2つのモードを容易に切換え選択ができ、利便性が高い。
上記発明において、前記操作手段は、前記油圧アクチュエータに流れる作動油の流量を制御する流量制御弁のスプールにパイロット圧を与えて前記スプールの開度を調整するリモートコントロール弁であり、前記操作量検出手段は、前記リモートコントロール弁のパイロット圧を検出する圧力センサであることが好ましい。
上記構成に従えば、操作レバーのパイロット圧により操作量を検出するので、部品点数が少なく、構成が容易である。
上記発明の車両は、前述の何れか1つに記載の油圧回路と、前記エンジンと、前記エンジンにより駆動する発電機と、前記発電機で発生する電気を蓄える蓄電池と、前記蓄電池の電気により駆動して走行させるモータとを有する。
上記構成に従えば、蓄電池の蓄電量に応じてエンジンの回転数が変動しても、その変動に応じて油圧ポンプの容量が制御されるので、エンジン回転数に係わらず、操作手段の操作量に応じた作動油を油圧シリンダに供給することができ、操作手段の操作量に応じた操作速度で油圧シリンダを駆動することができる。
本発明によれば、操作レバー等の操作手段の操作量に応じた操作速度で油圧アクチュエータを駆動でき、且つエネルギーロスを少なくすることができる。
本発明の第1実施形態のホイルローダの構成を示すブロック図である。 ホイルローダに備わる油圧回路の構成を示す回路図である。 第1モードにおいて油圧ポンプから吐出させるべき吐出流量を示すグラフであり、(a)は、油圧ポンプの吐出流量とパイロット圧との関係を示すグラフであり、(b)は、油圧ポンプの吐出流量とアクセルペダルとの関係を示すグラフである。 第2モードにおいて油圧ポンプから吐出させるべき吐出流量を示すグラフであり、(a)は、油圧ポンプの吐出流量とパイロット圧との関係を示すグラフであり、(b)は、油圧ポンプの吐出流量とアクセルペダルとの関係を示すグラフである。 本発明の第2実施形態のホイルローダの構成を示すブロック図である。
<第1実施形態>
図1に示すホイルローダは、いわゆる産業車両であり、走行し、またバケット及びブーム等の作業機を駆動することができるようになっている。ホイルローダ1は、シリーズ式のハイブリッド駆動装置2を備えるハイブリッド車両であり、ハイブリッド駆動装置2は、基本的に、エンジン3と、発電機4と、蓄電池5と、走行用モータ6とを有する。エンジン3は、減速機7を介して発電機4に機械的に連結されており、回転駆動することで発電機4を動かして発電させるようになっている。発電機4は、第1インバータ/コンバータ8を介して蓄電池5に電気的に接続されており、発生した電気により蓄電池5を充電するようになっている。蓄電池5は、第2インバータ/コンバータ9を介して走行用モータ6に電気的に接続されている。走行用モータ6は、変速機10及び差動機構11を介して車輪12,12に機械的に連結されており、蓄電池5の電気により回転駆動して車輪12,12を回転させ、ホイルローダ1を走行させるようになっている。
このように構成されるハイブリッド駆動装置2は、コントローラ13によって制御されている。コントローラ13は、角変位センサ15と、蓄電池5と、第2インバータ/コンバータ9とに電気的に接続されている。角変位センサ15は、アクセルペダル14の操作量(即ち、踏み込み量、又は踏み角)を検出し、コントローラ13に出力するようになっている。コントローラ13は、角変位センサ15から踏み角を取得すると、第2インバータ/コンバータ9を制御し、取得した踏み角に応じた電流を蓄電池5から走行用モータ6に流すようになっている。また、コントローラ13は、エンジン3及び第1インバータ/コンバータ8にも電気的に接続されており、蓄電池5から得られる蓄電量に応じて、エンジン3のスロットルバルブの開度、及び燃料噴射量を調整して、エンジン3の回転数(即ち、エンジン回転数)を制御すると共に、第1インバータ/コンバータ8により蓄電池5の蓄電量を制御している。
このように構成されるホイルローダ1では、アクセルペダル14が操作されると、コントローラ13がアクセルペダル14の操作量に応じた電流を走行用モータ6に流す。これにより、走行用モータ6が電流に応じた回転数で回転し、アクセルペダル14の操作量に応じた速度でホイルローダ1を走行させる。走行時において走行用モータ6に大きな駆動力を必要とする場合、又は走行する等して蓄電池の蓄電量が減って蓄電量が所定量以下になった場合、コントローラ13は、エンジン3を駆動して発電機4を動かし、発電機4に発電させて蓄電池を充電する。このようにして充電された蓄電池の電気を利用することでホイルローダ1を大きな駆動力又は継続して走行することができる。
このように走行することができるホイルローダ1は、図示しないバケット及びブーム等の作業機を備えている。これらバケット及びブームは、油圧アクチュエータであるバケットシリンダ16及び一対のブームシリンダ17L,17Rにより夫々駆動できるようになっている。バケットシリンダ16及び一対のブームシリンダ17L,17Rは、作動油を供給することで伸縮駆動するようになっており、バケットシリンダ16を伸縮させると、バケットが傾動(チルト)し、一対のブームシリンダ17L,17Rを伸縮させると、ブームが昇降するようになっている。
このように構成されるバケットシリンダ16及び一対のブームシリンダ17L,17Rを動作させるべく、バケットシリンダ16及び一対のブームシリンダ17L,17Rには、油圧回路20が接続されている。油圧回路20は、バケットシリンダ16及び一対のブームシリンダ17L,17Rに作動油を供給し、また供給する作動油の方向及び流量を制御できるようになっている。以下では、図1及び図2を参照しつつ油圧回路20について説明する。
[油圧回路]
