WO2015111258A1 - 圧電発電モジュール、およびリモートコントローラ - Google Patents
圧電発電モジュール、およびリモートコントローラ Download PDFInfo
- Publication number
- WO2015111258A1 WO2015111258A1 PCT/JP2014/077669 JP2014077669W WO2015111258A1 WO 2015111258 A1 WO2015111258 A1 WO 2015111258A1 JP 2014077669 W JP2014077669 W JP 2014077669W WO 2015111258 A1 WO2015111258 A1 WO 2015111258A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric element
- piezoelectric
- power generation
- switch control
- voltage
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 72
- 230000004044 response Effects 0.000 claims description 6
- 230000006854 communication Effects 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 4
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
- H02N2/181—Circuits; Control arrangements or methods
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C2201/00—Transmission systems of control signals via wireless link
- G08C2201/10—Power supply of remote control devices
- G08C2201/11—Energy harvesting
- G08C2201/112—Mechanical energy, e.g. vibration, piezoelectric
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/304—Beam type
Definitions
- the present invention relates to a piezoelectric power generation module and a remote controller equipped with the piezoelectric power generation module, for example, a piezoelectric power generation module that converts mechanical energy applied to a piezoelectric element into electrical energy and supplies power to a processing circuit, and a remote Concerning the controller.
- Patent Document 1 discloses a configuration of a remote controller with a power generation function that executes an input command after detecting that an input unit pushed by a user's finger is restored.
- the remote controller converts AC power generated at the time of pushing into the input unit and at the time of restoration into DC power at the rectification unit, and stores the DC power at the power storage unit (capacitor).
- Patent Document 2 discloses a configuration in which AC power generated by free vibration of a free end of an actuator is converted into DC power by a rectifier.
- Patent Document 1 and Patent Document 2 the electric charge generated by the piezoelectric element is moved to a capacitor, which is a power storage unit, through a full-wave rectifier circuit.
- the full-wave rectifier circuit is a positive electrode obtained by deforming toward the first main surface side with respect to a reference potential that is a potential in a state where the piezoelectric element is not displaced when the plate-shaped piezoelectric element is displaced. Both the electric potential and the electric charge generated at the negative electric potential obtained by deformation to the second main surface side can be supplied to the subsequent circuit.
- energy loss due to this charge transfer occurs, so that there is a problem that the ratio of the usable energy to the generated energy (energy efficiency) is poor.
- a piezoelectric power generation module includes a piezoelectric element having a first terminal and a second terminal, a cathode connected to the first terminal of the piezoelectric element, and the second of the piezoelectric element.
- a diode having an anode connected to the terminal, a first input terminal connected to the cathode, a second input terminal connected to the anode, and an output terminal for outputting a switch control signal
- a first switch connected to the first input terminal of the switch control circuit and switching between a conduction state and a cutoff state in response to the switch control signal.
- the piezoelectric element is a power generation element, and when the voltage across the piezoelectric element exceeds a first threshold voltage greater than a reference potential, the first switch becomes conductive, and the voltage across the piezoelectric element is When the second threshold voltage is lower than the first threshold voltage, the switch is turned off.
- the piezoelectric element generates a voltage at the first terminal of the piezoelectric element when a load is applied, and when the load applied to the piezoelectric element is released, the voltage across the piezoelectric element is It becomes the reference potential.
- the switch control circuit includes a comparison circuit and a temperature compensation element, and the temperature compensation element is in parallel with the first input terminal and the second input terminal of the switch control circuit. It is connected to the.
- the switch control circuit further includes a second switch, and the second switch is connected in parallel to the temperature compensation element, and the second switch includes the first switch. Switching between open and close in synchronization with the switch status.
- it further includes a capacitive element connected in parallel to the first input terminal and the second input terminal of the switch control circuit.
- a remote controller includes a piezoelectric power generation module and an RF circuit, and the voltage at the first terminal of the piezoelectric element exceeds the first threshold voltage and becomes the second threshold voltage.
- the RF circuit executes communication processing.
- FIG. 1 is a circuit diagram of a piezoelectric power generation module according to Embodiment 1.
- FIG. 3 is a cross-sectional view illustrating a relationship between a state of pressing a piezoelectric element included in the piezoelectric power generation module according to Embodiment 1 and generated charges.
- 6 is a cross-sectional view of a modification of the piezoelectric element according to Embodiment 1.
- FIG. 3 is a circuit diagram of a load switch control circuit included in the piezoelectric power generation module according to Embodiment 1.
- FIG. FIG. 3 is a timing chart for explaining the operation of the piezoelectric power generation module according to Embodiment 1.
- 6 is a circuit diagram of a piezoelectric power generation module according to Embodiment 2.
- FIG. 1 is a circuit diagram of the piezoelectric power generation module 100 according to the first embodiment.
- the piezoelectric power generation module 100 includes a piezoelectric element 1, a diode 2, a load switch control circuit 3, a load switch 4, a first signal line Tpe1, a second signal line Tpe2, an output node N1, and an output node N2.
- a load 5 is connected between the output node N1 and the output node N2.
- the load 5 is a processing circuit such as an RF circuit or a microcomputer, for example. These processing circuits are supplied with a power supply voltage from the output node N1 and the output node N2 of the piezoelectric power generation module 100, and output a signal (such as an identification code ID) for controlling an electronic device at a remote position. Therefore, a remote controller or a wireless switch is realized by connecting the load 5 to the piezoelectric power generation module 100.
