WO2015114927A1 - 光ファイバ接続部の補強装置 - Google Patents

光ファイバ接続部の補強装置 Download PDF

Info

Publication number
WO2015114927A1
WO2015114927A1 PCT/JP2014/081233 JP2014081233W WO2015114927A1 WO 2015114927 A1 WO2015114927 A1 WO 2015114927A1 JP 2014081233 W JP2014081233 W JP 2014081233W WO 2015114927 A1 WO2015114927 A1 WO 2015114927A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
temperature
optical fiber
energization
time
Prior art date
Application number
PCT/JP2014/081233
Other languages
English (en)
French (fr)
Inventor
和文 上甲
亮佑 明尾
誠 宮森
敏彦 本間
Original Assignee
Seiオプティフロンティア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiオプティフロンティア株式会社 filed Critical Seiオプティフロンティア株式会社
Priority to CN201480074376.5A priority Critical patent/CN106030359B/zh
Priority to KR1020167020598A priority patent/KR102400697B1/ko
Priority to US15/114,590 priority patent/US10048442B2/en
Publication of WO2015114927A1 publication Critical patent/WO2015114927A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2558Reinforcement of splice joint
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding

Definitions

  • the present invention relates to a reinforcing device that reinforces connecting portions of optical fibers connected to each other.
  • the reinforcing device of Patent Document 1 has a first heating pattern provided in the center portion and a second heating pattern provided in the vicinity of both ends in the longitudinal direction, and each of them can be independently controlled in temperature.
  • the tube which consists of heat-shrinkable resin is shrunk in order toward the both ends from the center part of a longitudinal direction by heating a 1st heating pattern ahead of a 2nd heating pattern.
  • it is closely attached to the fusion spliced portion of the optical fiber without a gap.
  • the first heating pattern is heated and energization to the first heating pattern is completed and then the second heating pattern is energized and heated, there is a problem that a long time is required for the reinforcement work.
  • An object of the present invention is to provide a reinforcing device for an optical fiber connecting portion that can shorten the reinforcing work time for reinforcing the connecting portion of the optical fiber.
  • a reinforcing device for an optical fiber connecting portion is: A reinforcing device that heat-shrinks a protective member having heat-shrinkability placed on a connecting portion of an optical fiber that is connected by matching end faces, A first heater that heats a central portion of the protective member at a first temperature by connecting the optical fiber covered with the protective member; A second heater that is provided on both sides along the longitudinal direction of the optical fiber in the first heater and heats both end portions of the protective member at a second temperature; A control unit that controls each energization for heating the first heater and the second heater; The controller overlaps at least part of the energization time to the first heater and the energization time to the second heater.
  • FIGS. 4A and 4B are diagrams for explaining a state of thermal contraction of a protective member that protects an optical fiber fusion spliced portion
  • FIGS. 5A to 5C are longitudinal sectional views of the fusion spliced portion of the optical fiber. It is a graph which shows the heating temperature characteristic in the heater of the reinforcement apparatus which concerns on embodiment of this invention, and the control pattern A of electric power feeding.
  • a first heater that heats a central portion of the protective member at a first temperature by connecting the optical fiber covered with the protective member;
  • a second heater that is provided on both sides along the longitudinal direction of the optical fiber in the first heater and heats both end portions of the protective member at a second temperature;
  • a control unit that controls each energization for heating the first heater and the second heater;
  • the controller overlaps at least part of the energization time to the first heater and the energization time to the second heater.
  • the energization time to the first heater and the energization time to the second heater are overlapped to start energization to the second heater after the energization to the first heater is completed.
  • the reinforcing work time can be shortened. Accordingly, the reinforcing member can be smoothly contracted by the plurality of heaters, and the connecting portion of the optical fiber can be reinforced well, and the reinforcing operation can be completed in a short time. Further, when the first heater is energized and heated, the amount of heat released from the first heater can be suppressed by energizing and heating the second heater on both sides of the first heater. Further, the reinforcing work time is shortened and the heat dissipation amount of the first heater is suppressed, so that power consumption can be reduced.
  • the control unit may overlap at least a part of a heating time of the first heater to the first temperature and a heating time of the second heater to the second temperature.
  • the reinforcing work time can be shortened by overlapping the temperature raising time of the first heater and the temperature raising time of the second heater.
  • the temperature of the second heater on both sides of the first heater is raised, so that the amount of heat released from the first heater at the time of raising the temperature can be suppressed.
  • a 1st heater can be efficiently heated up to 1st temperature quickly.
  • the control unit may make the arrival time of the first heater to the first temperature earlier than the arrival time of the second heater to the second temperature.
  • the protective member can be reliably contracted from the central portion, and the air inside the protective member can be reliably pushed out from both ends. Thereby, a protective member is stuck to the connection part of an optical fiber, the connection part of an optical fiber can be reinforced favorably, and the reliability of a reinforcement location can be improved.
  • the control unit may make the first temperature higher than the second temperature. According to the structure of (4), shrinkage
  • the control unit may be configured such that the overlapping ratio of the energization time to the first heater and the energization time to the second heater is 30% or more in the heat shrinking process time. According to the configuration of (5), by setting the overlapping ratio of the energization time to 30% or more in the heat shrinking process time, compared with the case where the energization to the second heater is started after the energization to the first heater is completed. The reinforcing work time can be reduced by 15% or more, and the power consumption can be reduced by 5% or more.
  • FIG. 1 is a schematic block diagram showing a configuration of an optical fiber fusion splicing device 11 including an optical fiber connecting portion reinforcing device 13 according to an embodiment of the present invention.
  • the optical fiber connection portion reinforcing device 13 according to this embodiment is provided in a fusion splicing device 11.
  • the fusion splicing device 11 including the reinforcing device 13 includes a fusion device 12 and a CPU (an example of a control unit) 14.
  • the fusion splicing device 11 includes a power supply unit 1, an image memory 3, a camera 4, a temperature control interface circuit 5, a motor and sensor 6, and a discharge circuit 7.
  • the fusion apparatus 12 has a discharge electrode 8.
  • a fusion splicing operation is performed in which the butted portions of the optical fibers F with which the end surfaces are butted are heated and fused by arc discharge.
  • the reinforcing device 13 includes a heater 9 and a thermistor 10, and the reinforcing device 13 reinforces heat-shrinkable resin on a fusion-bonding portion (an example of a connecting portion) FS, which will be described later, of the optical fiber F. Work is done.
  • the fusion splicing device 12 and the reinforcing device 13 are controlled by the CPU 14 and the temperature adjusting interface circuit 5 for the fusion splicing work and the reinforcing work.
  • the power supply unit 1 supplies power to the heater 9 through the temperature control interface circuit 5 under the control of the CPU 14, and a pair of discharge electrodes of the fusion apparatus 12 through the temperature control interface circuit 5 and the discharge circuit 7. 8 is supplied with electric power.
  • the pair of discharge electrodes 8 are arranged at intervals, and an optical fiber F to be fusion-bonded is arranged in the vicinity of a line connecting the centers of the discharge electrodes 8.
