WO2015111258A1 - 圧電発電モジュール、およびリモートコントローラ - Google Patents

圧電発電モジュール、およびリモートコントローラ Download PDF

Info

Publication number
WO2015111258A1
WO2015111258A1 PCT/JP2014/077669 JP2014077669W WO2015111258A1 WO 2015111258 A1 WO2015111258 A1 WO 2015111258A1 JP 2014077669 W JP2014077669 W JP 2014077669W WO 2015111258 A1 WO2015111258 A1 WO 2015111258A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
piezoelectric
power generation
switch control
voltage
Prior art date
Application number
PCT/JP2014/077669
Other languages
English (en)
French (fr)
Inventor
睦弘 堀口
講平 高橋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201480071275.2A priority Critical patent/CN105849925B/zh
Priority to JP2015558733A priority patent/JP6098736B2/ja
Priority to EP14879607.1A priority patent/EP3098866B1/en
Publication of WO2015111258A1 publication Critical patent/WO2015111258A1/ja
Priority to US15/198,382 priority patent/US9882511B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/181Circuits; Control arrangements or methods
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/10Power supply of remote control devices
    • G08C2201/11Energy harvesting
    • G08C2201/112Mechanical energy, e.g. vibration, piezoelectric
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type

Definitions

  • the present invention relates to a piezoelectric power generation module and a remote controller equipped with the piezoelectric power generation module, for example, a piezoelectric power generation module that converts mechanical energy applied to a piezoelectric element into electrical energy and supplies power to a processing circuit, and a remote Concerning the controller.
  • Patent Document 1 discloses a configuration of a remote controller with a power generation function that executes an input command after detecting that an input unit pushed by a user's finger is restored.
  • the remote controller converts AC power generated at the time of pushing into the input unit and at the time of restoration into DC power at the rectification unit, and stores the DC power at the power storage unit (capacitor).
  • Patent Document 2 discloses a configuration in which AC power generated by free vibration of a free end of an actuator is converted into DC power by a rectifier.
  • Patent Document 1 and Patent Document 2 the electric charge generated by the piezoelectric element is moved to a capacitor, which is a power storage unit, through a full-wave rectifier circuit.
  • the full-wave rectifier circuit is a positive electrode obtained by deforming toward the first main surface side with respect to a reference potential that is a potential in a state where the piezoelectric element is not displaced when the plate-shaped piezoelectric element is displaced. Both the electric potential and the electric charge generated at the negative electric potential obtained by deformation to the second main surface side can be supplied to the subsequent circuit.
  • energy loss due to this charge transfer occurs, so that there is a problem that the ratio of the usable energy to the generated energy (energy efficiency) is poor.
  • a piezoelectric power generation module includes a piezoelectric element having a first terminal and a second terminal, a cathode connected to the first terminal of the piezoelectric element, and the second of the piezoelectric element.
  • a diode having an anode connected to the terminal, a first input terminal connected to the cathode, a second input terminal connected to the anode, and an output terminal for outputting a switch control signal
  • a first switch connected to the first input terminal of the switch control circuit and switching between a conduction state and a cutoff state in response to the switch control signal.
  • the piezoelectric element is a power generation element, and when the voltage across the piezoelectric element exceeds a first threshold voltage greater than a reference potential, the first switch becomes conductive, and the voltage across the piezoelectric element is When the second threshold voltage is lower than the first threshold voltage, the switch is turned off.
  • the piezoelectric element generates a voltage at the first terminal of the piezoelectric element when a load is applied, and when the load applied to the piezoelectric element is released, the voltage across the piezoelectric element is It becomes the reference potential.
  • the switch control circuit includes a comparison circuit and a temperature compensation element, and the temperature compensation element is in parallel with the first input terminal and the second input terminal of the switch control circuit. It is connected to the.
  • the switch control circuit further includes a second switch, and the second switch is connected in parallel to the temperature compensation element, and the second switch includes the first switch. Switching between open and close in synchronization with the switch status.
  • it further includes a capacitive element connected in parallel to the first input terminal and the second input terminal of the switch control circuit.
  • a remote controller includes a piezoelectric power generation module and an RF circuit, and the voltage at the first terminal of the piezoelectric element exceeds the first threshold voltage and becomes the second threshold voltage.
  • the RF circuit executes communication processing.
  • FIG. 1 is a circuit diagram of a piezoelectric power generation module according to Embodiment 1.
  • FIG. 3 is a cross-sectional view illustrating a relationship between a state of pressing a piezoelectric element included in the piezoelectric power generation module according to Embodiment 1 and generated charges.
  • 6 is a cross-sectional view of a modification of the piezoelectric element according to Embodiment 1.
  • FIG. 3 is a circuit diagram of a load switch control circuit included in the piezoelectric power generation module according to Embodiment 1.
  • FIG. FIG. 3 is a timing chart for explaining the operation of the piezoelectric power generation module according to Embodiment 1.
  • 6 is a circuit diagram of a piezoelectric power generation module according to Embodiment 2.
  • FIG. 1 is a circuit diagram of the piezoelectric power generation module 100 according to the first embodiment.
  • the piezoelectric power generation module 100 includes a piezoelectric element 1, a diode 2, a load switch control circuit 3, a load switch 4, a first signal line Tpe1, a second signal line Tpe2, an output node N1, and an output node N2.
  • a load 5 is connected between the output node N1 and the output node N2.
  • the load 5 is a processing circuit such as an RF circuit or a microcomputer, for example. These processing circuits are supplied with a power supply voltage from the output node N1 and the output node N2 of the piezoelectric power generation module 100, and output a signal (such as an identification code ID) for controlling an electronic device at a remote position. Therefore, a remote controller or a wireless switch is realized by connecting the load 5 to the piezoelectric power generation module 100.
  • the load switch control circuit 3 corresponds to the switch control circuit of the present application.
  • the load switch 4 corresponds to the first switch of the present application.
  • FIG. 2A is a sectional view schematically showing a state of the piezoelectric element 1 to which no stress is applied.
  • the piezoelectric element 1 includes a piezoelectric body 1C and a metal plate 1D.
  • the piezoelectric body 1C has a flat plate shape and is made of, for example, a lead zirconate titanate ceramic.
  • An electrode 1A is provided on one main surface of the piezoelectric body 1C, and an electrode 1B is provided on the other main surface.
  • the metal plate 1D and the piezoelectric body 1C are electrically joined via the electrode 1B.
  • the electrode 1A is connected to the first signal line Tpe1, and the metal plate 1D is connected to the second signal line Tpe2.
  • the second signal line Tpe2 is connected to a reference potential (GND).
  • both ends of the piezoelectric element 1 are held by the support portion 1E.
  • the piezoelectric element 1 is polarized in the direction of the arrow shown in FIG.
  • the electrode 1A corresponds to the first terminal of the piezoelectric element of the present application.
  • the electrode 1B corresponds to the second terminal of the piezoelectric element of the present application.
  • the diode 2 is, for example, a clamp diode.
  • the anode and cathode of the diode 2 are connected to the second signal line Tpe2 and the first signal line Tpe1 of the piezoelectric element 1, respectively. That is, the diode 2 is connected in parallel with the piezoelectric element 1.
  • the diode 2 is provided so that a voltage that is negative with respect to the reference potential, which is a potential in a state where the piezoelectric element 1 is not displaced, is not applied to the load 5.
  • the power supply node Nc1 and the power supply node Nc2 of the load switch control circuit 3 are connected to the first signal line Tpe1 and the second signal line Tpe2 of the piezoelectric element 1, respectively.
  • a first input terminal of the load switch 4 is connected to the power supply node Nc 1 of the load switch control circuit 3.
  • a second input terminal of load switch 4 is connected to power supply node Nc2.
  • the load switch control circuit 3 outputs a load switch control signal S4 from the output terminal of the load switch 4, and switches the load switch 4 between a conduction state and a cutoff state.
  • FIG. 4 is a circuit diagram of the load switch control circuit 3 provided in the piezoelectric power generation module 100 of FIG.
  • the load switch control circuit 3 is composed of, for example, a CMOS circuit.