- the load switch control circuit 3 corresponds to the switch control circuit of the present application.
- the load switch 4 corresponds to the first switch of the present application.
- FIG. 2A is a sectional view schematically showing a state of the piezoelectric element 1 to which no stress is applied.
- the piezoelectric element 1 includes a piezoelectric body 1C and a metal plate 1D.
- the piezoelectric body 1C has a flat plate shape and is made of, for example, a lead zirconate titanate ceramic.
- An electrode 1A is provided on one main surface of the piezoelectric body 1C, and an electrode 1B is provided on the other main surface.
- the metal plate 1D and the piezoelectric body 1C are electrically joined via the electrode 1B.
- the electrode 1A is connected to the first signal line Tpe1, and the metal plate 1D is connected to the second signal line Tpe2.
- the second signal line Tpe2 is connected to a reference potential (GND).
- both ends of the piezoelectric element 1 are held by the support portion 1E.
- the piezoelectric element 1 is polarized in the direction of the arrow shown in FIG.
- the electrode 1A corresponds to the first terminal of the piezoelectric element of the present application.
- the electrode 1B corresponds to the second terminal of the piezoelectric element of the present application.
- the diode 2 is, for example, a clamp diode.
- the anode and cathode of the diode 2 are connected to the second signal line Tpe2 and the first signal line Tpe1 of the piezoelectric element 1, respectively. That is, the diode 2 is connected in parallel with the piezoelectric element 1.
- the diode 2 is provided so that a voltage that is negative with respect to the reference potential, which is a potential in a state where the piezoelectric element 1 is not displaced, is not applied to the load 5.
- the power supply node Nc1 and the power supply node Nc2 of the load switch control circuit 3 are connected to the first signal line Tpe1 and the second signal line Tpe2 of the piezoelectric element 1, respectively.
- a first input terminal of the load switch 4 is connected to the power supply node Nc 1 of the load switch control circuit 3.
- a second input terminal of load switch 4 is connected to power supply node Nc2.
- the load switch control circuit 3 outputs a load switch control signal S4 from the output terminal of the load switch 4, and switches the load switch 4 between a conduction state and a cutoff state.
- FIG. 4 is a circuit diagram of the load switch control circuit 3 provided in the piezoelectric power generation module 100 of FIG.
- the load switch control circuit 3 is composed of, for example, a CMOS circuit.
- the load switch control circuit 3 includes a first input terminal connected to the power supply node Nc1, a second input terminal connected to the power supply node Nc2, and an output terminal.
- the load switch control circuit 3 includes a resistor R1, a resistor R2, and a resistor R3 connected in series from the power supply node Nc1 side between the power supply node Nc1 and the power supply node Nc2.
- the load switch control circuit 3 includes, for example, a switch 3A that is an electronic switch, a comparison voltage generation circuit 33 that is a bandgap reference, and a comparison circuit 32 that is an operational amplifier, for example.
- the one end of the resistor R1 is connected to the power supply node Nc1, and the other end is connected to one end of the resistor R2.
- One end of the resistor R2 is connected to the other end of the resistor R1, and the other end is connected to one end of the resistor R3.
- One end of resistor R3 is connected to the other end of resistor R2, and the other end is connected to power supply node Nc2.
- Switch 3A has one end connected to power supply node Nc1 and the other end connected to the other end of resistor R1.
- the comparison voltage generation circuit 33 has an input terminal connected to the power supply node Nc2 and an output terminal connected to the inverting input terminal of the comparison circuit 32.
- the comparison circuit 32 has a non-inverting input terminal connected to one end of the resistor R3 and an output terminal connected to the switch 3A and the load switch 4.
- the switch 3A corresponds to the second switch of the present application.
- the load switch control circuit 3 is set so that the change in the logic level of the output load switch control signal S4 has a hysteresis characteristic with respect to the change in the generated voltage Vpe input between the power supply node Nc1 and the power supply node Nc2. .
- the hysteresis characteristic is realized by switching the conduction state of the switch 3A by the load switch control signal S4 output from the comparison circuit 32.
- FIG. 2B schematically shows a cross-sectional view of the piezoelectric element 1 in a state where a load is applied. By pressing the central portion of the piezoelectric element 1 (applying stress), mechanical energy is converted into electrical energy.
- the piezoelectric body 1C of the piezoelectric element 1 is polarized by deformation due to pressing, and a positive charge is charged in the electrode 1A connected to the first signal line Tpe1, and is connected to the second signal line Tpe2. A state in which the negative charge is charged to the electrode 1B is shown.
- FIG. 2C shows a state in which the pressure applied to the piezoelectric element 1 is released, that is, the stress applied to the piezoelectric element 1 is released and the state is restored from FIG. 2B to FIG. 2A. Show.
- the piezoelectric body 1C has a negative charge on the electrode 1A connected to the first signal line Tpe1 and a negative charge on the electrode 1B connected to the second signal line Tpe2. It shows how to do.
- the piezoelectric element 1 When the piezoelectric element 1 is pressed (stress is applied), the potential of the first signal line Tpe1 rises with respect to the potential of the second signal line Tpe2 as the piezoelectric element 1 is deformed. The generated voltage Vpe is generated on the first signal line Tpe1. On the other hand, when the pressure on the piezoelectric element 1 is released, the piezoelectric element 1 automatically returns to the initial shape, and the generated voltage Vpe of the first signal line Tpe1 becomes zero.
- the load switch control circuit 3 in FIG. 4 changes the logic level of the output load switch control signal S4 in accordance with the increase or decrease in the generated voltage Vpe applied between the power supply node Nc1 and the power supply node Nc2.
- the load switch 4 is set to a conductive state (on state) and a cutoff state (off state), respectively.
- the load switch 4 is set to the conductive state, the generated voltage Vpe generated between the output node N1 and the output node N2 is supplied to the load 5.
- the load 5 consumes current, the amount of charge accumulated in the piezoelectric element 1 gradually decreases, and the value of the power generation voltage Vpe decreases. Note that the potential of the power supply node Nc2 in a state where the piezoelectric element is not displaced corresponds to the reference potential of the present application.
- the load switch control circuit 3 is set so that the change in the logic level of the output load switch control signal S4 has a hysteresis characteristic with respect to the change in the input power generation voltage Vpe.
- the load switch 4 transitions from the cutoff state to the conduction state. Thereafter, when the value of the generated voltage Vpe drops to the threshold voltage Vtl lower than the threshold voltage Vth along with the current supply to the load 5, the load switch 4 transitions from the conduction state to the cutoff state.
- the threshold voltage Vth corresponds to the first threshold voltage of the present application
- the threshold voltage Vtl corresponds to the second threshold voltage of the present application.
- the generated voltage Vpe is divided by the resistor R1, the resistor R2, and the resistor R3 connected in series between the power supply node Nc1 and the power supply node Nc2.
- the comparison circuit 32 compares the potential across the resistor R3 with the potential generated by the comparison voltage generation circuit 33, and determines the logic level of the load switch control signal S4.
- the values of the resistors R1 to R3 and the value of the comparison voltage are appropriately set so that the threshold voltage Vth (see FIG. 1) becomes a target value. Since the resistors R1 to R3 connected in series are connected in parallel to the piezoelectric element 1, they are also leakage current paths of the piezoelectric element 1. Therefore, the values of the resistors R1 to R3 are set such that the value of the leak time constant is larger than the value of the charge time constant of the generated voltage Vpe due to the pressing of the piezoelectric element 1.
- the comparison circuit 32 changes the logic level of the load switch control signal S4 from the low level to the high level.
- the load switch 4 is set in a conductive state, and the generated voltage Vpe is applied to the output node N1 with reference to the output node N2 (see FIG. 1).
- the switch 3A connected in parallel with the resistor R1 is also set in a conductive state, and the voltage (power generation voltage Vpe) of the power supply node Nc1 is divided by the resistors R2 and R3. Pressed.
- the value of the voltage across the resistor R3 increases. Therefore, when the value of the generated voltage Vpe reaches a threshold voltage Vtl lower than the threshold voltage Vth, the comparison circuit 32 Changes the logic level of the load switch control signal S4 from a high level to a low level.
- the load switch 4 is set in the cut-off state, and the supply of the generated voltage Vpe to the output node N1 is stopped.
- FIG. 5 is a timing chart for explaining the operation of the piezoelectric power generation module 100 of FIG.
- the operation of the piezoelectric power generation module 100 will be described with reference to FIGS.
- the horizontal axis schematically represents time
- the vertical axis schematically represents the generated voltage Vpe.
- the operation of the piezoelectric power generation module 100 shown in FIG. 5 is as follows: 1) the first pressing period in which stress is applied to the piezoelectric element 1 from time t1 to time t2, and 2) the piezoelectric element 1 from time t2 to time t3.
- the operation is divided into three periods: a period in which the pressure is released, and 3) a period in which the piezoelectric element 1 is pressed for the second time from time t3 to time t4.
- the load 5 consumes the electric charge accumulated in the piezoelectric element 1 during the time T2, executes a predetermined process (signal transmission process to the electronic device), and at the end time of the time T2, the value of the generated voltage Vpe. Decreases rapidly to near the threshold voltage Vtl.
- the load 5 in the idling state consumes electric charge for the time T3, and the value of the generated voltage Vpe reaches the threshold voltage Vtl at the end time of the time T3.
- the load switch control circuit 3 sets the logic level of the load switch control signal S4 to a low level to turn off the load switch 4 and to the load 5. Stop power supply.
- the waveform of the power generation voltage Vpe indicated by a dotted line is a comparative example, and is a waveform of the power generation voltage Vpe when the diode 2 is deleted from the piezoelectric power generation module 100.
- the piezoelectric power generation module 100 is connected in parallel with the piezoelectric element 1 while comparing the waveform of the dotted power generation voltage Vpe, which is a comparative example, with the above-described solid power generation voltage Vpe according to the first embodiment. The effect of the diode 2 will be described.
- the polarity of the electric charge generated in the piezoelectric element 1 is reversed, and the potential of the second signal line Tpe2 is the same as that of the first signal line Tpe1. It becomes higher than the potential. That is, the potential of Tpe2 is negative with respect to the reference potential.
- the stress applied to the piezoelectric element 1 at time t2 is the reverse of the stress applied to the piezoelectric element 1 during the period T1.
- the value of the first signal line Tpe1 drops from the threshold voltage Vtl by an amount equal to the threshold voltage Vth. That is, the value of the first signal line Tpe1 drops to a voltage that is negative with respect to the reference potential and has a value obtained by subtracting the value of the threshold voltage Vtl from the threshold voltage Vth.
- the load switch control circuit 3 cannot make the load switch 4 conductive. As a result, electrode supply to the load 5 is not performed, and the load 5 cannot execute a desired process even if the piezoelectric element 1 is pressed.
- the piezoelectric power generation module 100 since the piezoelectric power generation module 100 according to the first embodiment includes the diode 2 connected in parallel with the piezoelectric element 1, the charge accumulated in the piezoelectric element 1 after releasing the pressure is the first of the piezoelectric element 1. Is discharged between the signal line Tpe1 and the second signal line Tpe2. As a result, even when the piezoelectric element 1 is pressed after releasing the pressure, the piezoelectric element 1 can generate the generated voltage Vpe having a voltage value necessary for the processing operation of the load 5.
- the piezoelectric power generation module 100 includes a full-wave rectifier circuit. In addition, no charging capacitor (not shown) is required.
- the piezoelectric power generation module 100 includes a diode 2 connected in parallel with the piezoelectric element 1.
- the piezoelectric element 1 pressed to the lowest pressing point usually has a value equal to or higher than the minimum operating voltage of the load 5, depending on the balance between the amount of charge generated by the piezoelectric element 1 and the amount of charge consumed by the load 5.
- the generated voltage Vpe is output.
- the electric potential generated in the piezoelectric element 1 causes the electric potential of the first signal line Tpe1 with respect to the second signal line Tpe2 to pass through the reference electric potential, that is, zero.
- the voltage drops to a value that is negative with respect to the reference potential.
- the piezoelectric element 1 pressed after releasing the pressure outputs again the power generation voltage Vpe having a value equal to or higher than the minimum operating voltage of the load 5, and the normal operation of the load 5 is ensured.
- the load switch control circuit 3 sets the load switch 4 to a conductive state and supplies the electric charge accumulated in the piezoelectric element 1 to the load 5. Thereafter, when the value of the generated voltage Vpe falls below the threshold voltage Vtl set lower than the threshold voltage Vth due to the power consumption of the load 5 or the pressure release of the piezoelectric element 1, the load switch 4 The cut-off state is set, and the charge to the load 5, that is, the power supply is stopped.
- the load 5 can be powered by a single pressing operation on the piezoelectric element 1. Is supplied, and the response of the remote controller equipped with the piezoelectric power generation module 100 is speeded up.
- FIG. 3 is a cross-sectional view of a piezoelectric element 11 which is a modification of the piezoelectric element 1 of FIG.
- the piezoelectric element 11 has a configuration in which the piezoelectric bodies 11C are laminated so that charges having the same polarity are generated on the surfaces facing each piezoelectric body 11C when pressed.
- the piezoelectric body 11 By making the piezoelectric body 11 have a laminated structure, the amount of electric charge generated by the piezoelectric element 11 increases, and the load 5 (see FIG. 1) can be driven for a longer time.
- the piezoelectric element 1 is made of a lead zirconate titanate ceramic, but is not limited thereto.
- it may be made of a lead-free piezoelectric ceramic piezoelectric material such as potassium sodium niobate and alkali niobate ceramics.
- the support structure of the piezoelectric element 1 is supported by the two support portions 1E, but is not limited thereto.
- a configuration in which one end of the piezoelectric element 1 is held by a cantilever and stress is applied to the other end which is a free end may be employed.
- the piezoelectric element 1 may have a rod-like shape, one end of which is held by a cantilever, and stress is applied to the other end. That is, the support form of the piezoelectric element 1 may be any structure that can be deformed by pressing.
- FIG. 6 is a circuit diagram of the piezoelectric power generation module 200 according to the second embodiment.
- the piezoelectric power generation module 200 shown in FIG. 6 corresponds to a configuration in which the load switch control circuit 3 is replaced with the load switch control circuit 31 in the piezoelectric power generation module 100 of FIG.
- FIG. 7 is a circuit diagram of the load switch control circuit 31 of FIG.
- the load switch control circuit 31 in FIG. 7 corresponds to a configuration in which the resistor R1 is replaced with the temperature compensation element R1S in the load switch control circuit 3 in FIG.
- the piezoelectric element 1 As the piezoelectric body 1C, for example, the piezoelectric element 1 (see FIG. 2) using PZT (lead zirconate titanate) is normally adjusted in the vicinity of phase transfer in order to increase the power generation energy.
- the capacity of the element 1 and the value of the generated voltage have large temperature characteristics.
- the dielectric constant of the piezoelectric body 1C has a positive temperature coefficient
- the capacitance value of the piezoelectric element 1 increases and the value of the power generation voltage Vpe of the piezoelectric element 1 decreases as the ambient temperature increases.
- the value of the power generation voltage Vpe of the piezoelectric element 1 does not reach the threshold voltage Vth on the high temperature side of the ambient temperature (temperature range higher than 25 ° C. of normal temperature), and the load switch 4 is maintained in the cut-off state. There arises a problem that the voltage Vpe is not supplied to the load 5.
- a thermistor is applied as the temperature compensation element R1S as an element having a temperature characteristic with a negative resistance value.
- the resistance value of the temperature compensation element R1S decreases, and the potential at the connection point between the resistors R2 and R3 increases.
- the comparison circuit 32 inverts the logic level of the load switch control signal S4, and the generated voltage Vpe is supplied to the load 5.
- a negative temperature coefficient is given to the value of the threshold voltage Vth set in the load switch control circuit 31 by the temperature compensation element R1S having a negative temperature characteristic of the resistance value.
- the temperature compensation element R1S is applied with a resistance value having a positive temperature coefficient, or R3 has a negative temperature coefficient.
- a thermistor may be used.
- the comparison voltage generated by the comparison voltage generation circuit 33 may be configured to have temperature dependency.
- the threshold voltage Vth with respect to temperature changes.
- the capacitance value of the piezoelectric element 1 changes with temperature
- the generated voltage Vpe can be reliably supplied to the load 5 regardless of the ambient temperature.
- the resistor R1 in FIG. 4 is replaced with the temperature compensation element R1S.
- the present invention is not limited to this. Even if the resistor R2 or the resistor R3 in FIG. 4 is replaced with a temperature compensation element, the same effect can be obtained.
- FIG. 8 is a circuit diagram of the piezoelectric power generation module 300 according to the third embodiment.
- the piezoelectric power generation module 300 shown in FIG. 8 corresponds to the configuration in which the storage capacitor 6 is connected between the first signal wiring Tpe1 and the second signal wiring Tpe2 in the piezoelectric power generation module 100 shown in FIG.
- the storage capacitor 6 corresponds to the capacitive element of the present application.
- the capacitance value of the piezoelectric element 1 and the value of the generated voltage Vpe may vary depending on the ambient temperature. For example, when the value of the generated voltage Vpe increases from the normal temperature due to the decrease in the capacitance value of the piezoelectric element 1 on the low temperature side (temperature range lower than 25 ° C. of normal temperature), the overvoltage is applied to the load 5. Is concerned. By connecting the storage capacitor 6 in parallel with the piezoelectric element 1, the charge generated by the piezoelectric element 1 is distributed to the piezoelectric element 1 and the storage capacitor 6, and an increase in the generated voltage Vpe is suppressed.
- the piezoelectric power generation module 300 has a configuration in which the load switch control circuit 3 without the temperature compensation of the threshold voltage Vth and the storage capacitor 6 are combined, but the load with the temperature compensation of the threshold voltage Vth of the piezoelectric power generation module 200 shown in FIG.
- the switch control circuit 31 and the storage capacitor 6 may be combined. In that case, the problem concerned about the high temperature side of ambient temperature and the problem of the overvoltage application concerned about the low temperature side mentioned above will be solved.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
好ましくは、前記スイッチ制御回路は、第2のスイッチをさらに有し、前記第2のスイッチは、前記温度補償素子に対して並列に接続されており、前記第2のスイッチは、前記第1のスイッチの状態に同期して開閉を切り替える。
本発明に基づくリモートコントローラは、圧電発電モジュールと、RF回路とを備え、前記圧電素子の第1の端子における電圧が前記第1閾値電圧を超えてから前記第2閾値電圧になるまでの間に、前記RF回路が通信処理を実行する。
図1は、実施の形態1に係る圧電発電モジュール100の回路図である。
図2(b)に、荷重が加えられている状態の圧電素子1の断面図を模式的に示す。圧電素子1の中央部を押圧する(応力を加える)ことで、機械的エネルギーが電気的エネルギーに変換される。図2(b)は、圧電素子1の圧電体1Cが押圧による変形で分極し、第1の信号線Tpe1と接続された電極1Aに正電荷が帯電し、第2の信号線Tpe2と接続された電極1Bに負電荷が帯電する様子が示される。
図4のロードスイッチ制御回路3は、前述の通り、電源ノードNc1および電源ノードNc2間に印加される発電電圧Vpeの増減に応じて、出力するロードスイッチ制御信号S4の論理レベルを変化させる。ロードスイッチ制御信号S4の論理レベルがハイレベル、およびロウレベルに設定された場合、ロードスイッチ4は、それぞれ、導通状態(オン状態)および遮断状態(オフ状態)に設定される。ロードスイッチ4が導通状態に設定されると、出力ノードN1および出力ノードN2間に発生した発電電圧Vpeは、負荷5に供給される。負荷5が電流を消費するにつれ、圧電素子1が蓄積する電荷量は次第に減少し、発電電圧Vpeの値を低下させる。なお、圧電素子が変位していない状態の電源ノードNc2の電位が、本願の基準電位に相当する。
図5および図1を参照して、圧電発電モジュール100の動作を説明する。図5において、横軸は時刻を、縦軸は発電電圧Vpeを、模式的に示す。図5に示される圧電発電モジュール100の動作は、1)時刻t1~時刻t2に亘り、圧電素子1に応力を加える1回目の押圧の期間、2)時刻t2~時刻t3に亘り、圧電素子1への押圧を開放する期間、および3)時刻t3~時刻t4の圧電素子1への2回目の押圧の期間、の3つの期間における動作に分けられる。
時刻t1に圧電素子1への押圧を開始すると、圧電素子1に発生する歪の増加に伴い、発電電圧Vpeは増加する。時刻t1から時間T1経過後に、発電電圧Vpeの値が閾値電圧Vthに達すると、ロードスイッチ制御回路3は、ロードスイッチ制御信号S4の論理レベルをロウレベルからハイレベルに変化させる。このロードスイッチ制御信号S4の変化に応答して、ロードスイッチ4は、導通状態となり、圧電発電モジュール100は、負荷5へ、発電電圧Vpeの供給を開始する。
時間T5の開始時刻t2に、圧電素子1への押圧が開放されると、圧電素子1に発生する電荷の極性が反転し、第2の信号線Tpe2の電位は、第1の信号線Tpe1の電位より高くなる。すなわち、Tpe2の電位は、基準電位に対して負となる。このため、ダイオード2のアノードからカソードに電流が流れることにより電圧がクランプされ、圧電素子1に蓄積された電荷は放電される。その結果、発電電圧Vpeの値は、閾値電圧Vtlから零まで急激に低下する。押圧開放の時間が終了する時間T6の終了時刻まで、発電電圧Vpeの値は、零に維持される。
時間T7の開始時刻t3に、圧電素子1に対する2回目の押圧が開始される。圧電素子1は、1回目の押圧期間と同様に、発電電圧Vpeの値を、零から閾値電圧Vthまで上昇させる。時間T7以降も、1回目の押圧期間の場合と同様に、圧電発電モジュール100は、時間T2~時間T6における動作を繰り返す。
図5において、点線の発電電圧Vpeの波形は比較例であり、圧電発電モジュール100からダイオード2を削除した場合の発電電圧Vpeの波形である。以下に、比較例である点線の発電電圧Vpeと、実施の形態1に係る上述の実線の発電電圧Vpeの波形を対比しつつ、圧電発電モジュール100が備える、圧電素子1と並列に接続されるダイオード2の効果を説明する。
(全波整流回路に起因するエネルギー損失の削減)
圧電発電モジュール100において、押圧された圧電素子1が生成する直流電力は負荷5に供給されるが、押圧開放された圧電素子1が生成する直流電力は、負荷5には供給されない。従って、押圧および押圧開放された圧電素子が生成する交流電力を、全波整流回路で直流電力に変換して負荷に供給する従来の信号発生装置と異なり、圧電発電モジュール100は、全波整流回路および充電用キャパシタ(いずれも図示せず)を必要としない。
P1=Qs2/2(Cc+Cs) …… 式1
P2=Qs2/2Cs …… 式2
P1<P2、であるから、充電用キャパシタを設けず、圧電素子1で負荷5を直接駆動する圧電発電モジュール100は、整流回路および充電用キャパシタを備える一般的な構成に対し、より大きな充電エネルギーを負荷5へ供給することが可能となる。
圧電発電モジュール100は、圧電素子1と並列接続されたダイオード2を備える。押圧最下点まで押圧された圧電素子1は、圧電素子1が生成する電荷量と負荷5の消費電荷量とのバランスにもよるが、通常は、負荷5の最低動作電圧以上の値を有する発電電圧Vpeを出力する。負荷5の処理動作後、押圧が開放されると、圧電素子1に生成される電荷により、第2の信号線Tpe2に対する第1の信号線Tpe1の電位は、基準電位、すなわち零を経由して、基準電位に対して負となる値まで低下する。
ロードスイッチ制御回路3は、圧電素子1の発電電圧Vpeの値が閾値電圧Vthを超えると、ロードスイッチ4を導通状態に設定し、圧電素子1が蓄積する電荷を負荷5へ供給する。その後、負荷5の電力消費、または圧電素子1の押圧開放に起因して、発電電圧Vpeの値が、閾値電圧Vthの値より低く設定される閾値電圧Vtlの値を下回ると、ロードスイッチ4は遮断状態に設定され、負荷5への電荷、即ち、電力供給は停止される。
図3は、図2の圧電素子1の変形例である圧電素子11の断面図である。
図6は、実施の形態2に係る圧電発電モジュール200の回路図である。
図7のロードスイッチ制御回路31は、図4のロードスイッチ制御回路3において、抵抗R1を、温度補償素子R1Sに置き換えた構成に対応する。
図8は、実施の形態3に係る圧電発電モジュール300の回路図である。
Claims (7)
- 第1の端子および第2の端子を有する圧電素子と、
前記圧電素子の前記第1の端子と接続されているカソードと、前記圧電素子の前記第2の端子と接続されているアノードとを有するダイオードと、
前記カソードと接続されている第1の入力端子と、前記アノードと接続されている第2の入力端子と、スイッチ制御信号を出力する出力端子とを有するスイッチ制御回路と、
前記スイッチ制御回路の前記第1の入力端子に接続され、前記スイッチ制御信号に応答して導通状態と遮断状態とを切り替える第1のスイッチと、
を備える、圧電発電モジュール。 - 前記圧電素子は発電素子であり、前記圧電素子の両端電圧が基準電位よりも大きい第1閾値電圧を超えることにより、前記第1のスイッチが導通状態となり、
前記圧電素子の両端電圧が前記第1閾値電圧より低い第2閾値電圧となることにより、前記第1のスイッチが遮断状態となる、請求項1に記載の圧電発電モジュール。 - 前記圧電素子は、荷重を加えられることにより前記圧電素子の第1の端子に電圧を発生させ、前記圧電素子に加えられている荷重が開放されると、前記圧電素子の両端電圧が基準電位となる、請求項1または請求項2に記載の圧電発電モジュール。
- 前記スイッチ制御回路は、比較回路と、温度補償素子とを有し、
前記温度補償素子は、前記スイッチ制御回路の前記第1の入力端子と前記第2の入力端子に対して並列に接続されている、請求項1ないし請求項3のいずれか1項に記載の圧電発電モジュール。 - 前記スイッチ制御回路は、第2のスイッチをさらに有し、
前記第2のスイッチは、前記温度補償素子に対して並列に接続されており、
前記第2のスイッチは、前記第1のスイッチの状態に同期して開閉を切り替える、請求項4に記載の圧電発電モジュール。 - 前記スイッチ制御回路の前記第1の入力端子と前記第2の入力端子に対して並列に接続されている容量素子をさらに備える、請求項1ないし請求項5のいずれか1項に記載の圧電発電モジュール。
- 請求項1ないし請求項6のいずれか1項に記載の圧電発電モジュールと、RF回路とを備え、
前記圧電素子の第1の端子における電圧が前記第1閾値電圧を超えてから前記第2閾値電圧になるまでの間に、前記RF回路が通信処理を実行する、リモートコントローラ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480071275.2A CN105849925B (zh) | 2014-01-22 | 2014-10-17 | 压电发电模块以及遥控器 |
JP2015558733A JP6098736B2 (ja) | 2014-01-22 | 2014-10-17 | 圧電発電モジュール、およびリモートコントローラ |
EP14879607.1A EP3098866B1 (en) | 2014-01-22 | 2014-10-17 | Piezoelectric power generation module and remote controller |