  • the optical fibers F butted against each other are heated by arc discharge generated in the discharge electrode 8 and fusion-bonded.
  • the camera 4 is arranged below the optical fiber F.
  • An image memory 3 is connected to the camera 4 and image data of the enlarged optical fiber F is stored.
  • a CCD camera can be used as the camera 4 and a frame memory can be used as the image memory 3.
  • the heater 9 of the reinforcing device 13 protects the fusion splicing portion FS of the fusion-bonded optical fiber F, and will be described later as protective members 31 and 32 made of a tube-shaped heat-shrinkable resin so as to cover the outer periphery. And the fusion splicing portion FS is fixed by the protective members 31 and 32.
  • the thermistor 10 measures the heating temperature of the heater 9 and adjusts the amount of power supplied to the heater 9 by the temperature adjustment interface circuit 5 based on the measured value. Further, the temperature adjusting interface circuit 5 is connected to the motor and sensor 6 and the discharge circuit 7 to enable control by the CPU 14.
  • FIG. 2 is a perspective view of the reinforcing device 13 according to the embodiment of the present invention.
  • the reinforcing device 13 has a case 20.
  • the inside of the case 20 is a heating chamber 21 provided with a heater 9.
  • the case 20 is provided with a lid 22 that can be opened and closed.
  • Clamp portions 23 are provided at both ends of the case 20.
  • An optical fiber mounting groove 24 is formed in the upper portion of the clamp portion 23.
  • the clamp portion 23 is provided with a presser plate 25 that can be opened and closed at an upper portion thereof.
  • the fusion splicing portion FS of the optical fiber F covered with the protection members 31 and 32 is placed on the heater 9 in the heating chamber 21 of the case 20 and the lid 22 is closed. And the optical fiber F connected to the both sides is placed in the optical fiber mounting groove 24 of the clamp part 23 arrange
  • FIG. 3 is a schematic plan view of the heater 9 provided in the reinforcing device 13.
  • the heater 9 of the reinforcing device 13 includes a first heater 9A and a second heater 9B.
  • 9 A of 1st heaters arrange
  • FIG. 9 A of 1st heaters heat up to 1st temperature by supplying with electricity, and heat the center part of the protection members 31 and 32 at 1st temperature.
  • the second heater 9B is provided on both sides along the longitudinal direction of the optical fiber F in the first heater 9A.
  • the second heater 9 ⁇ / b> B heats both end portions of the protection members 31 and 32.
  • the second heater 9B is heated to the second temperature when energized, and heats both end portions of the protection members 31 and 32 at the second temperature.
  • the first heater 9A and the second heater 9B are energized and controlled independently by the CPU 14, respectively.
  • FIG. 4 is a view for explaining the thermal contraction state of the protective members 31 and 32 that protect the fusion splicing part FS of the optical fiber F.
  • FIGS. It is a longitudinal cross-sectional view of the connection part FS.
  • the optical fiber F fused and connected by the fusion device 12 is taken out from the fusion device 12, and a tubular heat-shrinkable resin previously attached to one optical fiber F is used.
  • the protection members 31 and 32 having different diameters are moved.
  • the protective member 31 having a small diameter is placed so as to cover the fusion splicing part FS of the optical fiber F.
  • the large-diameter protective member 32 is covered so as to cover the fusion splicing portion FS of the optical fiber F covered with the small-diameter protective member 31 and the reinforcing member 33 along the fusion splicing portion FS.
  • the fusion splicing part FS of the optical fiber F is placed on the heater 9 in the heating chamber 21 of the case 20 of the reinforcing device 13 and the lid 22 is closed. And the optical fiber F connected to the both sides is placed in the optical fiber mounting groove 24 of the clamp part 23 arrange
  • the reinforcement start switch (not shown). Then, the first heater 9A and the second heater 9B constituting the heater 9 of the reinforcing device 13 are energized, the first heater 9A is heated to a predetermined first temperature, and the second heater 9B is predetermined. The second temperature is raised.
  • the protection members 31 and 32 are heated at the center in the longitudinal direction by the first heater 9A and at both ends in the longitudinal direction by the heater 9B. And as shown in FIG.4 (b), as for the protection member 31, the center part of a longitudinal direction heat-shrinks, and also as shown in FIG.4 (c), both ends of a longitudinal direction heat-shrink. Thereby, the fusion splicing part FS of the optical fiber F along which the reinforcing member 33 is disposed is covered and reinforced by the protective members 31 and 32.
  • FIG. 5 is a graph showing a heating temperature characteristic in the heater 9 of the reinforcing device 13 according to the embodiment of the present invention and a control pattern A of the feed power.
  • the temperature characteristic of the first heater 9A is indicated by a solid line
  • the temperature characteristic of the second heater 9B is indicated by a broken line.
  • the feed power in the reinforcing device 13 is a total value (about 96 W) of the feed power to the first heater 9A (WA1 in FIG. 5) and the feed power to the second heater 9B (WB1 in FIG. 5).
  • the temperature of the first heater 9A is maintained at the first temperature T1.
  • the temperature of the second heater 9B is maintained at the second temperature T2.
  • the temperature raising time (t2-t1) until the first heater 9A and the second heater 9B are in the temperature controlled state is, for example, about 4 seconds.
  • the CPU 14 performs energization control on the first heater 9A and the second heater 9B so that the first temperature T1 is higher than the second temperature T2.
  • the first temperature T1 of the first heater 9A is set to 230 ° C.
  • the second temperature T2 of the second heater 9B is set to 200 ° C.
  • the feeding power in the reinforcing device 13 is the total value (about 48 W) of the feeding power to the first heater 9A (WA2 in FIG. 5) and the feeding power to the second heater 9B (WB2 in FIG. 5). It becomes.
  • the electric power supplied to the first heater 9A and the second heater 9B is lower than that during the temperature increase. For this reason, the electric power feeding in the reinforcement apparatus 13 becomes a value lower than the time of temperature rising.
  • the energization to the first heater 9A and the second heater 9B is simultaneously terminated, and the protection members 31 and 32 in the reinforcement work are The heat shrinking process ends. Thereby, the fusion splicing part FS of the optical fiber F along which the reinforcing member 33 is disposed is covered and reinforced by the protective members 31 and 32.
  • the temperature adjustment time (t3-t2) of the first heater 9A and the second heater 9B is, for example, about 10 seconds.
  • the first heater 9A, the second heater 9B, and the protection members 31 and 32 are cooled by natural cooling.
  • FIG. 6 is a graph showing heating temperature characteristics and power supply power in the heater 9 for explaining energization control according to the reference example.
  • the reinforcement start switch is pressed, first, energization to the first heater 9A is started (t1A in FIG. 6). Thereby, the temperature of the first heater 9A increases toward the first temperature T1.
  • the feed power in the reinforcing device 13 is the feed power WA1 (about 48 W) to the first heater 9A.
  • the temperature of the first heater 9A is maintained at the first temperature T1.
  • the temperature raising time (t2A-t1A) until the first heater 9A is in the temperature controlled state is, for example, about 4 seconds.
  • the power supply in the reinforcing device 13 is the power supply WA2 (about 24 W) to the first heater 9A.
  • the energization to the first heater 9A is terminated, and at the same time, the energization to the second heater 9B is started (t1B in FIG. 6).
  • the temperature of the second heater 9B rises from the state slightly warmed by the heat of the first heater 9A toward the second temperature T2.
  • the feed power in the reinforcing device 13 is the feed power WB1 (about 48 W) to the second heater 9B.
  • the temperature adjustment time (t3A-t2A) of the first heater 9A is, for example, about 10 seconds.
  • the temperature of the second heater 9B is maintained at the second temperature T2.