  • the load switch control circuit 3 includes a first input terminal connected to the power supply node Nc1, a second input terminal connected to the power supply node Nc2, and an output terminal.
  • the load switch control circuit 3 includes a resistor R1, a resistor R2, and a resistor R3 connected in series from the power supply node Nc1 side between the power supply node Nc1 and the power supply node Nc2.
  • the load switch control circuit 3 includes, for example, a switch 3A that is an electronic switch, a comparison voltage generation circuit 33 that is a bandgap reference, and a comparison circuit 32 that is an operational amplifier, for example.
  • the one end of the resistor R1 is connected to the power supply node Nc1, and the other end is connected to one end of the resistor R2.
  • One end of the resistor R2 is connected to the other end of the resistor R1, and the other end is connected to one end of the resistor R3.
  • One end of resistor R3 is connected to the other end of resistor R2, and the other end is connected to power supply node Nc2.
  • Switch 3A has one end connected to power supply node Nc1 and the other end connected to the other end of resistor R1.
  • the comparison voltage generation circuit 33 has an input terminal connected to the power supply node Nc2 and an output terminal connected to the inverting input terminal of the comparison circuit 32.
  • the comparison circuit 32 has a non-inverting input terminal connected to one end of the resistor R3 and an output terminal connected to the switch 3A and the load switch 4.
  • the switch 3A corresponds to the second switch of the present application.
  • the load switch control circuit 3 is set so that the change in the logic level of the output load switch control signal S4 has a hysteresis characteristic with respect to the change in the generated voltage Vpe input between the power supply node Nc1 and the power supply node Nc2. .
  • the hysteresis characteristic is realized by switching the conduction state of the switch 3A by the load switch control signal S4 output from the comparison circuit 32.
  • FIG. 2B schematically shows a cross-sectional view of the piezoelectric element 1 in a state where a load is applied. By pressing the central portion of the piezoelectric element 1 (applying stress), mechanical energy is converted into electrical energy.
  • the piezoelectric body 1C of the piezoelectric element 1 is polarized by deformation due to pressing, and a positive charge is charged in the electrode 1A connected to the first signal line Tpe1, and is connected to the second signal line Tpe2. A state in which the negative charge is charged to the electrode 1B is shown.
  • FIG. 2C shows a state in which the pressure applied to the piezoelectric element 1 is released, that is, the stress applied to the piezoelectric element 1 is released and the state is restored from FIG. 2B to FIG. 2A. Show.
  • the piezoelectric body 1C has a negative charge on the electrode 1A connected to the first signal line Tpe1 and a negative charge on the electrode 1B connected to the second signal line Tpe2. It shows how to do.
  • the piezoelectric element 1 When the piezoelectric element 1 is pressed (stress is applied), the potential of the first signal line Tpe1 rises with respect to the potential of the second signal line Tpe2 as the piezoelectric element 1 is deformed. The generated voltage Vpe is generated on the first signal line Tpe1. On the other hand, when the pressure on the piezoelectric element 1 is released, the piezoelectric element 1 automatically returns to the initial shape, and the generated voltage Vpe of the first signal line Tpe1 becomes zero.
  • the load switch control circuit 3 in FIG. 4 changes the logic level of the output load switch control signal S4 in accordance with the increase or decrease in the generated voltage Vpe applied between the power supply node Nc1 and the power supply node Nc2.
  • the load switch 4 is set to a conductive state (on state) and a cutoff state (off state), respectively.
  • the load switch 4 is set to the conductive state, the generated voltage Vpe generated between the output node N1 and the output node N2 is supplied to the load 5.
  • the load 5 consumes current, the amount of charge accumulated in the piezoelectric element 1 gradually decreases, and the value of the power generation voltage Vpe decreases. Note that the potential of the power supply node Nc2 in a state where the piezoelectric element is not displaced corresponds to the reference potential of the present application.
  • the load switch control circuit 3 is set so that the change in the logic level of the output load switch control signal S4 has a hysteresis characteristic with respect to the change in the input power generation voltage Vpe.
  • the load switch 4 transitions from the cutoff state to the conduction state. Thereafter, when the value of the generated voltage Vpe drops to the threshold voltage Vtl lower than the threshold voltage Vth along with the current supply to the load 5, the load switch 4 transitions from the conduction state to the cutoff state.
  • the threshold voltage Vth corresponds to the first threshold voltage of the present application
  • the threshold voltage Vtl corresponds to the second threshold voltage of the present application.
  • the generated voltage Vpe is divided by the resistor R1, the resistor R2, and the resistor R3 connected in series between the power supply node Nc1 and the power supply node Nc2.
  • the comparison circuit 32 compares the potential across the resistor R3 with the potential generated by the comparison voltage generation circuit 33, and determines the logic level of the load switch control signal S4.
  • the values of the resistors R1 to R3 and the value of the comparison voltage are appropriately set so that the threshold voltage Vth (see FIG. 1) becomes a target value. Since the resistors R1 to R3 connected in series are connected in parallel to the piezoelectric element 1, they are also leakage current paths of the piezoelectric element 1. Therefore, the values of the resistors R1 to R3 are set such that the value of the leak time constant is larger than the value of the charge time constant of the generated voltage Vpe due to the pressing of the piezoelectric element 1.
  • the comparison circuit 32 changes the logic level of the load switch control signal S4 from the low level to the high level.
  • the load switch 4 is set in a conductive state, and the generated voltage Vpe is applied to the output node N1 with reference to the output node N2 (see FIG. 1).
  • the switch 3A connected in parallel with the resistor R1 is also set in a conductive state, and the voltage (power generation voltage Vpe) of the power supply node Nc1 is divided by the resistors R2 and R3. Pressed.
  • the value of the voltage across the resistor R3 increases. Therefore, when the value of the generated voltage Vpe reaches a threshold voltage Vtl lower than the threshold voltage Vth, the comparison circuit 32 Changes the logic level of the load switch control signal S4 from a high level to a low level.
  • the load switch 4 is set in the cut-off state, and the supply of the generated voltage Vpe to the output node N1 is stopped.
  • FIG. 5 is a timing chart for explaining the operation of the piezoelectric power generation module 100 of FIG.
  • the operation of the piezoelectric power generation module 100 will be described with reference to FIGS.
  • the horizontal axis schematically represents time
  • the vertical axis schematically represents the generated voltage Vpe.
  • the operation of the piezoelectric power generation module 100 shown in FIG. 5 is as follows: 1) the first pressing period in which stress is applied to the piezoelectric element 1 from time t1 to time t2, and 2) the piezoelectric element 1 from time t2 to time t3.
  • the operation is divided into three periods: a period in which the pressure is released, and 3) a period in which the piezoelectric element 1 is pressed for the second time from time t3 to time t4.
  • the load 5 consumes the electric charge accumulated in the piezoelectric element 1 during the time T2, executes a predetermined process (signal transmission process to the electronic device), and at the end time of the time T2, the value of the generated voltage Vpe. Decreases rapidly to near the threshold voltage Vtl.
  • the load 5 in the idling state consumes electric charge for the time T3, and the value of the generated voltage Vpe reaches the threshold voltage Vtl at the end time of the time T3.
  • the load switch control circuit 3 sets the logic level of the load switch control signal S4 to a low level to turn off the load switch 4 and to the load 5. Stop power supply.
  • the waveform of the power generation voltage Vpe indicated by a dotted line is a comparative example, and is a waveform of the power generation voltage Vpe when the diode 2 is deleted from the piezoelectric power generation module 100.
  • the piezoelectric power generation module 100 is connected in parallel with the piezoelectric element 1 while comparing the waveform of the dotted power generation voltage Vpe, which is a comparative example, with the above-described solid power generation voltage Vpe according to the first embodiment. The effect of the diode 2 will be described.
  • the polarity of the electric charge generated in the piezoelectric element 1 is reversed, and the potential of the second signal line Tpe2 is the same as that of the first signal line Tpe1. It becomes higher than the potential. That is, the potential of Tpe2 is negative with respect to the reference potential.
  • the stress applied to the piezoelectric element 1 at time t2 is the reverse of the stress applied to the piezoelectric element 1 during the period T1.
  • the value of the first signal line Tpe1 drops from the threshold voltage Vtl by an amount equal to the threshold voltage Vth. That is, the value of the first signal line Tpe1 drops to a voltage that is negative with respect to the reference potential and has a value obtained by subtracting the value of the threshold voltage Vtl from the threshold voltage Vth.
  • the load switch control circuit 3 cannot make the load switch 4 conductive. As a result, electrode supply to the load 5 is not performed, and the load 5 cannot execute a desired process even if the piezoelectric element 1 is pressed.
  • the piezoelectric power generation module 100 since the piezoelectric power generation module 100 according to the first embodiment includes the diode 2 connected in parallel with the piezoelectric element 1, the charge accumulated in the piezoelectric element 1 after releasing the pressure is the first of the piezoelectric element 1. Is discharged between the signal line Tpe1 and the second signal line Tpe2. As a result, even when the piezoelectric element 1 is pressed after releasing the pressure, the piezoelectric element 1 can generate the generated voltage Vpe having a voltage value necessary for the processing operation of the load 5.
  • the piezoelectric power generation module 100 includes a full-wave rectifier circuit. In addition, no charging capacitor (not shown) is required.
  • the piezoelectric power generation module 100 includes a diode 2 connected in parallel with the piezoelectric element 1.
  • the piezoelectric element 1 pressed to the lowest pressing point usually has a value equal to or higher than the minimum operating voltage of the load 5, depending on the balance between the amount of charge generated by the piezoelectric element 1 and the amount of charge consumed by the load 5.
  • the generated voltage Vpe is output.
  • the electric potential generated in the piezoelectric element 1 causes the electric potential of the first signal line Tpe1 with respect to the second signal line Tpe2 to pass through the reference electric potential, that is, zero.
  • the voltage drops to a value that is negative with respect to the reference potential.
  • the piezoelectric element 1 pressed after releasing the pressure outputs again the power generation voltage Vpe having a value equal to or higher than the minimum operating voltage of the load 5, and the normal operation of the load 5 is ensured.
  • the load switch control circuit 3 sets the load switch 4 to a conductive state and supplies the electric charge accumulated in the piezoelectric element 1 to the load 5. Thereafter, when the value of the generated voltage Vpe falls below the threshold voltage Vtl set lower than the threshold voltage Vth due to the power consumption of the load 5 or the pressure release of the piezoelectric element 1, the load switch 4 The cut-off state is set, and the charge to the load 5, that is, the power supply is stopped.
  • the load 5 can be powered by a single pressing operation on the piezoelectric element 1. Is supplied, and the response of the remote controller equipped with the piezoelectric power generation module 100 is speeded up.
  • FIG. 3 is a cross-sectional view of a piezoelectric element 11 which is a modification of the piezoelectric element 1 of FIG.
  • the piezoelectric element 11 has a configuration in which the piezoelectric bodies 11C are laminated so that charges having the same polarity are generated on the surfaces facing each piezoelectric body 11C when pressed.
  • the piezoelectric body 11 By making the piezoelectric body 11 have a laminated structure, the amount of electric charge generated by the piezoelectric element 11 increases, and the load 5 (see FIG. 1) can be driven for a longer time.
  • the piezoelectric element 1 is made of a lead zirconate titanate ceramic, but is not limited thereto.
  • it may be made of a lead-free piezoelectric ceramic piezoelectric material such as potassium sodium niobate and alkali niobate ceramics.
  • the support structure of the piezoelectric element 1 is supported by the two support portions 1E, but is not limited thereto.
  • a configuration in which one end of the piezoelectric element 1 is held by a cantilever and stress is applied to the other end which is a free end may be employed.
  • the piezoelectric element 1 may have a rod-like shape, one end of which is held by a cantilever, and stress is applied to the other end. That is, the support form of the piezoelectric element 1 may be any structure that can be deformed by pressing.
  • FIG. 6 is a circuit diagram of the piezoelectric power generation module 200 according to the second embodiment.
  • the piezoelectric power generation module 200 shown in FIG. 6 corresponds to a configuration in which the load switch control circuit 3 is replaced with the load switch control circuit 31 in the piezoelectric power generation module 100 of FIG.
  • FIG. 7 is a circuit diagram of the load switch control circuit 31 of FIG.
  • the load switch control circuit 31 in FIG. 7 corresponds to a configuration in which the resistor R1 is replaced with the temperature compensation element R1S in the load switch control circuit 3 in FIG.
  • the piezoelectric element 1 As the piezoelectric body 1C, for example, the piezoelectric element 1 (see FIG. 2) using PZT (lead zirconate titanate) is normally adjusted in the vicinity of phase transfer in order to increase the power generation energy.
  • the capacity of the element 1 and the value of the generated voltage have large temperature characteristics.
  • the dielectric constant of the piezoelectric body 1C has a positive temperature coefficient
  • the capacitance value of the piezoelectric element 1 increases and the value of the power generation voltage Vpe of the piezoelectric element 1 decreases as the ambient temperature increases.
  • the value of the power generation voltage Vpe of the piezoelectric element 1 does not reach the threshold voltage Vth on the high temperature side of the ambient temperature (temperature range higher than 25 ° C. of normal temperature), and the load switch 4 is maintained in the cut-off state. There arises a problem that the voltage Vpe is not supplied to the load 5.
  • a thermistor is applied as the temperature compensation element R1S as an element having a temperature characteristic with a negative resistance value.
  • the resistance value of the temperature compensation element R1S decreases, and the potential at the connection point between the resistors R2 and R3 increases.
  • the comparison circuit 32 inverts the logic level of the load switch control signal S4, and the generated voltage Vpe is supplied to the load 5.
  • a negative temperature coefficient is given to the value of the threshold voltage Vth set in the load switch control circuit 31 by the temperature compensation element R1S having a negative temperature characteristic of the resistance value.
  • the temperature compensation element R1S is applied with a resistance value having a positive temperature coefficient, or R3 has a negative temperature coefficient.
  • a thermistor may be used.
  • the comparison voltage generated by the comparison voltage generation circuit 33 may be configured to have temperature dependency.
  • the threshold voltage Vth with respect to temperature changes.
  • the capacitance value of the piezoelectric element 1 changes with temperature
  • the generated voltage Vpe can be reliably supplied to the load 5 regardless of the ambient temperature.
  • the resistor R1 in FIG. 4 is replaced with the temperature compensation element R1S.
  • the present invention is not limited to this. Even if the resistor R2 or the resistor R3 in FIG. 4 is replaced with a temperature compensation element, the same effect can be obtained.
  • FIG. 8 is a circuit diagram of the piezoelectric power generation module 300 according to the third embodiment.
  • the piezoelectric power generation module 300 shown in FIG. 8 corresponds to the configuration in which the storage capacitor 6 is connected between the first signal wiring Tpe1 and the second signal wiring Tpe2 in the piezoelectric power generation module 100 shown in FIG.
  • the storage capacitor 6 corresponds to the capacitive element of the present application.
  • the capacitance value of the piezoelectric element 1 and the value of the generated voltage Vpe may vary depending on the ambient temperature. For example, when the value of the generated voltage Vpe increases from the normal temperature due to the decrease in the capacitance value of the piezoelectric element 1 on the low temperature side (temperature range lower than 25 ° C. of normal temperature), the overvoltage is applied to the load 5. Is concerned. By connecting the storage capacitor 6 in parallel with the piezoelectric element 1, the charge generated by the piezoelectric element 1 is distributed to the piezoelectric element 1 and the storage capacitor 6, and an increase in the generated voltage Vpe is suppressed.
  • the piezoelectric power generation module 300 has a configuration in which the load switch control circuit 3 without the temperature compensation of the threshold voltage Vth and the storage capacitor 6 are combined, but the load with the temperature compensation of the threshold voltage Vth of the piezoelectric power generation module 200 shown in FIG.
  • the switch control circuit 31 and the storage capacitor 6 may be combined. In that case, the problem concerned about the high temperature side of ambient temperature and the problem of the overvoltage application concerned about the low temperature side mentioned above will be solved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 圧電素子(1)は、ダイオード(2)と並列に接続され、押圧時に発電電圧(Vpe)を出力する。発電電圧が第1閾値電圧(Vth)を超えると、ロードスイッチ制御回路(3)は、ロードスイッチ(4)を導通させ、発電電圧が第2閾値電圧(Vtl)より低下すると、ロードスイッチを遮断させる。さらに、押圧開放時に、ダイオードは、圧電素子の残留電荷を、放電して零にする。

Description

圧電発電モジュール、およびリモートコントローラ
 本発明は、圧電発電モジュール、および、それを搭載したリモートコントローラに関し、例えば、圧電素子に加えられた機械的エネルギーを電気的エネルギーに変換し、処理回路へ電力を供給する圧電発電モジュール、およびリモートコントローラに関する。
 電池を必要としない圧電素子を内蔵するリモートコントローラに関し、その発電効率を向上させる構成が提案されている。特開2011-103729号公報(特許文献1)には、ユーザーの指により押し込まれた入力部が復元したことを検出後、入力コマンドを実行する発電機能付きリモコンの構成が開示されている。当該リモコンは、入力部への押し込み時および復元時に発生する交流電力を整流部で直流電力に変換し、その直流電力を蓄電部(コンデンサ)で保存する。特開2004-201376号公報(特許文献2)には、アクチュエータの自由端を自由振動させることで発生する交流電力を整流器で直流電力に変換する構成が開示されている。
特開2011-103729号公報 特開2004-201376号公報
 特許文献1および特許文献2において、圧電素子が生成する電荷は、全波整流回路を介して、蓄電部であるコンデンサに移動される。全波整流回路は、平板状の圧電素子が変位する場合に、圧電素子が変位していない状態の電位である基準電位に対して、第1の主面側へと変形して得られる正の電位、及び第2の主面側へと変形して得られる負の電位で生成する電荷の両方を後段の回路に供給することができる。しかしながら、全波整流回路では、この電荷移動に伴うエネルギーの損失が起きるため、発生するエネルギーに対する使用可能なエネルギーの比率(エネルギー効率)が悪いという問題があった。
 本発明に基づく圧電発電モジュールは、第1の端子と、第2の端子とを有する圧電素子と、前記圧電素子の前記第1の端子と接続されているカソードと、前記圧電素子の前記第2の端子と接続されているアノードとを有するダイオードと、前記カソードと接続されている第1の入力端子と、前記アノードと接続されている第2の入力端子と、スイッチ制御信号を出力する出力端子とを有するスイッチ制御回路と、前記スイッチ制御回路の前記第1の入力端子に接続され、前記スイッチ制御信号に応答して導通状態と遮断状態とを切り替える第1のスイッチと、を備える。
 この構成では、圧電素子とスイッチ制御回路との間にダイオードのような非線形素子が直列に設けられていないので、圧電素子が生成する電荷が移動中に受けるエネルギー損失を低減することができる。また、圧電素子とスイッチ制御回路との間に、基準電位に対して負となる電圧をクランプするダイオードが圧電素子と並列に設けられているので、圧電素子の両端電圧が基準電位以下となった場合に、速やかに圧電素子の電荷が開放される。そのため、初回に圧電素子で生成された電荷を後段に供給しても、基準電位が低下することで2回目以降に安定した駆動ができないという問題が発生しない。したがって、安定した駆動が可能で、エネルギー効率が良好な圧電発電モジュールが実現される。
 好ましくは、前記圧電素子は発電素子であり、前記圧電素子の両端電圧が基準電位よりも大きい第1閾値電圧を超えることにより、前記第1のスイッチが導通状態となり、前記圧電素子の両端電圧が前記第1閾値電圧より低い第2閾値電圧となることにより、前記スイッチが遮断状態となる。
 好ましくは、前記圧電素子は、荷重を加えられることにより前記圧電素子の第1の端子に電圧を発生させ、前記圧電素子に加えられている荷重が開放されると、前記圧電素子の両端電圧が基準電位となる。
 好ましくは、前記スイッチ制御回路は、比較回路と、温度補償素子とを有し、前記温度補償素子は、前記前記スイッチ制御回路の前記第1の入力端子と前記第2の入力端子に対して並列に接続されている。
 これより、発生エネルギーおよび発電電圧の温度依存性を低減することができる。
 好ましくは、前記スイッチ制御回路は、第2のスイッチをさらに有し、前記第2のスイッチは、前記温度補償素子に対して並列に接続されており、前記第2のスイッチは、前記第1のスイッチの状態に同期して開閉を切り替える。
 これより、圧電素子の第1の端子における電圧が第1閾値電圧となった後の温度依存性を低減することができるので、よりエネルギー効率が向上する。
 好ましくは、前記スイッチ制御回路の前記第1の入力端子と前記第2の入力端子に対して並列に接続されている容量素子をさらに備える。
 これより、スイッチの後段への供給電圧をより精密に制御できる。
 本発明に基づくリモートコントローラは、圧電発電モジュールと、RF回路とを備え、前記圧電素子の第1の端子における電圧が前記第1閾値電圧を超えてから前記第2閾値電圧になるまでの間に、前記RF回路が通信処理を実行する。
 この構成では、圧電素子とスイッチ制御回路との間にダイオードのような非線形素子が直列に設けられていないので、圧電素子が生成する電荷が移動中に受けるエネルギー損失を低減することができる。また、圧電素子とスイッチ制御回路との間に、基準電位に対して負となる電圧をクランプするダイオードが圧電素子と並列に設けられているので、圧電素子の両端電圧が基準電位以下となった場合に、速やかに圧電素子の電荷が開放される。そのため、安定した駆動が可能で、エネルギー効率が良好なリモートコントローラが実現される。
 安定した駆動が可能で、エネルギー効率が良好な圧電発電モジュール、およびリモートコントローラが実現される。
実施の形態1に係る圧電発電モジュールの回路図である。 実施の形態1に係る圧電発電モジュールが備える圧電素子への押圧状態と発生電荷との関係を説明する断面図である。 実施の形態1に係る圧電素子の変形例の断面図である。 実施の形態1に係る圧電発電モジュールが備えるロードスイッチ制御回路の回路図である。 実施の形態1に係る圧電発電モジュールの動作を説明するタイミング図である。 実施の形態2に係る圧電発電モジュールの回路図である。 実施の形態2に係るロードスイッチ制御回路の回路図である。 実施の形態3に係る圧電発電モジュールの回路図である。
 以下、図面を参照しつつ、実施の形態について説明する。実施の形態の説明において、個数、量などに言及する場合、特に記載ある場合を除き、必ずしもその個数、量などに限定されない。実施の形態の図面において、同一の参照符号や参照番号は、同一部分または相当部分を表わすものとする。また、実施の形態の説明において、同一の参照符号等を付した部分等に対しては、重複する説明は繰り返さない場合がある。
 <実施の形態1>
 図1は、実施の形態1に係る圧電発電モジュール100の回路図である。
 圧電発電モジュール100は、圧電素子1、ダイオード2、ロードスイッチ制御回路3、ロードスイッチ4、第1の信号線Tpe1、第2の信号線Tpe2、出力ノードN1、および出力ノードN2を備える。
 出力ノードN1および出力ノードN2間には、負荷5が接続される。負荷5は、例えば、RF回路、またはマイクロコンピュータ等の処理回路である。それら処理回路は、圧電発電モジュール100の出力ノードN1および出力ノードN2から電源電圧が供給され、離れた位置にある電子機器を制御する信号(識別コードID等)を出力する。従って、圧電発電モジュール100に負荷5を接続することで、リモートコントローラまたはワイヤレススイッチが実現される。なお、ロードスイッチ制御回路3が本願のスイッチ制御回路に相当する。ロードスイッチ4が本願の第1のスイッチに相当する。
 図2(a)は、応力が加えられていない圧電素子1の状態を模式的に示す断面図である。圧電素子1は、圧電体1Cと金属板1Dとを有する。圧電体1Cは、平板状の形状を有し、例えばチタン酸ジルコン酸鉛系セラミックスからなる。圧電体1Cの一方主面には電極1Aが設けられ、他方主面には電極1Bが設けられている。圧電素子1は、電極1Bを介して金属板1Dと圧電体1Cとが電気的に接合されている。電極1Aは、第1の信号線Tpe1と接続され、金属板1Dは、第2の信号線Tpe2と接続される。第2の信号線Tpe2は、基準電位(GND)と接続されている。
 図2(b)に示すように、圧電素子1は、両端が支持部1Eによって保持されている。圧電素子1は、図2(b)に示す矢印方向に分極されている。なお、電極1Aが本願の圧電素子の第1の端子に相当する。電極1Bが本願の圧電素子の第2の端子に相当する。
 ダイオード2は、例えば、クランプダイオードである。ダイオード2のアノードおよびカソードは、それぞれ、圧電素子1の第2の信号線Tpe2および第1の信号線Tpe1と接続される。即ち、ダイオード2は、圧電素子1と並列接続される。ダイオード2は、圧電素子1が変位していない状態の電位である基準電位に対して負となる電圧が、負荷5に加わらないようにするために設けられている。
 ロードスイッチ制御回路3の電源ノードNc1および電源ノードNc2は、それぞれ、圧電素子1の第1の信号線Tpe1および第2の信号線Tpe2と接続される。ロードスイッチ4の第1の入力端子は、ロードスイッチ制御回路3の電源ノードNc1と接続される。ロードスイッチ4の第2の入力端子は、電源ノードNc2と接続される。ロードスイッチ制御回路3は、ロードスイッチ4の出力端子からロードスイッチ制御信号S4を出力し、ロードスイッチ4の導通状態と遮断状態とを切り替える。
 図4は、図1の圧電発電モジュール100が備えるロードスイッチ制御回路3の回路図である。
 ロードスイッチ制御回路3は、例えば、CMOS回路で構成される。ロードスイッチ制御回路3は、電源ノードNc1と接続されている第1の入力端子と、電源ノードNc2と接続されている第2の入力端子と、出力端子とを備える。ロードスイッチ制御回路3は、電源ノードNc1と電源ノードNc2との間に、電源ノードNc1側から順に直列接続された抵抗R1、抵抗R2、及び抵抗R3を備える。また、ロードスイッチ制御回路3は、例えば、電子スイッチであるスイッチ3Aと、例えば、バンドギャップリファレンスである比較電圧生成回路33と、例えば、オペアンプである比較回路32とを備える。
 抵抗R1の一方端は電源ノードNc1に接続され、他方端は抵抗R2の一方端に接続されている。抵抗R2の一方端は、抵抗R1の他方端に接続され、他方端は、抵抗R3の一方端に接続されている。抵抗R3の一方端は、抵抗R2の他方端に接続され、他方端は、電源ノードNc2に接続されている。スイッチ3Aは、一方端が電源ノードNc1に接続され、他方端が抵抗R1の他方端に接続されている。
 比較電圧生成回路33は、入力端子が電源ノードNc2に接続され、出力端子が比較回路32の反転入力端子に接続されている。比較回路32は、非反転入力端子が抵抗R3の一方端に接続され、出力端子がスイッチ3A及びロードスイッチ4に接続されている。なお、スイッチ3Aが本願の第2のスイッチに相当する。
 ロードスイッチ制御回路3は、電源ノードNc1および電源ノードNc2間に入力される発電電圧Vpeの変化に対し、出力されるロードスイッチ制御信号S4の論理レベルの変化がヒステリシス特性を有するように設定される。そのヒステリシス特性は、比較回路32が出力するロードスイッチ制御信号S4により、スイッチ3Aの導通状態を切り替えることで実現される。
 (圧電素子の動作)
 図2(b)に、荷重が加えられている状態の圧電素子1の断面図を模式的に示す。圧電素子1の中央部を押圧する(応力を加える)ことで、機械的エネルギーが電気的エネルギーに変換される。図2(b)は、圧電素子1の圧電体1Cが押圧による変形で分極し、第1の信号線Tpe1と接続された電極1Aに正電荷が帯電し、第2の信号線Tpe2と接続された電極1Bに負電荷が帯電する様子が示される。
 図2(c)に、圧電素子1への押圧開放中、即ち、圧電素子1に加えられていた応力が開放され、図2(b)から図2(a)の状態に復帰中の様子を示す。押圧開放中の圧電素子1において、圧電体1Cは、第1の信号線Tpe1と接続された電極1Aに負電荷が帯電し、第2の信号線Tpe2と接続された電極1Bに負電荷が帯電する様子が示される。
 圧電素子1を押圧する(応力を加える)と、圧電素子1の変形に伴って、第1の信号線Tpe1の電位は、第2の信号線Tpe2の電位に対して上昇する。そして、第1の信号線Tpe1には、発電電圧Vpeが生成する。一方、圧電素子1への押圧を開放すると、圧電素子1は初期形状に自動復帰し、第1の信号線Tpe1の発電電圧Vpeは、零となる。
 (ロードスイッチ制御回路の動作)
 図4のロードスイッチ制御回路3は、前述の通り、電源ノードNc1および電源ノードNc2間に印加される発電電圧Vpeの増減に応じて、出力するロードスイッチ制御信号S4の論理レベルを変化させる。ロードスイッチ制御信号S4の論理レベルがハイレベル、およびロウレベルに設定された場合、ロードスイッチ4は、それぞれ、導通状態(オン状態)および遮断状態(オフ状態)に設定される。ロードスイッチ4が導通状態に設定されると、出力ノードN1および出力ノードN2間に発生した発電電圧Vpeは、負荷5に供給される。負荷5が電流を消費するにつれ、圧電素子1が蓄積する電荷量は次第に減少し、発電電圧Vpeの値を低下させる。なお、圧電素子が変位していない状態の電源ノードNc2の電位が、本願の基準電位に相当する。
 ロードスイッチ制御回路3は、入力される発電電圧Vpeの変化に対し、出力されるロードスイッチ制御信号S4の論理レベルの変化がヒステリシス特性を有するように設定される。発電電圧Vpeの値が零から閾値電圧Vthまで上昇すると、ロードスイッチ4は、遮断状態から導通状態へ遷移する。その後、負荷5への電流供給に伴い、発電電圧Vpeの値が閾値電圧Vthより低い閾値電圧Vtlまで降下すると、ロードスイッチ4は、導通状態から遮断状態に遷移する。なお、閾値電圧Vthが本願の第1閾値電圧に相当し、閾値電圧Vtlが本願の第2閾値電圧に相当する。
 スイッチ3Aが遮断状態の場合、発電電圧Vpeは、電源ノードNc1および電源ノードNc2間に直列接続された抵抗R1、抵抗R2、および抵抗R3で分圧される。比較回路32は、抵抗R3の両端間の電位と、比較電圧生成回路33が生成する電位を比較し、ロードスイッチ制御信号S4の論理レベルを決定する。
 抵抗R1~R3の値、および比較電圧の値は、閾値電圧Vth(図1参照)が目的の値となるように、適宜設定される。直列接続される抵抗R1~R3は、圧電素子1と並列接続されるため、圧電素子1のリーク電流経路でもある。従って、抵抗R1~R3の値は、圧電素子1の押圧による発電電圧Vpeの充電時定数の値に対し、リーク時定数の値が大きくなるように設定する。
 発電電圧Vpeの値が閾値電圧Vthを超えると、比較回路32は、ロードスイッチ制御信号S4の論理レベルをロウレベルからハイレベルに変化させる。このロードスイッチ制御信号S4の変化に応答して、ロードスイッチ4は、導通状態に設定され、出力ノードN2を基準に、出力ノードN1に発電電圧Vpeが印加される(図1参照)。
 ロードスイッチ制御信号S4がハイレベルに設定されると、抵抗R1と並列接続されているスイッチ3Aも導通状態に設定され、電源ノードNc1の電圧(発電電圧Vpe)は、抵抗R2および抵抗R3で分圧される。スイッチ3Aが遮断状態にある場合と比較し、抵抗R3の両端間の電圧の値は、増加するため、発電電圧Vpeの値が閾値電圧Vthよりも低い閾値電圧Vtlに到達した時に、比較回路32は、ロードスイッチ制御信号S4の論理レベルを、ハイレベルからロウレベルに変化させる。このロードスイッチ制御信号S4の変化に応答して、ロードスイッチ4は、遮断状態に設定され、出力ノードN1への発電電圧Vpeの供給は停止される。
 図5は、図1の圧電発電モジュール100の動作を説明するタイミング図である。
 図5および図1を参照して、圧電発電モジュール100の動作を説明する。図5において、横軸は時刻を、縦軸は発電電圧Vpeを、模式的に示す。図5に示される圧電発電モジュール100の動作は、1)時刻t1~時刻t2に亘り、圧電素子1に応力を加える1回目の押圧の期間、2)時刻t2~時刻t3に亘り、圧電素子1への押圧を開放する期間、および3)時刻t3~時刻t4の圧電素子1への2回目の押圧の期間、の3つの期間における動作に分けられる。
 (1回目の押圧期間)
 時刻t1に圧電素子1への押圧を開始すると、圧電素子1に発生する歪の増加に伴い、発電電圧Vpeは増加する。時刻t1から時間T1経過後に、発電電圧Vpeの値が閾値電圧Vthに達すると、ロードスイッチ制御回路3は、ロードスイッチ制御信号S4の論理レベルをロウレベルからハイレベルに変化させる。このロードスイッチ制御信号S4の変化に応答して、ロードスイッチ4は、導通状態となり、圧電発電モジュール100は、負荷5へ、発電電圧Vpeの供給を開始する。
 負荷5は、時間T2の間、圧電素子1が蓄積する電荷を消費して、所定の処理(電子機器への信号送信処理)を実行し、時間T2の終了時刻には、発電電圧Vpeの値は、閾値電圧Vtl近くまで急激に低下する。時間T3に亘り、アイドリング状態にある負荷5は電荷を消費し、時間T3の終了時刻には、発電電圧Vpeの値は、閾値電圧Vtlに達する。時間T4の開始時刻に、発電電圧Vpeが閾値電圧Vtlに達すると、ロードスイッチ制御回路3は、ロードスイッチ制御信号S4の論理レベルをロウレベルに設定してロードスイッチ4を遮断状態とし、負荷5への電力供給を停止する。
 (押圧開放の期間)
 時間T5の開始時刻t2に、圧電素子1への押圧が開放されると、圧電素子1に発生する電荷の極性が反転し、第2の信号線Tpe2の電位は、第1の信号線Tpe1の電位より高くなる。すなわち、Tpe2の電位は、基準電位に対して負となる。このため、ダイオード2のアノードからカソードに電流が流れることにより電圧がクランプされ、圧電素子1に蓄積された電荷は放電される。その結果、発電電圧Vpeの値は、閾値電圧Vtlから零まで急激に低下する。押圧開放の時間が終了する時間T6の終了時刻まで、発電電圧Vpeの値は、零に維持される。
 (2回目の押圧期間)
 時間T7の開始時刻t3に、圧電素子1に対する2回目の押圧が開始される。圧電素子1は、1回目の押圧期間と同様に、発電電圧Vpeの値を、零から閾値電圧Vthまで上昇させる。時間T7以降も、1回目の押圧期間の場合と同様に、圧電発電モジュール100は、時間T2~時間T6における動作を繰り返す。
 (圧電発電モジュール100からダイオード2を削除した場合の波形)
 図5において、点線の発電電圧Vpeの波形は比較例であり、圧電発電モジュール100からダイオード2を削除した場合の発電電圧Vpeの波形である。以下に、比較例である点線の発電電圧Vpeと、実施の形態1に係る上述の実線の発電電圧Vpeの波形を対比しつつ、圧電発電モジュール100が備える、圧電素子1と並列に接続されるダイオード2の効果を説明する。
 比較例に係る時刻t1~時刻t2の1回目の押圧期間、および押圧開放の期間に含まれる時間T5における発電電圧Vpeの波形は、実施の形態1と同一のため、記載を省略する。
 時間T5の開始時刻t2に、圧電素子1への押圧が開放されると、圧電素子1に発生する電荷の極性が反転し、第2の信号線Tpe2の電位は、第1の信号線Tpe1の電位より高くなる。すなわち、Tpe2の電位は、基準電位に対して負となる。時刻t2に、圧電素子1に加えられる応力は、期間T1に圧電素子1に加えられた応力が反転したものとなる。
 したがって、押圧が開放された圧電素子1には、第1の信号線Tpe1および第2の信号線Tpe2間に閾値電圧Vthを発生し得る電荷が誘起される。その結果、時刻t2以降、第1の信号線Tpe1の値は、閾値電圧Vtlから閾値電圧Vthと等しい分だけ降下する。即ち、第1の信号線Tpe1の値は、閾値電圧Vthから閾値電圧Vtlの値を引いた値を有する、基準電位に対して負となる電圧まで降下する。
 時刻t3に2回目の押圧が開始されると、第1の信号線Tpe1の電圧は、上述の基準電位に対して負となる電圧から上昇を開始するため、閾値電圧Vtlまで到達することができない。したがって、ロードスイッチ制御回路3は、ロードスイッチ4を導通状態にすることができない。その結果、負荷5への電極供給が行われず、圧電素子1を押圧しても、負荷5は、所望の処理が実行出来ない。
 それに対し、実施の形態1に係る圧電発電モジュール100は、圧電素子1と並列接続されたダイオード2を備えているので、押圧開放後の圧電素子1が蓄積する電荷は、圧電素子1の第1の信号線Tpe1および第2の信号線Tpe2間で放電される。その結果、押圧開放後に圧電素子1を押圧した場合であっても、圧電素子1は、負荷5の処理動作に必要な電圧値を有する発電電圧Vpeを発生することが可能となる。
 実施の形態1に係る圧電発電モジュール100の効果を説明する。
 (全波整流回路に起因するエネルギー損失の削減)
 圧電発電モジュール100において、押圧された圧電素子1が生成する直流電力は負荷5に供給されるが、押圧開放された圧電素子1が生成する直流電力は、負荷5には供給されない。従って、押圧および押圧開放された圧電素子が生成する交流電力を、全波整流回路で直流電力に変換して負荷に供給する従来の信号発生装置と異なり、圧電発電モジュール100は、全波整流回路および充電用キャパシタ(いずれも図示せず)を必要としない。
 全波整流回路を排除することで、全波整流回路を構成するダイオード、すなわち圧電素子1と負荷5との間に直列に設けられたダイオードで発生する電荷移動のエネルギー損失が削減される。換言すれば、削減された電荷移動のエネルギー損失に相当する機械的ポテンシャルエネルギーが低減され、圧電素子1の発電エネルギーに対する負荷5の消費エネルギーの比率、即ち、エネルギー利用効率が向上する。
 さらに、充電用キャパシタを排除することで、電荷移動に起因するエネルギー損失が削減される。圧電素子1の等価容量値をCs、圧電素子1の発生電荷量をQs、充電用キャパシタの容量値をCc、とすると、充電エネルギーP1は、式1で求められる。一方、圧電素子1のみの場合の充電エネルギーP2は、式2で求められる。
P1=Qs/2(Cc+Cs) …… 式1
P2=Qs/2Cs …… 式2
 P1<P2、であるから、充電用キャパシタを設けず、圧電素子1で負荷5を直接駆動する圧電発電モジュール100は、整流回路および充電用キャパシタを備える一般的な構成に対し、より大きな充電エネルギーを負荷5へ供給することが可能となる。
 (並列接続ダイオード)
 圧電発電モジュール100は、圧電素子1と並列接続されたダイオード2を備える。押圧最下点まで押圧された圧電素子1は、圧電素子1が生成する電荷量と負荷5の消費電荷量とのバランスにもよるが、通常は、負荷5の最低動作電圧以上の値を有する発電電圧Vpeを出力する。負荷5の処理動作後、押圧が開放されると、圧電素子1に生成される電荷により、第2の信号線Tpe2に対する第1の信号線Tpe1の電位は、基準電位、すなわち零を経由して、基準電位に対して負となる値まで低下する。
 すると、圧電素子1に生成された電荷は、ダイオード2のアノードからカソードを経由して、圧電素子1の内部で消費され、圧電素子1の第1の信号線Tpe1の電圧は、押圧開放後も、零を維持する。その結果、押圧開放後に押圧された圧電素子1は、再び、負荷5の最低動作電圧以上の値を有する発電電圧Vpeを出力し、負荷5の正常動作が確保される。
 (ヒステリシス特性)
 ロードスイッチ制御回路3は、圧電素子1の発電電圧Vpeの値が閾値電圧Vthを超えると、ロードスイッチ4を導通状態に設定し、圧電素子1が蓄積する電荷を負荷5へ供給する。その後、負荷5の電力消費、または圧電素子1の押圧開放に起因して、発電電圧Vpeの値が、閾値電圧Vthの値より低く設定される閾値電圧Vtlの値を下回ると、ロードスイッチ4は遮断状態に設定され、負荷5への電荷、即ち、電力供給は停止される。
 このように、入力される発電電圧Vpeの変化に対し、ロードスイッチ4の導通状態の変化がヒステリシス特性を有するように設定することで、圧電素子1に対する1回の押圧動作で、負荷5に電力が供給され、圧電発電モジュール100を搭載したリモートコントローラの応答が高速化される。
 <実施の形態1の変形例>
 図3は、図2の圧電素子1の変形例である圧電素子11の断面図である。
 図3において、図2と同一の符号が付されたものは、同一構成または機能を有し、重複説明は省略する。図3において、圧電素子11は、押圧時に、各圧電体11Cが対面する面で、同一の極性を有する電荷が発生するように圧電体11Cを積層した構成を有する。圧電体11を積層構成とすることで、圧電素子11が生成する電荷量が増加し、負荷5(図1参照)を、より長い時間駆動することが可能となる。
 なお、上述の実施形態では、圧電素子1はチタン酸ジルコン酸鉛系セラミックスからなっているが、これに限るものではない。例えば、ニオブ酸カリウムナトリウム系及びアルカリニオブ酸系セラミックス等の非鉛系圧電体セラミックスの圧電材料などからなっていてもよい。
 さらに、上述の実施形態では、圧電素子1の支持構造は、2つの支持部1Eによる支持となっているが、これに限るものではない。例えば、圧電素子1の一端を片持ち梁で保持し、自由端となる他端に応力を加える構成でも良い。また、圧電素子1を棒状の形状とし、その一端を片持ち梁で保持し、他端に応力を加える構成としても良い。つまり、圧電素子1の支持形態は、押圧により変形可能な構成であれば良い。
 <実施の形態2>
 図6は、実施の形態2に係る圧電発電モジュール200の回路図である。
 図6において、図1と同一の符号が付されたものは、同一の構成または機能を有し、それらの重複説明は省略される。図6に示される圧電発電モジュール200は、図1の圧電発電モジュール100において、ロードスイッチ制御回路3をロードスイッチ制御回路31に置き換えた構成に対応する。
 図7は、図6のロードスイッチ制御回路31の回路図である。
 図7のロードスイッチ制御回路31は、図4のロードスイッチ制御回路3において、抵抗R1を、温度補償素子R1Sに置き換えた構成に対応する。
 圧電体1Cとして、例えば、PZT(チタン酸ジルコン酸鉛)を用いた圧電素子1(図2参照)は、発電エネルギーを大きくするため、通常、相移転近傍に組成が調整され、その結果、圧電素子1の容量および発電電圧の値は、大きな温度特性を有する。圧電体1Cの誘電率が正の温度係数を有する場合、周囲温度の上昇に伴い、圧電素子1の容量値は、増加し、圧電素子1の発電電圧Vpeの値は、減少する。その結果、周囲温度の高温側(常温の25℃より高い温度範囲)において、圧電素子1の発電電圧Vpeの値は、閾値電圧Vthに到達せず、ロードスイッチ4は遮断状態が維持され、発電電圧Vpeは負荷5に供給されないという問題が発生する。
 そこで、図7のロードスイッチ制御回路31において、温度補償素子R1Sは、抵抗値が負の温度特性を有する素子として、例えば、サーミスタが適応される。周囲温度の上昇に伴い、温度補償素子R1Sの抵抗値は、減少し、抵抗R2と抵抗R3の接続点の電位は、上昇する。その結果、周囲温度の高温側においても、比較回路32は、ロードスイッチ制御信号S4の論理レベルを反転させ、負荷5に発電電圧Vpeが供給される。つまり、抵抗値が負の温度特性を有する温度補償素子R1Sにより、ロードスイッチ制御回路31に設定される閾値電圧Vthの値は、負の温度係数が与えられることになる。
 なお、圧電体1Cの誘電率が負の温度係数を有する場合は、温度補償素子R1Sとして、抵抗値が正の温度係数を有するものを適用するか、あるいはR3に負の温度係数を有した、例えばサーミスタを用いても良い。また、抵抗R1(図4参照)の値に温度依存性を持たせる代わりに、比較電圧生成回路33が生成する比較電圧が温度依存性を有するように構成しても良い。
 ロードスイッチ制御回路31に設定される閾値電圧の値に温度補償素子を採用することで、温度に対する閾値電圧Vthが変化する。その結果、圧電素子1の容量値が温度により変化する場合であっても、周囲温度によらず、発電電圧Vpeを確実に負荷5に供給することが可能となる。なお、上述の実施形態では、図4における抵抗R1を温度補償素子R1Sに置き換えているが、これに限るものではない。図4における抵抗R2、または抵抗R3を温度補償素子に置き換えたとしても、同様の効果が得られる。
 <実施の形態3>
 図8は、実施の形態3に係る圧電発電モジュール300の回路図である。
 図8において、図1と同一の符号が付されたものは、同一の構成または機能を有し、それらの重複説明は省略される。図8に示される圧電発電モジュール300は、図1に示される圧電発電モジュール100において、第1の信号配線Tpe1および第2の信号配線Tpe2間に、蓄積キャパシタ6を接続した構成に対応する。なお、蓄積キャパシタ6が本願の容量素子に相当する。
 上述の通り、圧電素子1の容量値および発電電圧Vpeの値は、周囲温度により変動する場合がある。例えば、周囲温度が低温側(常温の25℃より低い温度範囲)において、圧電素子1の容量値の減少に起因して、発電電圧Vpeの値が常温時より増加すると、負荷5への過電圧印加が懸念される。圧電素子1と並列に蓄積キャパシタ6を接続することで、圧電素子1が生成する電荷が圧電素子1と蓄積キャパシタ6に分配され、発電電圧Vpeの増加が抑制される。
 圧電発電モジュール300は、閾値電圧Vthの温度補償がないロードスイッチ制御回路3と蓄積キャパシタ6を組み合わせた構成であるが、図6に示される圧電発電モジュール200の閾値電圧Vthの温度補償があるロードスイッチ制御回路31と蓄積キャパシタ6を組み合わせても良い。その場合、周囲温度の高温側で懸念される問題と、上述の低温側で懸念される過電圧印加の問題が解決されることになる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 圧電素子、1A 電極、1B 電極、1C 圧電体、1D 金属板、1E 支持部、2 ダイオード、3 ロードスイッチ制御回路、4 ロードスイッチ、5 負荷、6 蓄積キャパシタ、11 圧電体、11C 圧電体、3A スイッチ、31 ロードスイッチ制御回路、32 比較回路、33 比較電圧生成回路、100 圧電発電モジュール、200 圧電発電モジュール、300 圧電発電モジュール、GND 基準電位、N1,N2 出力ノード、Nc1,Nc2 電源ノード、R1~R3 抵抗、R1S 温度補償素子、S4 ロードスイッチ制御信号、Tpe1 第1の信号線、Tpe2 第2の信号線、Vpe 発電電圧、Vth,Vtl 閾値電圧。