油圧回路20は、油圧ポンプ18を備えている。油圧ポンプ18は、減速機7に発電機4と並列して設けられ、減速機7を介してエンジン3と機械的に連結されている。油圧ポンプ18は、いわゆる可変容量型のアキシャルポンプであり、エンジン3の回転に応じて作動油を吐出するようになっており、リリーフ弁21により吐出圧が所定圧以上にならないように調整されている。また、油圧ポンプ18には、バケット用制御弁23及びブーム用制御弁24が直列的に接続されている。
バケット用制御弁23は、いわゆるセンターオープン型の制御弁であり、その上流側に油圧ポンプ18が接続され、下流側にバケットシリンダ16及びブーム用制御弁24が接続されている。バケット用制御弁23は、スプール23aを備えており、スプール23aの位置を調整することで、油圧ポンプ18の接続先(即ち、作動油の流れる方向)を調整することができるようになっている。
即ち、スプール23aが中立位置25にあるとき、油圧ポンプ18とバケットシリンダ16との間が遮断され、油圧ポンプ18とブーム用制御弁24とが接続される。これにより、バケットシリンダ16の傾動角は、そのまま維持され、油圧ポンプ18から流れる全ての作動油は、ブーム用制御弁24に流される。
中立位置25から第1オフセット位置26の方にスプール23aを移動させると、油圧ポンプ18とバケットシリンダ16とが接続される。これにより、作動油がバケットシリンダ16に供給されてバケットシリンダ16が伸張し、バケットが上方に傾動する。また、中立位置25から第2オフセット位置27の方にスプール23aを移動させると、油圧ポンプ18とバケットシリンダ16とが接続される。これにより、作動油がバケットシリンダ16に供給されてバケットシリンダ16が収縮し、バケットが下方に傾動する。
バケット用制御弁23は、このように作動油の流れる方向を切換えると共に、スプール23aの移動量に応じてスプール23aの開度を調整し、バケットシリンダ16に流れる作動油の流量を調整するようになっている。スプール23aの開度(即ち、油圧ポンプ18とバケットシリンダ16との間の開度)は、中立位置25のとき閉じられおり、中立位置25から第1又は第2オフセット位置26,27に向かうに従って大きくなり、第1又は第2オフセット位置26,27に到達すると全開になる。これとは逆に、油圧ポンプ18とブーム用制御弁24との間は、第1又は第2オフセット位置26,27に向かうに従ってその開度が小さくなり、スプール23aの開度が全開になったときに遮断されている。即ち、スプール23aの開度が全開になると、バケット用制御弁23に流れる全ての作動油がバケットシリンダ16に導かれるようになる。
このようにスプール23aの移動量に応じて作動油の流量を制御するバケット用制御弁23には、スプール23aの移動量を調整すべくバケット用操作弁33が設けられている。バケット用操作弁33は、図示しない操作レバーを備えている。操作レバーは、運転席に設けられるハウジング(図示せず)に傾動支持されており、例えば前後方向に傾動することができるようになっている。また、ハウジングには、一対のプッシュロッド34F,34R及び一対のパイロットスプール35F,35Rが移動可能に収容されている。各プッシュロッド34F,34Rは、操作レバーが対応する方向(即ち、前方又は後方)に傾動されると、操作レバーに押されて移動するようになっている。また、各プッシュロッド34F,34Rは、一対のパイロットスプール35F,35Rの各々と対応付けられており、操作レバーに押されて移動すると対応するパイロットスプール35F,35Rを移動させるようになっている。
各パイロットスプール35F,35Rは、共にバケット用制御弁23のスプール23a、パイロット用油圧ポンプ(以下、単に「パイロットポンプ」ともいう)37、及びタンク22に接続されており、スプール23aの接続先をパイロットポンプ37及びタンク22の何れか一方に切換えできるようになっている。パイロットポンプ37は、いわゆる固定容量型の油圧ポンプであり、油圧ポンプ18と共にエンジン3に直列的、且つ機械的に連結されている。パイロットポンプ37は、エンジン3を駆動するとパイロット油を吐出するようになっており、このパイロット油は、パイロットスプール35F,35Rに導かれる。なお、パイロットポンプ37は、その吐出圧が予め定められた圧力以上にならないように、リリーフ弁38により調整されている。
パイロットポンプ37からパイロット油が吐出されている状態で、操作レバーを後方に傾動させてパイロットスプール35Rを移動させると、パイロットポンプ37とスプール23aとが接続され、パイロット油がスプール23aに導かれる。これにより、スプール23aが第1オフセット位置26の方に移動してバケットシリンダ16が伸長し、バケットが上方に傾動する。逆に、操作レバーを前方に傾動させてパイロットスプール35Fを移動させると、パイロット油がスプール23aに導かれる。これにより、スプール23aが第2オフセット位置27の方に移動してバケットシリンダ16が収縮し、バケットが下方に傾動する。
このように、操作レバーを傾動操作することでパイロットスプール35F,35Rを動かしてスプール23aにパイロット油を流しているのだが、パイロットスプール35F,35Rは、スプール23aに出力するパイロット圧を操作レバーの傾動量、即ち操作量に応じて変えるようになっている。また、バケット用制御弁23では、このパイロット圧に応じてスプール23aの移動量が調整され、スプール23aの移動量に応じてスプール23aの開度が調整されるようになっている。それ故、操作レバーの操作量に応じてスプール23aの開度が操作され、バケットシリンダ16に導かれる作動油の流量が調整される。即ち、操作レバーの操作量を調整することで、バケットシリンダ16に導かれる作動油の流量を調整し、バケットの操作速度を調整することができる。
このようにバケットシリンダ16の駆動を制御するバケット用制御弁23の下流側には、前述の通りブーム用制御弁24が接続されている。ブーム用制御弁24は、いわゆるセンターオープン型の制御弁である。ブーム用制御弁24の上流側には、バケット用制御弁23が接続され、下流側には、一対のブームシリンダ17L,17R及びタンク22が接続されている。ブーム用制御弁24は、スプール24aを備えており、このスプール24aの位置を調整することでバケット用制御弁23の接続先(即ち、作動油の流れる方向)を調整することができるようになっている。
即ち、スプール24aが中立位置29にあるとき、バケット用制御弁23と一対のブームシリンダ17L,17Rとの間が遮断され、バケット用制御弁23とタンク22とが接続される。これにより、一対のブームシリンダ17L,17Rの高さが維持され、ブーム用制御弁24からの作動油の全てがタンク22に排出される。
中立位置29から第1オフセット位置30の方にスプール24aを移動させると、バケット用制御弁23と一対のブームシリンダ17L,17Rとが接続される。これにより、作動油が一対のブームシリンダ17L,17Rに供給されて一対のブームシリンダ17L,17Rが伸長して、一対のブームが上がる。また、中立位置29から第2オフセット位置31の方にスプール24aを移動させると、バケット用制御弁23と一対のブームシリンダ17L,17Rとが接続される。これにより、作動油が一対のブームシリンダ17L,17Rに供給されて一対のブームシリンダ17L,17Rが伸長し、一対のブームが下がる。更に、ブーム用制御弁24では、スプール24aを第3オフセット位置32に動かすことができるようになっている。スプール24aを第3オフセット位置32に動かすと、一対のブームシリンダ17L,17Rがタンク22に接続される。これにより、一対のブームシリンダ17L,17R内の作動油がタンク22に排出され、一対のブームシリンダ17L,17Rを自由に動かすことができるようになる。
ブーム用制御弁24もまた、バケット用制御弁23と同様に、作動油の流れる方向を切換えると共に、スプール24aの移動量に応じてスプール24aの開度を調整し、ブームシリンダ17L,17Rに流れる作動油の流量を調整するようになっている。スプール24aの開度(即ち、バケット用制御弁23とブームシリンダ17L,17Rの間の開度)は、中立位置29のとき閉じられており、中立位置29から第1及び第2オフセット位置30,31に向かうに従って大きくなり、第1又は第2オフセット位置30,31に到達すると全開になる。これとは逆に、バケット用制御弁23とタンク22との間は、第1又は第2オフセット位置30,31に向かうに従ってその開度が小さくなり、スプール24aの開度が全開になったときに遮断されている。即ち、ブーム用制御弁24に流れる全ての作動油が一対のブームシリンダ17L,17Rに導かれるようになる。
このようにスプール24aの移動量に応じて作動油の流量を制御するブーム用制御弁24にもまた、スプール24aの移動量を調整すべくブーム用操作弁41が設けられている。ブーム用操作弁41の構成は、バケット用操作弁33と略同一であるが、簡単に説明する。ブーム用操作弁41は、操作レバーと、一対のプッシュロッド42F,42Rと、一対のパイロットスプール43F,43Rを備えている。ブーム用操作弁41では、操作レバーを傾動させると、傾動する方向(前方、又は後方)に応じて2つのプッシュロッド42F,42Rのうち一方が押されて移動し、押されたプッシュロッド42F,42Rが更に対応するパイロットスプール43F,43Rを押して移動させる。
各パイロットスプール43F,43Rは、ブーム用制御弁24のスプール24a、パイロットポンプ37及びタンク22に接続されており、スプール24aの接続先を、パイロットポンプ37及びタンク22のうち何れか一方に切換えできるようになっている。パイロットスプール43F,43Rには、パイロットポンプ37から吐出されるパイロット油が導かれており、この状態で操作レバーを後方に傾動させてパイロットスプール43Rを移動させると、パイロット油がスプール24aに導かれる。これにより、スプール24aが第1オフセット位置30の方に移動して一対のブームシリンダ17L,17Rが伸長し、一対のブームが上がる。逆に、操作レバーを前方に傾動させてパイロットスプール43Fを移動させると、パイロット油がスプール24aに導かれる。これにより、スプール24aが第2オフセット位置31の方に移動して一対のブームシリンダ17L,17Rが収縮し、一対のブームが下がる。この状態から更に操作レバーを前方に傾動させると、スプール24aが第3オフセット位置32の方に移動する。これにより、一対のブームを自由に動かすことができるようになる。
パイロットスプール43F,43Rもまた、バケット用操作弁33のパイロットスプール35F,35Rと同様に、スプール24aに出力するパイロット圧を操作レバーの傾動量、即ち操作量に応じて変えるようになっている。また、ブーム用制御弁24では、このパイロット圧に応じてスプール24aの移動量が調整され、スプール24aの移動量に応じてスプール24aの開度が調整されるようになっている。それ故、操作レバーの操作量に応じてスプール24aの開度が調整され、一対のブームシリンダ17L,17Rに供給される作動油の流量を調整される。即ち、操作レバーを操作することで、一対のブームシリンダ17L,17Rに供給される作動油の流量を調整し、一対のブームの操作速度を調整することができる。
このように構成されるブーム用操作弁41とバケット用操作弁33とには、各操作弁33,41の操作レバーの操作量を検出する操作量検出手段44が設けられている。操作量検出手段44は、第1のシャトル弁45と、第2のシャトル弁46と、第3のシャトル弁47と、圧力センサ48とを備えている。第1のシャトル弁45は、バケット用操作弁33に設けられている。第1のシャトル弁45は、第3のシャトル弁47に接続され、2つのパイロットスプール35F,35Rからバケット用制御弁23のスプール23aに夫々出力されるパイロット圧を比較し、高い方のパイロット圧を第3のシャトル弁47に出力するようになっている。これと同様の構成を有する第2のシャトル弁46がブーム用操作弁41にも設けられている。第2のシャトル弁46もまた、第3のシャトル弁47に接続されて、2つのパイロットスプール43F,43Rからブーム用制御弁24のスプール24aに夫々出力されるパイロット圧を比較し、高い方のパイロット圧を第3のシャトル弁47に出力するようになっている。
第3のシャトル弁47は、圧力センサ48に接続され、第1及び第2のシャトル弁45,46から出力されたパイロット圧のうち高い方のパイロット圧を圧力センサ48に出力するようになっている。圧力センサ48は、コントローラ13に接続されており、第3のシャトル弁47から出力されるパイロット圧を検出してコントローラ13に出力するようになっている。
このように構成される操作量検出手段44は、各パイロットスプール35F,35R,43F,43Rから出力されるパイロット圧を第1乃至第3のシャトル弁45〜47により比較し、4つのパイロット圧のうち最も高いパイロット圧を圧力センサ48にて検出する。各パイロットスプール35F,35R,43F,43Rから出力されるパイロット圧は、各操作弁33,41の操作量に比例している。それ故、圧力センサ48は、2つの操作弁33,41で操作された操作量のうち最も大きい操作量として第3のシャトル弁47から出力されるパイロット圧pを検出し、コントローラ13に出力するようになっている。
また、コントローラ13には、容量調整装置50が電気的に接続されている。容量調整装置50は、電磁弁51と、方向切換弁52と、サーボ機構53とを備える。電磁弁51は、方向切換弁52のスプール52aに接続されている。また、電磁弁51は、ソレノイド51aを備え、ソレノイド51aは、コントローラ13と電気的に接続されている。電磁弁51は、コントローラ13からソレノイド51aに流される電流に応じてスプール52aに導かれるパイロット油を電流に応じた圧力に調圧するようになっている。
サーボ機構53は、サーボピストン53aを備え、このサーボピストン53aに互いに抗するパイロット圧を与えるべく第1及び第2油圧室53b,53cを有する。サーボピストン53aは、第1油圧室53b側の第1受圧面53dが第2油圧室53c側の第2受圧面53eより大きくなっている。第1油圧室53bには、方向切換弁52が接続されており、第2油圧室53cにはパイロットポンプ37が接続されている。サーボピストン53aは、油圧ポンプ18の斜板18aに連結され、x1方向に動くことで斜板18aの傾動角を変えて油圧ポンプ18の容量を減少させ、またx2方向に動くことで斜板18aの傾動角を変えて油圧ポンプ18の容量を増加させるようになっている。
また、方向切換弁52のスプール52aは、電磁弁51からのパイロット油の圧力に応じた位置に動くようになっており、スプール52aが動くことでサーボ機構53の第1油圧室53bの接続先がパイロットポンプ37又はタンク22に切換えられる。
このような構成を有する容量調整装置50では、コントローラ13から電磁弁51に電流を流すと、電流の大きさに応じて電磁弁51により調圧されたパイロット油がスプール52aに導かれる。これにより、スプール52aが動いてパイロットポンプ37とサーボ機構53の第1油圧室53bとが接続され、サーボピストン53aがx2方向に移動し、油圧ポンプ18の吐出流量が増加する。他方、サーボピストン53aの移動量に応じてスプール52aのパイロットポンプ37への接続開度が狭くなっていき、やがて閉鎖される。そうすると、サーボピストン53aの動きが止まる。それ故、斜板18aの傾動角は、電磁弁51に流れる電流に応じた傾動角となり、油圧ポンプ18の容量が電磁弁51に流す電流に応じた容量になる。
電磁弁51に流す電流を小さくすると、スプール52aに出力されるパイロット油の圧力が小さくなり、スプール52aが移動してサーボ機構53の第1油圧室53bがタンク22に接続される。そのため、第1油圧室53b内のパイロット油の一部は、方向切換弁52を介してタンク22に排出され、サーボピストン53aがx1方向に移動する。これにより、油圧ポンプ18の吐出流量が減少する。他方、スプール52aのタンク22への接続開度は、サーボピストン53aの移動量に応じて狭くなり、第1油圧室53bは閉鎖される。そうすると、サーボピストン53aの動きが止まり、油圧ポンプ18の容量の減少が止まる。この際の油圧ポンプ18の容量は、電流を増加させた場合と同様に電磁弁51に流す電流に応じた容量になる。
このように、コントローラ13は、2つの操作弁33,41の操作量のうち最も大きい操作量に応じた電流を電磁弁51に流し、油圧ポンプ18の容量を制御している。ところで、コントローラ13から電磁弁51に流れる電流は、前記操作量だけでなく、アクセルペダル14の踏み角、エンジン3の回転数、及び後述するモードに応じて設定される。以下では、コントローラ13から電磁弁51に流れる電流の設定方法について説明する。
コントローラ13には、角変位センサ15と、回転数センサ54と、モード切換スイッチ55とが電気的に接続されている。角変位センサ15は、アクセルペダル14の操作量(踏み込み量)を踏み角として検出し、コントローラ13に出力するようになっている。また、回転数センサ54は、エンジン3の回転数を検出し、コントローラ13に出力するようになっている。
モード切換スイッチ55は、コントローラ13のモードをロードセンシングモード(以下、単に「モード1」ともいう)及びアクセル依存モード(以下、単に「モード2」ともいう)に切換えることができるようになっている。コントローラ13は、モード1に切換えられると、圧力センサ48から得られるパイロット圧pと予め記憶された第1マップとを用いて、油圧ポンプ18の目標吐出流量Qを演算し、またモード2に切換えられると、圧力センサ48から得られるパイロット圧pと予め記憶された第2マップとを用いて、油圧ポンプ18の目標吐出流量Qを演算するようになっている。
第1マップは、それをグラフに展開すると、図3A及び図3Bのようになる。なお、図3Aでは、縦軸が吐出流量Qであり、横軸がパイロット圧pである。また、図3Bでは、縦軸が吐出流量Qであり、横軸が角変位センサ15から得られる踏み角θである。更に、図3Bでは、パイロット圧pがpmin≦p≦pmaxの範囲の各値にあるときに、吐出流量Qが踏み角θに対してどのように変化するかを4つの実線で示している。
図3Aから判るように、第1マップにおいて、目標吐出流量Qは、パイロット圧pが0≦p≦pのとき最小流量Qminで一定であり、パイロット圧pがp≦pのとき最大流量Qmax(>Qmin)で一定である。また、パイロット圧pがp<p<pのとき、目標吐出流量Qは、パイロット圧pに応じて増大している。また、図3Bから判るように、目標吐出流量Qは、踏み角θに係らず、パイロット圧pに応じた一定値となる。それ故、モード1では、圧力センサ48から得られるパイロット圧pに基づいて目標吐出流量Qが演算される。
その後、コントローラ13は、演算された目標吐出流量Qと、回転数センサ54から得られるエンジン3の回転数Rとに基づいて、油圧ポンプ18の目標容量qを
q=Q/(E×R) …(1)
式(1)で演算し、この油圧ポンプ18の目標容量qに基づいて電磁弁51に流す必要電流Iを求める。ここで、係数Eは、減速機7の効率(減速比)である。必要電流Iを電磁弁51に流すことで、パイロット圧pに応じた吐出流量の作動油が油圧ポンプ18から吐出され、バケットシリンダ16又はブームシリンダ17L,17Rに導かれる。即ち、各操作弁33,41の操作レバーの操作量に応じた流量の作動油がバケットシリンダ16又はブームシリンダ17L,17Rに導かれる。これにより、操作量に応じた操作速度でバケット及びブームを動かすことができる。
このように、モード1では、パイロット圧pとエンジン回転数Rとに基づいて油圧ポンプ18の目標容量qが演算される。コントローラ13は、油圧ポンプ18の容量が目標容量qになるようにサーボ機構53を制御し、油圧ポンプ18から目標吐出流量Qの作動油を吐出させている。それ故、従来技術のように各制御弁23,24にて差圧を生じさせる必要がなく、油圧回路20で生じる圧力損失を抑えることができる。これにより、エネルギーロスを抑えることができる。
また、第2マップは、グラフに展開すると、図4A及び図4Bのようになる。なお、図4Aでは、縦軸に吐出流量Qが示され、横軸にパイロット圧pが示されており、踏み角θがθmin≦p≦θmaxの範囲の各値にあるときに、吐出流量Qがパイロット圧pに対してどのように変化するかを4つの実線で示している。また、図4Bでは、縦軸に吐出流量Qが示され、横軸に角変位センサ15から得られる踏み角θが示されており、パイロット圧pがpmin≦p≦pmaxの範囲の各値にあるときに、吐出流量Qが踏み角θに対してどのように変化するかを4つの実線で示している。
図4Aから判るように、目標吐出流量Qは、モード1の場合と同様、パイロット圧pが0≦p≦p及びp≦pのときに流量が一定であり、パイロット圧pがp<p<pのときパイロット圧pに応じて増大する。しかし、図4A及び4Bから判るように、第2マップでは、第1マップと異なり、目標吐出流量Qとパイロット圧pとの関係が踏み角θに応じて変わるようになっている。例えば、踏み角θが大きくなると最小流量Qmin及び最大流量Qmaxが大きくなる。それ故、モード2では、圧力センサ48から得られるパイロット圧pに角変位センサ15から得られる踏み角θを加え、パイロット圧pと踏み角θとに基づいて目標吐出流量Qを演算する。
その後、コントローラ13は、モード1の場合と同様に、目標吐出流量Qとエンジン3の回転数Rとに基づいて油圧ポンプ18の目標容量qを前述の式(1)で演算し、この目標容量qに基づいて電磁弁51に流す必要電流Iを求める。この必要電流Iを電磁弁51に流すことで、パイロット圧pと踏み角θとに応じた吐出流量の作動油が油圧ポンプ18から吐出され、バケットシリンダ16及びブームシリンダ17L,17Rに導かれる。即ち、各操作弁33,41の操作レバーの操作量と、アクセルペダル14の操作量とに応じた流量の作動油がバケットシリンダ16又はブームシリンダ17L,17Rに導かれる。これにより、操作レバー及びアクセルペダルの操作量に応じた操作速度でバケット及びブームを動かすことができる。
このように、モード2では、パイロット圧p、踏み角θとエンジン回転数Rとに基づいて油圧ポンプ18の目標容量qが演算される。コントローラ13は、油圧ポンプ18の容量が目標容量qになるようにサーボ機構53を制御し、油圧ポンプ18から目標吐出流量Qの作動油を吐出させている。それ故、油圧ポンプ18からは、必要な量の作動油を吐出させることができ、従来技術のように不必要な量の作動油を吐出することがない。これにより、油圧回路20におけるエネルギーロスを抑えることができる。
このように油圧回路20は、バケット用操作弁33及びブーム用操作弁41の操作レバーの操作量だけに応じてブーム及びバケットの操作速度が制御されるモード1と、前記操作レバーの操作量とアクセルペダルの操作量に応じてブーム及びバケットの操作速度が制御されるモード2とを切換えることができる。それ故、モード1のような操作が可能なホイルローダが好適な場合、及びモード2のような操作が可能なホイルローダが好適な場合のどちらの場合にも好適に使用することができ、使用可能な範囲が広がる。また、これらの2つのモードの切換えがモード切換スイッチ55により行うことができるので、運転者の作業内容に応じて2つのモードを容易に切換え選択ができ、利便性が高い。
また、ホイルローダ1のようにハイブリッド車両である場合、従来のエンジンだけで駆動するような車両と異なり、アクセルペダル14の操作量とエンジン回転数Rとが一対一で対応しておらず、同じアクセルペダル14の操作量でも蓄電池5の充電量に応じてエンジン回転数Rが異なる。しかし、油圧回路20では、エンジン回転数Rに関係なく油圧ポンプ18の吐出流量Qが演算されるので、上述のようなハイブリッド車両であっても、バケット用操作弁33及びブーム用操作弁41の操作レバーの操作量とアクセルペダル14の操作量とに応じた吐出流量Qの作動油を油圧ポンプ18から吐出させることができ、操作レバーの操作量とアクセルペダル14の操作量とに応じた操作速度でバケット及びブームを動かすことができる。これにより、蓄電池5の蓄電量に係わらず、アクセルペダル14を踏み込むと、それに応じて車両速度とバケット及びブームの操作速度とを同じように上げることができ、操作レバーとアクセルペダル14との操作により車両速度とバケット及びブームの操作速度とのバランスを保つことができる。
<第2実施形態>
油圧回路20は、シリーズ式のハイブリッド駆動装置2を備えるハイブリッド車両でなく、図5に示すような動力分割式のハイブリッド駆動装置2Aを備えるハイブリッド車両であっても適用することができる。以下では、動力分割式のハイブリッド駆動装置2Aを備える第2実施形態のホイルローダ1Aについて簡単に説明する。なお、第2実施形態のホイルローダ1Aの構成について、先に説明する第1実施形態のホイルローダ1と同一の構成については、同一の符号を付して説明を省略し、異なる構成についてだけ説明する。
動力分割式のハイブリッド駆動装置2Aは、減速機7に油圧ポンプ18と、動力分割機構61とが並列して連結されている。動力分割機構61には、モータ・ジェネレータ62と、変速機10とが並列して連結されている。動力分割機構61は、遊星歯車等により構成されており、減速機7が回転すると、その駆動力を分割してモータ・ジェネレータ62と変速機10とに伝達し、モータ・ジェネレータ62が回転すると、その駆動力を変速機10に伝達するようになっている。
モータ・ジェネレータ62は、インバータ/コンバータ63を介して蓄電池5に接続されており、減速機7からの駆動力により回転して蓄電池5を充電するようになっている。また、モータ・ジェネレータ62は、蓄電池から電気により動力分割機構61を介して変速機10に駆動することができるようになっている。このように構成されるハイブリッド駆動装置2Aもまた、コントローラ13を備えており、コントローラ13は、インバータ/コンバータ63を制御するようになっている。
このように構成されるホイルローダ1Aについても、油圧回路20を備えることができ、ホイルローダ1と同様の作用効果を奏する。
本実施形態では、ホイルローダについて説明しているけれども、このような車両に限定するものではない。例えば、クレーン車であってもよく、油圧アクチュエータを備える車両であれば良い。また、車両の構成も、ハイブリッド車両である必要もなく、エンジンだけで走行する車両であってもよい。車両速度を制御するためのアクセルとしてアクセルペダルを挙げているが、レバーのようなものであってもよく、車両速度を変えることができる手段であればよい。
また、本実施形態では、圧力センサ48により操作レバーの操作量を検出しているけれども、必ずしもこのような構成に限定されない。例えば、操作レバーの傾動角をセンサ等により検出し、コントローラ13に出力するようにしてもよい。
なお、本発明は、実施の形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。
1,1A ホイルローダ
3 エンジン
4 発電機
5 蓄電池
6 走行用モータ
13 コントローラ
14 アクセルペダル
15 角変位センサ
16 バケットシリンダ
17L,17R ブームシリンダ
18 油圧ポンプ
20 油圧回路
23 バケット用制御弁
23a スプール
24 ブーム用制御弁
24a スプール
33 バケット用操作弁
41 ブーム用操作弁
44 操作量検出手段
50 容量調整装置
54 回転数センサ
55 モード切換スイッチ
62 モータ・ジェネレータ

Claims (6)

  1. エンジンにより駆動する可変容量型の油圧ポンプから吐出される作動油を油圧アクチュエータに供給して、該油圧アクチュエータを駆動する油圧回路であって、
    前記エンジンの回転数を検出する回転数検出手段と、
    前記油圧アクチュエータに流れる作動油の量を操作する操作手段の操作量を検出する操作量検出手段と、
    前記油圧ポンプの容量を調整する容量調整装置と、
    前記油圧ポンプの吐出流量が前記操作量検出手段で検出された操作量に基づいて演算される目標吐出流量になるように、前記回転数検出手段で検出された前記回転数に応じて前記容量調整装置を制御する制御部とを備えることを特徴とする油圧回路。
  2. 前記制御部は、前記操作量検出手段で検出される操作量だけに応じた流量が前記油圧ポンプから吐出されるように前記目標吐出流量を演算するようになっていることを特徴とする請求項1に記載の油圧回路。
  3. 前記エンジンにより走行する車両本体の速度を変えるアクセルの操作量を検出するアクセル操作量検出手段を更に備え、
    前記制御部は、前記操作量検出手段で検出される操作量と前記アクセル操作量検出手段で検出される操作量とに応じた流量が前記油圧ポンプから吐出されるように前記目標吐出流量を演算するようになっていることを特徴とする請求項1に記載の油圧回路。
  4. 前記エンジンにより走行する車両の速度を変えるためのアクセルの操作量を検出するアクセル操作量検出手段を更に備え、
    前記制御部は、ロードセンシングモードと、アクセル依存モードとをモード切替手段により切換えることができるようになっており、
    前記ロードセンシングモードで、前記操作量検出手段で検出される操作量にだけ応じた流量が前記油圧ポンプから吐出されるように前記目標吐出流量を演算し、前記油圧ポンプの吐出流量が前記目標吐出流量になるように前記油圧ポンプの容量を前記容量調整装置により制御し、
    前記アクセル依存モードで、前記操作量検出手段で検出される操作量と前記アクセル操作量検出手段で検出される操作量とに応じた流量が前記油圧ポンプから吐出されるように前記目標吐出流量を演算し、前記油圧ポンプの吐出流量が前記目標吐出流量になるように前記油圧ポンプの容量を前記容量調整装置により制御するようになっていることを特徴とする請求項1に記載の油圧回路。
  5. 前記操作手段は、前記油圧アクチュエータに流れる作動油の流量を制御する流量制御弁のスプールにパイロット圧を与えて前記スプールの開度を調整するリモートコントロール弁であり、
    前記操作量検出手段は、前記リモートコントロール弁のパイロット圧を検出する圧力センサであることを特徴とする請求項1乃至4の何れか1つに記載の油圧回路。
  6. 前記請求項1乃至5の何れか1つに記載の油圧回路と、
    前記エンジンと、
    前記エンジンにより駆動する発電機と、
    前記発電機で発生する電気を蓄える蓄電池と、
    前記蓄電池の電気により駆動して走行させるモータとを有することを特徴とする車両。
JP2009195877A 2009-08-26 2009-08-26 油圧回路、及びそれを備える車両 Active JP5588136B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195877A JP5588136B2 (ja) 2009-08-26 2009-08-26 油圧回路、及びそれを備える車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195877A JP5588136B2 (ja) 2009-08-26 2009-08-26 油圧回路、及びそれを備える車両

Publications (2)

Publication Number Publication Date
JP2011047317A true JP2011047317A (ja) 2011-03-10
JP5588136B2 JP5588136B2 (ja) 2014-09-10

Family

ID=43833893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195877A Active JP5588136B2 (ja) 2009-08-26 2009-08-26 油圧回路、及びそれを備える車両

Country Status (1)

Country Link
JP (1) JP5588136B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140727A (ja) * 2014-01-29 2015-08-03 株式会社小松製作所 作業車両及びその制御方法
WO2016051815A1 (ja) * 2014-09-30 2016-04-07 株式会社クボタ 作業機の油圧システム及び作業機
WO2017149939A1 (ja) * 2016-02-29 2017-09-08 日立建機株式会社 ハイブリッド作業機械
WO2021061938A1 (en) * 2019-09-24 2021-04-01 Clark Equipment Company System and methods for cycle time management

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275177A (ja) * 1989-04-13 1990-11-09 Toyota Autom Loom Works Ltd 可変速用可変容量油圧ポンプを備えたエンジン車両における走行制御装置
JPH11108003A (ja) * 1997-10-08 1999-04-20 Hitachi Constr Mach Co Ltd 油圧建設機械の原動機と油圧ポンプの制御装置
JP2005061298A (ja) * 2003-08-11 2005-03-10 Kobelco Contstruction Machinery Ltd 建設機械
JP2006070877A (ja) * 2004-09-06 2006-03-16 Komatsu Ltd 作業車両のエンジンの負荷制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275177A (ja) * 1989-04-13 1990-11-09 Toyota Autom Loom Works Ltd 可変速用可変容量油圧ポンプを備えたエンジン車両における走行制御装置
JPH11108003A (ja) * 1997-10-08 1999-04-20 Hitachi Constr Mach Co Ltd 油圧建設機械の原動機と油圧ポンプの制御装置
JP2005061298A (ja) * 2003-08-11 2005-03-10 Kobelco Contstruction Machinery Ltd 建設機械
JP2006070877A (ja) * 2004-09-06 2006-03-16 Komatsu Ltd 作業車両のエンジンの負荷制御装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605414B2 (en) 2014-01-29 2017-03-28 Komatsu Ltd. Working vehicle and control method therefor
WO2015114954A1 (ja) * 2014-01-29 2015-08-06 株式会社小松製作所 作業車両及びその制御方法
CN105229282A (zh) * 2014-01-29 2016-01-06 株式会社小松制作所 作业车辆及其控制方法
JP2015140727A (ja) * 2014-01-29 2015-08-03 株式会社小松製作所 作業車両及びその制御方法
EP2982849A4 (en) * 2014-01-29 2017-01-25 Komatsu Ltd. Working vehicle and control method therefor
JPWO2016051815A1 (ja) * 2014-09-30 2017-04-27 株式会社クボタ 作業機の油圧システム及び作業機
WO2016051815A1 (ja) * 2014-09-30 2016-04-07 株式会社クボタ 作業機の油圧システム及び作業機
US10316496B2 (en) 2014-09-30 2019-06-11 Kubota Corporation Hydraulic system for work machine, and work machine
WO2017149939A1 (ja) * 2016-02-29 2017-09-08 日立建機株式会社 ハイブリッド作業機械
US10364547B2 (en) 2016-02-29 2019-07-30 Hitachi Construction Machinery Co., Ltd. Hybrid work machine
WO2021061938A1 (en) * 2019-09-24 2021-04-01 Clark Equipment Company System and methods for cycle time management
CN114423912A (zh) * 2019-09-24 2022-04-29 克拉克设备公司 用于循环时间管理的系统和方法
US11447930B2 (en) 2019-09-24 2022-09-20 Clark Equipment Company System and methods for cycle time management
US11834810B2 (en) 2019-09-24 2023-12-05 Clark Equipment Company System and methods for cycle time management

Also Published As

Publication number Publication date
JP5588136B2 (ja) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5072926B2 (ja) 作業車両
US8322481B2 (en) Traveling control apparatus for hydraulic traveling vehicle
US8006491B2 (en) Pump control apparatus for construction machine
US9605414B2 (en) Working vehicle and control method therefor
US20110167811A1 (en) Engine control apparatus
KR101908547B1 (ko) 유압구동 작업기계를 작동시키는 시스템 및 구동제어 방법
KR101595584B1 (ko) 하이브리드 건설기계의 제어장치
JP2011202458A (ja) 建設機械の制御装置
JP2011163291A (ja) ハイブリッド建設機械の制御装置
JP2008196536A (ja) 油圧駆動車両のクラッチ制御装置
CN110914577B (zh) 作业车辆及作业车辆的控制方法
EP3067473A1 (en) Hybrid work machine
JP7021210B2 (ja) 作業車両、及び、作業車両の制御方法
WO2009128418A1 (ja) ハイブリッド建設機械の制御装置
JP2010025179A (ja) 走行作業機械の油圧駆動システム
JP2019143770A (ja) 作業車両、及び、作業車両の制御方法
JP5588136B2 (ja) 油圧回路、及びそれを備える車両
US8950180B2 (en) Hybrid construction machine
WO2014192166A1 (ja) ホイールローダ
JP5208067B2 (ja) ハイブリッド建設機械の制御装置
JP2015040604A (ja) 作業機械の油圧制御装置
JPWO2019003761A1 (ja) 作業車両、及び、作業車両の制御方法
JP2009292553A (ja) フォークリフトの荷役回生装置、及びフォークリフト
WO2019163360A1 (ja) 作業車両及び作業車両の制御方法
JP5872170B2 (ja) 建設機械の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140725

R150 Certificate of patent or registration of utility model

Ref document number: 5588136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350