  • the temperature raising time (t2B-t1B) until the second heater 9B reaches the temperature control state is, for example, about 4 seconds.
  • the power supply in the reinforcing device 13 is the power supply WB2 (about 24 W) to the second heater 9B.
  • the temperature adjustment time (t3B-t2B) of the second heater 9B is, for example, about 10 seconds.
  • the heat shrinking process time (t3B-t1A) for heat-shrinking the protection members 31 and 32 becomes long (for example, 28 2 seconds), it takes a long time to reinforce the fusion splicing part FS of the optical fiber F.
  • the process time (t3-t1) can be shortened (for example, about 14 seconds), and the time for reinforcing the fusion splicing portion FS of the optical fiber F can be shortened.
  • the protective member 31 and 32 can be smoothly contracted by the first heater 9A and the second heater 9B to satisfactorily reinforce the fusion splicing portion FS of the optical fiber F, and the reinforcing operation can be completed in a short time. it can.
  • the first heater 9A is energized and heated, the amount of heat released from the first heater 9A can be suppressed by energizing and heating the second heater 9B on both sides of the first heater 9A.
  • the reinforcing work time is shortened, and the heat dissipation amount of the first heater 9A is suppressed, so that the power consumption can be reduced.
  • the reinforcing work time can be shortened, and the first heater 9A is heated when the first heater 9A is heated.
  • the temperature of the second heater 9B on both sides increases, the amount of heat released from the first heater 9A during the temperature increase can be suppressed. Thereby, the temperature of the first heater 9A can be raised to the first temperature T1 efficiently and quickly.
  • the contraction of the protection members 31 and 32 can surely proceed from the center toward both ends, and bubbles remain inside the protection members 31 and 32.
  • the reliability of the reinforced part can be improved by eliminating the above.
  • the energization time of the second heater 9B is overlapped with the energization time of the first heater 9A. However, if the energization time is overlapped at least partially, the reinforcing work time is reduced. be able to.
  • the overlapping ratio of the energization time to the first heater 9A and the energization time to the second heater 9B is preferably 30% or more in the heat shrinking process time.
  • the reinforcement work time is 15%.
  • the power consumption can be reduced by 5% or more.
  • the overlapping ratio of the energization time is 50% or more in the heat shrinking process time. Reinforcing work time can be reduced by 30% or more, and power consumption can be reduced by 10% or more.
  • 7 to 17 are graphs showing control patterns of heating temperature characteristics for explaining energization control to the first heater 9A and the second heater 9B.
  • FIG. 7 is a control pattern in which energization of the second heater 9B is started after energization of the first heater 9A is started and the energization time thereafter is overlapped.
  • the energization time is overlapped after the energization to the first heater 9A and the energization to the second heater 9B are started simultaneously. Thereafter, after the energization of the first heater 9A is completed, the second heater 9B is continuously in a temperature-controlled state for a necessary time corresponding to the diameter and length of the protective members 31 and 32. After the energization of the first heater 9A is completed, there is a margin in the power supply capacity. Therefore, when the temperature control of the second heater 9B is continued, the temperature is further increased from the second temperature T2 to increase the heating amount. . Thereby, the thermal contraction of the protection members 31 and 32 can be promoted, and the reinforcement work time can be shortened.
  • the energization of the second heater 9B is started after the energization of the first heater 9A is started, and the energization time thereafter is overlapped. Then, after the energization of the first heater 9A is finished, the temperature of the second heater 9B is further raised, and the temperature is continuously adjusted for a necessary time according to the diameter and length of the protective members 31 and 32.
  • the energization of the second heater 9B is started when the temperature of the first heater 9A reaches the first temperature T1. Then, subsequent energization times are overlapped.
  • the energization of the second heater 9B is started when the temperature of the first heater 9A reaches the first temperature T1. Then, the subsequent energization time is overlapped, and after the energization of the first heater 9A is completed, the temperature of the second heater 9B is further increased, and the temperature adjustment state continues for a necessary time according to the diameter and length of the protection members 31 and 32. To do.
  • the temperature of the first heater 9A reaches the first temperature T1
  • the second heater 9B is energized. Let it begin. Then, subsequent energization times are overlapped.
  • the temperature of the first heater 9A reaches the first temperature T1 and the temperature is adjusted, and then the second heater 9B is energized. Let it begin. Then, the subsequent energization time is overlapped, and after the energization of the first heater 9A is completed, the temperature of the second heater 9B is further increased, and the temperature adjustment state continues for a necessary time according to the diameter and length of the protection members 31 and 32. To do.
  • the temperature of the first heater 9A reaches the first temperature T1
  • the energization of the second heater 9B is performed. Let it begin. Then, subsequent energization times are overlapped.
  • the second temperature T2 of the second heater 9B is set to the same temperature as the first temperature T1 of the first heater 9A.
  • the temperature of the first heater 9A reaches the first temperature T1 and enters the temperature control state, and then the energization of the second heater 9B is performed. Let it begin. Then, subsequent energization times are overlapped.
  • the second temperature T2 of the second heater 9B is set higher than the first temperature T1 of the first heater 9A.
  • the temperature of the first heater 9A reaches the first temperature T1 and reaches the first temperature T1, and then the energization of the second heater 9B is performed. Let it begin. Then, subsequent energization times are overlapped.
  • the energization of the first heater 9A is terminated when the temperature of the second heater 9B reaches the second temperature T2.
  • the first heater 9A is heated to reach the first temperature T1 and the temperature is adjusted, and then the second heater 9B is energized. Let it begin. Then, subsequent energization times are overlapped.
  • energization of the first heater 9A is terminated when the temperature of the second heater 9B reaches the second temperature T2.
  • the second temperature T2 of the second heater 9B is set to the same temperature as the first temperature T1 of the first heater 9A.
  • the reinforcing work time can be reduced by overlapping at least part of the energization time of the first heater 9A and the energization time of the second heater 9B. Can do.
  • the arrival time of the first heater 9A to the first temperature T1 is set earlier than the arrival time of the second heater 9B to the second temperature T2.
  • the protection members 31 and 32 can be reliably contracted from the central portion, and the air inside the protection members 31 and 32 can be reliably pushed out from both ends. Thereby, the protection members 31 and 32 are brought into close contact with the fusion splicing part FS of the optical fiber F to reinforce the fusion splicing part FS of the optical fiber F, and the reliability of the reinforcing part can be improved.
  • the energization control is performed so that the temperature rises of the first heater 9A and the second heater 9B do not overlap. Therefore, the maximum value of the feed power in the reinforcing device 13 can be suppressed. Thereby, the reinforcement work can be performed even during operation of another mechanism or the like that consumes the electric power provided in the fusion splicing device 11.
  • the specific energization time and the feed power to the first heater 9A and the second heater 9B in the above embodiment, the specific heating temperature of the first heater 9A and the second heater 9B, and the like are examples.
  • the energization time, the feed power, and the heating temperature are set according to various conditions.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

 本発明の補強装置は、保護部材が被せられた光ファイバの融着接続部が配置されて保護部材の中央部分を第一温度(T1)で加熱する第一ヒータ(9A)と、第一ヒータ(9A)における光ファイバの長手方向に沿う両側に設けられて保護部材の両端部分を第二温度(T2)で加熱する第二ヒータ(9B)と、第一ヒータ(9A)及び第二ヒータ(9B)を加熱させるためのそれぞれの通電制御を行うCPU(14)とを備え、CPU(14)は、第一ヒータ(9A)への通電時間と第二ヒータ(9B)への通電時間の少なくとも一部を重複させる。

Description

光ファイバ接続部の補強装置
 本発明は、互いに接続された光ファイバの接続部を補強する補強装置に関する。
 従来、端面を突き合わせて放電融着させた光ファイバの融着接続部に熱収縮性樹脂製のチューブを被せ、このチューブを熱収縮させて補強する補強装置がある(特許文献1~3参照)。
日本国特許第3293594号公報 日本国実開平4-24705号公報 日本国実開平2-73602号公報
 特許文献1の補強装置は、中央部分に設けた第1の加熱パターンと、長手方向両端近傍に設けた第2の加熱パターンとを有し、それぞれが独立して温度制御可能とされている。そして、この補強装置では、第2の加熱パターンよりも第1の加熱パターンを先に加熱することで、熱収縮性樹脂からなるチューブを、長手方向の中央部分から両端側へ向かって順に収縮させて光ファイバの融着接続部へ空隙なく密着させている。
 しかし、第1の加熱パターンを加熱し、第1の加熱パターンへの通電を終了した後に第2の加熱パターンへ通電して加熱する制御では、補強作業に長い時間を要するという問題があった。
 本発明は、光ファイバの接続部を補強する補強作業時間を短縮することが可能な光ファイバ接続部の補強装置を提供することを目的とする。
 本発明にかかる光ファイバ接続部の補強装置は、
 端面同士を突き合わせて接続した光ファイバの接続部に被せた熱収縮性を有する保護部材を加熱収縮させる補強装置であって、
 前記保護部材が被せられた前記光ファイバの接続部が配置されて前記保護部材の中央部分を第一温度で加熱する第一ヒータと、
 前記第一ヒータにおける前記光ファイバの長手方向に沿う両側に設けられて前記保護部材の両端部分を第二温度で加熱する第二ヒータと、
 前記第一ヒータ及び前記第二ヒータを加熱させるためのそれぞれの通電制御を行う制御部とを備え、
 前記制御部は、前記第一ヒータへの通電時間と前記第二ヒータへの通電時間の少なくとも一部を重複させる。
 本発明によれば、光ファイバの接続部を補強する補強作業時間を短縮することが可能な光ファイバ接続部の補強装置を提供することができる。
本発明の実施形態に係る光ファイバ接続部の補強装置を備えた光ファイバ融着接続装置の構成を示す概略ブロック図である。 本発明の実施形態に係る補強装置の斜視図である。 補強装置に設けられたヒータの概略平面図である。 光ファイバの融着接続部を保護する保護部材の熱収縮の状態を説明する図であって、(a)~(c)は、それぞれ光ファイバの融着接続部の縦断面図である。 本発明の実施形態に係る補強装置のヒータでの加熱温度特性及び給電電力の制御パターンAを示すグラフである。 参考例に係る通電制御を説明するヒータでの加熱温度特性及び給電電力の制御パターンを示すグラフである。 第一ヒータ及び第二ヒータへの通電制御を説明する加熱温度特性の制御パターンBを示すグラフ図である。 第一ヒータ及び第二ヒータへの通電制御を説明する加熱温度特性の制御パターンCを示すグラフ図である。 第一ヒータ及び第二ヒータへの通電制御を説明する加熱温度特性の制御パターンDを示すグラフ図である。 第一ヒータ及び第二ヒータへの通電制御を説明する加熱温度特性の制御パターンEを示すグラフ図である。 第一ヒータ及び第二ヒータへの通電制御を説明する加熱温度特性の制御パターンFを示すグラフ図である。 第一ヒータ及び第二ヒータへの通電制御を説明する加熱温度特性の制御パターンGを示すグラフ図である。 第一ヒータ及び第二ヒータへの通電制御を説明する加熱温度特性の制御パターンHを示すグラフ図である。 第一ヒータ及び第二ヒータへの通電制御を説明する加熱温度特性の制御パターンIを示すグラフ図である。 第一ヒータ及び第二ヒータへの通電制御を説明する加熱温度特性の制御パターンJを示すグラフ図である。 第一ヒータ及び第二ヒータへの通電制御を説明する加熱温度特性の制御パターンKを示すグラフ図である。 第一ヒータ及び第二ヒータへの通電制御を説明する加熱温度特性の制御パターンLを示すグラフ図である。
〈本発明の実施形態の概要〉
 最初に本発明の実施形態の概要を説明する。
 本発明にかかる光ファイバ接続部の補強装置の一実施形態は、
 (1)端面同士を突き合わせて接続した光ファイバの接続部に被せた熱収縮性を有する保護部材を加熱収縮させる補強装置であって、
 前記保護部材が被せられた前記光ファイバの接続部が配置されて前記保護部材の中央部分を第一温度で加熱する第一ヒータと、
 前記第一ヒータにおける前記光ファイバの長手方向に沿う両側に設けられて前記保護部材の両端部分を第二温度で加熱する第二ヒータと、
 前記第一ヒータ及び前記第二ヒータを加熱させるためのそれぞれの通電制御を行う制御部とを備え、
 前記制御部は、前記第一ヒータへの通電時間と前記第二ヒータへの通電時間の少なくとも一部を重複させる。
 (1)の構成によれば、第一ヒータへの通電時間と第二ヒータへの通電時間とを重複させることで、第一ヒータへの通電終了後に第二ヒータへの通電を開始させる場合と比較し、補強作業時間を短縮させることができる。これにより、複数のヒータによって保護部材を円滑に収縮させて光ファイバの接続部を良好に補強しつつ、短時間で補強作業を終了させることができる。
 また、第一ヒータへ通電して加熱させる際に、第一ヒータの両側の第二ヒータへ通電して加熱させることで、第一ヒータの放熱量を抑えることができる。
 そして、補強作業時間が短くなり、しかも、第一ヒータの放熱量が抑制されることで、消費電力を削減することができる。
 (2)前記制御部は、前記第一ヒータの前記第一温度への昇温時間と前記第二ヒータの前記第二温度への昇温時間の少なくとも一部を重複させるものでもよい。
 (2)の構成によれば、第一ヒータの昇温時間と第二ヒータの昇温時間とを重複させることで、補強作業時間を短縮させることができる。また、第一ヒータの昇温時に第一ヒータの両側の第二ヒータが昇温することで、昇温時における第一ヒータからの放熱量を抑制することができる。これにより、第一ヒータを効率的に素早く第一温度へ昇温させることができる。
 (3)前記制御部は、前記第一ヒータの前記第一温度への到達時刻を前記第二ヒータの前記第二温度への到達時刻より早くするものでもよい。
 (3)の構成によれば、保護部材を中央部分から確実に収縮させて保護部材の内部の空気を両端から確実に押し出すことができる。これにより、保護部材を光ファイバの接続部に密着させて光ファイバの接続部を良好に補強し、補強箇所の信頼性を高めることができる。
 (4)前記制御部は、前記第一温度を前記第二温度より高くするものでもよい。
 (4)の構成によれば、保護部材の収縮を中央から両端に向かって確実に進行させることができ、保護部材の内部における気泡の残存をなくして補強箇所の信頼性を高めることができる。
 (5)前記制御部は、前記第一ヒータへの通電時間と前記第二ヒータへの通電時間の重複の割合を熱収縮工程時間における30%以上とするものでもよい。
 (5)の構成によれば、通電時間の重複の割合を熱収縮工程時間における30%以上とすることで、第一ヒータへの通電終了後に第二ヒータへの通電を開始させる場合と比較し、補強作業時間を15%以上削減することができ、また、消費電力を5%以上低減することができる。
〈本発明の実施形態の詳細〉
 以下、本発明に係る光ファイバ接続部の補強装置の実施の形態の例を、図面を参照して説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 図1は、本発明の実施形態に係る光ファイバ接続部の補強装置13を備えた光ファイバ融着接続装置11の構成を示す概略ブロック図である。
 図1に示すように、本実施例に係る光ファイバ接続部の補強装置13は、融着接続装置11に設けられている。補強装置13を備えた融着接続装置11は、融着装置12と、CPU(制御部の一例)14とを備えている。また、融着接続装置11は、電源ユニット1、画像メモリ3、カメラ4、温調付インターフェース回路5、モータ及びセンサ6、放電回路7を備えている。
 融着装置12は、放電電極8を有しており、融着装置12では、端面同士を突き合わせた光ファイバFの突き合わせ箇所をアーク放電によって加熱して融着させる融着接続作業が行われる。
 補強装置13は、ヒータ9及びサーミスタ10を有しており、補強装置13では、光ファイバFの後述する融着接続部(接続部の一例)FSに被せた熱収縮性樹脂を加熱収縮させる補強作業が行われる。
 融着装置12及び補強装置13は、CPU14及び温調付インターフェース回路5により融着接続作業及び補強作業が制御される。
 電源ユニット1はCPU14の制御の下で、温調付インターフェース回路5を介してヒータ9に電力を供給し、温調付インターフェース回路5および放電回路7を介して融着装置12の一対の放電電極8に電力を供給する。一対の放電電極8は間隔をあけて配置され、放電電極8の中心同士を結ぶ線の近傍に、融着接続すべき光ファイバFが配置される。融着装置12では、互いに突き合わされた光ファイバF同士が放電電極8に生じるアーク放電によって加熱されて融着接続される。
 光ファイバFの下方にはカメラ4が配置されている。カメラ4には画像メモリ3が接続されており、拡大された光ファイバFの画像データが記憶される。このカメラ4としてはCCDカメラ、画像メモリ3としてはフレームメモリを使用できる。
 補強装置13のヒータ9は、融着接続された光ファイバFの融着接続部FSを保護するため、外周を覆うように被せたチューブ状の熱収縮性樹脂からなる後述の保護部材31,32を加熱し、融着接続部FSを保護部材31,32で固定する。サーミスタ10は、このヒータ9の加熱温度を測定し、この測定値に基づき、温調付インターフェース回路5がヒータ9に供給する電力量を調節する。また、温調付インターフェース回路5は、モータ及びセンサ6、放電回路7に接続され、CPU14による制御を可能にしている。
 図2は、本発明の実施形態に係る補強装置13の斜視図である。
 図2に示すように、補強装置13は、ケース20を有している。このケース20は、その内部が、ヒータ9を備えた加熱室21とされている。ケース20には、蓋22が開閉可能に設けられている。また、ケース20の両端には、クランプ部23が設けられている。このクランプ部23には、その上部に光ファイバ載置溝24が形成されている。また、このクランプ部23には、その上部に、開閉可能な押え板25が設けられている。
 この補強装置13では、保護部材31,32を被せた光ファイバFの融着接続部FSを、ケース20の加熱室21内のヒータ9上に置いて蓋22を閉じる。そして、その両側につながる光ファイバFを、両側に配置したクランプ部23の光ファイバ載置溝24に置いて押え板25を閉じる。これにより、光ファイバFの融着接続部FSが補強装置13にセットされる。
 図3は、補強装置13に設けられたヒータ9の概略平面図である。
 図3に示すように、補強装置13のヒータ9は、第一ヒータ9Aと、第二ヒータ9Bとを有している。第一ヒータ9Aは、保護部材31,32が被せられた光ファイバFの融着接続部FSが配置されて保護部材31,32の中央部分を加熱する。第一ヒータ9Aは、通電されることで第一温度に昇温し、第一温度で保護部材31,32の中央部分を加熱する。
 第二ヒータ9Bは、第一ヒータ9Aにおける光ファイバFの長手方向に沿う両側に設けられている。第二ヒータ9Bは、保護部材31,32の両端部分を加熱する。第二ヒータ9Bは、通電されることで第二温度に昇温し、第二温度で保護部材31,32の両端部分を加熱する。これらの第一ヒータ9A及び第二ヒータ9Bは、CPU14によってそれぞれ独立して通電制御される。
 次に、本実施例に係る補強装置13における光ファイバFの融着接続部FSの補強作業について説明する。
 図4は、光ファイバFの融着接続部FSを保護する保護部材31,32の熱収縮の状態を説明する図であって、(a)~(c)は、それぞれ光ファイバFの融着接続部FSの縦断面図である。
 図4(a)に示すように、融着装置12によって融着接続させた光ファイバFを融着装置12から取り出し、予め一方の光ファイバFに装着しておいたチューブ状の熱収縮性樹脂からなる異なる径の保護部材31,32を移動させる。そして、光ファイバFの融着接続部FSを覆うように小径の保護部材31を被せる。さらに、小径の保護部材31を被せた光ファイバFの融着接続部FS及びその融着接続部FSに沿わせた補強材33を覆うように大径の保護部材32を被せる。
 光ファイバFの融着接続部FSを、補強装置13のケース20の加熱室21内におけるヒータ9の上に置いて蓋22を閉じる。そして、その両側につながる光ファイバFを、両側に配置したクランプ部23の光ファイバ載置溝24に置いて押え板25を閉じる。これにより、光ファイバFの融着接続部FSを補強装置13にセットする。
 次に、補強開始スイッチ(図示略)を押下する。すると、補強装置13のヒータ9を構成する第一ヒータ9A及び第二ヒータ9Bに通電され、第一ヒータ9Aが予め定められた第一温度に昇温されるとともに、第二ヒータ9Bが予め定められた第二温度に昇温される。
 これにより、保護部材31,32は、その長手方向の中央部分が第一ヒータ9Aによって加熱され、長手方向の両端部分がヒータ9Bによって加熱される。そして、保護部材31は、図4(b)に示すように、長手方向の中央部分が熱収縮し、さらに、図4(c)に示すように、長手方向の両端部分が熱収縮する。これにより、補強材33が沿わされた光ファイバFの融着接続部FSが保護部材31,32によって覆われて補強される。
 次に、補強装置13のCPU14による第一ヒータ9A及び第二ヒータ9Bに対する具体的な通電制御について説明する。
 図5は、本発明の実施形態に係る補強装置13のヒータ9での加熱温度特性及び給電電力の制御パターンAを示すグラフである。なお、図5において、第一ヒータ9Aの温度特性は実線で示し、第二ヒータ9Bの温度特性は破線で示す。
 図5に示すように、補強開始スイッチが押下されると、第一ヒータ9A及び第二ヒータ9Bへの通電が同時に開始される(図5中t1)。これにより、第一ヒータ9Aは、第一温度T1に向かって昇温し、第二ヒータ9Bは、第二温度T2に向かって昇温する。このとき、補強装置13における給電電力は、第一ヒータ9Aへの給電電力(図5中WA1)と第二ヒータ9Bへの給電電力(図5中WB1)の合計値(約96W)となる。
 第一ヒータ9Aが第一温度T1に到達するとともに第二ヒータ9Bが第二温度T2に到達すると(図5中t2)、第一ヒータ9Aが第一温度T1に維持される温調状態となるとともに第二ヒータ9Bが第二温度T2に維持される温調状態となる。なお、第一ヒータ9A及び第二ヒータ9Bが温調状態となるまでの昇温時間(t2-t1)は、例えば、4秒程度である。ここで、CPU14は、第一温度T1が第二温度T2より高くなるように、第一ヒータ9A及び第二ヒータ9Bに対する通電制御を行う。例えば、第一ヒータ9Aの第一温度T1を230℃とし、第二ヒータ9Bの第二温度T2を200℃とする。
 温調状態においても、補強装置13における給電電力は、第一ヒータ9Aへの給電電力(図5中WA2)と第二ヒータ9Bへの給電電力(図5中WB2)の合計値(約48W)となる。なお、温調状態では、第一ヒータ9A及び第二ヒータ9Bへの給電電力は、昇温時よりも低くなる。このため、補強装置13における給電電力は、昇温時よりも低い値となる。
 保護部材31,32が十分に収縮される温調時間の経過後(図5中t3)、第一ヒータ9A及び第二ヒータ9Bへの通電が同時に終了され、補強作業における保護部材31,32の熱収縮工程の終了となる。これにより、補強材33が沿わされた光ファイバFの融着接続部FSが保護部材31,32によって覆われて補強される。なお、第一ヒータ9A及び第二ヒータ9Bの温調時間(t3-t2)は、例えば、10秒程度である。また、第一ヒータ9A及び第二ヒータ9Bへの通電終了後は、自然冷却により第一ヒータ9A及び第二ヒータ9B及び保護部材31,32が冷却される。
 ここで、参考例に係る通電制御について説明する。
 図6は、参考例に係る通電制御を説明するヒータ9での加熱温度特性及び給電電力を示すグラフである。
 図6に示すように、参考例では、補強開始スイッチが押下されると、まず、第一ヒータ9Aへの通電が開始される(図6中t1A)。これにより、第一ヒータ9Aは、第一温度T1に向かって昇温する。このとき、補強装置13における給電電力は、第一ヒータ9Aへの給電電力WA1(約48W)となる。
 第一ヒータ9Aが第一温度T1に到達すると(図6中t2A)、第一ヒータ9Aが第一温度T1に維持される温調状態となる。なお、第一ヒータ9Aが温調状態となるまでの昇温時間(t2A-t1A)は、例えば、4秒程度である。温調状態において、補強装置13における給電電力は、第一ヒータ9Aへの給電電力WA2(約24W)となる。
 温調時間の経過後(図6中t3A)、第一ヒータ9Aへの通電が終了され、同時に第二ヒータ9Bへの通電が開始される(図6中t1B)。これにより、第二ヒータ9Bは、第一ヒータ9Aの熱で僅かに温められた状態から第二温度T2に向かって昇温する。このとき、補強装置13における給電電力は、第二ヒータ9Bへの給電電力WB1(約48W)となる。なお、第一ヒータ9Aの温調時間(t3A-t2A)は、例えば、10秒程度である。