US15/198,382 US9882511B2 (en) | 2014-01-22 | 2016-06-30 | Piezoelectric power generation module and remote controller |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014009596 | 2014-01-22 | ||
JP2014-009596 | 2014-01-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/198,382 Continuation US9882511B2 (en) | 2014-01-22 | 2016-06-30 | Piezoelectric power generation module and remote controller |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015111258A1 true WO2015111258A1 (ja) | 2015-07-30 |
Family
ID=53681081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077669 WO2015111258A1 (ja) | 2014-01-22 | 2014-10-17 | 圧電発電モジュール、およびリモートコントローラ |
Country Status (5)
Country | Link |
---|---|
US (1) | US9882511B2 (ja) |
EP (1) | EP3098866B1 (ja) |
JP (1) | JP6098736B2 (ja) |
CN (1) | CN105849925B (ja) |
WO (1) | WO2015111258A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017030708A (ja) * | 2015-08-06 | 2017-02-09 | 株式会社デンソー | 車両用衝突検知装置 |
WO2017104342A1 (ja) * | 2015-12-15 | 2017-06-22 | 株式会社村田製作所 | 発電装置およびそれを備えた送信機 |
CN107818683A (zh) * | 2017-11-28 | 2018-03-20 | 广东工业大学 | 一种无线控制开关装置及系统 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6089947B2 (ja) * | 2013-05-13 | 2017-03-08 | 住友電気工業株式会社 | 無線装置および無線制御システム |
JP6027246B2 (ja) * | 2013-08-13 | 2016-11-16 | 国立大学法人東北大学 | 発電装置 |
WO2015111259A1 (ja) * | 2014-01-22 | 2015-07-30 | 株式会社村田製作所 | 圧電発電モジュール、およびリモートコントローラ |
JP6406538B2 (ja) * | 2014-06-17 | 2018-10-17 | Toto株式会社 | トイレ装置用のリモコン装置 |
JP2019034430A (ja) * | 2017-08-10 | 2019-03-07 | 東芝テック株式会社 | プリンタ装置及びプログラム |
CN111164774B (zh) * | 2017-10-02 | 2024-02-09 | 阿尔卑斯阿尔派株式会社 | 输入装置 |
KR102097222B1 (ko) * | 2018-12-27 | 2020-04-06 | 주식회사 두산 | 수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법 |
TWD224316S (zh) | 2021-09-24 | 2023-03-21 | 律盟風險管理顧問股份有限公司 | 電腦程式產品之圖形化使用者介面 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07245970A (ja) * | 1994-03-02 | 1995-09-19 | Calsonic Corp | 圧電素子発電装置 |
JP2003007491A (ja) * | 2001-06-26 | 2003-01-10 | Nec Tokin Ceramics Corp | 発光体点灯装置 |
JP2004103265A (ja) * | 2002-09-05 | 2004-04-02 | Nec Tokin Corp | 発光ユニットおよびそれを用いた発光靴 |
JP2004201376A (ja) | 2002-12-17 | 2004-07-15 | Taiheiyo Cement Corp | 信号発信装置 |
JP2011103729A (ja) | 2009-11-11 | 2011-05-26 | Renesas Electronics Corp | 発電機能付き手動操作機器、発電機能付き遠隔操作装置 |
JP2012254005A (ja) * | 2011-05-06 | 2012-12-20 | Seiko Epson Corp | 発電装置、電子機器、移動手段及び電池 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3274047B2 (ja) * | 1995-10-05 | 2002-04-15 | 株式会社豊田中央研究所 | 圧電アクチュエータの駆動装置および駆動方法 |
JP3539138B2 (ja) * | 1997-06-24 | 2004-07-07 | ミノルタ株式会社 | 電気機械変換素子を使用した駆動装置の駆動回路 |
US6259372B1 (en) * | 1999-01-22 | 2001-07-10 | Eaton Corporation | Self-powered wireless transducer |
FR2802731B1 (fr) * | 1999-12-16 | 2002-01-25 | Schneider Electric Ind Sa | Dispositif autonome de commande a distance, appareil et installation electrique comportant un tel dispositif |
US6630894B1 (en) * | 2000-07-14 | 2003-10-07 | Face International Corp. | Self-powered switching device |
CN1555566A (zh) | 2001-09-12 | 2004-12-15 | ��ʽ����U��S��C�� | 电源装置 |
US7132939B2 (en) * | 2004-07-07 | 2006-11-07 | Michelin Recherche Et Technique S.A. | Integrated self-powered tire revolution counter |
FR2896635A1 (fr) * | 2006-01-23 | 2007-07-27 | Commissariat Energie Atomique | Procede et dispositif de conversion d'energie mecanique en energie electrique |
US7781943B1 (en) * | 2007-01-24 | 2010-08-24 | Micro Strain, Inc. | Capacitive discharge energy harvesting converter |
US20080252174A1 (en) * | 2007-04-10 | 2008-10-16 | Advanced Cerametrics, Inc. | Energy harvesting from multiple piezoelectric sources |
US8653718B2 (en) * | 2011-05-06 | 2014-02-18 | Seiko Epson Corporation | Power generation unit, electronic apparatus, transportation unit, battery, method of controlling power generation unit |
JP5807743B2 (ja) | 2011-10-03 | 2015-11-10 | セイコーエプソン株式会社 | 発電装置、電子機器、移動手段及び発電装置の制御方法 |
JP2013038941A (ja) * | 2011-08-09 | 2013-02-21 | Nippon Dengyo Kosaku Co Ltd | 充電電圧制御回路、および電源回路 |
JP5879887B2 (ja) * | 2011-10-03 | 2016-03-08 | セイコーエプソン株式会社 | 発電装置 |
-
2014
- 2014-10-17 WO PCT/JP2014/077669 patent/WO2015111258A1/ja active Application Filing
- 2014-10-17 JP JP2015558733A patent/JP6098736B2/ja active Active
- 2014-10-17 CN CN201480071275.2A patent/CN105849925B/zh active Active
- 2014-10-17 EP EP14879607.1A patent/EP3098866B1/en active Active
-
2016
- 2016-06-30 US US15/198,382 patent/US9882511B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07245970A (ja) * | 1994-03-02 | 1995-09-19 | Calsonic Corp | 圧電素子発電装置 |
JP2003007491A (ja) * | 2001-06-26 | 2003-01-10 | Nec Tokin Ceramics Corp | 発光体点灯装置 |
JP2004103265A (ja) * | 2002-09-05 | 2004-04-02 | Nec Tokin Corp | 発光ユニットおよびそれを用いた発光靴 |
JP2004201376A (ja) | 2002-12-17 | 2004-07-15 | Taiheiyo Cement Corp | 信号発信装置 |
JP2011103729A (ja) | 2009-11-11 | 2011-05-26 | Renesas Electronics Corp | 発電機能付き手動操作機器、発電機能付き遠隔操作装置 |
JP2012254005A (ja) * | 2011-05-06 | 2012-12-20 | Seiko Epson Corp | 発電装置、電子機器、移動手段及び電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3098866A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017030708A (ja) * | 2015-08-06 | 2017-02-09 | 株式会社デンソー | 車両用衝突検知装置 |
WO2017104342A1 (ja) * | 2015-12-15 | 2017-06-22 | 株式会社村田製作所 | 発電装置およびそれを備えた送信機 |
JPWO2017104342A1 (ja) * | 2015-12-15 | 2018-05-24 | 株式会社村田製作所 | 発電装置およびそれを備えた送信機 |
CN107818683A (zh) * | 2017-11-28 | 2018-03-20 | 广东工业大学 | 一种无线控制开关装置及系统 |
CN107818683B (zh) * | 2017-11-28 | 2024-03-26 | 广东工业大学 | 一种无线控制开关装置及系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3098866A4 (en) | 2017-11-29 |
EP3098866B1 (en) | 2020-02-12 |
US20160308469A1 (en) | 2016-10-20 |
CN105849925A (zh) | 2016-08-10 |
JPWO2015111258A1 (ja) | 2017-03-23 |
US9882511B2 (en) | 2018-01-30 |
EP3098866A1 (en) | 2016-11-30 |
CN105849925B (zh) | 2018-12-25 |
JP6098736B2 (ja) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6098736B2 (ja) | 圧電発電モジュール、およびリモートコントローラ | |
WO2015029317A1 (ja) | 環境発電装置 | |
US10014801B2 (en) | Piezoelectric power generation module and remote controller | |
JP5879887B2 (ja) | 発電装置 | |
JP2011152023A (ja) | スイッチングレギュレータ | |
WO2020031600A1 (ja) | 誘電エラストマー発電システム | |
WO2018074144A1 (ja) | 電源回路 | |
JP2011250196A (ja) | タイマー回路 | |
JP6481773B2 (ja) | 発電装置およびそれを備えた送信機 | |
JP6540803B2 (ja) | 発電装置およびそれを備えた電気機器 | |
WO2018163854A1 (ja) | 誘電エラストマー発電システム | |
JP2010136577A (ja) | 起動回路および電源装置 | |
JP7297972B1 (ja) | 電源装置 | |
JP2022142013A (ja) | 昇圧回路を有する電子機器。 | |
WO2023157672A1 (ja) | 発電装置 | |
Kinzel et al. | A novel current-mode actuator driver for enhanced piezoelectric reliability | |
JP6965588B2 (ja) | 電子装置 | |
KR20170115806A (ko) | 대용량 커패시터를 포함하는 전원 장치 | |
JP6720557B2 (ja) | スイッチ装置及び電力供給システム | |
JP5367621B2 (ja) | 蓄電回路 | |
JP2013121289A (ja) | 充電回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14879607 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015558733 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014879607 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014879607 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |