WO2015114839A1 - 冷却装置及び熱源機 - Google Patents

冷却装置及び熱源機 Download PDF

Info

Publication number
WO2015114839A1
WO2015114839A1 PCT/JP2014/052476 JP2014052476W WO2015114839A1 WO 2015114839 A1 WO2015114839 A1 WO 2015114839A1 JP 2014052476 W JP2014052476 W JP 2014052476W WO 2015114839 A1 WO2015114839 A1 WO 2015114839A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
heat medium
unit
opening degree
temperature
Prior art date
Application number
PCT/JP2014/052476
Other languages
English (en)
French (fr)
Inventor
山本 圭一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/052476 priority Critical patent/WO2015114839A1/ja
Priority to JP2015559722A priority patent/JPWO2015114839A1/ja
Publication of WO2015114839A1 publication Critical patent/WO2015114839A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/133Mass flow of refrigerants through the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a cooling device and a heat source device including the cooling device.
  • the cooling device and the heat source apparatus provided with the heat exchanger include an air cooling system that cools with air and a water cooling system that cools with water as cooling systems of the heat exchanger.
  • Patent Document 1 discloses that the inlet water temperature and the water flow rate are appropriate based on the inlet water temperature of water flowing into the heat exchanger and the outlet water temperature of water flowing out of the heat exchanger.
  • a water-cooled heat source machine that determines whether or not is is disclosed.
  • Patent Document 1 when it is determined that the inlet water temperature or the water flow rate is inappropriate, the operation of the apparatus is stopped and the determination result is notified.
  • This prior art is intended to simplify the manual adjustment of the water-cooled heat source machine by adjusting the equipment based on the notified determination result.
  • the minimum amount of water that needs to be taken into the heat exchanger of the heat source machine is generally to prevent clogging due to foreign matter in the water channel (water piping), water freezing, and heat source machine (cooling) Determined from the perspective of securing capabilities.
  • the required minimum amount of water determined in consideration of these viewpoints is generally described in the instructions used when installing the heat source equipment on site. However, when the person in charge of the construction installs the heat source machine on site, the operation is manually adjusted with reference to this manual, which is complicated. Moreover, in order to make the amount of water satisfying all these three conditions, it is necessary to match the condition that consumes the most water amount among these three conditions. In this case, a larger amount of water is wasted than the minimum required amount of water under the other two conditions.
  • Patent Document 1 is troublesome because the person in charge of the construction needs to perform manual adjustment directly on site based on the notified determination result.
  • the present invention has been made against the background of the above problems, and automatically adjusts the flow rate of a heat medium such as water according to the operating state of the apparatus, and also suppresses the consumption of the amount of the heat medium.
  • the present invention provides a heat source apparatus including the apparatus and a cooling apparatus for the apparatus.
  • the cooling device includes a heat exchanger that performs heat exchange between the refrigerant and the heat medium, an inflow temperature detection unit that detects an inflow temperature of the heat medium flowing into the heat exchanger, and heat that flows out of the heat exchanger.
  • An outflow temperature detection unit that detects the outflow temperature of the medium, a flow rate adjustment unit that adjusts the flow rate of the heat medium by the opening degree, and a control unit that controls the operation of the flow rate adjustment unit, A flow rate determining unit that determines whether or not the flow rate of the heat medium is an appropriate amount based on a temperature difference between the inflow temperature detected by the detection unit and the outflow temperature detected by the outflow temperature detection unit, and a flow rate determination unit And an opening degree adjusting means for automatically adjusting the opening degree of the flow rate adjusting unit based on the determination result determined in step (1).
  • the opening degree adjusting means automatically adjusts the opening degree of the flow rate adjusting unit based on the determination result determined by the flow rate determining means, manual adjustment is unnecessary. For this reason, the convenience of local work is improved. Furthermore, since the opening degree of the flow rate adjusting unit is adjusted based on the flow rate of the heat medium determined from the temperature difference between the inflow temperature and the outflow temperature, consumption of the heat medium amount can be suppressed.
  • FIG. 1 is a schematic diagram showing a heat source device 1 according to Embodiment 1.
  • FIG. 3 is a block diagram showing a control unit 21 in the first embodiment.
  • FIG. 3 is a graph showing the relationship between the temperature difference of the heat medium and the flow rate of the heat medium in Embodiment 1.
  • FIG. 3 is a graph showing the relationship between the temperature difference of the heat medium and the flow rate of the heat medium in Embodiment 1.
  • FIG. 1 is a schematic diagram showing a heat source device 1 according to the first embodiment.
  • the heat source device 1 will be described with reference to FIG.
  • the heat source unit 1 is a heat source unit that includes a water-cooled heat exchanger 3 that performs heat exchange between the refrigerant and the heat medium.
  • the heat exchanger 3 includes an inflow pipe 4 into which the heat medium flows, and a heat medium that flows into the heat exchanger 3.
  • An outflow pipe 5 that flows out is connected.
  • the refrigerant circulates in a refrigerant circuit including the heat exchanger 3, the compressor 9, the four-way valve 10, and the accumulator 11.
  • An inflow temperature detecting unit 6 is installed in the inflow pipe 4.
  • This inflow temperature detection part 6 detects the inflow temperature of the heat medium which flows into the heat exchanger 3, and is comprised by the thermistor, for example. Further, the outflow pipe 5 is provided with an outflow temperature detection unit 7, and this outflow temperature detection unit 7 detects the outflow temperature of the heat medium flowing out from the heat exchanger 3. Similarly to the inflow temperature detection unit 6, the outflow temperature detection unit 7 is configured by a thermistor, for example.
  • the heat medium used is water, but other heat medium may be used.
  • a flow rate adjustment unit 8 is installed upstream of the place where the inflow temperature detection unit 6 is installed.
  • the flow rate adjusting unit 8 adjusts the flow rate of the heat medium flowing through the inflow pipe 4 by the opening degree, and is configured by, for example, a valve.
  • the opening degree of this flow volume adjustment part 8 can be adjusted in 255 steps, for example.
  • the heat source unit 1 has a built-in compressor 9 for compressing the refrigerant.
  • the compressor 9 and the heat exchanger 3 are connected by a pipe, and the refrigerant flows through the pipe to form a refrigeration cycle. ing.
  • the heat source device 1 has a control unit 21, which controls the operation of the flow rate adjustment unit 8 based on the detection result of the inflow temperature detection unit 6 and the detection result of the outflow temperature detection unit 7. It is something to control.
  • FIG. 2 is a block diagram showing the control unit 21 in the first embodiment.
  • the control unit 21 includes a control board 22, an inverter board 28, and an I / O board 30.
  • the control board 22 includes a temperature detection unit 26, a flow rate determination unit 24, an opening degree adjustment unit 25, and a compressor control unit 27.
  • the temperature detection unit 26 determines the flow rate of a signal related to the inflow temperature of the inflowing heat medium or the outflow temperature of the outflow heat medium. It outputs to the means 24.
  • the flow rate determination unit 24 is based on the information of the signal input from the temperature detection unit 26, that is, the temperature difference between the inflow temperature detected by the inflow temperature detection unit and the outflow temperature detected by the outflow temperature detection unit 7. It is determined whether or not the flow rate of the heat medium is an appropriate amount.
  • the inflow temperature of the inflowing heat medium is T1 (° C.)
  • the outflow temperature of the outflowing heat medium is T2 (° C.)
  • the predetermined maximum threshold is TsH (° C.)
  • the predetermined minimum threshold is TsL ( ° C).
  • FIG. 3 is a graph showing the relationship between the temperature difference of the heat medium and the flow rate of the heat medium in the first embodiment.
  • the horizontal axis indicates the temperature difference between the inflow temperature of the inflowing heat medium and the outflow temperature of the outflowing heat medium
  • the vertical axis indicates the flow rate of the heat medium.
  • the larger the temperature difference between the inflow temperature and the outflow temperature the smaller the flow rate of the heat medium. This relationship is obtained from, for example, simulation or test results.
  • the flow rate determination unit 24 is configured so that the temperature difference between the inflow temperature detected by the inflow temperature detection unit 6 and the outflow temperature detected by the outflow temperature detection unit 7 is in a range between the maximum threshold value and the minimum threshold value (TsH ⁇
  • the flow rate determination means 24 has a temperature difference between the inflow temperature detected by the inflow temperature detection unit 6 and the outflow temperature detected by the outflow temperature detection unit 7 larger than the maximum threshold (
  • the opening degree adjusting means 25 automatically adjusts the opening degree of the flow rate adjusting unit 8 based on the determination result determined by the flow rate determining means 24.
  • the opening degree adjusting unit 25 maintains the opening degree of the flow rate adjusting unit 8. That is, when TsH ⁇
  • the opening degree adjusting unit 25 increases the opening degree of the flow rate adjusting unit 8. That is, in the case of
  • the opening adjusting means 25 increases the opening of the flow rate adjusting unit 8 by one step, for example.
  • the opening degree adjusting means 25 lowers the opening degree of the flow rate adjusting unit 8 when the flow rate judging means 24 determines that the flow rate of the heat medium is larger than the appropriate amount. That is, when
  • the compressor control means 27 on the control board 22 controls the operation of the compressor 9 and outputs the control signal to the inverter board 28.
  • substrate 28 is provided with the compressor drive means 29, and the compressor drive means 29 produces
  • the control unit 21 controls the operation of the compressor 9.
  • the control unit 21 operates the compressor 9 at a predetermined frequency, for example, during a test operation of the heat source unit 1 performed when the heat source unit 1 is installed on site.
  • the I / O board 30 provided in the control unit 21 is an analog output circuit that generates a drive signal for adjusting the opening degree of the flow rate adjusting unit 8 based on a signal output from the opening degree adjusting unit 25, for example.
  • the analog output voltage of the I / O board 30 can be set within a range of 0 V to 10 V, for example, and the opening degree of the flow rate adjusting unit 8 is determined according to the analog output voltage. For example, when the analog output voltage is 0V, the opening degree of the flow rate control unit 8 is fully opened, and gradually decreases as the flow rate adjustment unit 8 increases to 0V to 10V. When the analog output voltage is 10V The opening degree of the flow rate control unit 8 is fully closed. In that case, you may comprise so that an opening degree may be controlled continuously in 255 steps, for example.
  • a storage unit may be provided in the control unit 21, and a table indicating a relationship between the temperature difference between the inflow temperature and the outflow temperature and the flow rate of the heat medium may be stored in the storage unit.
  • the flow rate (volume flow rate) Q (m 3 / h) of the heat medium per unit time is equal to the cross-sectional area A of the inflow pipe 4 and the outflow pipe 5 to the flow rate S (m / h) of the heat medium per unit time. (M 2 ) multiplied.
  • the flow rate is proportional to the flow rate, the relationship between the temperature difference and the flow rate may be tabulated instead of the relationship between the temperature difference and the flow rate.
  • the graph shown in FIG. 3 can be used as a table.
  • the opening degree adjusting means 25 in the control unit 21 automatically adjusts the opening degree of the flow rate adjusting unit 8 based on the flow rate of the heat medium determined from the temperature difference between the inflow temperature and the outflow temperature. Adjust with. For this reason, when installing the heat source machine 1 on the spot, manual adjustment is unnecessary and the convenience of the work on the spot improves. Further, since the opening degree of the flow rate adjusting unit 8 is adjusted based on the flow rate of the heat medium determined from the temperature difference between the inflow temperature and the outflow temperature, consumption of the heat medium amount can be suppressed.
  • the flow rate determining means 24 makes the determination, and the opening degree adjusting means 25 increases the opening degree of the flow rate adjusting unit 8. Thereby, the amount of the heat medium can be restored to an appropriate amount.
  • the flow rate determining unit 24 determines that the amount of the circulating heat medium is excessive, and the opening degree adjusting unit 25 decreases the opening degree of the flow rate adjusting unit 8. Also in this case, the amount of the heat medium can be restored to an appropriate amount.
  • the flow rate determination unit 24 determines that the amount of the heat medium is an appropriate amount, and the opening degree adjustment unit 25 opens the flow rate adjustment unit 8. Keep the degree.
  • the heat source apparatus 1 maintains the amount of the heat medium at an appropriate amount by automatically adjusting the flow rate adjusting unit 8 even if the amount of the circulating heat medium is excessive or insufficient. be able to.
  • the heat source unit 1 according to Embodiment 1 can be configured as an outdoor unit of an air conditioner.
  • the specific operation of the opening degree adjusting means 25 is described.
  • the inflow temperature detected by the inflow temperature detection unit 6 and the outflow temperature detected by the outflow temperature detection unit 7 are described. If the temperature difference is larger than twice the maximum threshold value (
  • the opening degree of the flow rate adjusting unit 8 when the analog output voltage of the I / O board 30 is 10 V, the opening degree of the flow rate adjusting unit 8 is 0, that is, is fully closed. For example, you may set to 8V, 6V, 4V etc. Thereby, in any case, the opening degree of the flow rate adjusting unit 8 is not 0, that is, is not fully closed, and the minimum flow rate of the heat medium can be ensured.
  • the setting of the upper limit value of the analog output voltage may be performed, for example, by switching a switch or the like.
  • the I / O board 30 has an analog output circuit that outputs an analog voltage, but can also be configured to have a current output circuit that outputs a current.
  • the current in the current output circuit can be set, for example, within a range of 4 mA to 20 mA, and the opening degree of the flow rate adjusting unit 8 is determined according to the current.
  • various flow rate adjusting units 8 can be used.
  • the heat source unit 1 may be configured to adjust the opening degree of the flow rate control unit 8 within a range in which the (cooling) capability of the heat source unit 1 is ensured based on the operation state of the heat source unit 1. Thereby, it is possible to further reduce the amount of the heat medium to be consumed.
  • the opening degree adjusting means 25 can also adjust the opening degree of the flow rate adjusting unit 8 based on the determination result determined by the flow rate determining means 24 so as to prevent the heat medium from freezing.
  • the temperature of the heat medium varies depending on the season in which the heat source unit 1 is used or the surrounding environment where the heat source unit 1 is installed, and the temperature difference between the inflow temperature and the outflow temperature also varies. At this time, the freezing of the heat medium can be suppressed with the minimum necessary flow rate of the heat medium by adjusting the opening degree of the flow rate control unit 8 so as to prevent the heat medium from freezing. This also contributes to saving water.
  • control unit 21 may be provided with a notification unit that detects an abnormality based on the determination result determined by the flow rate determination unit 24. For example, when the temperature difference between the inflow temperature detected by the inflow temperature detection unit 6 and the outflow temperature detected by the outflow temperature detection unit 7 is extremely large, the flow rate adjustment unit 8 is defective, and the flow rate adjustment unit 8 is driven. / O substrate 30 is defective, or the inflow pipe 4 and the outflow pipe 5 are clogged with foreign matter. For this reason, when the temperature difference is large, the informing means notifies the abnormality, so that these problems can be dealt with quickly.
  • the flow rate adjusting unit 8 may be configured to be included in the heat source unit 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 冷却装置は、冷媒と熱媒体との熱交換を行う熱交換器と、熱交換器に流入する熱媒体の流入温度を検出する流入温度検出部と、熱交換器から流出する熱媒体の流出温度を検出する流出温度検出部と、熱媒体の流量を開度で調節する流量調節部と、流量調節部の動作を制御する制御部と、を有し、制御部は、流入温度検出部で検出された流入温度と流出温度検出部で検出された流出温度との温度差に基づいて、熱媒体の流量が適正量であるか否かを判定する流量判定手段と、流量判定手段で判定された判定結果に基づいて、流量調節部の開度を自動で調整する開度調整手段と、を有する。

Description

冷却装置及び熱源機
 本発明は、冷却装置及びその冷却装置を備えた熱源機に関する。
 熱交換器を備えた冷却装置及び熱源機は、その熱交換器の冷却方式として、空気で冷却する空冷方式と、水で冷却する水冷方式とが挙げられる。このうち、水冷方式の従来技術として、特許文献1には、熱交換器に流入する水の入口水温及び熱交換器から流出する水の出口水温に基づいて、入口水温と水の流量とが適正であるか否かを判定する水冷式熱源機が開示されている。この特許文献1においては、入口水温又は水の流量が不適当なものであると判定された場合、装置の運転が停止され、その判定結果が報知される。この従来技術は、工事担当者が、報知された判定結果に基づいて機器を調整することにより、水冷式熱源機の手動調整を簡便化しようとするものである。
特開平3-152333号公報(特許請求の範囲、第3頁~第4頁)
 水冷方式の熱源機において、熱源機の熱交換器に取り込む必要がある最低水量は、一般的に、水路(水配管)の異物による詰まりの防止、水の凍結の防止、熱源機の(冷却)能力の確保の観点から、決定される。これらの観点を考慮して決定された必要最低水量は、一般的に、熱源機を現地に据え付ける際に使用される説明書に記載されている。しかしながら、工事担当者が熱源機を現地に据え付ける際、この説明書を参照しながら手動で動作調整を行うため、煩雑である。また、これらの3個の条件を全て満たす水量にするため、これらの3個の条件のなかで、もっとも水量を消費する条件に合わせる必要がある。この場合、そのほかの2個の条件における必要最低水量よりも、多くの水量を浪費してしまう。
 また、特許文献1に開示された水冷式熱源機も、工事担当者が、報知された判定結果に基づいて、現地で直接手動調整を行う必要があるため、煩わしい。
 本発明は、上記のような課題を背景としてなされたもので、装置の運転状態に応じて、水等の熱媒体の流量を自動で調整し、また、熱媒体の量の消費を抑制する冷却装置及びその冷却装置を備えた熱源機を提供するものである。
 本発明に係る冷却装置は、冷媒と熱媒体との熱交換を行う熱交換器と、熱交換器に流入する熱媒体の流入温度を検出する流入温度検出部と、熱交換器から流出する熱媒体の流出温度を検出する流出温度検出部と、熱媒体の流量を開度で調節する流量調節部と、流量調節部の動作を制御する制御部と、を有し、制御部は、流入温度検出部で検出された流入温度と流出温度検出部で検出された流出温度との温度差に基づいて、熱媒体の流量が適正量であるか否かを判定する流量判定手段と、流量判定手段で判定された判定結果に基づいて、流量調節部の開度を自動で調整する開度調整手段と、を有することを特徴とする。
 本発明によれば、開度調整手段が、流量判定手段で判定された判定結果に基づいて、流量調節部の開度を自動で調整するため、手動調整が不要である。このため、現地での作業の利便性が向上する。更に、流入温度と流出温度との温度差から判定された熱媒体の流量に基づいて、流量調節部の開度が調整されるため、熱媒体の量の消費を抑えることができる。
実施の形態1に係る熱源機1を示す模式図である。 実施の形態1における制御部21を示すブロック図である。 実施の形態1における熱媒体の温度差と熱媒体の流量との関係を示すグラフ図である。
 以下、本発明に係る冷却装置及び熱源機の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
 図1は、実施の形態1に係る熱源機1を示す模式図である。この図1に基づいて、熱源機1について説明する。熱源機1は、冷媒と熱媒体との熱交換を行う水冷式の熱交換器3を備えた熱源機であり、その熱交換器3に、熱媒体が流入する流入管4と、熱媒体が流出する流出管5とが接続されている。冷媒は、熱交換器3、圧縮機9、四方弁10及びアキュムレータ11を備えた冷媒回路に流通している。そして、流入管4には、流入温度検出部6が設置されている。この流入温度検出部6は、熱交換器3に流入する熱媒体の流入温度を検出するものであり、例えば、サーミスタで構成されている。また、流出管5には、流出温度検出部7が設置されており、この流出温度検出部7は、熱交換器3から流出する熱媒体の流出温度を検出するものである。この流出温度検出部7も、流入温度検出部6と同様に、例えば、サーミスタで構成されている。なお、使用する熱媒体は、水としているが、それ以外の熱媒体を使用してもよい。
 流入管4には、例えば、流入温度検出部6が設置された場所よりも上流側に、流量調節部8が設置されている。この流量調節部8は、流入管4を流通する熱媒体の流量を開度で調節するものであり、例えばバルブ等で構成されている。なお、この流量調節部8の開度は、例えば255段階で調節することができる。また、熱源機1には冷媒を圧縮する圧縮機9が内蔵されており、この圧縮機9と熱交換器3とが配管により接続され、その配管に冷媒が流通して、冷凍サイクルが形成されている。更に、熱源機1は、制御部21を有しており、この制御部21は、流入温度検出部6の検出結果及び流出温度検出部7の検出結果に基づいて、流量調節部8の動作を制御するものである。