 第二ヒータ9Bが第二温度T2に到達すると(図6中t2B)、第二ヒータ9Bが第二温度T2に維持される温調状態となる。なお、第二ヒータ9Bが温調状態となるまでの昇温時間(t2B-t1B)は、例えば、4秒程度である。温調状態において、補強装置13における給電電力は、第二ヒータ9Bへの給電電力WB2(約24W)となる。
 温調時間の経過後(図6中t3B)、第二ヒータ9Bへの通電が終了され、補強作業の終了となる。なお、第二ヒータ9Bの温調時間(t3B-t2B)は、例えば、10秒程度である。
 このように、第一ヒータ9Aへの通電終了後に第二ヒータ9Bへの通電を開始させるため、保護部材31,32を熱収縮させる熱収縮工程時間(t3B-t1A)が長くなり(例えば、28秒程度)、光ファイバFの融着接続部FSの補強作業に長い時間を要してしまう。
 これに対して、本実施形態に係る補強装置13では、第一ヒータ9Aへの通電時間と第二ヒータ9Bへの通電時間とを重複させることで、保護部材31,32を熱収縮させる熱収縮工程時間(t3-t1)を短く(例えば、14秒程度)することができ、光ファイバFの融着接続部FSの補強作業時間を短縮させることができる。これにより、第一ヒータ9A及び第二ヒータ9Bによって保護部材31,32を円滑に収縮させて光ファイバFの融着接続部FSを良好に補強しつつ、短時間で補強作業を終了させることができる。また、第一ヒータ9Aへ通電して加熱させる際に、第一ヒータ9Aの両側の第二ヒータ9Bへ通電して加熱させることで、第一ヒータ9Aの放熱量を抑えることができる。
 このように、本実施形態によれば、補強作業時間が短くなり、しかも、第一ヒータ9Aの放熱量が抑制されることで、消費電力を削減することができる。
 特に、第一ヒータ9Aの昇温時間と第二ヒータ9Bの昇温時間とを重複させることで、補強作業時間を短縮させることができ、しかも、第一ヒータ9Aの昇温時に第一ヒータ9Aの両側の第二ヒータ9Bが昇温することで、昇温時における第一ヒータ9Aからの放熱量を抑制することができる。これにより、第一ヒータ9Aを効率的に素早く第一温度T1へ昇温させることができる。
 また、第一温度T1を第二温度T2より高くすることで、保護部材31,32の収縮を中央から両端に向かって確実に進行させることができ、保護部材31,32の内部における気泡の残存をなくして補強箇所の信頼性を高めることができる。
 また、上記実施形態では、第一ヒータ9Aへの通電時間に対して第二ヒータ9Bの通電時間を全て重複させたが、少なくとも一部において通電時間を重複させれば、補強作業時間を削減することができる。
 第一ヒータ9Aへの通電時間と第二ヒータ9Bへの通電時間の重複の割合は熱収縮工程時間における30%以上とするのが好ましい。通電時間の重複の割合を熱収縮工程時間における30%以上とすることで、第一ヒータ9Aへの通電終了後に第二ヒータ9Bへの通電を開始させる場合と比較し、補強作業時間を15%以上削減することができ、また、消費電力を5%以上低減することができる。
 更には、通電時間の重複の割合を熱収縮工程時間における50%以上とするとより好ましい。補強作業時間を30%以上削減することができ、また、消費電力を10%以上低減することができる。
 次に、第一ヒータ9Aへの通電時間と第二ヒータ9Bへの通電時間の少なくとも一部を重複させる各種のパターンの通電制御を説明する。
 図7から図17は、第一ヒータ9A及び第二ヒータ9Bへの通電制御を説明する加熱温度特性の制御パターンを示すグラフ図である。
 図7に示す制御パターンBは、第一ヒータ9Aへの通電開始後に第二ヒータ9Bの通電を開始させ、その後の通電時間を重複させる制御パターンである。
 図8に示す制御パターンCでは、第一ヒータ9Aへの通電及び第二ヒータ9Bへの通電を同時に開始させた後、通電時間を重複させる。その後、第一ヒータ9Aの通電終了後に第二ヒータ9Bを、保護部材31,32の径や長さに応じた必要な時間だけ引き続き温調状態とする。なお、第一ヒータ9Aへの通電終了後は、給電能力に余裕が生じるので、第二ヒータ9Bの温調を継続させる際には、第二温度T2からさらに昇温させて加熱量を増加させる。これにより、保護部材31,32の熱収縮を促進させて補強作業時間を短縮させることができる。
 図9に示す制御パターンDでは、第一ヒータ9Aへの通電開始後に第二ヒータ9Bの通電を開始させ、その後の通電時間を重複させる。そして、第一ヒータ9Aの通電終了後に第二ヒータ9Bをさらに昇温させて、保護部材31,32の径や長さに応じた必要な時間だけ引き続き温調状態とする。
 図10に示す制御パターンEでは、第一ヒータ9Aへの通電開始後、第一ヒータ9Aが昇温して第一温度T1に到達した時点で第二ヒータ9Bの通電を開始させる。そして、その後の通電時間を重複させる。
 図11に示す制御パターンFでは、第一ヒータ9Aへの通電開始後、第一ヒータ9Aが昇温して第一温度T1に到達した時点で第二ヒータ9Bの通電を開始させる。そして、その後の通電時間を重複させ、第一ヒータ9Aの通電終了後に第二ヒータ9Bをさらに昇温させ、保護部材31,32の径や長さに応じた必要な時間だけ引き続き温調状態とする。
 図12に示す制御パターンGでは、第一ヒータ9Aへの通電開始後、第一ヒータ9Aが昇温して第一温度T1に到達して温調状態となった後に第二ヒータ9Bの通電を開始させる。そして、その後の通電時間を重複させる。
 図13に示す制御パターンHでは、第一ヒータ9Aへの通電開始後、第一ヒータ9Aが昇温して第一温度T1に到達して温調状態となった後に第二ヒータ9Bの通電を開始させる。そして、その後の通電時間を重複させ、第一ヒータ9Aの通電終了後に第二ヒータ9Bをさらに昇温させ、保護部材31,32の径や長さに応じた必要な時間だけ引き続き温調状態とする。
 図14に示す制御パターンIでは、第一ヒータ9Aへの通電開始後、第一ヒータ9Aが昇温して第一温度T1に到達して温調状態となった後に第二ヒータ9Bの通電を開始させる。そして、その後の通電時間を重複させる。この制御パターンIでは、第二ヒータ9Bの第二温度T2を第一ヒータ9Aの第一温度T1と同一の温度とする。
 図15に示す制御パターンJでは、第一ヒータ9Aへの通電開始後、第一ヒータ9Aが昇温して第一温度T1に到達して温調状態となった後に第二ヒータ9Bの通電を開始させる。そして、その後の通電時間を重複させる。この制御パターンJでは、第二ヒータ9Bの第二温度T2を第一ヒータ9Aの第一温度T1よりも高い温度とする。
 図16に示す制御パターンKでは、第一ヒータ9Aへの通電開始後、第一ヒータ9Aが昇温して第一温度T1に到達して温調状態となった後に第二ヒータ9Bの通電を開始させる。そして、その後の通電時間を重複させる。この制御パターンKでは、第二ヒータ9Bが昇温して第二温度T2に到達した時点で第一ヒータ9Aへの通電を終了させる。
 図17に示す制御パターンLでは、第一ヒータ9Aへの通電開始後、第一ヒータ9Aが昇温して第一温度T1に到達して温調状態となった後に第二ヒータ9Bの通電を開始させる。そして、その後の通電時間を重複させる。この制御パターンLでは、第二ヒータ9Bが昇温して第二温度T2に到達した時点で第一ヒータ9Aへの通電を終了させる。また、この制御パターンLでは、第二ヒータ9Bの第二温度T2を第一ヒータ9Aの第一温度T1と同一の温度とする。
 上記の図7から図17に示す制御パターンB~Lにおいても、第一ヒータ9Aへの通電時間と第二ヒータ9Bの通電時間の少なくとも一部を重複させることで、補強作業時間を削減することができる。
 特に、図10から図17に示す制御パターンB~Lでは、第一ヒータ9Aの第一温度T1への到達時刻を第二ヒータ9Bの第二温度T2への到達時刻より早くしている。このような制御パターンによれば、保護部材31,32を中央部分から確実に収縮させて保護部材31,32の内部の空気を両端から確実に押し出すことができる。これにより、保護部材31,32を光ファイバFの融着接続部FSに密着させて光ファイバFの融着接続部FSを良好に補強し、補強箇所の信頼性を高めることができる。
 また、図10から図17に示す制御パターンでは、第一ヒータ9Aと第二ヒータ9Bの昇温が重ならないように通電制御している。したがって、補強装置13における給電電力の最大値を抑えることができる。これにより、融着接続装置11に設けられた電力を消費する他の機構等の作動時においても、補強作業を行うことができる。
 なお、上記の実施形態における第一ヒータ9A及び第二ヒータ9Bへの具体的な通電時間や給電電力、第一ヒータ9A及び第二ヒータ9Bの具体的な加熱温度などは一例であり、これらの通電時間、給電電力、加熱温度は様々な条件によって設定される。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2014年1月28日出願の日本特許出願・出願番号2014-013687に基づくものであり、その内容はここに参照として取り込まれる。
9A:第一ヒータ
9B:第二ヒータ
13:補強装置
14:CPU(制御部の一例)
31,32:保護部材
F:光ファイバ
FS:融着接続部(接続部の一例)

Claims (5)

  1.  端面同士を突き合わせて接続した光ファイバの接続部に被せた熱収縮性を有する保護部材を加熱収縮させる補強装置であって、
     前記保護部材が被せられた前記光ファイバの接続部が配置されて前記保護部材の中央部分を第一温度で加熱する第一ヒータと、
     前記第一ヒータにおける前記光ファイバの長手方向に沿う両側に設けられて前記保護部材の両端部分を第二温度で加熱する第二ヒータと、
     前記第一ヒータ及び前記第二ヒータを加熱させるためのそれぞれの通電制御を行う制御部とを備え、
     前記制御部は、前記第一ヒータへの通電時間と前記第二ヒータへの通電時間の少なくとも一部を重複させる光ファイバ接続部の補強装置。
  2.  前記制御部は、前記第一ヒータの前記第一温度への昇温時間と前記第二ヒータの前記第二温度への昇温時間の少なくとも一部を重複させる請求項1に記載の光ファイバ接続部の補強装置。
  3.  前記制御部は、前記第一ヒータの前記第一温度への到達時刻を前記第二ヒータの前記第二温度への到達時刻より早くする請求項1または請求項2に記載の光ファイバ接続部の補強装置。
  4.  前記制御部は、前記第一温度を前記第二温度より高くする請求項1から請求項3のいずれか一項に記載の光ファイバ接続部の補強装置。
  5.  前記制御部は、前記第一ヒータへの通電時間と前記第二ヒータへの通電時間の重複の割合を熱収縮工程時間における30%以上とする請求項1から請求項4のいずれか一項に記載の光ファイバ接続部の補強装置。
     
PCT/JP2014/081233 2014-01-28 2014-11-26 光ファイバ接続部の補強装置 WO2015114927A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480074376.5A CN106030359B (zh) 2014-01-28 2014-11-26 光纤连接部的加强装置
KR1020167020598A KR102400697B1 (ko) 2014-01-28 2014-11-26 광파이버 접속부의 보강 장치
US15/114,590 US10048442B2 (en) 2014-01-28 2014-11-26 Reinforcement device for optical-fiber spliced section

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014013687A JP6318435B2 (ja) 2014-01-28 2014-01-28 光ファイバ接続部の補強装置
JP2014-013687 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015114927A1 true WO2015114927A1 (ja) 2015-08-06

Family

ID=53756521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081233 WO2015114927A1 (ja) 2014-01-28 2014-11-26 光ファイバ接続部の補強装置

Country Status (5)

Country Link
US (1) US10048442B2 (ja)
JP (1) JP6318435B2 (ja)
KR (1) KR102400697B1 (ja)
CN (1) CN106030359B (ja)
WO (1) WO2015114927A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD928208S1 (en) * 2017-08-02 2021-08-17 Inno Instrument (China) .Inc Optical fiber fusion splicer
CN107942439B (zh) * 2017-12-25 2024-04-02 南京吉隆光纤通信股份有限公司 用以组成光纤熔接机热缩管加热v形槽的单元模板
JP1611067S (ja) * 2018-03-07 2018-08-13

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823006A (ja) * 1981-08-03 1983-02-10 Nippon Telegr & Teleph Corp <Ntt> 光フアイバ心線接続部の補強方法
JPS59229312A (ja) * 1983-06-13 1984-12-22 Sumitomo Electric Ind Ltd 熱収縮チユ−ブ加熱用ヒ−タ
WO1992002355A1 (en) * 1990-08-09 1992-02-20 British Telecommunications Public Limited Company A device and a method for heating heat recoverable articles
JPH07198981A (ja) * 1993-12-28 1995-08-01 Sumitomo Electric Ind Ltd 光ファイバ融着接続部補強部材の加熱装置
JP2005148170A (ja) * 2003-11-12 2005-06-09 Sumitomo Electric Ind Ltd 光ファイバ補強部材の加熱処理装置及び加熱処理方法並びに光ファイバ融着接続装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274707A (en) * 1979-06-14 1981-06-23 Northern Telecom Limited Apparatus for fusion splicing of optical fibers
JPH075444Y2 (ja) 1988-11-25 1995-02-08 株式会社フジクラ 光ファイバ補強用熱収縮チューブ加熱器
JPH0725763Y2 (ja) 1990-06-19 1995-06-07 古河電気工業株式会社 光ファイバ融着接続部補強部材の加熱装置
JP3293594B2 (ja) 1999-06-29 2002-06-17 住友電気工業株式会社 光ファイバ融着接続部の保護部材加熱装置及び加熱方法
US7212718B2 (en) * 2003-11-12 2007-05-01 Sumitomo Electric Industries, Ltd. Apparatus and method for heat-treatment of optical fiber reinforcing member and optical fiber fusion splicing apparatus
RU2334258C1 (ru) * 2005-06-09 2008-09-20 Сумитомо Электрик Индастриз, Лтд. Нагреватель защиты стыка, устройство сращивания оплавлением, включающее в себя нагреватель защиты стыка, и способ сращивания оплавлением
JP2007310080A (ja) * 2006-05-17 2007-11-29 Sumitomo Electric Ind Ltd 光ファイバ補強処理装置及び補強処理方法
JP2012150376A (ja) * 2011-01-21 2012-08-09 Furukawa Electric Co Ltd:The 光ファイバ接続部補強部材の加熱装置および加熱方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823006A (ja) * 1981-08-03 1983-02-10 Nippon Telegr & Teleph Corp <Ntt> 光フアイバ心線接続部の補強方法
JPS59229312A (ja) * 1983-06-13 1984-12-22 Sumitomo Electric Ind Ltd 熱収縮チユ−ブ加熱用ヒ−タ
WO1992002355A1 (en) * 1990-08-09 1992-02-20 British Telecommunications Public Limited Company A device and a method for heating heat recoverable articles
JPH07198981A (ja) * 1993-12-28 1995-08-01 Sumitomo Electric Ind Ltd 光ファイバ融着接続部補強部材の加熱装置
JP2005148170A (ja) * 2003-11-12 2005-06-09 Sumitomo Electric Ind Ltd 光ファイバ補強部材の加熱処理装置及び加熱処理方法並びに光ファイバ融着接続装置

Also Published As

Publication number Publication date
CN106030359A (zh) 2016-10-12
US10048442B2 (en) 2018-08-14
CN106030359B (zh) 2019-05-10
KR20160113617A (ko) 2016-09-30
JP2015141298A (ja) 2015-08-03
KR102400697B1 (ko) 2022-05-20
JP6318435B2 (ja) 2018-05-09
US20160341898A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP3293594B2 (ja) 光ファイバ融着接続部の保護部材加熱装置及び加熱方法
JP2007310080A (ja) 光ファイバ補強処理装置及び補強処理方法
WO2015114927A1 (ja) 光ファイバ接続部の補強装置
KR102178040B1 (ko) 광 파이버 보강 부재의 가열 처리 장치, 이 가열 처리 장치를 구비한 광 파이버 융착 접속기 및 광 파이버 보강 부재의 가열 처리 방법
JP5117292B2 (ja) 融着接続方法および融着接続機
JP2004325990A (ja) 異径光ファイバの融着接続方法および融着接続機
JP2007065026A (ja) 熱収縮スリーブ加熱装置、それを用いた光ファイバ融着接続機、及び光ファイバ融着接続補強方法
JP6249521B2 (ja) 光ファイバ融着接続装置
JP6320766B2 (ja) 光ファイバ融着接続装置
JP5224385B2 (ja) 光ファイバ補強部材の加熱処理装置及び加熱処理方法
JP4329973B2 (ja) 光ファイバ補強用熱収縮チューブの加熱収縮方法
JP2004042317A (ja) 熱収縮スリーブの加熱器
JP2667233B2 (ja) 光ファイバ補強用熱収縮チューブ加熱器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167020598

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15114590

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880826

Country of ref document: EP

Kind code of ref document: A1