WO2015114273A1 - Polymère super absorbant modifié renfermant un engrais - Google Patents

Polymère super absorbant modifié renfermant un engrais Download PDF

Info

Publication number
WO2015114273A1
WO2015114273A1 PCT/FR2015/050221 FR2015050221W WO2015114273A1 WO 2015114273 A1 WO2015114273 A1 WO 2015114273A1 FR 2015050221 W FR2015050221 W FR 2015050221W WO 2015114273 A1 WO2015114273 A1 WO 2015114273A1
Authority
WO
WIPO (PCT)
Prior art keywords
sap
modified
fertilizer
urea
water
Prior art date
Application number
PCT/FR2015/050221
Other languages
English (en)
Inventor
Laurence Hermitte
Cyrille Vinchon
Original Assignee
Liliz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liliz filed Critical Liliz
Priority to EP15705350.5A priority Critical patent/EP3099650A1/fr
Priority to US15/115,792 priority patent/US20170008818A1/en
Publication of WO2015114273A1 publication Critical patent/WO2015114273A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/10Cooling bags, e.g. ice-bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C9/00Fertilisers containing urea or urea compounds
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/80Soil conditioners
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/40Fertilisers incorporated into a matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/21Urea; Derivatives thereof, e.g. biuret
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/18Prepolymers; Macromolecular compounds
    • C09K17/20Vinyl polymers
    • C09K17/22Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/18Prepolymers; Macromolecular compounds
    • C09K17/32Prepolymers; Macromolecular compounds of natural origin, e.g. cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/02Compresses or poultices for effecting heating or cooling
    • A61F2007/0203Cataplasms, poultices or compresses, characterised by their contents; Bags therefor
    • A61F2007/0206Cataplasms, poultices or compresses, characterised by their contents; Bags therefor containing organic solids or fibres
    • A61F2007/0209Synthetics, e.g. plastics
    • A61F2007/0214Polymers, e.g. water absorbing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide

Definitions

  • the present invention relates to the technical field of superabsorbent polymers (hereinafter abbreviated "SAP”). More specifically, the present invention relates to a new SAP, so-called “modified SAP” and which is intended for agricultural applications, more particularly to the growth of plants by the amendment of soils (namely the fertilization of plants, as well as the retention of water).
  • SAP superabsorbent polymers
  • SAP means a polymer capable, in the dry state, of spontaneously absorbing at least ten times, preferably at least twenty times, even more preferentially at least fifty times. , and even more preferably at least one hundred times, its mass of liquid, in particular water and especially distilled water. The liquid thus absorbed is integrated into the matrix that the SAP presents.
  • SAP is characterized by high water absorption capacities, from tens to thousands of times its dry mass.
  • matrix is meant, in the context of the present invention, an array of at least one polymer, preferably a three-dimensional network which is obtained, for example, by:
  • grafting on a support for example a ball, a particle or a granule; grafting on a support (for example a ball, a particle or a granule) and followed by crosslinking.
  • SAPs in multiple and varied fields such as hygiene products, agricultural water retenters, for crop supports, wastewater treatment, hydrocarbon drilling, or many other industrial uses such as the retention of accidental chemical feeds, as well as medical applications (for example for implants or appetite suppressants or compresses intended to provide cold on a part of the body of a being human or animal).
  • Synthetic SAPs however, have the following disadvantages: - They are non-renewable and very little biodegradable. In this respect, for SAP agricultural applications, synthesis and / or release into the soil of constituent monomers of these SAPs is undesirable from an ecological point of view.
  • liquid absorption properties eg, water
  • their retention properties are limited and much of the absorbed water is restored rapidly during dehydration (or otherwise said of desiccation) of SAP.
  • SAPs of natural origin are a more ecological solution that overcomes the biodegradability problem inherent to synthetic SAPs.
  • water stress is understood to mean the stress on a plant placed in an environment such that the amount of water used and evapotranspired by the plant is greater than the quantity it absorbs. This stress is found during periods of drought, but also during the increase of the salinity of the environment or during cold periods.
  • the SAPs known to date are not fully effective when used to improve the water properties of a soil through water retention and return the water during water stress.
  • SAPs are used as one of the constituent elements of compresses configured to provide cold when they are brought into contact with a body part of a human being or of an animal
  • they are generally synthetic and contained in a porous packaging. They are hydrated before use. By drying out, the evaporation of the water contained in the SAP cools the SAP.
  • the cold generated remains weak and the effect of relieving pain or reducing the vascular or metabolic response is insignificant.
  • These compresses including such SAP can sometimes be placed in the refrigerator or freezer prior to their use to accumulate more cold, which requires organization and specific equipment for the handling of these compresses.
  • fertilizers are chemical substances that are generally classified into the following two categories: organic fertilizers which can be of natural origin (for example of animal or vegetable origin) or be synthetic (for example urea or urea derivatives);
  • mineral fertilizers that can be synthetic or come from natural deposits.
  • Fertilizers are used in agriculture, horticulture, forestry and gardening to provide plants with nutrient supplements to enhance their growth and increase yield and quality of crops.
  • Mineral and urea fertilizers are substances of synthesis or from the exploitation of natural deposits, composed of one or more following elements:
  • N nitrogen
  • P phosphorus
  • K potassium
  • S sulfur
  • Mg magnesium
  • trace elements such as iron (Fe), manganese (Mn), molybdenum (Mo), copper (Cu), boron (B), zinc (Zn), chlorine (Cl), sodium (Na), cobalt (Co), vanadium (V) and silicon (Si).
  • the fertilizers are generally in solid form (for example in the form of granules, in pearlured form, that is to say pearls, or salts) or in aqueous liquid solution.
  • fertilizers are nitrogen fertilizers. These are fertilizers containing urea, as well as urea derivatives, nitric acid salts (mainly ammonitrate, more rarely potassium nitrate, calcium nitrate and magnesium nitrate). ).
  • the nitrogen source as a nutrient of nitrogen fertilizer is varied. It can be of urea origin, ammoniacal or nitric. Only the nitric (nitrate ion N0 3 ") is directly assimilated by plants. The ammonium form (NH 4 +) is nitrified and oxidized to nitrate and becomes assimilated. The urea must also undergo a preliminary hydrolysis, in particular by enzymes (urease) present in soils to be in ammoniacal form and thus be assimilable by plants.
  • enzymes urease
  • the fertilizers are in an ionic form (nitrate N0 3 " , ammonium NH 4 + , sulfate S0 4 2 ⁇ , phosphate P0 4 3” , potassium K + , magnesium Mg 2+ , calcium Ca 2+ ) except for urea, which is soluble and is in its CH 4 N 2 0 form.
  • Leaching is the transport of elements such as particles, solutes, ions that make up a soil, and this under the effect of the flow of seepage water. Leaching causes these elements from the upper layers of soil to the deeper layers. It can have a very negative impact on the quality of groundwater and streams.
  • nitrate leaching is the main source of eutrophication in aquatic environments and pollution of groundwater and surface water. In addition, it also induces the depletion of certain nutrients such as nitrates, Ca 2+ and K + ions for vegetation and crops. In the agricultural field, therefore, this loss of nutrients caused by soil leaching is adequately taken into account by compensating for this by an adequate supply of fertilizer, the constituent elements of which are themselves subject to leaching.
  • fertilizers especially nitrogenous fertilizers
  • nitrogenous fertilizers are not fully satisfactory because they are subject to leaching and volatilization; which reduces their effectiveness and requires the use of a larger quantity to meet the needs of plants.
  • the present invention proposes to remedy these plant growth difficulties inherent to the problems of the performance of SAPs when they are used as a retainer and water restitution means for overcoming plant water stress and the known drawbacks thereof. day of leaching and volatilization of fertilizers.
  • the inventors have quite surprisingly developed a completely innovative modified SAP that is intended to be used in agricultural applications that consist in improving plant growth. More precisely, according to its composition, the SAP modified according to the invention will improve the growth of the plants according to the following two agricultural applications: either by acting as a retainer and a means of restitution of water, in a manner spread over time, to plants in the case of water stress;
  • the present invention firstly relates to a modified SAP comprising an SAP matrix in which at least one fertilizer in the form of crystals is integrated, said SAP matrix and the fertilizer being interpenetrated.
  • Another object of the present invention is a modified SAP which is obtainable by a manufacturing method which comprises the following steps:
  • a mixture is prepared comprising at least one fertilizer solution and at least one SAP;
  • step b) the fertilizer contained in the mixture obtained at the end of step b) is crystallized
  • step d) a step of forming the modified SAP recovered in step d) is carried out.
  • a modified SAP according to the present invention is thus obtained in the mixture.
  • this SAP that can be obtained by the manufacturing steps as detailed above includes in its polymer matrix fertilizer crystals.
  • the SAP matrix and the fertilizer are interpenetrated to form a modified SAP according to the present invention.
  • the modified SAP recovered at the end of step d) has the essential characteristics that the fertilizer is in the form of crystals and that the SAP matrix and the fertilizer are interpenetrated.
  • This interpenetration of the SAP matrix and the fertilizer was achieved through the process steps as described above, ie, dilation (or, in other words, swelling of the SAP by the fertilizer solution followed by crystallization).
  • This absorption of the fertilizer solution, followed by crystallization results in the creation of crystals throughout the SAP matrix that keep the SAP matrix inflated (or otherwise dilated) and create porosity through SAP; which allows to maintain a fast hydration and an excellent solubility of the fertilizer.
  • the manufacturing method as detailed above comprises a step e) of forming the modified SAP obtained after step c) and recovered in step d). It can be a granulation (for example by atomization or implementation on a fluidized air bed), a film coating, a coating or any other method of solid shaping of the modified SAP.
  • the SAP modified according to the present invention is in a form perfectly suitable for use in the two agricultural applications mentioned above.
  • the SAP modified according to the invention when designed for use in the application of plant fertilization has the following advantages:
  • the nitrogen losses caused by the volatilization phenomenon of ammonia are also reduced, thanks to the maintenance of the humidity of the SAP modified according to the invention.
  • this reduction in volatilization can be amplified if the soil is suitably buried in the soil, for example by micro-localization, at an adjusted depth of the SAP modified according to the invention instead of depositing it on the surface, as this is usually done with the fertilizers usually used.
  • the deposition in the soil of the SAP modified according to the invention will occur mainly at the time of sowing (just before or simultaneously), but also, it may be envisaged to carry it out during cultivation or to anticipate it during soil preparation.
  • the SAP modified according to the invention when it is designed to be used for the application of retention and means of restitution of water, has the following advantages:
  • the deposition of the modified SAP in the soil can be carried out in a micro-localized way and integrate perfectly with the simplified cultivation techniques that are the techniques without plowing, the work located on the row only and which are known to disturb at the minimum the properties soil physics. Thanks to the deposition in the soil of the SAP modified according to the invention, the soil's water properties are improved, especially the retention of water.
  • the SAP modified according to the invention has water retention properties that are better than those of the SAPs known from the state of the art, but Moreover, it has the advantage of being able to optimize the return of water to the plants, for example in the event of water stress, namely as a function of pressures that can be exerted on the modified SAP.
  • the SAP modified according to the invention is able to capture the water during rainy periods, but also to restore (or in other words redistribute) in the soil when the water stress is such that it puts the growth of crops at risk.
  • the useful reserve of a soil is generally estimated as the quantity of water between a suction of 0.3 bar (at lower pressures, the soils are almost saturated with water, so the release of water by a water retainer would be of no interest to the plants) and 15 bar (permanent wilting point or suction limit, pressure beyond which the plant is no longer able to collect water of the ground). These "limit" pressures may vary slightly depending on the plant species.
  • the SAP that is used in step a) of the manufacturing process can be selected from both synthetic SAPs and naturally occurring SAPs.
  • the SAP according to the present invention is biodegradable and less toxic, one will choose a SAP of natural origin.
  • the level of crosslinking of the SAP used in step a) is between 5 and 50% by weight, preferably between 10 and 25% by weight, more preferably between 12 and 20% by weight.
  • the degree of crosslinking is the ratio between the dry weight of the crosslinking agent that SAP comprises and the total dry mass of the SAP polymer and its crosslinking agent.
  • the crosslinking makes it possible to obtain a solid three-dimensional matrix. Thus, this prevents the polymer matrix from disintegrating during the absorption of the fertilizer solution during step b) of swelling of the SAP of the manufacturing process, while exhibiting a "porous" structure particularly suitable for absorbing said fertilizer solution. Crosslinking also allows greater in situ remanence of SAP.
  • the SAP of step a) is chosen so that its elastic modulus is between 500 Pa and 8000 Pa, preferably between 1000 Pa and 5000 Pa, said elastic modulus being measured by deformation scanning using of a rheometer when the SAP was swollen with a phosphate buffer (osmolarity: 300mOsm / kg +/- 10%) with a final concentration of SAP in the 5% buffer solution.
  • a phosphate buffer osmolarity: 300mOsm / kg +/- 10%
  • the SAP is a naturally occurring SAP, it may have been obtained from at least one compound selected from the group consisting of polysaccharides, advantageously from cellulose derivatives, alginate, and glycosaminoglycans (the acid hyaluronic acid and its salts, chondroitin sulfate, dermatan sulfate, keratan sulfate, heparin / heparan sulfate).
  • polysaccharides advantageously from cellulose derivatives, alginate, and glycosaminoglycans (the acid hyaluronic acid and its salts, chondroitin sulfate, dermatan sulfate, keratan sulfate, heparin / heparan sulfate).
  • the SAP can be chosen from:
  • ⁇ -glucans such as starch, amylose and amylopectin
  • ⁇ -glucans such as cellulose derivatives, galactomannans such as guarane, glucomannans such as xanthan gum, fructans, (arabino) xylanes, galactans, and their derivatives such as carboxymethyl, alkyl, hydroxy ethyl and hydroxypropyl.
  • the polysaccharide has a molecular mass greater than 25,000 Da.
  • the polysaccharide is a carboxy-alkylated polysaccharide, preferably carboxymethylated or carboxyethylated.
  • carboxy-alkylated polysaccharides may include ester moieties derived from cyclic anhydrides such as succinic and maleic anhydride, and maleic ester half adducts to which sulfites have been added.
  • the degree of carboxyalkylation is preferably between 0 and 1.5, in particular between 0.1 and 1.0 per monosaccharide unit.
  • the SAP is a synthetic SAP, it may have been obtained from at least one compound chosen from the polymers resulting from the polymerization with partial crosslinking of water-soluble ethylenic unsaturated monomers, and preferably from the group consisting of:
  • acrylic polymers methacrylic polymers (derived especially from the polymerization of acrylic and / or methacrylic acid and / or acrylate and / or methacrylate monomers), vinylic polymers, in particular crosslinked and neutralized poly (meth) acrylates, in particular in the form of gel, as well as the salts of these polymers, in particular the alkaline salts such as the sodium or potassium salts of these polymers;
  • polyacrylamides and in particular in gel form, and their salts (for example the sodium or potassium salts of these polymers);
  • acrylamide / acrylic acid copolymers and especially their salts, for example sodium or potassium salts;
  • the SAP used in step a) of the manufacturing process may be a polymer chosen from:
  • crosslinked sodium or potassium polyacrylates sold under the names SALSORB CL 10, SALSORB CL 20, FSA type 101, FSA type 102 (Allied Colloids); ARASORB S-310 (Arakawa Chemical); ASAP 2000, Aridall 1460 (Chemdal); KI-GEL 201-K (Siber Hegner); AQUALIC CA W3, AQUALIC CA W7, AQUALIC CA W10; (Nippon Shokuba); AQUA KEEP D 50, AQUA KEEP D 60, AQUA 30 KEEP D 65, AQUA KEEP S 30, AQUA KEEP S 35, AQUA KEEP S 45, AQUA KEEP Al M, AQUA KEEP Al M3, AQUA KEEP HP 200, NORSOCRYL S 35 NORSOCRYL FX 007 (Arkema); AQUA KEEP 10SH-NF, AQUA KEEP J-550 (Kobo); LUQUASORB CF, LUQUASORB MA 1110,
  • AQUASORB 3005 (SN F Floerger), STOCKOSORB 500, STOCKOSORB 660 (Evonik I ndustries), FERTISORB (Fertil), TERRA-SORB (Plant Health Care I nc.).
  • the SAP used in step a) of the manufacturing process may be composed of natural polymers and / or synthetic polymers grafted or crosslinked. This can be for example SAP ZEBA (Absorbent Technology I nc.) Based on polyacrylonitrile grafted on starch.
  • SAP ZEBA Absorbent Technology I nc.
  • the SAP that is used in step a) of the manufacturing process is obtained as follows:
  • CMC carboxymethyl cellulose
  • the mixture is homogenized, preferably at a temperature between 15 ° C and 50 ° C, and preferably for a period of between about 30 minutes and about 5 hours.
  • This polymer of natural origin is crosslinked with a crosslinking agent, for example 1,4-butanediol diglycidylether (hereinafter abbreviated "BDDE").
  • BDDE 1,4-butanediol diglycidylether
  • the degree of crosslinking can be between 5% and 50% by weight, preferably between 10% and 20%.
  • the crosslinking is preferably carried out in a Marie bath, at a temperature between 25 ° C and 50 ° C, and this during a time of between about one hour and 30 minutes and about four hours.
  • the crosslinking reaction medium is neutralized by adding an acidic solution.
  • the crosslinking reaction medium is dried until the mass concentration of the crosslinked polymer in said reaction medium is between 20% and 65%, preferably between 30% and 40%.
  • the drying can be carried out in an oven (for example at a temperature of between 45 ° C. and 50 ° C.), a desiccator or by lyophilization.
  • the crosslinked polymer is shaped, for example by fractionation or on a fluidized air bed.
  • Final drying is performed under the conditions as detailed above, until the mass concentration of the crosslinked polymer is at least 90%. This drying step may possibly be carried out before or during the shaping step of the crosslinked polymer.
  • the crosslinking of the polymer, for example CMC, by covalent bonds allows the maintenance of "super-absorbent" properties over time of said polymer.
  • the SAP used in step a) of the manufacturing process comprises hydroxyl groups, and preferably groups having an ionic character such as, for example, carboxyl groups, as well as sulphates and sulphonates.
  • the polymer for example CMC
  • CMC CMC
  • the polymer has a microporous three-dimensional matrix which is particularly suitable for capturing the fertilizer solution.
  • the SAP is advantageously in the form of granules, preferably dry or partially hydrated granules.
  • the fertilizer is selected from mineral fertilizers and organic fertilizers.
  • the fertilizer is chosen from fertilizers with a high nitrogen content.
  • a composition comprising urea in which the mass concentration of nitrogen may be up to about 46%; a composition comprising ammonitrate in which the mass concentration of nitrogen can be up to about 33.5%;
  • composition comprising diammonium phosphate in which the mass concentration of nitrogen can be up to about 18%;
  • a nitrogen solution comprising a mixture of urea and ammonium nitrate and in which the mass concentration of nitrogen can be up to approximately 30%.
  • a fertilizer which comprises at least one compound selected from the group consisting of urea, urea derivatives, nitric acid salts such as ammonium nitrate, potassium nitrate, calcium nitrate and magnesium nitrate, optionally with sulfur (eg sulphates), and ammonium chloride.
  • urea urea derivatives
  • nitric acid salts such as ammonium nitrate, potassium nitrate, calcium nitrate and magnesium nitrate, optionally with sulfur (eg sulphates), and ammonium chloride.
  • the fertilizer is urea or a derivative of urea.
  • the fertilizer does not include a compound that has groups having an ionic character in solution and that would be likely to interfere with the liquid absorption properties of the SAP.
  • the fertilizer solution used in step a) of the manufacturing process can be prepared by dissolving at least partially at least one fertilizer as detailed above in a solvent.
  • the solvent is water or a mixture of water and alcohol (that is, an alcoholic solution).
  • alcoholic solution examples are a mixture of water and ethanol at a ratio by volume of 90/10 or 75/25.
  • the mass concentration of fertilizer in the fertilizer solution is between 50% and 100% of fertilizer, more preferably between 80% and 100%. These mass concentrations are expressed as mass of fertilizer divided by the mass of solvent and fertilizer.
  • the peripheral crystallization of the fertilizer should be as small as possible, so that in the application of fertilization of the plants, the SAP modified according to the invention can limit as much as possible the problem of leaching mentioned above and that in an application of retention and return of water, the modified SAP can restore water in a spread manner over time.
  • the SAP modified according to the invention will be all the more efficient for the agricultural applications described above that a maximum of fertilizer will have crystallized within the SAP matrix and that the peripheral crystallization of the fertilizer will be the weakest possible.
  • the fertilizer is completely dissolved in the fertilizer solution used in step a) of the manufacturing process.
  • the dissolution of the fertilizer in a solvent such as water or in an alcoholic solution can be carried out at room temperature.
  • the dissolution of the fertilizer can be promoted by subjecting the fertilizer solution to a temperature of from 30 ° C to 150 ° C.
  • the fertilizer solution used in step a) of the manufacturing method according to the invention is a liquid solution of pure urea maintained at a temperature above the melting temperature of urea, preferably a temperature above 133 ° C. Indeed, the melting temperature of urea is approximately 133 ° C.
  • the fertilizer solution used in step a) of the manufacturing process is an aqueous solution of urea whose mass concentration of urea is about 96% and which is obtained by dissolving urea at a temperature above 120 ° C.
  • the small amount of water (about 4% by mass percentage) in the fertilizer solution makes it possible to avoid the formation of biuret (namely a compound obtained by condensation of two molecules of urea and the elimination of a ammonia molecule).
  • the fertilizer solution has a slightly acidic pH (ie between 5 and 7, preferably between 6 and 6.5).
  • This slight acidity of the fertilizer solution can be obtained by solubilizing the fertilizer in a suitable buffered solution.
  • the fertilizer solution used in step a) of the manufacturing method according to the invention may further comprise buffers suitably selected to provide the fertilizer solution with a slight acidity. This has the advantage that if the fertilizer used in step a) is urea, it will volatilize less to ammonia.
  • the concentration of fertilizer in the fertilizer solution is adapted according to the use of the modified SAP according to the invention.
  • SAP modified according to the invention when intended for use for the fertilization of plants, it comprises in percentages by weight:
  • the SAP modified according to the invention When the SAP modified according to the invention is intended for use in retaining water and returning it to plants in a manner spread over time, it comprises in percentages by weight:
  • the SAP which is added to the fertilizer solution in step a) can be in dry form or be partially hydrated. SAPs with moisture content of less than 10% will be preferred, in order not to add too much additional water to the mixture of step a) which could increase the peripheral crystallization of fertilizer during step c) of crystallization.
  • SAP absorbs the entire fertilizer solution, so that all the fertilizer used during step a) is used for the manufacturing the modified SAP according to the present invention - that is, there is no loss of fertilizer during the modified SAP manufacturing process.
  • the SAP may contain more water and thus have a moisture content greater than 10% since it can absorb the entire fertilizer solution of the mixture of step a).
  • the choices of the fertilizer solution and SAP are closely related. The optimization of these parameters is perfectly within the reach of the skilled person.
  • the mixture is advantageously prepared by adding the SAP in the form of powder, pearls or granules in the fertilizer solution.
  • the average particle size of the SAP may be chosen between 0.1 mm and 4 mm, depending on the swelling of the SAP desired in step b), and depending on the application and the technique of deposition in the soil of the SAP modified according to the invention which are envisaged.
  • Agitation preferably mechanical stirring, can be carried out during step a) of the manufacturing process in order to disperse the SAP homogeneously in the fertilizer solution or in other words to improve the exchanges between the Fertilizer solution and SAP to promote a uniform penetration of the fertilizer solution in SAP.
  • the swelling ratio obtained from the SAP is significantly lower than its maximum swelling capacity at saturation.
  • its swelling rate corresponds to half of its absorption capacity, even more preferably less than a quarter of its absorption capacity.
  • a swelling rate lower than the maximum swelling capacity of the SAP will limit the crystallization of the fertilizer at the periphery of the SAP matrix mentioned above.
  • the mixture of fertilizer solution and SAP is heated during step b) to a temperature similar to the temperature of the setting.
  • solution of the fertilizer that is to say for example between 30 ° C and 150 ° C.
  • step b) is carried out at ambient temperature.
  • the swelling of SAP is almost spontaneous.
  • the swelling time of the SAP can vary between a few tens of seconds and a few tens of minutes. It depends on the SAP that has been added to the fertilizer solution and the temperature and concentration conditions of the fertilizer.
  • step b) there is a radical change in state of the mixture.
  • the mixture comprising the fertilizer solution and the SAP which was initially liquid is now in a solid form, composed of an agglomerate of SAP blocks containing in its matrix the fertilizer solution.
  • These blocks are soft, translucent or opalescent because they contain the fertilizer solution.
  • the SAP and the fertilizer solution are chosen in such a way that, after step b) of swelling of the SAP, there is no longer any supernatant which would induce a peripheral crystallization of the fertilizer outside. of the polymer matrix.
  • This optimization of step b) is within the abilities of those skilled in the art.
  • step c) the fertilizer contained in the mixture obtained at the end of step b) is crystallized.
  • step c) the fertilizer of the fertilizer solution that has been absorbed by the SAP during the swelling step b) will crystallize within the SAP matrix.
  • the more the SAP has absorbed fertilizer solution (or in other words will have integrated the fertilizer solution in its matrix) the more the modified SAP recovered in step d) of the manufacturing process. will contain in its matrix of fertilizer.
  • step c) can be carried out according to various techniques, namely:
  • the crystallization of step c) is carried out by cooling by bringing the mixture obtained at the end of step b) to a temperature below the solubilization temperature of the fertilizer. This solubilization temperature depends on the fertilizer concentration dissolved in the fertilizer solution.
  • step c) can be carried out at a temperature of between 0 ° C. and 100 ° C., and optionally carried out with stirring, preferably with mechanical stirring.
  • the mechanical mixture makes it possible to avoid adhesion phenomena between the granules and makes it possible to expose the surface of each of these granules to appropriate conditions of crystallization.
  • step c) the mixture obtained is dried after step b).
  • the drying can be carried out by exposure to a flow of air at a temperature of between 30 ° C. and 70 ° C. or by drying in a desiccator or else by lyophilization.
  • the crystallization step c) is carried out at room temperature.
  • the solvent When the solvent is evaporated, the fertilizer concentration in the fertilizer solution integrated in the SAP matrix is increased, so that the crystallization conditions of the fertilizer are combined, thus causing the crystallization fertilizer, especially within the SAP matrix. Indeed, the solvent can be evaporated until the amount of fertilizer dissolved in the residual fertilizer solution is greater than the saturation concentration.
  • the crystallization of the fertilizer in the mixture obtained at the end of step b), and therefore as explained above, particularly in the matrix of the SAP, is completed as soon as the SAP thus modified is in the form of hard granules.
  • the modified SAP can be easily recovered in step d).
  • Hard granules means granules which are crush-resistant and which are suitable for being deposited through a farm equipment distribution chain without creating agglomerates or clogging. Modified SAPs with a mass moisture content of less than 10% will be preferred.
  • the choice of the most appropriate crystallization technique that is to say the determination of the conditions conducive to causing crystallization of the fertilizer in the mixture obtained at the end of step b), and this depending on the Fertilizer solution that has been used during step a) of the manufacturing process is within the abilities of those skilled in the art.
  • the crystallization diagrams of fertilizer-solvent systems as a function of temperature and dissolved fertilizer concentration are well known and therefore within the reach of the skilled person. In this way, the skilled person can determine the optimum conditions of crystallization in the mixture obtained at the end of step b).
  • the modified SAP recovered in step d) is shaped by a forming technique known to those skilled in the art, for example by coating, pelagration or granulation by atomization or on a fluidized air bed.
  • additives may also be added to the granules, such as nitrification retarders or urease inhibitors, to further enhance the reduction of leaching and volatilization in the case of a modified SAP application for the fertilization of plants.
  • the present invention also relates to the use of modified SAP according to the invention in two agricultural applications.
  • the ERE agricultural application is to use the SAP modified according to the invention to retain water and return to the plants in case of water stress, said refund being spread out over time.
  • the return of water by the modified SAP will be influenced by: the SAP matrix used in the mixture of step a) of the manufacturing process: its porosity, its degree of crosslinking, the nature of its monomers, its capacity of absorption, quantity and nature of its adjuvants. the fertilizer solution content used in step a) of the manufacturing process.
  • the 2 nd agricultural application is to use the SAP modified according to the invention for fertilizing plants.
  • the SAP modified according to the invention is advantageously buried in the soil, preferably in combination with the implementation of band culture techniques.
  • the SAPs modified according to the invention which have been shaped into granules are dispersed on the surface of the soil by a superficial spreading, generally carried out with centrifugal spreaders. Then, the SAP granules are buried by superficial soil techniques using a scarification tool, a stubble cultivator or a chisel. The average depth of burial is of the order of 2 to 10 cm below the surface of the ground.
  • the granules can only be deposited on the ground and not be buried as detailed above. In this case they will be partly conveyed into the soil by the infiltration of runoff water. This embodiment is unfavorable because it does not allow efficient use of water or nutrients contained in the granules by the plants.
  • the SAP granules are buried in the soil, usually at the time of sowing.
  • the SAP granules are advantageously contained in hoppers fixed on the drill, and are then distributed in a localized manner near or in the row of seedlings.
  • the depth of burial in this case is quite similar to that obtained by a superficial spreading, but the localization makes it better controlled and more regular. This technique can also make it possible to deposit smaller amounts of modified SAP according to the invention.
  • the localized burial of SAP modified according to the invention is advantageously implemented when combining techniques of deposition of said SAP and tillage by simplified techniques (ie without tillage and banding, only at the level of the row sowing).
  • the band work equipment can be equipped with hoppers which distribute the SAP granules modified according to the invention in a localized manner close to the row of seedlings, preferably under the row of seedlings. Average depth of burial is 5 to 25 cm below the soil surface.
  • These techniques are particularly favorable for so-called "root crops” for maize, beets, potatoes and sunflower.
  • the combination of the technique of soil tillage in one of the two agricultural applications of SAP modified according to the invention is particularly favorable.
  • the SAP modified according to the invention when it is used as a water retainer, in synergy with the soil structure in the inter-row, benefits from a better water dynamic that allows it to recharge in water.
  • the soil structure in the inter-row tends to reduce the phenomenon of leaching and thus allows an even more optimized use of nutrients brought.
  • modified SAP modified according to the invention When used as a water retainer, between 2 and 200 kg of modified SAP according to the invention per hectare are deposited, preferably between 5 and 80 kg of modified SAP according to the invention per hectare. more preferably 10 to 40 kg of modified SAP according to the invention per hectare.
  • the SAP modified according to the invention When used as a water retainer, between 5 and 500 kg of modified SAP according to the invention per hectare are deposited, preferably between 10 and 250 kg of modified SAP according to the invention per hectare. .
  • the subject of the present invention is also, in the medical field, the use of a modified SAP according to the invention as described above as constituent element of at least a part of a medical device which is configured to generate of cold on a part of the body of a human being or an animal in order to cure it and / or to relieve it.
  • such a medical device can be used to treat and / or relieve external trauma to the body such as a sprain, tendinitis, a wound, a hematoma, a contusion, or during invasive medical procedures such as an injection, an infiltration or a surgical act.
  • This medical device can be in various forms such as for example a patch, a compress or a pouch.
  • This medical device has a size and flexibility adapted to the morphology of the body part of the human or animal to be treated and / or to relieve.
  • This medical device is activated, namely it provides cold on the body part of the human being or animal on which it is brought into contact (or in other words on the part of the body of the human being or animal on which it was arranged), when the SAP modified according to the invention is hydrated.
  • the SAP modified according to the invention is hydrated (or in other words when it comes into contact with a substance containing a liquid, preferably an aqueous solution such as water or hydrated natural salts, for example a sodium sulphate decahydrate)
  • the fertilizer it contains dissolves according to an endothermic reaction that produces cold.
  • a medical device as described above namely of which at least one of its elements is a modified SAP according to the invention, has the following advantages:
  • the hypertonia and / or hyperosmolarity of the fertilizer which is dissolved and is then in the form of a solution which is absorbed in the SAP after the hydration of it allows the cleaning and the debridement of the part of the body of the human being or the animal to be treated and / or relieved.
  • SAP modified according to the invention Because in SAP modified according to the invention, the SAP matrix and the fertilizer are interpenetrated, when the SAP modified according to the invention is hydrated, the fertilizer is solubilized in a perfectly homogeneous manner. Thus, the cold is generated and diffuses homogeneously within the SAP modified according to the invention to reach the body part of the human or animal being brought into contact with the medical device.
  • the SAP modified according to the invention is hydrated with water.
  • Different embodiments of the medical device that includes at least one modified SAP according to the invention can be envisaged. Two of these embodiments are described below.
  • the medical device comprises a porous pouch in which a modified SAP according to the invention has been arranged.
  • the pouch is made of a porous material which may be a nonwoven of hypoallergenic polypropylene.
  • this medical device When it is desired to use this medical device and thus activate it, it is sufficient to put the pouch in contact with the body part of the human or animal to be treated and / or to be relieved. Then, pouring a liquid (for example water) on said pouch.
  • the liquid will pass through the pores of the pouch and thus hydrate the SAP modified according to the invention; this will also have the effect of dissolving the fertilizer it contains and thus trigger an endothermic reaction that generates cold that will spread to the body part of the human being or animal targeted.
  • the liquid that is poured onto the pouch can be stored in pods (for example containers such as vials or ampoules filled with liquid).
  • kits comprising at least one such pouch and a pod can be provided to generate cold on a body part of a human being or an animal.
  • the kit may comprise such a pouch and a pod (for example a container as described above) containing a substance which contains a liquid (for example a natural hydrated salt such as a sodium sulfate decahydrate) so that the contact of this substance with the pouch will hydrate the SAP modified according to the invention.
  • a liquid for example a natural hydrated salt such as a sodium sulfate decahydrate
  • the medical device comprises a pouch, preferably a porous pouch, which presents:
  • At least one sealed compartment comprising a substance which contains a liquid (for example an aqueous solution such as water or a natural salt hydrated),
  • said compartment is configured so that said liquid-containing substance hydrates the SAP modified according to the invention during the activation of this medical device, namely when it is desired to generate cold on a body part of a human or animal being .
  • the sealed compartment may, for example, have at least one breakable or frangible wall which is configured so that said substance containing a liquid can hydrate the SAP modified according to the invention as soon as said wall has been broken.
  • the substance that contains a liquid is an aqueous solution.
  • the pouch is made of a porous material which may be a nonwoven of hypoallergenic polypropylene.
  • This embodiment of the medical device has the advantage that the portion of the pouch that is in contact with the body part of the human or animal remains dry, since the condensation inevitably produced on the surface of this pouch when hydration of the modified SAP and thus the endothermic reaction is immediately absorbed by the SAP that comprises said modified SAP.
  • this medical device configured to generate cold has the advantage over other equivalent medical devices known from the state of the art not to wet and / or contaminate the body part of the targeted human or animal body , because the modified SAP according to the invention it contains absorbs as and as the condensates produced during the endothermic reaction due to the dissolution of the fertilizer.
  • the modified SAP when used in the medical field, preferably comprises a matrix of an SAP of natural origin. This has the advantage that modified SAP has biological compatibility.
  • the fertilizer is advantageously selected from urea and ammonium salts (preferably ammonium nitrates or chlorates).
  • the SAP modified according to the invention when used for a medical application as described above, it advantageously comprises, in percentages by weight:
  • the medical device is sterile, and is advantageously disposable.
  • FIG. 1 is a graph comparing the water retention properties as a function of time (in minutes) of the first SAP sample modified according to the invention (in the graph, "the first sample according to the invention ") with those of the first sample of an SAP to the state of the art (in the graph," the first comparative sample ").
  • FIG. 2 is a graph comparing the water retention properties as a function of time (in minutes) of a 2 nd SAP sample modified according to the invention (in the graph, "2 nd sample of the invention” ) with those of a sample of a 2 nd SAP of the state of the art (on the graph: "2 nd comparative sample”).
  • FIG. 3 is a graph comparing the water retention properties as a function of time (in minutes) of the first SAP sample of the state of the art (in the graph, "the first comparative sample” ) with those of the 2 nd sample of SAP from the state of the art (on the graph: “2 nd comparative sample”).
  • Figure 4 is a graph comparing the water retention properties as a function of time (in minutes) of the first SAP sample modified according to the invention (in the graph, "the first invention sample) with those of the 2 nd SAP sample modified according to the invention (in the graph, "2 nd sample according to the invention”).
  • Figure 5 is a photograph taken under a scanning electron microscope of a portion of a urea bead.
  • Figure 6 is a photograph taken under a scanning electron microscope of a portion of a granule of a synthetic SAP.
  • FIG. 7 is a photograph taken under a scanning electron microscope of a portion of a granule of a modified SAP according to a first embodiment of the invention.
  • FIG. 8 is a photograph taken under a scanning electron microscope of a portion of a granule of a modified SAP according to a second embodiment of the invention.
  • FIG. 9 is a graph of the evolution of the temperature as a function of time of the content of beakers filled with water in which has been immersed either urea powder, either beaded urea, or a modified SAP according to the invention.
  • Figure 5 is a photograph taken under a scanning electron microscope at a magnification of 300 times of a portion of a urea bead which is used as a fertilizer. In said photograph, there is an agglomerate of urea crystals 5.
  • FIG. 6 is a photograph taken under a scanning electron microscope at a magnification of 300 times of a portion of a granulate of a synthetic SAP 1. More precisely, said SAP is a crosslinked copolymer of acrylamide and acrylate. potassium which is in the unhydrated state. In the photograph of Figure 6, break lines 2 are visible. These rupture lines 2 of said SAP 1 appeared during the mechanical fragmentation by grinding which was performed to obtain the granules of SAP 1, a portion of which is visible in the photograph of FIG. 6.
  • FIG. 7 is a photograph taken under a scanning electron microscope at a magnification of 300 times of a portion of a granulate of a modified SAP 3 according to a first embodiment of the invention.
  • This modified SAP 3 contains, in percentages by weight, 20% of synthetic SAP of crosslinked copolymer of acrylamide and of potassium acrylate and 80% of urea. It can be seen in the photograph of FIG. 7 that the urea crystals 5 are interpenetrated with the matrix 4 of said synthetic crosslinked copolymer SAP of acrylamide and potassium acrylate. The matrix 4 is visible because it has a lighter gray tone than the urea crystals 5.
  • FIGS. 5 is a photograph taken under a scanning electron microscope at a magnification of 300 times of a portion of a granulate of a modified SAP 3 according to a first embodiment of the invention.
  • This modified SAP 3 contains, in percentages by weight, 20% of synthetic SAP of crosslinked copolymer of acrylamide and of potassium acrylate and 80% of ure
  • FIG. 8 is a photograph taken under a scanning electron microscope at a magnification of 300 times of a portion of a granule of a modified SAP 6 according to a second embodiment of the invention.
  • This modified SAP 6 contains, in percentages by weight, 10% of synthetic SAP of crosslinked copolymer of acrylamide and of potassium acrylate and 90% of urea.
  • the urea crystals 5 are interpenetrated with the matrix 7 of said synthetic crosslinked copolymer SAP of acrylamide and potassium acrylate.
  • This photograph of FIG. 8 is therefore very interesting because it exhibits the interpenetration of the urea crystals with the matrix 7 of the synthetic SAP of crosslinked copolymer of acrylamide and of potassium acrylate according to different points of view, namely in section (upper part of the photograph) and in three-dimensional form (lower part of said photograph).
  • FIG. 6 which also represents a synthetic SAP but in which there is no urea which crystallized
  • FIGS. 7 and 8 it is noted in the photographs of FIGS. 7 and 8 that the matrices 4.7 of the synthetic SAPs of cross-linked copolymer of acrylamide and potassium acrylate form a dilated network in which urea 5 has crystallized.
  • FIGS. 7 and 8 thus demonstrate all the originality of the modified SAP 3,6 according to the invention with respect to an SAP which has not been subjected to the manufacturing process steps according to the invention which have been described. above.
  • the first comparative sample consisting of a SAP based on potassium salt of copolymer of acrylamide / acrylic acid crosslinked with an average particle size of about 0.75mm and a weight moisture content of the order 5% (hereinafter abbreviated "PAM").
  • PAM weight moisture content of the order 5%
  • ⁇ 12g of urea was dissolved in 6cm 3 of water at a temperature of 80 ° C to obtain a fertilizer solution.
  • was neutralized and adjusted the concentration of CMC solution crosslinked to 5% by mass by adding hydrochloric acid and phosphate buffer CMC and matrix was allowed to swell until the obtaining a gel with a CMC concentration of 5% by weight.
  • was dried in a desiccator at a temperature of 45- 50 ° C to obtain a CMC concentration of 35% by mass. This resulted in an SAP. ⁇ was milled SAP thus obtained using a RAPID mill Type 150.21 - gate diameter: 5mm.
  • ⁇ 12g of urea was dissolved in 6cm 3 of water at a temperature of 80 ° C to obtain a fertilizer solution.
  • the four SAPs were allowed to swell until their hydrated weight was 20 times their weight in the dry state.
  • the percentage of water mass drained from each of the SAPs was determined by comparing the initial mass of the SAP before desiccation with its measured mass.
  • the graphs of FIGS. 1 to 4 each express the percentage of mass of water discharged from the tested SAP as a function of time.
  • the initial percentage of water is 100%.
  • the percentage of the mass of water decreases with time from the initial value of 100%, ie according to the mass of water evacuated over time. More precisely :
  • the graph in Figure 1 shows the percentage of water discharged over time of the first SAP sample modified according to the invention and the first SAP sample of the state of the art.
  • the graph of Figure 2 shows the percentage of water discharged over time of the 2 nd SAP sample modified according to the invention and the 2 nd SAP sample of the state of the art.
  • the graph of figure 3 expresses the percentage of water discharged over time of the SAP ier sample of the prior art and of the 2 nd sample of SAP of the state of the art.
  • the graph of Figure 4 shows the percentage of water discharged over time of the first SAP sample modified according to the invention with those of the 2 nd SAP sample modified according to the invention.
  • the SAP modified according to the invention based on crosslinked CMC i.e. the 2 nd SAP sample modified according to the invention
  • modified SAPs according to the invention have a fully optimized water retention capacity.
  • the first sample according to the invention consisting of a SAP modified according to the invention comprising by weight 1% of PAM and 99% of urea which was obtained as follows:
  • This mixture was maintained at a temperature of 80 ° C, with manual stirring, until complete integration of the fertilizer solution into the SAP which thus inflated. Small transparent blocks of SAP were obtained which absorbed all of the urea solution without visible supernatant.
  • the blocks were cooled for 20 minutes to a temperature of 30 ° C while maintaining a slow stirring.
  • Granules were removed from the surface by mechanical crushing of the urea crystals. About 4 g of friable urea crystals were thus detached from the surface and were not integrated into the modified SAP granule.
  • This mixture was maintained at a temperature of 80 ° C, with manual stirring, until complete integration of the fertilizer solution into the SAP which thus inflated. Small transparent blocks of SAP were obtained which absorbed all of the urea solution without visible supernatant.
  • the blocks were cooled for 20 minutes to a temperature of 30 ° C while maintaining a slow stirring.
  • Granules were removed by mechanically crushing the urea crystals.
  • th sample 3 consisting of a SAP modified according to the invention comprising 20 weight% of PAM and 80% of urea which was obtained as follows:
  • ⁇ 12g of urea was dissolved in 6cm 3 of water at a temperature of 80 ° C to obtain a fertilizer solution.
  • the blocks are cooled for 20 minutes to a temperature of 30 ° C while maintaining a slow stirring.
  • Steps 2) to 5) were repeated for 2 additional cycles or until dry residues were no longer recovered on the cellulose filter.
  • Steps 2) to 5) were repeated for 2 additional cycles.
  • Table 1 shows the quantities of dried residues recovered depending on whether the assay was performed with urea or a SAP modified according to the invention (i.e., an SAP containing urea - 2 nd sample according to invention of this part II of the experimental part).
  • Table 1 amount of dry residues recovered.
  • For the first cycle is the amount of dried residues collected after step 5) performed for the time era.
  • 2 nd cycle is meant the amount of dry residue recovered after step 5) carried out for the 2 nd time.
  • 3 rd cycle is meant the amount of dry residue recovered after step 5) performed for the 3 rd time.
  • the different cycles simulate the leaching phenomenon mentioned above and to which the fertilizers are subjected. Each cycle also simulates the addition of water and the activation of the endothermic dissolution reaction of the fertilizer. From Table 1, it is noted that the urea was rapidly dissolved and passed through almost all the cellulose filter. A small fraction of urea impregnated into the filter and crystallized on its surface.
  • the SAP modified according to the invention was impregnated with water, inflated and absorbed all of the added water.
  • a small fraction of the urea contained in the SAP modified according to the invention is impregnated in the cellulose filter and crystallized on the surface of the filter, as well as on the surface of the SAP granules modified according to the invention. This fraction was recovered in the form of fine flakes. Therefore, a column quantifying the fine flakes recovered was added in Table 1 above.
  • the solubility of the fertilizer can be demonstrated by the endothermic reaction that occurs during its dissolution.
  • urea for laboratory use (marketed by Sigma) in the form of a powder of fine particle size, ie less than 150 ⁇ ;
  • urea for agricultural use (marketed by OCI-nitrogen) in the form of beads with a diameter of about 3 mm.
  • Steps 1) to 3) were also carried out on these two control tests and thus carried out a temperature measurement of the contents of the two beakers into which were added either powdered urea or beaded urea.
  • Table 2 details the results of the temperature measurements of the contents of the beakers in which was added either urea powder, or urea beads, or urea interpenetrated with the matrix of an SAP (to know a modified SAP according to the invention).
  • FIG. 9 is a graph of the evolution of the temperature as a function of time of the content of these beakers filled with water in which either urea powder, pearl urea or an SAP has been immersed; modified according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Soil Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Water Supply & Treatment (AREA)
  • Botany (AREA)
  • Fertilizers (AREA)

Abstract

L'invention concerne un polymère super absorbant (abrégé « SAP ») modifié qui est susceptible d'être obtenu par un procédé de fabrication qui comprend les étapes suivantes : a) On prépare un mélange comprenant au moins une solution d'engrais et au moins un SAP; b) On laisse le SAP gonfler dans ledit mélange; c) On cristallise l'engrais contenu dans le mélange obtenu à l'issue de l'étape b); d) On récupère dans le mélange un SAP modifié; e) Optionnellement, on effectue une étape de formage du SAP modifié récupéré à l'étape d). Le SAP modifié peut être utilisé pour la fertilisation des plantes ou pour retenir l'eau et la restituer aux plantes de manière étalée dans le temps, ainsi que dans le domaine médical comme élément constitutif d'un dispositif médical configuré pour générer du froid sur un corps humain ou animal.

Description

Polymère super absorbant modifié renfermant un engrais
La présente invention concerne le domaine technique des polymères super absorbants (ci-après abrégé « SAP »). Plus précisément, la présente invention concerne un nouveau SAP, dit « SAP modifié » et qui est destiné à des applications agricoles, plus particulièrement à la croissance de plantes par l'amendement des sols (à savoir la fertilisation des plantes, ainsi que la rétention d'eau).
Dans le cadre de la présente invention, on entend par « SAP », un polymère capable, à l'état sec, d'absorber spontanément au moins dix fois, de préférence au moins vingt fois, de façon encore plus préférentielle au moins cinquante fois, et encore plus préférentiellement au moins cent fois, sa masse de liquide, en particulier d'eau et notamment d'eau distillée. Le liquide ainsi absorbé est intégré dans la matrice que présente le SAP. En d'autres termes, le SAP se caractérise par des capacités d'absorption d'eau élevées, de quelques dizaines à quelques milliers de fois sa masse sèche.
Par « matrice », on entend, dans le cadre de la présente invention, un réseau d'au moins un polymère, de préférence un réseau tridimensionnel qui est obtenu, par exemple, par :
réticulation,
- greffage sur un support, par exemple une bille, une particule ou un granulé ; greffage sur un support (par exemple une bille, une particule ou un granulé) et suivi par une réticulation.
Il est connu d'utiliser les SAP dans des domaines multiples et variés tels que les produits d'hygiène, les rétenteurs d'eau à usage agricole, pour les supports de cultures, les traitements des eaux usées, les forages d'hydrocarbures, ou bien encore d'autres usages industriels tels que la rétention de reversements chimiques accidentels, ainsi que des applications médicales (par exemple pour des implants ou des coupe-faim ou encore des compresses destinées à fournir du froid sur une partie du corps d'un être humain ou animal).
La plupart des SAP actuellement utilisés sont :
soit synthétique, par exemple de type polyacrylamide et/ou polyacrylique ; soit d'origine naturelle, par exemple les polysaccharides, par exemple les dérivés cellulosiques.
Les SAP synthétiques présentent cependant les inconvénients suivants : - Ils sont non renouvelables et très peu biodégradables. A cet égard, pour des applications agricoles des SAP, la synthèse et/ou la libération dans le sol de monomères constitutifs de ces SAP est peu souhaitable d'un point de vue écologique.
De plus, si les propriétés d'absorption de liquide (par exemple de l'eau) des SAP synthétiques sont élevées, leurs propriétés de rétention sont limitées et une grande partie de l'eau absorbée est restituée rapidement lors de la déshydratation (ou autrement dit de la dessiccation) du SAP.
Les SAP d'origine naturelle constituent une solution plus écologique qui permet de surmonter le problème de biodégradabilité inhérent aux SAP synthétiques.
Cependant, les SAP d'origine naturelle présentent généralement des propriétés d'absorption en eau plus limitées que les SAP synthétiques, et à des coûts plus élevés. De plus, dans le cas d'applications agricoles, leur dégradation trop rapide peut représenter un inconvénient majeur.
Ainsi, on relève de l'état de l'art que les SAP connus à ce jour qu'ils soient d'origine naturelle ou bien synthétique, ne sont pas pleinement satisfaisants pour leur utilisation agricole en tant que rétenteur d'eau, afin de réduire le stress hydrique des plantes. A cet égard, on entend par « stress hydrique », le stress subi par une plante placée dans un environnement tel que la quantité d'eau utilisée et évapotranspirée par la plante est supérieure à la quantité qu'elle absorbe. Ce stress se rencontre en période de sécheresse, mais aussi lors de l'augmentation de la salinité du milieu ou en période de froid. En d'autres termes, les SAP connus à ce jour ne sont pas pleinement performants lorsqu'ils sont utilisés pour améliorer les propriétés hydriques d'un sol grâce à une rétention d'eau et restituer cette eau lors de stress hydrique.
Par ailleurs, dans le cas des applications médicales, par exemple lorsque les SAP sont utilisés en tant qu'un des éléments constitutifs de compresses configurées pour fournir du froid lorsqu'elles sont mises en contact avec une partie du corps d'un être humain ou d'un animal, ils sont généralement synthétiques et contenus dans un emballage poreux. Ils sont hydratés avant leur utilisation. En se desséchant, l'évaporation de l'eau contenue dans le SAP refroidit le SAP. Cependant, le froid généré demeure faible et l'effet de soulagement des douleurs ou de réduction de la réponse vasculaire ou métabolique est peu significatif. Ces compresses comprenant de tels SAP peuvent parfois être placées au réfrigérateur ou au congélateur préalablement à leur utilisation afin d'accumuler davantage de froid, ce qui nécessite une organisation et des équipements spécifiques pour la manipulation de ces compresses.
Par ailleurs, les engrais sont des substances chimiques qui sont généralement classés en les deux catégories suivantes : les engrais organiques qui peuvent être d'origine naturelle (par exemple d'origine animale ou végétale) ou être synthétiques (par exemple l'urée ou les dérivés d'urée) ;
les engrais minéraux qui peuvent être synthétiques ou bien provenir de gisements naturels.
Les engrais sont utilisés en agriculture, en horticulture, en sylviculture et pour les activités de jardinage afin d'apporter aux plantes des compléments d'éléments nutritifs, de façon à améliorer leur croissance et à augmenter le rendement et la qualité des cultures.
En outre, dans le domaine médical, on connaît des cristaux de sels ou de substances correspondant à des engrais qui font partie des éléments constitutifs des pochettes refroidissantes (connues généralement sous la dénomination anglophone suivante « instant ice pack »), et qui exploitent la réaction endothermique provoquée par la dissolution de ces cristaux en présence d'eau pour générer du froid sur une partie du corps d'un être humain ou animal avec laquelle elles sont mises en contact.
Les engrais minéraux et uréiques sont des substances de synthèse ou issues de l'exploitation de gisements naturels, composées d'un ou plusieurs éléments suivants:
des éléments de base tels que l'azote (N), le phosphore (P) et le potassium (K) ; des éléments secondaires tels que le calcium (Ca), le soufre (S) et le magnésium (Mg),
des oligo-éléments tels que le fer (Fe), le manganèse (Mn), le molybdène (Mo), le cuivre (Cu), le bore (B), le zinc (Zn), le chlore (Cl), le sodium (Na), le cobalt (Co), le vanadium (V) et le silicium (Si).
Les engrais se présentent généralement soit sous forme solide (par exemple sous forme de granulés, sous forme perlurée, c'est-à-dire des perles, ou de sels) soit en solution aqueuse liquide.
Les engrais les plus couramment utilisés sont des engrais azotés. Il s'agit d'engrais contenant de l'urée, ainsi que des dérivés de l'urée, de sels d'acide nitrique (principalement l'ammonitrate, plus rarement le nitrate de potassium, le nitrate de calcium et le nitrate de magnésium).
La source d'azote comme élément nutritif de l'engrais azoté est variée. Elle peut être d'origine uréique, ammoniacale ou nitrique. Seule la forme nitrique (ion nitrate N03 ") est directement assimilable par les plantes. La forme ammoniacale (NH4 +) est nitrifiée et oxydée en nitrate et devient ainsi assimilable. L'urée doit en plus subir une hydrolyse préliminaire, notamment par des enzymes (uréases) présentes dans les sols pour se présenter sous forme ammoniacale et ainsi être assimilable par les plantes.
Dans les eaux de ruissellement, les engrais se présentent sous une forme ionique (nitrate N03 ", ammonium NH4 +, sulfate S04 2~, phosphate P04 3", potassium K+, magnésium Mg2+, calcium Ca2+) à l'exception de l'urée, qui est soluble et est sous sa forme CH4N20.
Le lessivage est le transport d'éléments tels que des particules, des solutés, des ions qui composent un sol, et ce sous l'effet de l'écoulement des eaux d'infiltration. Le lessivage entraîne ces éléments des couches supérieures du sol vers les couches plus profondes. Il peut avoir un impact très négatif sur la qualité des eaux souterraines et des cours d'eau. En effet, le lessivage des nitrates est la principale source d'eutrophisation des milieux aquatiques et de pollution des eaux souterraines et de surface. De plus, il induit également l'appauvrissement de certains éléments nutritifs tels que les nitrates, les ions Ca2+ et K+ pour la végétation et les cultures. C'est pourquoi, dans le domaine agricole, on tient dûment compte de cette perte d'éléments nutritifs causés par le lessivage des sols en la compensant par un apport adéquate d'engrais dont les éléments le constituant sont eux-mêmes soumis au lessivage.
En outre, dans le cas de la fertilisation de plantes, une autre cause de perte d'éléments nutritifs dans l'environnement est la volatilisation de l'azote sous la forme de gaz ammoniac (NH3). Cela est surtout le cas pour les engrais contenant de l'azote uréique, lors de l'hydrolyse de l'urée.
Ainsi, la forme sous laquelle se présentent actuellement les engrais, en particulier les engrais azotés, n'est pas pleinement satisfaisante, du fait qu'ils sont soumis aux phénomènes de lessivage, ainsi que de volatilisation; ce qui amoindrit leur efficacité et nécessite d'en utiliser une quantité plus importante afin de satisfaire aux besoins des plantes.
Il serait donc intéressant de mettre au point une mise en forme des engrais, en particulier des engrais azotés, qui surmonterait ces inconvénients de lessivage et de volatilisation.
La présente invention se propose de remédier à ces difficultés de croissance des plantes inhérentes aux problèmes des performances des SAP lorsqu'ils sont utilisés en tant que rétenteur et moyen de restitution d'eau pour surmonter les stress hydriques des plantes et aux inconvénients connus à ce jour de lessivage et de volatilisation des engrais. En effet, les inventeurs ont mis au point de manière tout à fait surprenante un SAP modifié totalement innovant qui est destiné à être utilisé dans des applications agricoles qui consistent à améliorer la croissance des plantes. Plus précisément, en fonction de sa composition, le SAP modifié selon l'invention améliorera la croissance des plantes selon les deux applications agricoles suivantes : soit en agissant en tant que rétenteur et moyen de restitution d'eau, de façon étalée dans le temps, à des plantes dans le cas de stress hydrique ;
soit en agissant en tant que moyen de fertilisation des plantes.
La présente invention a pour premier objet un SAP modifié comprenant une matrice de SAP dans laquelle est intégré au moins un engrais sous forme de cristaux, ladite matrice du SAP et l'engrais étant interpénétrés.
La présente invention a pour autre objet un SAP modifié qui est susceptible d'être obtenu par un procédé de fabrication qui comprend les étapes suivantes :
a) On prépare un mélange comprenant au moins une solution d'engrais et au moins un SAP ;
b) On laisse le SAP gonfler dans ledit mélange ;
c) On cristallise l'engrais contenu dans le mélange obtenu à l'issue de l'étape b) ;
d) On récupère dans le mélange un SAP modifié ;
e) Optionnellement, on effectue une étape de formage du SAP modifié récupéré à l'étape d).
On obtient ainsi à l'issue de l'étape c) dans le mélange un SAP modifié selon la présente invention. En effet, ce SAP susceptible d'être obtenu par les étapes de fabrication telles que détaillées ci-dessus comprend dans sa matrice polymérique des cristaux d'engrais. En d'autres termes, la matrice du SAP et l'engrais sont interpénétrés de manière à constituer un SAP modifié selon la présente invention.
Le SAP modifié récupéré à l'issue de l'étape d) a pour caractéristiques essentielles que l'engrais est sous forme de cristaux et que la matrice du SAP et l'engrais sont interpénétrés.
Cette interpénétration de la matrice de SAP et de l'engrais a été obtenue grâce aux étapes de procédé telles que décrites ci-dessus, à savoir une dilatation (ou autrement dit un gonflement du SAP par la solution de l'engrais suivie de la cristallisation de l'engrais. Cette absorption de la solution d'engrais, suivie de la cristallisation ont pour effet la création de cristaux à travers toute la matrice du SAP. Ces cristaux maintiennent la matrice de SAP gonflée (ou autrement dit dilatée) et créent une porosité à travers le SAP ; ce qui permet de conserver une hydratation rapide et une excellente solubilité de l'engrais.
Optionnellement, le procédé de fabrication tel que détaillé ci-dessus comprend une étape e) de formage du SAP modifié obtenu à l'issue de l'étape c) et récupéré à l'étape d). Il peut s'agir d'une granulation (par exemple par atomisation ou mise en œuvre sur lit d'air fluidisé), d'un pelliculage, d'un enrobage ou de toute autre méthode de mise en forme solide du SAP modifié. Avec cette étape de formage, le SAP modifié selon la présente invention se présente sous une forme parfaitement appropriée pour être utilisé dans les deux applications agricoles précitées.
Le SAP modifié selon l'invention, lorsqu'il est conçu pour être utilisé dans l'application de fertilisation de plantes présente les avantages suivants :
Tout d'abord, les pertes par lessivage d'éléments nutritifs apportés par les engrais sont réduites. Ainsi, les problèmes de pollution et d'eutrophisation évoqués ci-dessus sont limités.
■ De plus, les pertes d'azote, provoquées par le phénomène de volatilisation de l'ammoniac sont aussi diminuées, et ce grâce à un maintien de l'humidité du SAP modifié selon l'invention. En outre, cette réduction de la volatilisation peut être amplifiée si l'on enfouit dans le sol de manière adéquate, par exemple par micro-localisation, à une profondeur ajustée le SAP modifié selon l'invention au lieu de le déposer en surface, comme cela est généralement mis en œuvre avec les engrais habituellement utilisés. Le dépôt dans le sol du SAP modifié selon l'invention interviendra principalement au moment du semis (juste avant, ou de façon simultanée), mais aussi, il peut être envisagé de l'effectuer en cours de culture ou de l'anticiper lors de la préparation des sols.
Le SAP modifié selon l'invention, lorsqu'il est conçu pour être utilisé pour l'application de rétention et de moyen de restitution d'eau, présente les avantages suivants :
Il réduit le stress hydrique des plantes grâce à l'eau retenue à l'intérieur dudit SAP modifié. Le dépôt du SAP modifié dans le sol peut être effectué de manière micro-localisée et s'intégrer parfaitement aux techniques de culture simplifiées que sont les techniques sans labour, le travail localisé sur le rang uniquement et qui sont connues pour perturber au minimum les propriétés physiques du sol. Grâce au dépôt dans le sol du SAP modifié selon l'invention, les propriétés hydriques du sol sont améliorées, notamment la rétention d'eau.
■ Non seulement le SAP modifié selon l'invention présente des propriétés de rétention d'eau meilleures que celles des SAP connus de l'état de l'art, mais en outre, il présente l'avantage de pouvoir optimiser la restitution de l'eau aux plantes, par exemple en cas de stress hydrique, à savoir en fonction de pressions qui peuvent être exercées sur le SAP modifié.
■ Aussi, de par sa conception, le SAP modifié selon l'invention est capable de capter les eaux lors de périodes pluvieuses, mais aussi de les restituer (ou autrement dit de les redistribuer) dans les sols lorsque le stress hydrique est tel qu'il met en péril la croissance des cultures. A cet égard, il faut savoir que la réserve utile d'un sol est généralement estimée comme la quantité d'eau comprise entre une succion de 0,3 bar (à des pressions plus faibles, les sols sont presque saturés en eau, donc la libération d'eau par un rétenteur d'eau ne présenterait aucun intérêt pour les plantes) et 15 bars (point de flétrissement permanent ou limite de succion, pression au-delà de laquelle la plante n'est plus en mesure de prélever l'eau du sol). Ces pressions "limites" peuvent légèrement varier en fonction des espèces végétales.
Le SAP qui est utilisé à l'étape a) du procédé de fabrication peut être choisi aussi bien parmi les SAP synthétiques que les SAP d'origine naturelle.
Bien entendu, si l'on souhaite que le SAP selon la présente invention soit biodégradable et moins toxique, on choisira un SAP d'origine naturelle.
De manière préférée, le taux de réticulation du SAP utilisé à l'étape a) est compris entre 5 et 50% en masse, préférentiellement entre 10 et 25% en masse, encore plus préférentiellement entre 12 et 20% en masse. Le taux de réticulation est le rapport entre la masse à l'état sec de l'agent réticulant que comprend le SAP et la masse totale à l'état sec du polymère SAP et de son agent réticulant. La réticulation permet d'obtenir une matrice tridimensionnelle solide. Ainsi, cela évite que la matrice de polymère se délite lors de l'absorption de la solution d'engrais au cours de l'étape b) de gonflement du SAP du procédé de fabrication, et ce tout en exhibant une structure « poreuse » particulièrement appropriée pour absorber ladite solution d'engrais. La réticulation permet également une plus grande rémanence in situ du SAP.
Avantageusement, le SAP de l'étape a) est choisi de manière à ce que son module élastique soit compris entre 500 Pa et 8000 Pa, préférentiellement compris 1000 Pa et 5000 Pa, ledit module élastique étant mesuré par balayage en déformation à l'aide d'un rhéomètre lorsque le SAP a été gonflé à l'aide d'un tampon phosphate (osmolarité: 300mOsm/kg+/-10%) avec une concentration finale de SAP dans la solution tampon de 5%. Si le SAP est un SAP d'origine naturelle, il peut avoir été obtenu à partir d'au moins un composé choisi dans le groupe constitué par les polysaccharides, avantageusement parmi les dérivés cellulosiques, l'alginate, et les glycosaminoglycanes (l'acide hyaluronique et ses sels, la chondroïtine sulfate, le dermatane sulfate, le kératane sulfate, l'héparine / l'héparane sulfate).
Le SAP peut être choisi parmi :
les a-glucanes tels que l'amidon, l'amylose et l'amylopectine,
les β-glucanes tels que les dérivés de cellulose, de galactomannanes tels que le guarane, de glucomannanes tels que la gomme de xanthane, les fructanes, les (arabino)xylanes, les galactanes, ainsi que leurs dérivés tels que carboxymethyl, alkyl, hydroxy-ethyl et hydroxypropyl.
De manière préférée, le polysaccharide a un masse moléculaire supérieur à 25 000 Da.
De manière préférée, le polysaccharide est un polysaccharide carboxy- alkylé, de préférence carboxyméthylé ou carboxyéthylé.
D'autres polysaccharides carboxy-alkylés peuvent inclure des moitiés ester obtenues à partir d'anhydrides cycliques tels que l'anhydride succinique et maléique, et de produits d'addition de moitié d'ester maléique auquel a été ajouté des sulfites. Le degré de carboxyalkylation est de préférence compris entre 0 et 1,5, en particulier entre 0,1 et 1,0 par unité de monosaccharide.
Si le SAP est un SAP synthétique, il peut avoir été obtenu à partir d'au moins un composé choisi parmi les polymères résultant de la polymérisation avec réticulation partielle de monomères à insaturations éthyléniques hydrosolubles, et de préférence dans le groupe constitué par :
les polymères acryliques, méthacryliques (issus notamment de la polymérisation de l'acide acrylique et/ou méthacrylique et/ou de monomères acrylate et/ou méthacrylate), vinyliques, en particulier les poly(méth)acrylates réticulés et neutralisés, notamment sous forme de gel, ainsi que les sels de ces polymères, notamment les sels alcalins tels que les sels de sodium ou de potassium de ces polymères;
les polyacrylamides, et notamment sous forme de gel, ainsi que leurs sels (par exemple les sels de sodium ou de potassium de ces polymères) ;
les copolymères acrylamide/acide acrylique, et notamment leurs sels, par exemple de sels de sodium ou de potassium ;
les polyacrylonitriles obtenus par greffage sur support naturel ou synthétique et polymérisation en chaîne, avec une éventuelle réticulation complémentaire. En particulier, le SAP utilisé à l'étape a) du procédé de fabrication peut être un polymère choisi parmi :
les polyacrylates de sodium ou de potassium réticulés vendus sous les dénominations SALSORB CL 10, 25 SALSORB CL 20, FSA type 101, FSA type 102 (Allied Colloids); ARASORB S-310 (Arakawa Chemical); ASAP 2000, Aridall 1460 (Chemdal); KI-GEL 201-K (Siber Hegner); AQUALIC CA W3, AQUALIC CA W7, AQUALIC CA W10; (Nippon Shokuba); AQUA KEEP D 50, AQUA KEEP D 60, AQUA 30 KEEP D 65, AQUA KEEP S 30, AQUA KEEP S 35, AQUA KEEP S 45, AQUA KEEP Al M l, AQUA KEEP Al M3, AQUA KEEP HP 200, NORSOCRYL S 35, NORSOCRYL FX 007 (Arkema); AQUA KEEP 10SH-NF, AQUA KEEP J-550 (Kobo); LUQUASORB CF, LUQUASORB MA 1110, LUQUASORB M R 1600, HYSORB C3746-5 (BASF); COVAGEL (Sensient technologies), SANWET I M- 5000D (Hoechst Celanese) ; les polyacrylamides vendus sous la dénomination HYDROSORB (Hydrosorb I nc.) ; les copolymères acrylamide/acide acrylique sous forme de sel de sodium ou de potassium vendus sous la dénomination WATERLOCK G-400 (Grain Processing Corporation),
AQUASORB 3005 (SN F Floerger), STOCKOSORB 500, STOCKOSORB 660 (Evonik I ndustries), FERTISORB (Fertil), TERRA-SORB (Plant Health Care I nc.).
Le SAP utilisé à l'étape a) du procédé de fabrication peut être composé de polymères naturels et/ou de polymères synthétiques, greffés ou réticulés. Cela peut être par exemple du SAP ZEBA (Absorbent Technology I nc.) à base de polyacrylonitrile greffé sur de l'amidon.
Dans un mode de réalisation de l'invention, le SAP qu'on utilise à l'étape a) du procédé de fabrication est obtenu de la manière suivante :
on dispose d'un polymère d'origine naturelle, de préférence de la carboxyméthyl cellulose (ci-après abrégé « CMC ») que l'on dilue en milieu aqueux à un pH basique (supérieur à 12) de telle sorte que la concentration en masse dudit polymère soit comprise entre 2% et 20%.
On homogénéise le mélange, de préférence à une température comprise entre 15°C et 50°C, et ce préférentiellement pendant une durée comprise entre environ 30 minutes et environ 5 heures.
On réticule ce polymère d'origine naturelle avec un agent de réticulation, par exemple du 1,4-butanediol diglycidylether (ci-après abrégé « BDDE »). Le taux de réticulation peut être compris entre 5% et 50% en masse, de préférence entre 10% et 20%. La réticulation est de préférence réalisée da ns un bain Marie, à une température comprise entre 25°C et 50°C, et ce pendant une durée comprise entre environ une heure et 30 minutes et environ quatre heures.
On neutralise le milieu réactionnel de réticulation en ajoutant une solution acide.
- On sèche le milieu réactionnel de réticulation jusqu'à ce que la concentration en masse du polymère réticulé dans ledit milieu réactionnel soit comprise entre 20% et 65%, de préférence entre 30% et 40%. Le séchage peut être réalisé dans une étuve (par exemple à une température comprise entre 45°C et 50°C), un dessiccateur ou par lyophilisation.
- On réalise une mise en forme du polymère réticulé, par exemple par fractionnement ou sur lit d'air fluidisé.
On effectue un séchage final dans les conditions telles que détaillées ci- dessus, jusqu'à ce que la concentration en masse du polymère réticulé soit d'au moins 90%. Cette étape de séchage peut éventuellement être réalisée avant ou au cours de l'étape de mise en forme du polymère réticulé.
La réticulation du polymère, par exemple de la CMC, par des liaisons covalentes permet le maintien des propriétés « super-absorbantes » au cours du temps dudit polymère.
De manière avantageuse, le SAP utilisé à l'étape a) du procédé de fabrication comporte des groupes hydroxyles, et préférentiellement des groupes présentant un caractère ionique comme par exemple les groupes carboxyles, ainsi que les sulfates et les sulfonates.
Grâce à la réticulation, le polymère, par exemple la CMC, possède une matrice tridimensionnelle microporeuse qui est particulièrement appropriée pour capter la solution d'engrais. Toutefois, il ne faut que la matrice tridimensionnelle soit trop lâche, à savoir que les pores de la matrice soient de taille trop importante, car ladite solution d'engrais ne sera alors pas retenue dans la matrice du polymère.
A l'étape a) du procédé de fabrication, le SAP se présente avantageusement sous forme de granulés, préférentiellement de granulés secs ou partiellement hydratés.
A l'étape a) du procédé de fabrication, l'engrais est choisi parmi les engrais minéraux et les engrais organiques. De manière préférée, l'engrais est choisi parmi les engrais à forte teneur en azote.
Par engrais à forte teneur en azote, il peut s'agir, par exemple : - d'une composition comprenant de l'urée dans laquelle la concentration massique en azote peut être jusqu'à environ 46% ; d'une composition comprenant de l'ammonitrate dans laquelle la concentration massique en azote peut être jusqu'à environ 33,5% ;
d'une composition comprenant du diammonium phosphate dans laquelle la concentration massique en azote peut être jusqu'à environ 18% ;
- d'une solution azotée comprenant un mélange d'urée et d'ammonitrate et dans laquelle la concentration massique en azote peut être jusqu'à environ 30%.
De préférence, il s'agit d'engrais qui comprend au moins un composé choisi dans le groupe constitué par l'urée, les dérivés de l'urée, les sels d'acide nitrique tels que l'ammonitrate, le nitrate de potassium, le nitrate de calcium et le nitrate de magnésium, éventuellement avec du soufre (par exemple des sulfates), et le chlorure d'ammonium.
De manière tout à fait préférée, l'engrais est de l'urée ou un dérivé de l'urée.
Dans un mode de réalisation, l'engrais ne comprend pas de composé qui comporte des groupes présentant un caractère ionique en solution et qui seraient susceptibles d'interférer avec les propriétés d'absorpsion de liquide du SAP.
La solution d'engrais utilisée à l'étape a) du procédé de fabrication peut être préparée en dissolvant au moins partiellement au moins un engrais tel que détaillé ci-dessus dans un solvant. De préférence, le solvant est de l'eau ou un mélange d'eau et d'alcool (autrement dit une solution alcoolique).
Des exemples de solution alcoolique sont un mélange d'eau et d'éthanol selon un ratio volumique de 90/10 ou de 75/25.
De façon préférentielle, la concentration massique en engrais dans la solution d'engrais est comprise entre 50% et 100% d'engrais, encore plus préférentiellement entre 80% et 100%. Ces concentrations massiques sont exprimées en masse d'engrais divisé par la masse de solvant et d'engrais.
Si les concentrations massiques en engrais dans la solution d'engrais sont plus faibles, le risque de cristallisation périphérique d'engrais (donc de non-intégration de l'engrais dans la matrice du SAP) est accru, ce qui présente peu d'intérêt.
Plus précisément, il convient que la cristallisation périphérique de l'engrais soit la plus faible possible, afin que dans l'application de fertilisation des plantes, le SAP modifié selon l'invention puisse limiter au maximum le problème de lessivage évoqué ci-dessus et que dans une application de rétention et de restitution d'eau, le SAP modifié puisse restituer l'eau de manière étalée dans le temps. Autrement dit, le SAP modifié selon l'invention sera d'autant plus performant pour les applications agricoles décrites ci-dessus qu'un maximum d'engrais aura cristallisé au sein de la matrice du SAP et que la cristallisation périphérique de l'engrais sera la plus faible possible.
De manière préférée, l'engrais est totalement dissout dans la solution d'engrais utilisée à l'étape a) du procédé de fabrication.
La dissolution de l'engrais dans un solvant tel que l'eau ou dans une solution alcoolique peut être effectuée à température ambiante.
Dans un mode de réalisation de l'invention, on peut favoriser la dissolution de l'engrais en soumettant la solution d'engrais à une température comprise entre 30°C et 150°C.
Dans un mode particulier de réalisation de l'invention, la solution d'engrais utilisée à l'étape a) du procédé de fabrication selon l'invention est une solution liquide d'urée pure maintenue à une température supérieure à la température de fusion de l'urée, de préférence une température supérieure à 133°C. En effet, la température de fusion de l'urée est environ de 133°C.
Dans un mode de réalisation avantageux de l'invention, la solution d'engrais utilisée à l'étape a) du procédé de fabrication est une solution aqueuse d'urée dont la concentration massique en urée est d'environ 96% et qui est obtenue par dissolution d'urée à une température supérieure à 120°C. La faible quantité d'eau (soit environ 4% en pourcentage massique) dans la solution d'engrais permet d'éviter la formation de biuret (à savoir un composé obtenu par condensation de deux molécules d'urée et l'élimination d'une molécule d'ammoniac).
Bien entendu, la dissolution de l'engrais dans un solvant tel que par exemple de l'eau ou une solution alcoolique est parfaitement à la portée de l'homme du métier qui saura, en fonction de l'engrais et du solvant qu'il aura choisis, dissoudre l'engrais de manière adéquate.
De manière avantageuse, la solution d'engrais présente un pH légèrement acide (à savoir compris entre 5 et 7, de préférence entre 6 et 6,5). Cette légère acidité de la solution d'engrais peut être obtenue en solubilisant l'engrais dans une solution tamponnée adaptée. Autrement dit, la solution d'engrais utilisée à l'étape a) du procédé de fabrication selon l'invention peut en outre comprendre des tampons choisis de manière adéquate pour procurer à la solution d'engrais une légère acidité. Cela présente l'avantage que si l'engrais utilisé à l'étape a) est de l'urée, il se volatilisera moins en ammoniac. La concentration d'engrais dans la solution d'engrais est adaptée en fonction de l'utilisation du SAP modifié selon l'invention.
Lorsque le SAP modifié selon l'invention est destiné à une utilisation pour la fertilisation des plantes, il comprend en pourcentages massiques :
- 1 à 20%, de préférence 2 à 10%, encore plus préférentiellement 3 à 5% du SAP ;
80 à 99%, de préférence 90 à 98%, préférentiellement 95 à 97% d'engrais.
Lorsque le SAP modifié selon l'invention est destiné à une utilisation pour retenir l'eau et la restituer aux plantes de manière étalée dans le temps, il comprend en pourcentages massiques :
20 à 99% du SAP;
1 à 80% d'engrais.
Plus la concentration de l'engrais dans la solution d'engrais est élevée, moins le SAP modifié obtenu à l'issue de l'étape c) de cristallisation présentera de cristallisation périphérique friable d'engrais non intégré dans la matrice du SAP. En effet, cette cristallisation périphérique friable est liée à l'évaporation du solvant de la matrice du SAP et à la contraction volumique du SAP induite par cette évaporation au moment de l'étape c) de cristallisation.
Comme expliqué ci-dessus, le SAP qui est ajouté dans la solution d'engrais à l'étape a) peut se présenter sous forme sèche ou être partiellement hydraté. On préférera des SAP avec des taux d'humidité inférieur à 10%, afin de ne pas rajouter trop d'eau supplémentaire au mélange de l'étape a) qui pourrait augmenter la cristallisation périphérique d'engrais lors de l'étape c) de cristallisation.
De manière avantageuse, au cours de l'étape b) de gonflement, le SAP absorbe la totalité de la solution d'engrais, et ce afin que tout l'engrais mis en œuvre au cours de l'étape a) soit utilisé pour la fabrication du SAP modifié selon la présente invention - autrement dit qu'il n'y ait pas de pertes d'engrais au cours du procédé de fabrication du SAP modifié.
C'est pourquoi, dans un mode de réalisation de l'invention, le SAP peut contenir davantage d'eau et donc présenter un taux d'humidité supérieur à 10% dans la mesure où il peut absorber la totalité de la solution d'engrais du mélange de l'étape a). En d'autres termes, afin d'optimiser au mieux la fabrication du SAP modifié selon l'invention, les choix de la solution d'engrais et du SAP sont étroitement liés. L'optimisation de ces paramètres est parfaitement à la portée de l'homme du métier. A l'étape a), le mélange est avantageusement préparé en ajoutant le SAP sous forme de poudre, de perles ou de granulés dans la solution d'engrais. La granulométrie moyenne du SAP peut être choisie entre 0,1mm et 4 mm, selon le gonflement du SAP souhaité à l'étape b), et selon l'application et la technique de dépôt dans le sol du SAP modifié selon l'invention qui sont envisagées.
Une agitation, de préférence une agitation mécanique, peut être mise en œuvre au cours de l'étape a) du procédé de fabrication afin de disperser le SAP de façon homogène dans la solution d'engrais ou autrement dit d'améliorer les échanges entre la solution d'engrais et le SAP pour favoriser une pénétration homogène de la solution d'engrais dans le SAP.
De façon avantageuse, au cours de l'étape b), le taux de gonflement obtenu du SAP est significativement inférieur à sa capacité maximum de gonflement à saturation. Préférentiellement, son taux de gonflement correspond à la moitié de sa capacité d'absorption, encore plus préférentiellement à moins du quart de sa capacité d'absorption. En effet, un taux de gonflement inférieur à la capacité maximum de gonflement du SAP permettra de limiter la cristallisation de l'engrais en périphérie de la matrice du SAP évoquée ci-dessus.
De manière avantageuse, pour maintenir l'engrais en solution et pour accélérer le gonflement du SAP, on chauffe le mélange de solution d'engrais et de SAP au cours de l'étape b) à une température similaire à la température de la mise en solution de l'engrais, c'est-à-dire par exemple comprise entre 30°C et 150°C.
Dans un mode de réalisation de l'invention, l'étape b) est effectuée à température ambiante.
Le gonflement du SAP est quasi-spontané. La durée de gonflement du SAP peut varier entre quelques dizaines de secondes et quelques dizaines de minutes. Cela dépend du SAP qui a été ajouté à la solution d'engrais et des conditions de température et de concentration de l'engrais.
A l'issue de l'étape b), on observe un changement radical d'état du mélange. En effet, le mélange comprenant la solution d'engrais et le SAP qui initialement était liquide se présente désormais sous une forme solide, composé d'un agglomérat de blocs de SAP contenant dans sa matrice la solution d'engrais. Ces blocs sont souples, translucides ou opalescents car ils contiennent la solution d'engrais.
Préférentiellement, le SAP et la solution d'engrais sont choisis de telle manière qu'à l'issue de l'étape b) de gonflement du SAP il n'y ait plus de surnageant qui induirait une cristallisation périphérique de l'engrais en dehors de la matrice polymère. Cette optimisation de l'étape b) est à la portée de l'homme du métier. A l'étape c), on cristallise l'engrais contenu dans le mélange obtenu à l'issue de l'étape b).
Au cours de l'étape c), l'engrais de la solution d'engrais qui aura été absorbé par le SAP au cours de l'étape b) de gonflement va cristalliser au sein de la matrice du SAP. En d'autres termes, plus le SAP aura absorbé de solution d'engrais (ou autrement dit aura intégré de la solution d'engrais au sein de sa matrice), plus le SAP modifié récupéré à l'étape d) du procédé de fabrication renfermera dans sa matrice de l'engrais.
Selon la nature de l'engrais que contient la solution d'engrais, ainsi que selon sa concentration dans ladite solution d'engrais, la cristallisation de l'étape c) peut être réalisée selon différentes techniques, à savoir :
par refroidissement du mélange obtenu à l'issue de l'étape b) ;
par séchage du mélange obtenu à l'issue de l'étape b) ;
par évaporation du solvant de la solution d'engrais du mélange obtenu à l'issue de l'étape b), ainsi que
par lyophilisation.
Dans un mode de réalisation de l'invention, la cristallisation de l'étape c) est réalisée par refroidissement en portant le mélange obtenu à l'issue de l'étape b) à une température inférieure à la température de solubilisation de l'engrais, cette température de solubilisation dépendant de la concentration en engrais dissout dans la solution d'engrais.
La cristallisation de l'étape c) peut être réalisée à une température comprise entre 0°C et 100°C, et optionnellement mise en œuvre sous agitation, de préférence sous agitation mécanique. Le mélange mécanique permet d'éviter des phénomènes d'adhésion entre les granulés et permet d'exposer la surface de chacun de ces granulés à des conditions appropriées de cristallisation.
Dans un autre mode de réalisation de l'étape c), on sèche le mélange obtenu à l'issue de l'étape b).
Le séchage peut être réalisé par exposition à un flux d'air à une température comprise entre 30°C et 70°C ou par étuvage, dans un dessiccateur ou bien encore par lyophilisation.
Dans un autre mode de réalisation de l'invention, l'étape c) de cristallisation est effectuée à température ambiante.
Lorsqu'on évapore le solvant, on augmente la concentration d'engrais dans la solution d'engrais intégrée dans la matrice du SAP, de telle sorte que les conditions de cristallisation de l'engrais sont réunies provoquant ainsi la cristallisation de l'engrais, en particulier au sein de la matrice du SAP. En effet, on peut évaporer le solvant jusqu'à ce que la quantité d'engrais dissout dans la solution d'engrais résiduelle soit supérieure à la concentration de saturation.
De manière préférée, la cristallisation de l'engrais dans le mélange obtenu à l'issue de l'étape b), et donc comme expliqué ci-dessus tout particulièrement au sein de la matrice du SAP, est achevée dès lors que le SAP ainsi modifié se présente sous la forme de granulés durs. De cette manière, le SAP modifié peut être aisément récupéré à l'étape d). Par « granulés durs », on entend des granulés qui sont résistants à l'écrasement et qui sont appropriés pour être déposés au travers une chaîne de distribution d'équipements agricoles sans créer d'agglomérats ou de colmatage. On préférera des SAP modifiés avec un taux d'humidité massique inférieur à 10%.
Bien entendu, le choix de la technique de cristallisation la plus appropriée, autrement dit la détermination des conditions propices pour provoquer la cristallisation de l'engrais dans le mélange obtenu à l'issue de l'étape b), et ce en fonction de la solution d'engrais qui aura été utilisée au cours de l'étape a) du procédé de fabrication est à la portée de l'homme du métier. En effet, les diagrammes de cristallisation de systèmes engrais-solvant en fonction de la température et de la concentration d'engrais dissout sont parfaitement connus et donc à la portée de l'homme du métier. De cette manière, l'homme du métier pourra déterminer les conditions optimales de cristallisation dans le mélange obtenu à l'issue de l'étape b).
Optionnellement, le SAP modifié récupéré à l'étape d) est mis en forme par une technique de formage connue de l'homme de l'art, par exemple par enrobage, pélliculage ou granulation par atomisation ou sur lit d'air fluidisé.
Eventuellement, des additifs peuvent également être ajoutés aux granulés, tels que des retardateurs de nitrification ou des inhibiteurs d'uréase, et ce afin de renforcer davantage la réduction du lessivage et de la volatilisation dans le cas d'une application du SAP modifié pour la fertilisation des plantes.
La présente invention concerne aussi l'utilisation de SAP modifié selon l'invention dans deux applications agricoles.
La l'ere application agricole consiste à utiliser le SAP modifié selon l'invention pour retenir l'eau et la restituer aux plantes en cas de stress hydrique, ladite restitution étant étalée dans le temps.
La restitution de l'eau par le SAP modifié sera influencée par : la matrice du SAP utilisé dans le mélange de l'étape a) du procédé de fabrication : sa porosité, son taux de réticulation, la nature de ses monomères, sa capacité d'absorption, la quantité et la nature de ses adjuvants. la teneur en solution d'engrais utilisée à l'étape a) du procédé de fabrication. La 2ieme application agricole consiste à utiliser le SAP modifié selon l'invention pour la fertilisation des plantes.
Pour ces deux applications agricoles, le SAP modifié selon l'invention est avantageusement enfoui dans le sol, de préférence en combinaison avec la mise en œuvre de techniques de culture en bande.
Pour ce faire, les SAP modifiés selon l'invention qui auront été mis en forme en granulés sont dispersés à la surface du sol par un épandage superficiel, généralement réalisé avec des épandeurs centrifuges. Ensuite, les granulés de SAP sont enfouis par des techniques de travail superficiel du sol qui utilisent un outil de scarification, un déchaumeur ou encore un chisel. La profondeur moyenne d'enfouissement est de l'ordre de 2 à 10 cm sous la surface du sol.
Il est à noter que les granulés peuvent être uniquement déposés sur le sol et ne pas être enfouis comme cela a été détaillé ci-dessus. Ils seront dans ce cas en partie véhiculés dans le sol par l'infiltration des eaux de ruissellement. Ce mode de réalisation est peu favorable car il ne permet pas une utilisation efficace de l'eau ou des nutriments contenus dans les granulés par les plantes.
Ou bien, de préférence, les granulés de SAP sont enfouis de manière localisée dans le sol, généralement au moment du semis. Pour ce faire, les granulés de SAP sont avantageusement contenus dans des trémies fixées sur le semoir, et sont alors distribués de façon localisée à proximité ou dans le rang de semis. La profondeur d'enfouissement dans ce cas est assez similaire à celle obtenue par un épandage superficiel, mais la localisation la rend mieux maîtrisée et plus régulière. Cette technique peut également permettre de déposer des quantités plus faibles de SAP modifié selon l'invention.
L'enfouissement localisé de SAP modifié selon l'invention est avantageusement mis en œuvre lorsqu'il combine des techniques de dépôt dudit SAP et de travail du sol par des techniques simplifiées (à savoir sans labour et travail en bande, uniquement au niveau du rang de semis).
Les équipements de travail en bande peuvent être équipés de trémies qui distribuent les granulés de SAP modifié selon l'invention de façon localisée à proximité du rang de semis, préférentiellement sous le rang de semis. La profondeur moyenne d'enfouissement est l'ordre de 5 à 25 cm sous la surface du sol. Ces techniques sont particulièrement favorables pour les cultures dites « sarclées » pour le maïs, les betteraves, les pommes de terre et tournesol. La combinaison de la technique de travail du sol en bande à l'une des deux applications agricoles des SAP modifié selon l'invention est particulièrement favorable.
En effet, la préservation de la structure physique et de la porosité naturelle du sol dans l'inter-rang permet d'y maintenir de meilleures propriétés hydriques : augmentation de la réserve utile en eau et limitation des phénomènes de lessivage et de trop forte percolation. Le SAP modifié selon l'invention lorsqu'il est utilisé comme rétenteur d'eau, en synergie avec la structure du sol dans l'inter-rang, profite d'une meilleure dynamique hydrique qui lui permet de se recharger en eau.
En outre, lorsque le SAP modifié selon l'invention est utilisé pour la fertilisation des plantes, la structure du sol dans l'inter-rang tend à diminuer le phénomène de lessivage et ainsi permet une utilisation encore plus optimisée des nutriments apportés.
Lorsque le SAP modifié selon l'invention est utilisé en tant que rétenteur d'eau, on dépose entre 2 et 200 kg de SAP modifié selon l'invention par hectare, préférentiellement entre 5 à 80 kg de SAP modifié selon l'invention par hectare, encore plus préférentiellement 10 à 40 kg de SAP modifié selon l'invention par hectare.
Lorsque le SAP modifié selon l'invention est utilisé en tant que rétenteur d'eau, on dépose entre 5 et 500 kg de SAP modifié selon l'invention par hectare, préférentiellement entre 10 à 250 kg de SAP modifié selon l'invention par hectare.
La présente invention a aussi pour objet, dans le domaine médical, l'utilisation d'un SAP modifié selon l'invention tel que décrit ci-dessus comme élément constitutif d'au moins une partie d'un dispositif médical qui est configuré pour générer du froid sur une partie du corps d'un être humain ou d'un animal afin de la soigner et/ou de la soulager.
Par exemple, un tel dispositif médical peut être utilisé pour soigner et/ou soulager des traumatismes externes du corps tels qu'une entorse, une tendinite, une plaie, un hématome, une contusion, ou bien lors d'actes médicaux invasifs tels qu'une injection, une infiltration ou un acte chirurgical.
Ce dispositif médical peut se présenter sous différentes formes telles que par exemple un patch, une compresse ou encore une pochette.
Ce dispositif médical a une taille et une flexibilité adaptées à la morphologie de la partie du corps de l'être humain ou animal à soigner et/ou à soulager. Ce dispositif médical s'active, à savoir il fournit du froid sur la partie du corps de l'être humain ou animal sur laquelle il est mis en contact (ou autrement dit sur la partie du corps de l'être humain ou animal sur laquelle il a été disposé), lorsque le SAP modifié selon l'invention est hydraté. En effet, lorsque le SAP modifié selon l'invention est hydraté (ou autrement dit lorsqu'il entre en contact avec une substance contenant un liquide, de préférence une solution aqueuse telle que de l'eau ou des sels naturels hydratés, par exemple un sulfate de sodium décahydraté), l'engrais qu'il contient se dissout selon une réaction endothermique qui produit donc du froid.
Un dispositif médical tel que décrit ci-dessus, à savoir dont au moins un de ses éléments est un SAP modifié selon l'invention, présente les avantages suivants :
Il permet de soulager plus efficacement la douleur et de réduire les réponses vasculaires et métaboliques de la partie du corps de l'être humain ou animal sur laquelle il a été posé (ou autrement dit la partie du corps avec laquelle il est mis en contact), et ce du fait qu'il génère un froid plus intense que celui généré par des dispositifs médicaux connus de l'état de l'art qui sont aussi configurés pour fournir du froid sur une partie du corps d'un être humain ou animal.
Le froid apparaît instantanément et spontanément dès le contact de la substance contenant un liquide (par exemple de l'eau) avec le SAP modifié selon l'invention, et ce sans nécessiter de congélation ou de manipulation préalable dudit dispositif médical.
L'hypertonie et/ou l'hyperosmolarité de l'engrais qui est dissout et se présente alors sous la forme d'une solution qui est absorbée dans le SAP après l'hydratation de celui-ci permet le nettoyage et le débridement de la partie du corps de l'être humain ou de l'animal à soigner et/ou à soulager.
Du fait que dans le SAP modifié selon l'invention, la matrice du SAP et l'engrais sont interpénétrés, lorsque le SAP modifié selon l'invention est hydraté, l'engrais est solubilisé de manière parfaitement homogène. Ainsi, le froid est généré et se diffuse de manière homogène au sein du SAP modifié selon l'invention pour atteindre la partie du corps de l'être humain ou animal mise en contact avec le dispositif médical.
Différents moyens parfaitement à la portée de l'homme du métier peuvent être mis en œuvre pour hydrater le SAP modifié selon l'invention que comporte un tel dispositif médical. De manière avantageuse, le SAP modifié selon l'invention est hydraté avec de l'eau. Différents formes de réalisation du dispositif médical qui comporte au moins un SAP modifié selon l'invention peuvent être envisagées. Deux de ces formes de réalisation sont décrites ci-après.
Bien entendu, les différentes formes de réalisation d'un dispositif médical configuré pour fournir du froid sur une partie du corps d'un être humain ou animal sont parfaitement à la portée de l'homme du métier.
Dans un mode de réalisation envisageable de l'invention, le dispositif médical comporte une pochette poreuse dans laquelle a été disposée un SAP modifié selon l'invention.
De manière avantageuse, la pochette est réalisée en un matériau poreux qui peut être un non tissé de polypropylène hypoallergénique.
Lorsqu'on souhaite utiliser ce dispositif médical et donc l'activer, il suffit de mettre en contact ladite pochette sur la partie du corps de l'être humain ou animal à soigner et/ou à soulager. Puis, on verse un liquide (par exemple de l'eau) sur ladite pochette. Le liquide va traverser les pores de la pochette et ainsi hydrater le SAP modifié selon l'invention ; ce qui va avoir aussi pour effet de dissoudre l'engrais qu'il contient et donc de déclencher une réaction endothermique qui génère du froid qui va se diffuser jusqu'à la partie du corps de l'être humain ou animal ciblée. Le liquide qu'on verse sur la pochette peut être stocké dans des dosettes (par exemple des récipients tels que des flacons ou des ampoules remplis de liquide).
Ainsi, des kits comprenant au moins une telle pochette et une dosette peuvent être fournis pour générer du froid sur une partie du corps d'un être humain ou d'un animal. Dans un autre mode de réalisation envisageable de l'invention, le kit peut comprendre une telle pochette et une dosette (par exemple un récipient tel que décrit ci-dessus) contenant une substance qui contient un liquide (par exemple un sel naturel hydraté tel qu'un sulfate de sodium décahydraté) de telle manière que le contact de cette substance avec la pochette va hydrater le SAP modifié selon l'invention.
Dans un autre mode de réalisation envisageable de l'invention, le dispositif médical comprend une pochette, de préférence une pochette poreuse, qui présente :
au moins un compartiment étanche comprenant une substance qui contient un liquide (par exemple une solution aqueuse telle que de l'eau ou bien encore un sel naturel hydraté),
- au moins un SAP modifié selon l'invention, ledit compartiment est configuré pour que ladite substance contenant un liquide hydrate le SAP modifié selon l'invention lors de l'activation de ce dispositif médical, à savoir lorsqu'on souhaite générer du froid sur une partie du corps d'un être humain ou animal. Le compartiment étanche peut, par exemple, présenter au moins une paroi sécable ou frangible qui est configurée pour que ladite substance contenant un liquide puisse hydrater le SAP modifié selon l'invention dès lors que ladite paroi a été rompue.
De manière préférée, la substance qui contient un liquide est une solution aqueuse.
De manière avantageuse, la pochette est réalisée en un matériau poreux qui peut être un non tissé de polypropylène hypoallergénique.
Ce mode de réalisation du dispositif médical présente l'avantage que la portion de la pochette qui est en contact avec la partie du corps de l'être humain ou animal demeure sèche, étant donné que la condensation produite inévitablement à la surface de cette pochette lors de l'hydratation du SAP modifié et donc de la réaction endothermique est immédiatement absorbée par le SAP que comprend ledit SAP modifié. Ainsi, ce dispositif médical configuré pour générer du froid présente l'avantage par rapport aux autres dispositifs médicaux équivalents connus de l'état de l'art de ne pas mouiller et/ou souiller la partie du corps de l'être humain ou animal ciblée, du fait que le SAP modifié selon l'invention qu'il contient absorbe au fur et à mesure les condensais produits au cours de la réaction endothermique du fait de la dissolution de l'engrais.
Lorsque le SAP modifié selon l'invention est utilisé dans le domaine médical, le SAP modifié comprend préférentiellement une matrice d'un SAP d'origine naturelle. Cela a l'avantage que le SAP modifié présente une compatibilité biologique.
De plus, pour une telle utilisation du SAP modifié dans le domaine médical, l'engrais est avantageusement choisi parmi l'urée et les sels d'ammonium (de préférence les nitrates ou les chlorates d'ammonium).
Lorsque le SAP modifié selon l'invention est utilisé pour une application médicale telle que décrite ci-dessus, il comprend avantageusement, en pourcentages massiques :
1 à 95%, de préférence 5 à 40%, encore plus préférentiellement 10 à 20% du SAP;
5 à 99%, de préférence 60 à 95%, encore plus préférentiellement 80 à 90% d'engrais. De manière préférée, le dispositif médical est stérile, et est avantageusement à usage unique.
Description des fifiures :
- La figure 1 est un graphe comparant les propriétés de rétention d'eau en fonction du temps (en minutes) d'un l'er échantillon de SAP modifié selon l'invention (sur le graphe : « l'er échantillon selon l'invention ») avec celles d'un l'er échantillon d'un SAP de l'état de l'art (sur le graphe : « l'er échantillon comparatif »).
- La figure 2 est un graphe comparant les propriétés de rétention d'eau en fonction du temps (en minutes) d'un 2ieme échantillon de SAP modifié selon l'invention (sur le graphe : « 2ieme échantillon selon l'invention ») avec celles d'un 2ième échantillon d'un SAP de l'état de l'art (sur le graphe : « 2ième échantillon comparatif »).
- La figure 3 est un graphe comparant les propriétés de rétention d'eau en fonction du temps (en minutes) du l'er échantillon de SAP de l'état de l'art (sur le graphe : « l'er échantillon comparatif ») avec celles du 2ieme échantillon d'un SAP de l'état de l'art (sur le graphe : « 2ieme échantillon comparatif »).
La figure 4 est un graphe comparant les propriétés de rétention d'eau en fonction du temps (en minutes) du l'er échantillon de SAP modifié selon l'invention (sur le graphe : « l'er échantillon selon l'invention) avec celles du 2ieme échantillon de SAP modifié selon l'invention (sur le graphe : « 2ieme échantillon selon l'invention »).
La figure 5 est une photographie prise au microscope électronique à balayage d'une portion d'une perle d'urée.
La figure 6 est une photographie prise au microscope électronique à balayage d'une portion d'un granulé d'un SAP synthétique.
La figure 7 est une photographie prise au microscope électronique à balayage d'une portion d'un granulé d'un SAP modifié selon un premier mode de réalisation de l'invention.
La figure 8 est une photographie prise au microscope électronique à balayage d'une portion d'un granulé d'un SAP modifié selon un deuxième mode de réalisation de l'invention.
La figure 9 est un graphe de l'évolution de la température en fonction du temps du contenu de béchers remplis d'eau dans lesquels a été immergé soit de l'urée en poudre, soit de l'urée en perles, soit un SAP modifié selon l'invention.
Description des photo raphies :
La figure 5 est une photographie prise au microscope électronique à balayage à un grossissement de 300 fois d'une portion d'une perle d'urée qui est utilisée comme fertilisant. Sur ladite photographie, on distingue un agglomérat de cristaux d'urée 5.
La figure 6 est une photographie prise au microscope électronique à balayage à un grossissement de 300 fois d'une portion d'un granulé d'un SAP synthétique 1. Plus précisément, ledit SAP est un copolymère réticulé d'acrylamide et d'acrylate de potassium qui est à l'état non hydraté. Sur la photographie de la figure 6, des lignes de rupture 2 sont visibles. Ces lignes de rupture 2 dudit SAP 1 sont apparues lors de la fragmentation mécanique par broyage qui a été réalisée pour obtenir les granulés du SAP 1 dont une portion est visible sur la photographie de la figure 6.
La figure 7 est une photographie prise au microscope électronique à balayage à un grossissement de 300 fois d'une portion d'un granulé d'un SAP modifié 3 selon un premier mode de réalisation de l'invention. Cet SAP modifié 3 contient, en pourcentages massiques, 20% de SAP synthétique de copolymère réticulé d'acrylamide et d'acrylate de potassium et 80% d'urée. On distingue sur la photographie de la figure 7 que les cristaux d'urée 5 sont interpénétrés avec la matrice 4 dudit SAP synthétique de copolymère réticulé d'acrylamide et d'acrylate de potassium. La matrice 4 est visible du fait qu'elle présente un ton gris plus clair que les cristaux d'urée 5. Ainsi, par comparaison avec les photographies des figures 5 et 6 qui présentent les constituants de départ pour l'obtention d'un SAP modifié selon l'invention, on relève toute l'originalité du SAP modifié 3 selon la présente invention qui présente clairement une interpénétration des cristaux de l'urée 5 avec ladite matrice 4 du SAP synthétique de copolymère réticulé d'acrylamide et d'acrylate de potassium. Cette interpénétration a été obtenue grâce à la mise en œuvre des étapes de fabrication du SAP modifié 3 selon la présente invention et qui ont été décrites ci- dessus.
La figure 8 est une photographie prise au microscope électronique à balayage un grossissement de 300 fois d'une portion d'un granulé d'un SAP modifié 6 selon un deuxième mode de réalisation de l'invention. Cet SAP modifié 6 contient, en pourcentages massiques, 10% de SAP synthétique de copolymère réticulé d'acrylamide et d'acrylate de potassium et 90% d'urée. On distingue sur la photographie de la figure 8 que les cristaux d'urée 5 sont interpénétrés avec la matrice 7 dudit SAP synthétique de copolymère réticulé d'acrylamide et d'acrylate de potassium.
De plus, la partie de la photographie de la figure 8 qui est au-dessus du trait pointillé est un plan de coupe où l'on distingue des inclusions de ladite matrice 7 du SAP synthétique de copolymère réticulé d'acrylamide et d'acrylate de potassium dans les cristaux d'urée 5.
Du fait que le granulé du SAP modifié 6 s'est rompu au cours de la découpe, cela a permis de mettre en évidence, sur la partie de la photographie de la figure 8 située en dessous du trait pointillé, comment la matrice 7 du SAP synthétique de copolymère réticulé d'acrylamide et d'acrylate de potassium est interpénétrée avec les cristaux d'urée 5 sous forme tridimensionnelle.
Cette photographie de la figure 8 est donc très intéressante, car elle présente l'interpénétration des cristaux d'urée 5 avec la matrice 7 du SAP synthétique de copolymère réticulé d'acrylamide et d'acrylate de potassium selon différents points de vue, à savoir en coupe (partie supérieure de la photographie) et sous forme tridimensionnelle (partie inférieure de ladite photographie).
Ainsi, par comparaison avec la figure 6 qui représente aussi un SAP synthétique mais au sein duquel il n'y a pas d'urée qui a cristallisé, on relève sur les photographies des figures 7 et 8 que les matrices 4,7 des SAP synthétiques de copolymère réticulé d'acrylamide et d'acrylate de potassium forment un réseau dilaté au sein duquel l'urée 5 a cristallisé.
Les photographies des figures 7 et 8 témoignent ainsi de toute l'originalité du SAP modifié 3,6 selon l'invention par rapport à un SAP qui n'a pas été soumis aux étapes de procédé de fabrication selon l'invention qui ont été décrites ci- dessus.
Partie expérimentale : I - Test des propriétés de rétention d'eau des SAP selon la présente invention :
On a préparé les échantillons suivants :
1) l'er échantillon comparatif consistant en un SAP à base de sel de potassium de copolymère d'acrylamide/acide acrylique réticulé, d'une granulométrie moyenne d'environ 0,75mm et d'une teneur massique en humidité de l'ordre de 5% (ci-après abrégé « PAM »). Il s'agit d'un l'er SAP comparatif, à savoir qui était déjà connu de l'état de l'art de la présente invention. l'er échantillon selon l'invention consistant en un SAP modifié selon l'invention qui a été obtenu de la manière suivante :
On a dissout 12g d'urée dans 6cm3 d'eau à une température de 80°C de manière à obtenir une solution d'engrais.
On a ajouté à cette solution d'engrais 3 g de SAP à base de PAM (à savoir, un SAP identique au l'er échantillon comparatif) de manière à obtenir un mélange ;
On a maintenu ce mélange à une température à 80°C, sous agitation manuelle, jusqu'à l'intégration complète de la solution d'engrais dans le SAP qui a donc gonflé. On a obtenu de petits blocs souples translucides de SAP qui ont absorbé la totalité de la solution d'urée, sans surnageant visible.
Les blocs ont été refroidis pendant 20 minutes jusqu'à une température de 30°C en maintenant un brassage lent.
On a séché le SAP ainsi gonflé et renfermant donc l'engrais à une température de 30°C de manière à obtenir un l'er SAP modifié selon l'invention.
2'eme échantillon comparatif consistant en un SAP à base de CMC qui a été obtenu de la manière suivante :
On a hydraté et linéarisé de la CMC à 10% dans une solution basique (NaOH 1% diluée dans du tampon phosphate).
On a homogénéisé de manière manuelle, puis soumis le mélange à une température de 50°C, et ce pendant 30 minutes ladite solution de CMC.
On a réticulé à l'aide d'un agent réticulant consistant en une solution de BDDE à 16% en masse. La réticulation a été réalisée en deux heures à une température de 50°C.
On a neutralisé et ajusté la concentration de la solution de CMC réticulée à 5% en masse en ajoutant de l'acide chlorhydrique et un tampon phosphate et on a laissé la matrice de CMC gonfler, et ce jusqu'à l'obtention d'un gel avec une concentration en CMC de 5% en masse.
On a séché en dessiccateur à une température comprise 45- 50°C jusqu'à obtenir une concentration en CMC de 35% en masse. On a ainsi obtenu un SAP. On a broyé le SAP ainsi obtenu à l'aide d'un broyeur RAPID type 150.21 - diamètre de grille: 5mm.
On a effectué un séchage final. On a ainsi un 2ieme SAP comparatif, à savoir selon l'état de l'art.
4) 2'eme échantillon selon l'invention consistant en un SAP à base de CMC qui a été obtenu de la manière suivante :
On a dissout 12g d'urée dans 6cm3 d'eau à une température de 80°C de manière à obtenir une solution d'engrais.
On a ajouté à cette solution d'engrais de 3 g de SAP à base de CMC (à savoir, un SAP identique au 2ieme échantillon comparatif obtenu à l'issue du séchage final) de manière à obtenir un mélange ;
On a maintenu ce mélange à une température à 80°C, sous agitation manuelle, jusqu'à l'intégration complète de la solution d'engrais dans le SAP qui a donc gonflé. On a obtenu de petits blocs souples opalescents de SAP qui ont absorbé la totalité de la solution d'urée, sans surnageant visible.
Les blocs ont été refroidis pendant 20 minutes jusqu'à une température de 30°C en maintenant un brassage lent.
■ On a séché le SAP ainsi gonflé et renfermant donc l'engrais à une température de 30°C de manière à obtenir un 2ieme SAP modifié selon l'invention.
Pour chacun de ces quatre échantillons (à savoir deux échantillons selon l'invention et deux échantillons comparatifs correspondant à des SAP déjà connus, ou autrement dit selon l'état de l'art, on a effectué les étapes suivantes :
On a ajouté de manière progressive, une quantité totale de 60g d'eau.
On a laissé gonfler les quatre SAP, jusqu'à ce que leur poids à l'état hydraté soit 20 fois celui de leur poids à l'état sec.
On a attendu une heure.
- On a prélevé 3g de chacun des quatre SAP gonflés ainsi obtenus qu'on a placés dans une étuve pour une dessiccation à 35°C.
On a effectué régulièrement des mesures de la masse de chacun de ces quatre SAP.
On a déterminé le pourcentage de masse d'eau évacuée de chacun des SAP en comparant la masse initiale du SAP avant dessiccation et sa masse mesurée. Les graphes des figures 1 à 4 expriment chacun le pourcentage de masse d'eau évacuée du SAP testé en fonction du temps.
Pour chacun des graphes, au temps initial (t=0 minutes) le pourcentage initial d'eau est de 100%. Le pourcentage de la masse d'eau décroît avec le temps à partir de la valeur initiale de 100%, à savoir selon la masse d'eau évacuée au cours du temps. Plus précisément :
Le graphe de la figure 1 exprime le pourcentage d'eau évacuée en fonction du temps du l'er échantillon de SAP modifié selon l'invention et du l'er échantillon de SAP de l'état de l'art.
- Le graphe de la figure 2 exprime le pourcentage d'eau évacuée en fonction du temps du 2ieme échantillon de SAP modifié selon l'invention et du 2ieme échantillon de SAP de l'état de l'art.
Le graphe de la figure 3 exprime le pourcentage d'eau évacuée en fonction du temps du lier échantillon de SAP de l'état de l'art et du 2ième échantillon d'un SAP de l'état de l'art.
Le graphe de la figure 4 exprime le pourcentage d'eau évacuée en fonction du temps du l'er échantillon de SAP modifié selon l'invention avec celles du 2ieme échantillon de SAP modifié selon l'invention.
Au vu du graphe de la figure 3, on constate que le 2ieme SAP comparatif (à savoir à base de CMC réticulée - le 2ième échantillon de SAP de l'état de l'art) a une capacité de rétention de l'eau supérieure à celui dul'er SAP comparatif (à savoir à base de PAM - le lier échantillon de SAP de l'état de l'art).
On relève des graphes des figures 1 et 2 que les SAP selon la présente invention ont une meilleure capacité de rétention d'eau que leurs SAP comparatifs respectifs.
Enfin, on note que le SAP modifié selon l'invention à base de CMC réticulée (à savoir le 2ieme échantillon de SAP modifié selon l'invention) a une capacité de rétention d'eau légèrement supérieure au SAP modifié selon l'invention à base de PAM (à savoir le l'er échantillon de SAP modifié selon l'invention).
Ainsi, les SAP modifiés selon l'invention ont une capacité de rétention d'eau pleinement optimisée.
Il - Test des propriétés de fertilisation des plantes des SAP selon la présente invention :
On a préparé les échantillons suivants ) l'er échantillon selon l'invention consistant en un SAP modifié selon l'invention comprenant en poids 1% de PAM et 99% d'urée qui a été obtenu de la manière suivante :
On a dissout 12g d'urée dans 6cm3 d'eau à une température de 80°C de manière à obtenir une solution d'engrais.
On a ajouté à cette solution d'engrais 120 mg de SAP à base de PAM de manière à obtenir un mélange ;
On a maintenu ce mélange à une température à 80°C, sous agitation manuelle, jusqu'à l'intégration complète de la solution d'engrais dans le SAP qui a donc gonflé. On a obtenu de petits blocs souples transparents de SAP qui ont absorbé la totalité de la solution d'urée, sans surnageant visible.
Les blocs ont été refroidis pendant 20 minutes jusqu'à une température de 30°C en maintenant un brassage lent.
On a séché le SAP ainsi gonflé et renfermant donc l'engrais à une température de 30°C de manière à obtenir un l'er SAP modifié selon l'invention se présentant sous la forme de granulés assez friables, et présentant une cristallisation d'urée en surface.
On a retiré de la surface des granulés par écrasement mécanique les cristaux d'urée. Environ 4g de cristaux d'urée friable ont ainsi été détachés de la surface et n'ont pas été intégrés dans le granulé de SAP modifié.
) 2'eme échantillon selon l'invention consistant en un SAP modifié selon l'invention comprenant en poids 5% de PAM et 95% d'urée qui a été obtenu de la manière suivante :
On a dissout 12g d'urée dans 6 cm3 d'eau à une température de 80°C de manière à obtenir une solution d'engrais.
On a ajouté à cette solution d'engrais 630 mg de SAP à base de PAM de manière à obtenir un mélange.
On a maintenu ce mélange à une température à 80°C, sous agitation manuelle, jusqu'à l'intégration complète de la solution d'engrais dans le SAP qui a donc gonflé. On a obtenu de petits blocs souples transparents de SAP qui ont absorbé la totalité de la solution d'urée, sans surnageant visible.
Les blocs ont été refroidis pendant 20 minutes jusqu'à une température de 30°C en maintenant un brassage lent.
On a séché le SAP ainsi gonflé et renfermant donc l'engrais à une température de 30°C de manière à obtenir un l'er SAP modifié selon l'invention se présentant sous la forme de granulés visiblement plus gros que les granulés de SAP à base de PAM intégrés initialement à la solution d'engrais et présentant très peu de cristallisation d'urée en surface.
■ On a retiré de surface des granulés par écrasement mécanique les cristaux d'urée.
Moins de lg de cristaux d'urée ont ainsi été détachés de la surface et n'ont pas été intégrés dans le granulé de SAP modifié. L'urée a été intégrée en quasi- totalité (à savoir plus de 90% de l'urée) dans le granulé de SAP modifié.
3) 3ieme échantillon selon l'invention consistant en un SAP modifié selon l'invention comprenant en poids 20% de PAM et 80% d'urée qui a été obtenu de la manière suivante :
On a dissout 12g d'urée dans 6cm3 d'eau à une température de 80°C de manière à obtenir une solution d'engrais.
On a ajouté à cette solution d'engrais 3g de SAP à base de PAM de manière à obtenir un mélange.
On a maintenu ce mélange à une température à 80°C, sous agitation manuelle, jusqu'à l'intégration complète de la solution d'engrais dans le SAP qui a donc gonflé. On obtient de petits blocs souples transparents de SAP qui ont absorbé la totalité de la solution d'urée, sans surnageant visible.
Les blocs sont refroidis pendant 20 minutes jusqu'à une température de 30°C en maintenant un brassage lent.
On a séché le SAP ainsi gonflé et renfermant donc l'engrais à une température de 30°C de manière à obtenir un l'er SAP modifié selon l'invention se présentant sous la forme de granulés faiblement gonflés, et ne présentant pas de cristallisation d'urée en surface.
Aucun cristal d'urée ne s'est détaché de la surface par écrasement mécanique.
L'urée a été intégrée en totalité dans le granulé de SAP modifié.
On a aussi réalisé les étapes suivantes :
1) On a placé 5 g d'urée sur un filtre de cellulose de maille de ΙΟΟμιη.
2) On a versé progressivement 6,5 cm3 d'eau en 5 minutes sur ledit filtre de cellulose sur lequel a été disposée l'urée.
3) On a attendu une heure.
4) On a séché à 70°C pendant 6 heures le filtre de cellulose.
5) On a récupéré et pesé les résidus secs encore présents sur le filtre de cellulose.
6) On a répété les étapes 2) à 5) pendant 2 cycles supplémentaires ou jusqu'à ce qu'on ne récupère plus de résidus secs sur le filtre de cellulose. Pour le 2'eme échantillon selon l'invention détaillé ci-dessus dans cette partie II de la partie expérimentale, on a réalisé les étapes suivantes :
1) On a placé 5 g du 2ieme échantillon selon l'invention sur un filtre de cellulose de maille de ΙΟΟμιη.
2) On a versé progressivement 6,5 cm3 d'eau en 5 minutes sur ledit filtre de cellulose sur lequel a été disposé le 2ieme échantillon.
3) On a attendu une heure.
4) On a séché à 70°C pendant 6 heures le filtre de cellulose.
5) On a récupéré et pesé les résidus secs encore présents sur le filtre de cellulose.
6) On a répété les étapes 2) à 5) pendant 2 cycles supplémentaires.
Le tableau 1 ci-dessous détaille les quantités de résidus secs récupérés selon que l'essai a été réalisé avec de l'urée ou un SAP modifié selon l'invention (à savoir un SAP contenant de l'urée - 2ieme échantillon selon l'invention de cette partie II de la partie expérimentale).
Figure imgf000031_0001
Tableau 1 : quantité de résidus secs récupérés.
Par l'er cycle, on entend la quantité de résidus secs récupérés à l'issue de l'étape 5) réalisée pour la l'ere fois.
Par 2ieme cycle, on entend la quantité de résidus secs récupérés à l'issue de l'étape 5) réalisée pour la 2ieme fois.
Par 3ieme cycle, on entend la quantité de résidus secs récupérés à l'issue de l'étape 5) réalisée pour la 3ieme fois.
Les différents cycles simulent le phénomène de lessivage évoqué ci-dessus et auquel sont soumis les engrais. Chaque cycle simule également l'ajout d'eau et l'activation de la réaction endothermique de dissolution de l'engrais. A partir du tableau 1, on relève que l'urée a rapidement été dissoute et a traversé en quasi-totalité le filtre de cellulose. Une faible fraction d'urée s'est imprégnée dans le filtre et a cristallisé à sa surface.
Dès le 2eme cycle, les résidus d'urée ne sont plus quantifiables et l'urée a été lessivée en totalité au travers le filtre de cellulose.
En revanche, le SAP modifié selon l'invention s'est imprégné d'eau, a gonflé et a absorbé la totalité de l'eau ajoutée.
Aucune goutte d'eau n'a traversé le filtre de cellulose.
Une faible fraction de l'urée contenue dans le SAP modifié selon l'invention s'est imprégnée dans le filtre de cellulose et a cristallisé à la surface du filtre, ainsi qu'à la surface des granulés de SAP modifié selon l'invention. Cette fraction a été récupérée sous la forme de fines paillettes. C'est pourquoi, une colonne quantifiant les fines paillettes récupérées a été ajoutée dans le tableau 1 ci-dessus.
La grande majorité de l'urée est restée contenue dans le SAP modifié selon l'invention et seule une petite fraction (inférieure à 20%) a été transférée dans le filtre en cellulose ou en surface des granulés après trois cycles consécutifs (autrement dit des lessivages ou l'activation de la réaction endothermique).
III - Test des propriétés de solubilité de l'enfirais contenu dans un SAP modifié selon la présente invention :
Une autre série d'expérimentations a été réalisée afin de démontrer que l'engrais qui est interpénétré avec la matrice d'un SAP afin d'obtenir un SAP modifié selon l'invention conserve une excellente solubilité et est retenu sous forme dissoute lors de l'absorption d'eau par le SAP modifié selon l'invention.
La solubilité de l'engrais peut être mise en évidence par la réaction endothermique qui intervient lors de sa dissolution.
A partir d'un SAP modifié selon l'invention qui comprenait, en pourcentages massiques, 90% de cristaux d'urée interpénétrés avec 10% d'une matrice d'un SAP synthétique de copolymère d'acrylamide et d'acrylate de potassium, on a réalisé les étapes suivantes :
) Dans un bêcher, maintenu à température ambiante, on a versé 45 mL d'eau purifiée et on a attendu que la température se stabilise.
) On a ensuite ajouté dans ce bêcher 33,3 g du SAP modifié selon l'invention tel que décrit ci-dessus (autrement dit un SAP modifié selon l'invention qui contenait 30g d'urée). ) On a mesuré la température du contenu du bêcher au cours du temps, tout en maintenant une légère agitation afin d'homogénéiser et de favoriser la dissolution de l'urée contenue dans le SAP modifié, et ce tant que le contenu du bêcher contenait deux phases (solide / liquide).
De plus, deux essais témoins ont été réalisés en remplaçant le SAP modifié selon l'invention par deux types d'urée :
urée pour un usage de laboratoire (commercialisée par la société Sigma) se présentant sous la forme d'une poudre de granulométrie fine, à savoir inférieure à 150 μιη ;
- urée pour un usage agricole (commercialisée par la société OCI-nitrogen) se présentant sous la forme de perles d'un diamètre d'environ 3 mm.
On a aussi réalisé les étapes 1) à 3) sur ces deux essais témoins et ainsi effectué un relevé des températures du contenu des deux béchers dans lesquels ont été ajoutés soit de l'urée en poudre soit de l'urée en perles.
Le tableau 2 ci-dessous détaille les résultats des relevés de température des contenus des béchers dans lesquels a été ajouté soit l'urée en poudre, soit l'urée en perles, soit l'urée interpénétrée avec la matrice d'un SAP (à savoir un SAP modifié selon l'invention).
température (°C)
SAP
modifié
Urée Urée selon
temps (min) (poudre) (perles) l'invention
0 19,3 19,2 19,6
0,25 1,6 10,4 8
0,5 1,1 8 6,3
0,75 1,9 7,8 4,9
1 2,2 8,2 3,9
1,5 2 6,3 2,9
2 2,4 5,6 2,3
3 2,8 4,1 1,7
4 3,4 3,9 1,6
5 4 4 1,6
6 4,7 4,4 1,8
7 5,3 4,8 2
8 5,9 5,2 2,2
9 6,5 5,7 2,5
10 7 6,3 2,8
11 7,5 6,8 3,1
12 8,1 7,4 3,4
13 8,7 7,9 3,6
14 9,2 8,5 3,9
15 9,8 9 4,2
Tableau 2 relevé des températures en fonction du temps des deux essais témoins et du SAP modifié selon l'invention
La figure 9 est un graphe de l'évolution de la température en fonction du temps du contenu de ces béchers remplis d'eau dans lesquels a été immergé soit de l'urée en poudre, soit de l'urée en perles, soit un SAP modifié selon l'invention.
Au vu des résultats du tableau 2 et du graphe de la figure 9, on relève que la chute de température la plus rapide est constatée pour le bêcher qui contenait l'urée en poudre, suivi du bêcher contenant le SAP modifié selon l'invention, et enfin du bêcher contenant l'urée en perles (perlurée).
Eu égard à la rapidité de la réaction endothermique, la dissolution de l'urée en fine poudre est donc la plus rapide.
De plus au vu de ces résultats du tableau 2 et du graphe de la figure 9, on relève que grâce à la porosité créée dans le SAP modifié du fait que les cristaux d'urée sont interpénétrés avec la matrice d'un SAP, l'absorption d'eau par le SAP modifié selon l'invention est rapide et l'urée, bien que retenue dans le SAP modifié, est dissoute plus rapidement que celle des perles d'urée à usage agricole.

Claims

REVENDICATIONS
1. Polymère super absorbant (abrégé « SAP ») modifié comprenant une matrice de SAP dans laquelle est intégré au moins un engrais sous forme de cristaux, ladite matrice du SAP et l'engrais étant interpénétrés.
2. SAP modifié susceptible d'être obtenu par un procédé de fabrication qui comprend les étapes suivantes :
a) On prépare un mélange comprenant au moins une solution d'engrais et au moins un SAP ;
b) On laisse le SAP gonfler dans ledit mélange ;
c) On cristallise l'engrais contenu dans le mélange obtenu à l'issue de l'étape b) ;
d) On récupère dans le mélange un SAP modifié ;
e) Optionnellement, on effectue une étape de formage du SAP modifié récupéré à l'étape d).
3. SAP modifié selon la revendication 1 ou 2, caractérisé en ce que le SAP a été obtenu à partir d'au moins un composé choisi dans le groupe constitué par les dérivés cellulosiques, l'alginate et les glycosaminoglycanes.
4. SAP modifié selon la revendication 1 ou 2, caractérisé en ce que le SAP a été obtenu à partir d'au moins un composé choisi dans le groupe constitué par les polymères acryliques, méthacryliques, vinyliques, les polyacrylamides et leurs sels, les copolymères acrylamide/acide acrylique et leurs sels et les polyacrylonitriles.
5. SAP modifié selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'engrais est choisi parmi les engrais minéraux et les engrais organiques.
6. SAP modifié selon la revendication 5, caractérisé en ce que l'engrais comprend au moins un composé choisi dans le groupe constitué par l'urée, les dérivés de l'urée, les sels d'acide nitrique et le chlorure d'ammonium.
7. SAP modifié selon la revendication 6, caractérisé en ce que l'engrais est de l'urée ou un dérivé de l'urée.
8. SAP modifié selon l'une quelconque des revendications 2 à 7, caractérisé en ce que l'étape c) de cristallisation est réalisée par une technique de refroidissement, séchage, évaporation ou lyophilisation.
9. Utilisation d'un SAP modifié selon l'une quelconque des revendications 1 à 8 pour retenir l'eau et la restituer aux plantes de manière étalée dans le temps, ledit SAP modifié comprenant en pourcentages massiques :
- 20 à 99% du SAP ;
- 1 à 80% d'engrais.
10. Utilisation d'un SAP modifié selon l'une quelconque des revendications 1 à 8 pour la fertilisation des plantes, ledit SAP modifié comprenant en pourcentages massiques :
1 à 20% de SAP ;
80 à 99% d'engrais.
11. Utilisation d'un SAP modifié selon la revendication 9 ou 10, caractérisée en ce que le SAP modifié est enfoui dans le sol, de préférence en combinaison avec la mise en œuvre de techniques de culture en bande.
12. Utilisation d'un SAP modifié selon l'une quelconque des revendications 1 à 8 comme élément constitutif d'au moins une partie d'un dispositif médical qui est configuré pour générer du froid sur une partie du corps d'un être humain ou d'un animal.
13. Utilisation d'un SAP modifié selon la revendication 12, caractérisée en ce que ledit dispositif médical se présente sous la forme d'un patch, d'une compresse ou d'une pochette.
14. Utilisation d'un SAP modifié selon la revendication 13, caractérisée en ce que le dispositif médical comprend une pochette, de préférence une pochette poreuse, qui présente : au moins un compartiment étanche comprenant une substance qui contient un liquide,
au moins un SAP modifié selon l'une quelconque des revendications 1 à 8, ledit compartiment présente au moins une paroi sécable ou frangible qui est configurée pour que ladite substance hydrate ledit SAP modifié dès lors que ladite paroi a été rompue.
15. Utilisation d'un SAP modifié selon la revendication 14, caractérisée en ce que ladite substance qui contient un liquide est une solution aqueuse.
PCT/FR2015/050221 2014-01-30 2015-01-30 Polymère super absorbant modifié renfermant un engrais WO2015114273A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15705350.5A EP3099650A1 (fr) 2014-01-30 2015-01-30 Polymère super absorbant modifié renfermant un engrais
US15/115,792 US20170008818A1 (en) 2014-01-30 2015-01-30 Modified superabsorbent polymer containing a fertilizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR14/50729 2014-01-30
FR1450729A FR3016878B1 (fr) 2014-01-30 2014-01-30 Polymere super absorbant modifie renfermant un engrais

Publications (1)

Publication Number Publication Date
WO2015114273A1 true WO2015114273A1 (fr) 2015-08-06

Family

ID=50549121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/050221 WO2015114273A1 (fr) 2014-01-30 2015-01-30 Polymère super absorbant modifié renfermant un engrais

Country Status (4)

Country Link
US (1) US20170008818A1 (fr)
EP (1) EP3099650A1 (fr)
FR (1) FR3016878B1 (fr)
WO (1) WO2015114273A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966974A4 (fr) * 2013-03-15 2017-01-18 Adama Makhteshim Ltd Environnement artificiel pour l'absorption efficace d'engrais et d'autres produits agrochimiques dans le sol

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10865161B2 (en) * 2017-07-31 2020-12-15 North University Of China Water-absorbing and water-retaining multi-nutrient biodegradable polymeric slow/controlled release fertilizer having a semi-interpenetrating network structure
US11434179B2 (en) 2018-02-22 2022-09-06 Upl Ltd Fertilizer combinations

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB622464A (en) * 1946-02-14 1949-05-03 George Edward Heyl Retarding the solution of water soluble fertilizing salts
US4789391A (en) * 1985-07-08 1988-12-06 Reed Lignin Inc. Controlled release formulation for fertilizers
WO2006034342A2 (fr) * 2004-09-23 2006-03-30 Nft Industries, Llc Engrais a liberation controlee contenant du sulfate de calcium et processus de fabrication correspondants
US20070179605A1 (en) * 2004-10-05 2007-08-02 David Myung Interpenetrating polymer network hydrogel corneal prosthesis
WO2009023203A1 (fr) * 2007-08-16 2009-02-19 Agro Tech America, Llc Dispositif de distribution d'eau et de nutriments
WO2009059775A2 (fr) * 2007-11-08 2009-05-14 Arpadis Deutschland Gmbh Améliorant du sol et son utilisation
US20110094967A1 (en) * 2008-07-07 2011-04-28 Inotec Glienke & Glienke (Gbr) Composite material composed of polymer materials and a porous mineral matrix and the production and use thereof
EP2389925A2 (fr) * 2010-05-27 2011-11-30 Tyco Healthcare Group LP Implant d'hydrogel avec des degrés de réticulation divers
WO2012133824A1 (fr) * 2011-03-30 2012-10-04 ユニ・チャーム株式会社 Adjuvant de rétention d'eau, et matériau absorbant, absorbant et objet absorbant le comprenant
WO2013075724A1 (fr) * 2011-11-23 2013-05-30 Ptt Holding Aps Procédé de production d'un dispositif d'administration
JP2013116947A (ja) * 2011-12-01 2013-06-13 Takabishi Kagaku Kk 冷却剤用粉体混合物および冷却剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9619415D0 (en) * 1996-09-17 1996-10-30 Envirolutions Inc Soil additive
EP1027402A1 (fr) * 1997-04-25 2000-08-16 1340911 Ontario Inc. Gel de polyacrylate destine a etre utilise dans l'horticulture

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB622464A (en) * 1946-02-14 1949-05-03 George Edward Heyl Retarding the solution of water soluble fertilizing salts
US4789391A (en) * 1985-07-08 1988-12-06 Reed Lignin Inc. Controlled release formulation for fertilizers
WO2006034342A2 (fr) * 2004-09-23 2006-03-30 Nft Industries, Llc Engrais a liberation controlee contenant du sulfate de calcium et processus de fabrication correspondants
US20070179605A1 (en) * 2004-10-05 2007-08-02 David Myung Interpenetrating polymer network hydrogel corneal prosthesis
WO2009023203A1 (fr) * 2007-08-16 2009-02-19 Agro Tech America, Llc Dispositif de distribution d'eau et de nutriments
WO2009059775A2 (fr) * 2007-11-08 2009-05-14 Arpadis Deutschland Gmbh Améliorant du sol et son utilisation
US20110094967A1 (en) * 2008-07-07 2011-04-28 Inotec Glienke & Glienke (Gbr) Composite material composed of polymer materials and a porous mineral matrix and the production and use thereof
EP2389925A2 (fr) * 2010-05-27 2011-11-30 Tyco Healthcare Group LP Implant d'hydrogel avec des degrés de réticulation divers
WO2012133824A1 (fr) * 2011-03-30 2012-10-04 ユニ・チャーム株式会社 Adjuvant de rétention d'eau, et matériau absorbant, absorbant et objet absorbant le comprenant
WO2013075724A1 (fr) * 2011-11-23 2013-05-30 Ptt Holding Aps Procédé de production d'un dispositif d'administration
JP2013116947A (ja) * 2011-12-01 2013-06-13 Takabishi Kagaku Kk 冷却剤用粉体混合物および冷却剤

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ENAS M. AHMED: "Hydrogel: Preparation, characterization, and applications", JOURNAL OF ADVANCED RESEARCH, 18 July 2013 (2013-07-18), XP055163462, ISSN: 2090-1232, DOI: 10.1016/j.jare.2013.07.006 *
FANGCHUN LIU ET AL: "Effects of super-absorbent polymer on dry matter accumulation and nutrient uptake of Pinus pinaster container seedlings", JOURNAL OF FOREST RESEARCH, vol. 18, no. 3, 19 April 2012 (2012-04-19), pages 220 - 227, XP055139407, ISSN: 1341-6979, DOI: 10.1007/s10310-012-0340-7 *
LIANG J ET AL: "Long-term effect of an ectomycorrhizal inoculum and other treatments on survival and growth of Populus hopeiensis Hu et Chow", FOREST ECOLOGY AND MANAGEMENT, ELSEVIER, AMSTERDAM, NL, vol. 259, no. 12, 25 May 2010 (2010-05-25), pages 2223 - 2232, XP027033097, ISSN: 0378-1127, [retrieved on 20100428] *
MURUGESH SHIVASHANKAR ET AL: "A REVIEW ON INTERPENETRATING POLYMER NETWORK", 1 January 2012 (2012-01-01), XP055181314, Retrieved from the Internet <URL:http://www.ijppsjournal.com/Vol4Suppl5/4303.pdf> [retrieved on 20150407] *
See also references of EP3099650A1 *
W. BAI ET AL: "Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles", SOIL USE AND MANAGEMENT, vol. 26, no. 3, 28 September 2010 (2010-09-28), pages 253 - 260, XP055139406, ISSN: 0266-0032, DOI: 10.1111/j.1475-2743.2010.00271.x *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966974A4 (fr) * 2013-03-15 2017-01-18 Adama Makhteshim Ltd Environnement artificiel pour l'absorption efficace d'engrais et d'autres produits agrochimiques dans le sol

Also Published As

Publication number Publication date
EP3099650A1 (fr) 2016-12-07
US20170008818A1 (en) 2017-01-12
FR3016878B1 (fr) 2017-07-07
FR3016878A1 (fr) 2015-07-31

Similar Documents

Publication Publication Date Title
Kalhapure et al. Hydrogels: a boon for increasing agricultural productivity in water-stressed environment
TR201905649T4 (tr) Biyoaktif, büyüme destekleyici bir katkı maddesi içeren bir süper absorban polimer ürünü.
JP2008048751A (ja) 植物保水用担体
US20140100111A1 (en) Seed Coating Hydrogels
WO2015114273A1 (fr) Polymère super absorbant modifié renfermant un engrais
WO2002038522A2 (fr) Composition d&#39;amelioration et de fertilisation du sol
Grabowska-Polanowska et al. The benefits of synthetic or natural hydrogels application in agriculture: An overview article
EP3880770B1 (fr) Composition polymère destinée à être utilisée en tant qu&#39;amendement de sol présentant une capacité d&#39;absorption d&#39;eau améliorée pendant l&#39;arrosage des cultures agricoles
CN107915524A (zh) 一种椰糠基大孔型缓释保水剂及制备方法
GB2594955A (en) Seedstocks of Sphagnum
US10865160B2 (en) Nutrient-containing porous biodegradable bead
Liang et al. Synthesis of carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/polyvinyl alcohol sponge as a fast absorbent composite and its application in coral sand soil
Zhang et al. Transform waste straw into water-holding fertilizer: A targeted modification strategy of functional groups
WO1991011410A1 (fr) Produits permettant la culture de plantes sur tous types de sols et procedes de fabrication de tels produits
JPWO2017175549A1 (ja) 緩効性肥料組成物
CA2304239A1 (fr) Additif pour sols
Changela et al. Prospective of hydrogel for ornamental plants
FR2741237A1 (fr) Promoteur de germination et procede de semailles de graines de plantes
JPS5831919A (ja) ポツト苗用育苗土とポツト苗の育苗方法
Singh et al. Superabsorbent polymers-a potential solution for irrigation in agriculture
GB2594954A (en) Suspensions of sphagnum
Sarkar et al. Hydrogel Formulations for Increasing Input Use Efficiency in Agriculture
WO2001066668A2 (fr) Additif pour sols sous forme de revetement
Zekry et al. The role of used disposable diapers for improving the growth and survival of Eucalyptus alaticaulis seedling under drought conditions.
KP et al. Polyvinyl alcohol-soy protein isolate hydrogels: Controlled release of fertilizer and matrix nutrients for sustainable agriculture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15705350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15115792

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015705350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015705350

Country of ref document: EP