 次に、制御部21について詳細に説明する。図2は、実施の形態1における制御部21を示すブロック図である。図2に示すように、制御部21は、制御基板22と、インバータ基板28と、I/O基板30とを備えている。このうち、制御基板22は、温度検知手段26、流量判定手段24、開度調整手段25及び圧縮機制御手段27を備えている。温度検知手段26は、流入温度検出部6又は流出温度検出部7から出力された信号が入力された場合に、流入する熱媒体の流入温度又は流出する熱媒体の流出温度に関する信号を、流量判定手段24に出力するものである。
 流量判定手段24は、温度検知手段26から入力される信号の情報、即ち、流入温度検出手段で検出された流入温度と流出温度検出部7で検出された流出温度との温度差に基づいて、熱媒体の流量が適正量であるか否かを判定するものである。ここで、流入する熱媒体の流入温度をT1(℃)、流出する熱媒体の流出温度をT2(℃)、予め決められた最大閾値をTsH(℃)、予め決められた最小閾値をTsL(℃)とする。
 図3は、実施の形態1における熱媒体の温度差と熱媒体の流量との関係を示すグラフ図である。図3において、横軸は、流入する熱媒体の流入温度と流出する熱媒体の流出温度との温度差を示すものであり、縦軸は、熱媒体の流量を示すものである。図3に示すように、流入温度と流出温度との温度差が大きいほど、熱媒体の流量が少ない。なお、この関係は、例えばシミュレーション又は試験結果等から得られる。流量判定手段24は、流入温度検出部6で検出された流入温度と流出温度検出部7で検出された流出温度との温度差が、最大閾値と最小閾値との間の範囲(TsH≧|T2-T1|≧TsL)である場合、熱媒体の流量が適正量であると判定する。
 また、流量判定手段24は、流入温度検出部6で検出された流入温度と流出温度検出部7で検出された流出温度との温度差が、最大閾値よりも大きい(|T2-T1|>TsH)場合、熱媒体の流量が適正量よりも少ないと判定する。更に、流量判定手段24は、流入温度検出部6で検出された流入温度と流出温度検出部7で検出された流出温度との温度差が、最小閾値よりも小さい(|T2-T1|<TsL)場合、熱媒体の流量が適正量よりも多いと判定する。
 そして、開度調整手段25は、流量判定手段24で判定された判定結果に基づいて、流量調節部8の開度を自動で調整するものである。開度調整手段25は、熱媒体の流量が適正量であると流量判定手段24で判定された場合、流量調節部8の開度を維持する。即ち、TsH≧|T2-T1|≧TsLの場合、流通する熱媒体の量が適正量であると流量判定手段24が判定し、開度調整手段25が流量調節部8の開度を現状のまま維持する。
 また、開度調整手段25は、熱媒体の流量が適正量よりも少ないと流量判定手段24で判定された場合、流量調節部8の開度を上げる。即ち、|T2-T1|>TsHの場合、熱交換器3から流出する熱媒体の温度が高くなり過ぎており、流通する熱媒体の量が不足していると流量判定手段24が判定し、開度調整手段25が流量調節部8の開度を例えば1段階上げる。
 更に、開度調整手段25は、熱媒体の流量が適正量よりも多いと流量判定手段24で判定された場合、流量調節部8の開度を下げる。即ち、|T2-T1|<TsLの場合、熱交換器3に流入する熱媒体の温度と、熱交換器3から流出する熱媒体の温度とが近接しており、流通する熱媒体の量が過剰であると流量判定手段24が判定し、開度調整手段25が流量調節部8の開度を例えば1段階下げる。
 一方、制御基板22における圧縮機制御手段27は、圧縮機9の動作を制御するものであり、その制御信号をインバータ基板28に出力する。そして、このインバータ基板28は、圧縮機駆動手段29を備えており、圧縮機駆動手段29は、圧縮機制御手段27から入力された制御信号に基づいて、圧縮機9を駆動する駆動信号を、圧縮機9に出力するものである。これにより、制御部21は、圧縮機9の動作を制御する。なお、本実施の形態1において、制御部21は、例えば熱源機1の現場据え付け時に行われる熱源機1の試験動作の際に、圧縮機9を予め決められた周波数で運転させている。
 制御部21に備わるI/O基板30は、例えば、開度調整手段25から出力された信号に基づいて、流量調節部8の開度を調節する駆動信号を生成するアナログ出力回路である。このI/O基板30のアナログ出力電圧は、例えば0V~10Vの範囲内で設定可能であり、そのアナログ出力電圧に応じて、流量調節部8の開度が決定される。例えば、アナログ出力電圧が0Vの場合、流量調節部8の開度を全開とし、0V~10Vに上昇するに従って、徐々に流量調節部8の開度を下げていき、アナログ出力電圧が10Vの場合、流量調節部8の開度を全閉とする。その際、例えば、255段階で連続的に開度を制御するように構成してもよい。
 なお、制御部21に記憶手段を設け、流入温度及び流出温度の温度差と、熱媒体の流速との関係を示すテーブルを、記憶手段に記憶させるように構成してもよい。なお、単位時間当たりの熱媒体の流量(体積流量)Q(m/h)は、単位時間当たりの熱媒体の流速S(m/h)に、流入管4及び流出管5の断面積A(m)を乗算したものである。このように、流量は流速に比例するため、温度差と流速との関係の代わりに、温度差と流量との関係をテーブル化してもよい。この場合、図3に示すグラフ図をテーブル化して使用することができる。そして、開度調整手段25が、熱媒体の流量に基づいて、流量調節部8の開度を調整するように構成してもよい。
 次に、本実施の形態1に係る熱源機1の作用について説明する。熱源機1は、前述の如く、制御部21における開度調整手段25が、流入温度と流出温度との温度差から判定された熱媒体の流量に基づいて、流量調節部8の開度を自動で調整する。このため、例えば熱源機1を現地に設置する際、手動調整が不要であり、現地での作業の利便性が向上する。また、流入温度と流出温度との温度差から判定された熱媒体の流量に基づいて、流量調節部8の開度が調整されるため、熱媒体の量の消費を抑えることができる。
 また、流入温度検出部6で検出された流入温度と流出温度検出部7で検出された流出温度との温度差が、最大閾値よりも大きい場合、流通する熱媒体の量が不足していると流量判定手段24が判定し、開度調整手段25が流量調節部8の開度を上げる。これにより、熱媒体の量を適正量に復旧することができる。そして、その温度差が最小閾値よりも小さい場合、流通する熱媒体の量が過多であると流量判定手段24が判定し、開度調整手段25が流量調節部8の開度を下げる。この場合も、これにより、熱媒体の量を適正量に復旧することができる。更に、その温度差が最大閾値と最小閾値との間の範囲である場合、熱媒体の量が適正量であると流量判定手段24が判定し、開度調整手段25が流量調節部8の開度を維持する。このように、本実施の形態1に係る熱源機1は、流通する熱媒体の量に過不足が生じても、流量調節部8を自動で調整して、熱媒体の量を適正量に保つことができる。
 なお、本実施の形態1に係る熱源機1は、空気調和装置の室外機として構成することもできる。また、本実施の形態1では、開度調整手段25の具体的な動作を説明しているが、流入温度検出部6で検出された流入温度、及び流出温度検出部7で検出された流出温度の温度差が、最大閾値の2倍よりも大きい場合(|T2-T1|>2TsH)、流量調節部8の開度を2段階上げるように構成してもよい。更に、この温度差が、最小閾値の2倍よりも小さい場合(|T2-T1|<2TsL)、流量調節部8の開度を2段階下げるように構成することもできる。
 また、上記実施の形態1では、I/O基板30のアナログ出力電圧が10Vのときに、流量調節部8の開度を0、即ち全閉としているが、このアナログ出力電圧の上限値を、例えば8V、6V、4V等に設定してもよい。これにより、いずれの場合においても、流量調節部8の開度が0、即ち全閉とならず、熱媒体の最低流量を確保することができる。なお、このアナログ出力電圧の上限値の設定は、例えばスイッチ等の切り換えにより行うように構成してもよい。
 また、I/O基板30は、アナログ電圧を出力するアナログ出力回路を有しているが、更に、電流を出力する電流出力回路を有するように構成することも可能である。この電流出力回路における電流は、例えば4mA~20mAの範囲内で設定可能であり、その電流に応じて、流量調節部8の開度が決定される。このように、I/O基板30が、複数の出力回路を有する構成とすることによって、多様な流量調節部8を使用することができる。
 更に、熱源機1は、その熱源機1の運転状態に基づいて、熱源機1の(冷却)能力を確保する範囲で、流量調節部8の開度を調整するように構成してもよい。これにより、消費する熱媒体の量を更に低減することも可能である。
 更にまた、開度調整手段25は、流量判定手段24で判定された判定結果に基づいて、熱媒体が凍結することを抑制するように、流量調節部8の開度を調整することもできる。熱源機1が使用される季節、又は熱源機1が設置される場所の周囲環境によって、熱媒体の温度が変動し、流入温度と流出温度との温度差も変動する。このとき、熱媒体が凍結することを抑制するように、流量調節部8の開度を調節することによって、必要最小限の熱媒体の流量で、熱媒体の凍結を抑制することができる。これにより、節水にも資する。
 また、制御部21が、流量判定手段24で判定された判定結果に基づいて、異常を検知する報知手段を備えていてもよい。例えば、流入温度検出部6で検出された流入温度、及び流出温度検出部7で検出された流出温度の温度差が、極めて大きい場合、流量調節部8の不良、流量調節部8を駆動するI/O基板30の不良、又は流入管4、流出管5の異物による詰まり等が想定される。このため、その温度差が大きい場合、報知手段が異常を報知することによって、これらの不具合に迅速に対応することができる。
 また、流量調節部8を熱源機1内に有するように構成してもよい。
 1 熱源機、3 熱交換器、4 流入管、5 流出管、6 流入温度検出部、7 流出温度検出部、8 流量調節部、9 圧縮機、10 四方弁、11 アキュムレータ、21 制御部、22 制御基板、24 流量判定手段、25 開度調整手段、26 温度検知手段、27 圧縮機制御手段、28 インバータ基板、29 圧縮機駆動手段、30 I/O基板。

Claims (8)

  1.  冷媒と熱媒体との熱交換を行う熱交換器と、
     前記熱交換器に流入する熱媒体の流入温度を検出する流入温度検出部と、
     前記熱交換器から流出する熱媒体の流出温度を検出する流出温度検出部と、
     前記熱媒体の流量を開度で調節する流量調節部と、
     前記流量調節部の動作を制御する制御部と、を有し、
     前記制御部は、
     前記流入温度検出部で検出された流入温度と前記流出温度検出部で検出された流出温度との温度差に基づいて、前記熱媒体の流量が適正量であるか否かを判定する流量判定手段と、
     前記流量判定手段で判定された判定結果に基づいて、前記流量調節部の開度を自動で調整する開度調整手段と、を有する
     ことを特徴とする冷却装置。
  2.  前記流量判定手段は、
     前記流入温度と前記流出温度との温度差が、予め決められた最大閾値と予め決められた最小閾値との間の範囲である場合、前記熱媒体の流量が適正量であると判定し、
     前記流入温度と前記流出温度との温度差が、前記最大閾値よりも大きい場合、前記熱媒体の流量が適正量よりも少ないと判定し、
     前記流入温度と前記流出温度との温度差が、前記最小閾値よりも小さい場合、前記熱媒体の流量が適正量よりも多いと判定するものであり、
     前記開度調整手段は、
     前記熱媒体の流量が適正量であると前記流量判定手段で判定された場合、前記流量調節部の開度を維持し、
     前記熱媒体の流量が適正量よりも少ないと前記流量判定手段で判定された場合、前記流量調節部の開度を上げ、
     前記熱媒体の流量が適正量よりも多いと前記流量判定手段で判定された場合、前記流量調節部の開度を下げるものである
     ことを特徴とする請求項1記載の冷却装置。
  3.  前記熱媒体は、水である
     ことを特徴とする請求項1又は2記載の冷却装置。
  4.  前記開度調整手段は、
     前記熱媒体の凍結を防止する流量を確保するように、前記流量調節部の開度を調整する
     ことを特徴とする請求項1~3のいずれか1項に記載の冷却装置。
  5.  前記制御部は、
     前記流量判定手段で判定された判定結果に基づいて、異常を報知する報知手段を更に有する
     ことを特徴とする請求項1~4のいずれか1項に記載の冷却装置。
  6.  請求項1~5のいずれか1項に記載の冷却装置を有する
     ことを特徴とする熱源機。
  7.  前記冷媒を圧縮する圧縮機を更に有し、
     前記制御部は、
     前記冷却装置の試験動作の際に、前記圧縮機を予め決められた周波数で運転させる
     ことを特徴とする請求項6記載の熱源機。
  8.  前記開度調整手段は、
     前記冷却装置の運転状態に基づいて、前記冷却装置の能力を確保する範囲で、前記流量調節部の開度を調整する
     ことを特徴とする請求項6又は7記載の熱源機。
PCT/JP2014/052476 2014-02-03 2014-02-03 冷却装置及び熱源機 WO2015114839A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/052476 WO2015114839A1 (ja) 2014-02-03 2014-02-03 冷却装置及び熱源機
JP2015559722A JPWO2015114839A1 (ja) 2014-02-03 2014-02-03 冷却装置及び熱源機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052476 WO2015114839A1 (ja) 2014-02-03 2014-02-03 冷却装置及び熱源機

Publications (1)

Publication Number Publication Date
WO2015114839A1 true WO2015114839A1 (ja) 2015-08-06

Family

ID=53756446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052476 WO2015114839A1 (ja) 2014-02-03 2014-02-03 冷却装置及び熱源機

Country Status (2)

Country Link
JP (1) JPWO2015114839A1 (ja)
WO (1) WO2015114839A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031483A (ja) * 2016-08-22 2018-03-01 オリオン機械株式会社 水素ガス冷却装置
WO2019017370A1 (ja) * 2017-07-20 2019-01-24 ダイキン工業株式会社 冷凍装置
CN109282522A (zh) * 2018-10-10 2019-01-29 珠海格力电器股份有限公司 基于比例调节阀的温度控制方法及具有其的空气热源泵
WO2019058506A1 (ja) * 2017-09-22 2019-03-28 三菱電機株式会社 空気調和装置
WO2019116599A1 (ja) * 2017-12-12 2019-06-20 日本ピーマック株式会社 空気調和装置及び空気調和システム
WO2019146214A1 (ja) * 2018-01-23 2019-08-01 住友重機械工業株式会社 極低温冷却システム
US11506435B2 (en) 2019-07-09 2022-11-22 Daikin Industries, Ltd. Water regulator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288460A (ja) * 1986-06-09 1987-12-15 東京都 ヒ−トポンプ
JP2001201209A (ja) * 2000-01-20 2001-07-27 Mitsubishi Heavy Ind Ltd 熱源プラント
JP2005049001A (ja) * 2003-07-28 2005-02-24 Matsushita Electric Ind Co Ltd 空気調和機
JP2008164240A (ja) * 2006-12-28 2008-07-17 Jfe Steel Kk ヒートポンプシステム
JP2009063267A (ja) * 2007-09-07 2009-03-26 Nippon Steel Engineering Co Ltd 地中熱交換器及びその使用方法、並びに、地中熱利用システム及びその運転方法
JP2011094840A (ja) * 2009-10-28 2011-05-12 Corona Corp ヒートポンプ装置
JP2012078080A (ja) * 2010-09-07 2012-04-19 Daikin Industries Ltd 地中熱交換器、及びそれを利用したヒートポンプ
JP2013079749A (ja) * 2011-10-03 2013-05-02 Mitsubishi Electric Corp 冷却装置
WO2013088482A1 (ja) * 2011-12-16 2013-06-20 三菱電機株式会社 空気調和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288460A (ja) * 1986-06-09 1987-12-15 東京都 ヒ−トポンプ
JP2001201209A (ja) * 2000-01-20 2001-07-27 Mitsubishi Heavy Ind Ltd 熱源プラント
JP2005049001A (ja) * 2003-07-28 2005-02-24 Matsushita Electric Ind Co Ltd 空気調和機
JP2008164240A (ja) * 2006-12-28 2008-07-17 Jfe Steel Kk ヒートポンプシステム
JP2009063267A (ja) * 2007-09-07 2009-03-26 Nippon Steel Engineering Co Ltd 地中熱交換器及びその使用方法、並びに、地中熱利用システム及びその運転方法
JP2011094840A (ja) * 2009-10-28 2011-05-12 Corona Corp ヒートポンプ装置
JP2012078080A (ja) * 2010-09-07 2012-04-19 Daikin Industries Ltd 地中熱交換器、及びそれを利用したヒートポンプ
JP2013079749A (ja) * 2011-10-03 2013-05-02 Mitsubishi Electric Corp 冷却装置
WO2013088482A1 (ja) * 2011-12-16 2013-06-20 三菱電機株式会社 空気調和装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031483A (ja) * 2016-08-22 2018-03-01 オリオン機械株式会社 水素ガス冷却装置
WO2019017370A1 (ja) * 2017-07-20 2019-01-24 ダイキン工業株式会社 冷凍装置
JP2019020090A (ja) * 2017-07-20 2019-02-07 ダイキン工業株式会社 冷凍装置
WO2019058506A1 (ja) * 2017-09-22 2019-03-28 三菱電機株式会社 空気調和装置
JPWO2019058506A1 (ja) * 2017-09-22 2020-04-02 三菱電機株式会社 空気調和装置
US11199350B2 (en) 2017-09-22 2021-12-14 Mitsubishi Electric Corporation Air-conditioning apparatus with regulated flow of a heat medium
WO2019116599A1 (ja) * 2017-12-12 2019-06-20 日本ピーマック株式会社 空気調和装置及び空気調和システム
WO2019146214A1 (ja) * 2018-01-23 2019-08-01 住友重機械工業株式会社 極低温冷却システム
JP2019128065A (ja) * 2018-01-23 2019-08-01 住友重機械工業株式会社 極低温冷却システム
CN109282522A (zh) * 2018-10-10 2019-01-29 珠海格力电器股份有限公司 基于比例调节阀的温度控制方法及具有其的空气热源泵
US11506435B2 (en) 2019-07-09 2022-11-22 Daikin Industries, Ltd. Water regulator

Also Published As

Publication number Publication date
JPWO2015114839A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
WO2015114839A1 (ja) 冷却装置及び熱源機
JP6338761B2 (ja) 空気調和システム
KR20140135225A (ko) 제어장치
WO2017203655A1 (ja) ヒートポンプ式空調給湯装置
JP2014163594A (ja) 流量制御装置及び流体回路システム
JP2006038379A (ja) 冷温熱源機の冷温水制御方法
US11543148B2 (en) Air conditioning system and control method therof
US20140374497A1 (en) Heat source system, control device thereof, and control method thereof
US20140158783A1 (en) HVAC Systems
EP3312515A1 (en) Heat medium system
JP6538420B2 (ja) 空調システム
GB2595378A (en) Chilling unit and cold/warm water system
JP2005127586A (ja) 1次ポンプ方式熱源変流量制御システムおよび1次ポンプ最低流量確保方法
WO2018185938A1 (ja) 熱媒循環システム
JP2008196775A (ja) 空気調和機
JP2007315621A (ja) 水冷ヒートポンプ式空調熱源装置
JP2014052143A (ja) ヒートポンプシステム
US11384972B2 (en) Free cooling system
EP3258185B1 (en) Heat supply system
US20200318880A1 (en) Refrigeration cycle apparatus
JP2009243718A (ja) 熱媒体の搬送システム
JP2009109059A (ja) 空気調和装置
KR200481644Y1 (ko) 난방배관을 이용한 냉방시스템
US11598549B2 (en) Thermal cycling system and control method of the thermal cycling system
CN106500419B (zh) 一种热泵机组的水路控制系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880607

Country of ref document: EP

Kind code of ref document: A1