Claims (7)

  1.  第1の端子および第2の端子を有する圧電素子と、
     前記圧電素子の前記第1の端子と接続されているカソードと、前記圧電素子の前記第2の端子と接続されているアノードとを有するダイオードと、
     前記カソードと接続されている第1の入力端子と、前記アノードと接続されている第2の入力端子と、スイッチ制御信号を出力する出力端子とを有するスイッチ制御回路と、
     前記スイッチ制御回路の前記第1の入力端子に接続され、前記スイッチ制御信号に応答して導通状態と遮断状態とを切り替える第1のスイッチと、
    を備える、圧電発電モジュール。
  2.  前記圧電素子は発電素子であり、前記圧電素子の両端電圧が基準電位よりも大きい第1閾値電圧を超えることにより、前記第1のスイッチが導通状態となり、
     前記圧電素子の両端電圧が前記第1閾値電圧より低い第2閾値電圧となることにより、前記第1のスイッチが遮断状態となる、請求項1に記載の圧電発電モジュール。
  3.  前記圧電素子は、荷重を加えられることにより前記圧電素子の第1の端子に電圧を発生させ、前記圧電素子に加えられている荷重が開放されると、前記圧電素子の両端電圧が基準電位となる、請求項1または請求項2に記載の圧電発電モジュール。
  4.  前記スイッチ制御回路は、比較回路と、温度補償素子とを有し、
    前記温度補償素子は、前記スイッチ制御回路の前記第1の入力端子と前記第2の入力端子に対して並列に接続されている、請求項1ないし請求項3のいずれか1項に記載の圧電発電モジュール。
  5.  前記スイッチ制御回路は、第2のスイッチをさらに有し、
    前記第2のスイッチは、前記温度補償素子に対して並列に接続されており、
    前記第2のスイッチは、前記第1のスイッチの状態に同期して開閉を切り替える、請求項4に記載の圧電発電モジュール。
  6.  前記スイッチ制御回路の前記第1の入力端子と前記第2の入力端子に対して並列に接続されている容量素子をさらに備える、請求項1ないし請求項5のいずれか1項に記載の圧電発電モジュール。
  7.  請求項1ないし請求項6のいずれか1項に記載の圧電発電モジュールと、RF回路とを備え、
     前記圧電素子の第1の端子における電圧が前記第1閾値電圧を超えてから前記第2閾値電圧になるまでの間に、前記RF回路が通信処理を実行する、リモートコントローラ。
PCT/JP2014/077669 2014-01-22 2014-10-17 圧電発電モジュール、およびリモートコントローラ WO2015111258A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480071275.2A CN105849925B (zh) 2014-01-22 2014-10-17 压电发电模块以及遥控器
JP2015558733A JP6098736B2 (ja) 2014-01-22 2014-10-17 圧電発電モジュール、およびリモートコントローラ
EP14879607.1A EP3098866B1 (en) 2014-01-22 2014-10-17 Piezoelectric power generation module and remote controller
US15/198,382 US9882511B2 (en) 2014-01-22 2016-06-30 Piezoelectric power generation module and remote controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014009596 2014-01-22
JP2014-009596 2014-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/198,382 Continuation US9882511B2 (en) 2014-01-22 2016-06-30 Piezoelectric power generation module and remote controller

Publications (1)

Publication Number Publication Date
WO2015111258A1 true WO2015111258A1 (ja) 2015-07-30

Family

ID=53681081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077669 WO2015111258A1 (ja) 2014-01-22 2014-10-17 圧電発電モジュール、およびリモートコントローラ

Country Status (5)

Country Link
US (1) US9882511B2 (ja)
EP (1) EP3098866B1 (ja)
JP (1) JP6098736B2 (ja)
CN (1) CN105849925B (ja)
WO (1) WO2015111258A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030708A (ja) * 2015-08-06 2017-02-09 株式会社デンソー 車両用衝突検知装置
WO2017104342A1 (ja) * 2015-12-15 2017-06-22 株式会社村田製作所 発電装置およびそれを備えた送信機
CN107818683A (zh) * 2017-11-28 2018-03-20 广东工业大学 一种无线控制开关装置及系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089947B2 (ja) * 2013-05-13 2017-03-08 住友電気工業株式会社 無線装置および無線制御システム
JP6027246B2 (ja) * 2013-08-13 2016-11-16 国立大学法人東北大学 発電装置
WO2015111259A1 (ja) * 2014-01-22 2015-07-30 株式会社村田製作所 圧電発電モジュール、およびリモートコントローラ
JP6406538B2 (ja) * 2014-06-17 2018-10-17 Toto株式会社 トイレ装置用のリモコン装置
JP2019034430A (ja) * 2017-08-10 2019-03-07 東芝テック株式会社 プリンタ装置及びプログラム
CN111164774B (zh) * 2017-10-02 2024-02-09 阿尔卑斯阿尔派株式会社 输入装置
KR102097222B1 (ko) * 2018-12-27 2020-04-06 주식회사 두산 수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법
TWD224316S (zh) 2021-09-24 2023-03-21 律盟風險管理顧問股份有限公司 電腦程式產品之圖形化使用者介面

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245970A (ja) * 1994-03-02 1995-09-19 Calsonic Corp 圧電素子発電装置
JP2003007491A (ja) * 2001-06-26 2003-01-10 Nec Tokin Ceramics Corp 発光体点灯装置
JP2004103265A (ja) * 2002-09-05 2004-04-02 Nec Tokin Corp 発光ユニットおよびそれを用いた発光靴
JP2004201376A (ja) 2002-12-17 2004-07-15 Taiheiyo Cement Corp 信号発信装置
JP2011103729A (ja) 2009-11-11 2011-05-26 Renesas Electronics Corp 発電機能付き手動操作機器、発電機能付き遠隔操作装置
JP2012254005A (ja) * 2011-05-06 2012-12-20 Seiko Epson Corp 発電装置、電子機器、移動手段及び電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3274047B2 (ja) * 1995-10-05 2002-04-15 株式会社豊田中央研究所 圧電アクチュエータの駆動装置および駆動方法
JP3539138B2 (ja) * 1997-06-24 2004-07-07 ミノルタ株式会社 電気機械変換素子を使用した駆動装置の駆動回路
US6259372B1 (en) * 1999-01-22 2001-07-10 Eaton Corporation Self-powered wireless transducer
FR2802731B1 (fr) * 1999-12-16 2002-01-25 Schneider Electric Ind Sa Dispositif autonome de commande a distance, appareil et installation electrique comportant un tel dispositif
US6630894B1 (en) * 2000-07-14 2003-10-07 Face International Corp. Self-powered switching device
CN1555566A (zh) 2001-09-12 2004-12-15 ��ʽ����U��S��C�� 电源装置
US7132939B2 (en) * 2004-07-07 2006-11-07 Michelin Recherche Et Technique S.A. Integrated self-powered tire revolution counter
FR2896635A1 (fr) * 2006-01-23 2007-07-27 Commissariat Energie Atomique Procede et dispositif de conversion d'energie mecanique en energie electrique
US7781943B1 (en) * 2007-01-24 2010-08-24 Micro Strain, Inc. Capacitive discharge energy harvesting converter
US20080252174A1 (en) * 2007-04-10 2008-10-16 Advanced Cerametrics, Inc. Energy harvesting from multiple piezoelectric sources
US8653718B2 (en) * 2011-05-06 2014-02-18 Seiko Epson Corporation Power generation unit, electronic apparatus, transportation unit, battery, method of controlling power generation unit
JP5807743B2 (ja) 2011-10-03 2015-11-10 セイコーエプソン株式会社 発電装置、電子機器、移動手段及び発電装置の制御方法
JP2013038941A (ja) * 2011-08-09 2013-02-21 Nippon Dengyo Kosaku Co Ltd 充電電圧制御回路、および電源回路
JP5879887B2 (ja) * 2011-10-03 2016-03-08 セイコーエプソン株式会社 発電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245970A (ja) * 1994-03-02 1995-09-19 Calsonic Corp 圧電素子発電装置
JP2003007491A (ja) * 2001-06-26 2003-01-10 Nec Tokin Ceramics Corp 発光体点灯装置
JP2004103265A (ja) * 2002-09-05 2004-04-02 Nec Tokin Corp 発光ユニットおよびそれを用いた発光靴
JP2004201376A (ja) 2002-12-17 2004-07-15 Taiheiyo Cement Corp 信号発信装置
JP2011103729A (ja) 2009-11-11 2011-05-26 Renesas Electronics Corp 発電機能付き手動操作機器、発電機能付き遠隔操作装置
JP2012254005A (ja) * 2011-05-06 2012-12-20 Seiko Epson Corp 発電装置、電子機器、移動手段及び電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3098866A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030708A (ja) * 2015-08-06 2017-02-09 株式会社デンソー 車両用衝突検知装置
WO2017104342A1 (ja) * 2015-12-15 2017-06-22 株式会社村田製作所 発電装置およびそれを備えた送信機
JPWO2017104342A1 (ja) * 2015-12-15 2018-05-24 株式会社村田製作所 発電装置およびそれを備えた送信機
CN107818683A (zh) * 2017-11-28 2018-03-20 广东工业大学 一种无线控制开关装置及系统
CN107818683B (zh) * 2017-11-28 2024-03-26 广东工业大学 一种无线控制开关装置及系统

Also Published As

Publication number Publication date
EP3098866A4 (en) 2017-11-29
EP3098866B1 (en) 2020-02-12
US20160308469A1 (en) 2016-10-20
CN105849925A (zh) 2016-08-10
JPWO2015111258A1 (ja) 2017-03-23
US9882511B2 (en) 2018-01-30
EP3098866A1 (en) 2016-11-30
CN105849925B (zh) 2018-12-25
JP6098736B2 (ja) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6098736B2 (ja) 圧電発電モジュール、およびリモートコントローラ
WO2015029317A1 (ja) 環境発電装置
US10014801B2 (en) Piezoelectric power generation module and remote controller
JP5879887B2 (ja) 発電装置
JP2011152023A (ja) スイッチングレギュレータ
WO2020031600A1 (ja) 誘電エラストマー発電システム
WO2018074144A1 (ja) 電源回路
JP2011250196A (ja) タイマー回路
JP6481773B2 (ja) 発電装置およびそれを備えた送信機
JP6540803B2 (ja) 発電装置およびそれを備えた電気機器
WO2018163854A1 (ja) 誘電エラストマー発電システム
JP2010136577A (ja) 起動回路および電源装置
JP7297972B1 (ja) 電源装置
JP2022142013A (ja) 昇圧回路を有する電子機器。
WO2023157672A1 (ja) 発電装置
Kinzel et al. A novel current-mode actuator driver for enhanced piezoelectric reliability
JP6965588B2 (ja) 電子装置
KR20170115806A (ko) 대용량 커패시터를 포함하는 전원 장치
JP6720557B2 (ja) スイッチ装置及び電力供給システム
JP5367621B2 (ja) 蓄電回路
JP2013121289A (ja) 充電回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558733

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014879607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014879607

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE