WO2015108190A1 - 反射型液晶光学素子 - Google Patents

反射型液晶光学素子 Download PDF

Info

Publication number
WO2015108190A1
WO2015108190A1 PCT/JP2015/051267 JP2015051267W WO2015108190A1 WO 2015108190 A1 WO2015108190 A1 WO 2015108190A1 JP 2015051267 W JP2015051267 W JP 2015051267W WO 2015108190 A1 WO2015108190 A1 WO 2015108190A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflective
liquid crystal
lcos
optical element
Prior art date
Application number
PCT/JP2015/051267
Other languages
English (en)
French (fr)
Inventor
木村 健一郎
綾乃 田辺
Original Assignee
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンホールディングス株式会社 filed Critical シチズンホールディングス株式会社
Publication of WO2015108190A1 publication Critical patent/WO2015108190A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon

Definitions

  • the present invention relates to a reflective liquid crystal optical element that modulates light.
  • LCOS liquid crystal on silicon
  • An object of the present invention is to provide a reflection type liquid crystal optical element capable of reducing light loss in order to solve the above-mentioned problems of the prior art.
  • a liquid crystal layer is sandwiched between a transparent substrate and a silicon substrate provided with a plurality of pixel electrodes on one side of a reflective liquid crystal optical element according to the present invention.
  • a reflective member having a reflective member that reflects the light transmitted through the transparent substrate and the liquid crystal layer by the plurality of pixel electrodes and emits the light from the transparent substrate and reflects the light transmitted through the gaps between the plurality of pixel electrodes
  • a liquid crystal optical element wherein a distance between the plurality of pixel electrodes is set, a length of a gap between the plurality of pixel electrodes is a, a thickness of the plurality of pixel electrodes is d1, and a refractive index of the liquid crystal layer is A predetermined equation is satisfied, where n1, a distance from the pixel electrode to the reflecting member is d2, a refractive index of the silicon substrate from the pixel electrode to the reflecting member is n2, and a wavelength of the light is ⁇ .
  • the diffraction efficiency of the emitted light can be, for example, 80% or more.
  • FIG. 1A is a view showing an example of a cross section of a part of the reflective liquid crystal optical element according to the embodiment.
  • FIG. 1B is a view showing an example of light in the reflective liquid crystal optical element shown in FIG. 1A.
  • FIG. 2 is a view showing an example of diffracted light in the reflective LCOS in the YZ plane.
  • FIG. 3 is a view showing an example of diffracted light in the reflective LCOS in the XY plane.
  • FIG. 4 is a diagram showing an example of each parameter in the reflective LCOS.
  • FIG. 5 is a diagram showing an example of the relationship between the thickness of the reflective electrode and the zero-order light efficiency.
  • FIG. 6 is a diagram showing an example of the relationship between the thickness of the silicon layer and the zero-order light efficiency.
  • FIG. 7 is a diagram showing an example of the relationship between the wavelength of light and the zero-order light efficiency.
  • FIG. 8 is a diagram showing a configuration example of a spatial modulation device to which
  • FIG. 1A is a view showing an example of a cross section of a part of the reflective liquid crystal optical element according to the embodiment.
  • the reflective LCOS 100 shown in FIG. 1A is an example of a reflective liquid crystal optical element according to the embodiment.
  • the reflective LCOS 100 includes a transparent electrode substrate 110, a liquid crystal layer 120, reflective electrodes 131 to 133, a silicon oxide film layer 140, light shielding layers 151 to 154 which are reflective members, a silicon oxide film layer 160, and a transistor 171.
  • a silicon layer 180 contact holes 191 to 193, and vias 194 to 196.
  • the silicon oxide film layers 140 and 160 and the silicon layer 180 constitute a silicon substrate.
  • the liquid crystal layer 120 is sandwiched between a silicon oxide film layer 140 (silicon substrate) provided with reflective electrodes 131 to 133 (a plurality of pixel electrodes) and a transparent electrode substrate 110 (transparent substrate). It is a reflective liquid crystal optical element in which light transmitted through the electrode substrate 110 and the liquid crystal layer 120 is reflected by the reflective electrodes 131 to 133 and emitted from the transparent electrode substrate 110.
  • the reflective LCOS 100 can be applied to various optical devices such as an optical pickup device used for an optical disc and the like, a projector, and the like.
  • the transparent electrode substrate 110 can be formed, for example, by overlapping a glass substrate and a transparent electrode.
  • the transparent electrode can be formed of, for example, ITO (indium tin oxide).
  • the transparent electrode substrate 110 can be formed, for example, by coating ITO on a glass substrate. For example, a voltage is applied to the transparent electrode substrate 110 from the control substrate of the reflective LCOS 100.
  • the liquid crystal layer 120 is a liquid crystal layer provided between the transparent electrode substrate 110 and the reflective electrodes 131 to 133. Accordingly, in the liquid crystal layer 120, the liquid crystal alignment changes in accordance with the voltage applied between the transparent electrode substrate 110 and the reflective electrodes 131 to 133.
  • nematic liquid crystal can be used for the liquid crystal layer 120.
  • the reflective electrodes 131 to 133 are reflective pixel electrodes that reflect light.
  • the reflective electrodes 131 to 133 are arranged on the silicon oxide film layer 140, for example, at equal intervals and with a gap.
  • the reflective electrodes 131 to 133 can be formed of, for example, aluminum.
  • each reflective electrode of the reflective LCOS 100 is two-dimensionally (that is, in a matrix) with respect to the silicon oxide film layer 140. Be placed.
  • the silicon oxide film layer 140 is a layer of SiO 2 (silicon dioxide) provided between the reflective electrodes 131 to 133 and the light shielding layers 151 to 154.
  • the silicon oxide film layer 140 is provided with vias 194 to 196 which penetrate the silicon oxide film layer 140 and connect the reflective electrodes 131 to 133 and the contact holes 191 to 193.
  • the light shielding layers 151 to 154 are light shielding layers that shield light from the silicon oxide film layer 140 to the silicon oxide film layer 160.
  • the light shielding layers 151 to 154 are reflecting members for reflecting the light transmitted through the gap between the reflective electrodes 131 to 133 among the light transmitted through the liquid crystal layer 120.
  • the light shielding layers 151 to 154 can be formed of, for example, aluminum.
  • FIG. 1A only a part of the reflective LCOS 100 is illustrated in FIG. 1A, only the light shielding layers 151 to 154 are illustrated as the light shielding layer, but the reflective LCOS 100 may have more light shielding layers. .
  • each light shielding layer of the reflective LCOS 100 is arranged in the two-dimensional direction with respect to the silicon oxide film layer 140.
  • the silicon oxide film layer 160 is a layer of SiO 2 (silicon dioxide) provided between the light shielding layers 151 to 154 and the silicon layer 180.
  • the silicon oxide film layer 160 is provided with contact holes 191 to 193 penetrating the silicon oxide film layer 160 and connecting the vias 194 to 196 and the transistors 171 to 173.
  • the silicon layer 180 is provided with transistors 171 to 173.
  • the transistors 171 to 173 apply voltages to the reflective electrodes 131 to 133 through the contact holes 191 to 193 and the vias 194 to 196, respectively. Since only a part of the reflective LCOS 100 is illustrated in FIG. 1A, only the transistors 171 to 173 are illustrated as transistors. However, the reflective LCOS 100 includes a transistor corresponding to a reflective electrode. 1A only shows the transistors 171 to 173 arranged in the one-dimensional direction, but each transistor of the reflective LCOS 100 is arranged in the two-dimensional direction with respect to the silicon oxide film layer 140 corresponding to each reflection electrode. Be done.
  • FIG. 1B is a view showing an example of light in the reflective liquid crystal optical element shown in FIG. 1A.
  • FIG. 1B parts that are the same as the parts shown in FIG. 1A are given the same reference numerals and descriptions thereof will be omitted.
  • light is perpendicularly incident on the reflective LCOS 100 from the transparent electrode substrate 110.
  • the light incident on the reflective LCOS 100 is, for example, laser light of a single wavelength oscillated by a laser light source (see, for example, FIG. 8).
  • the lights 101 to 103 shown in FIG. 1B are lights which are incident on the reflective LCOS 100 and are transmitted through the liquid crystal layer 120 and are incident on the reflection electrodes 131 to 133, respectively.
  • the lights 101 to 103 are reflected by the reflection electrodes 131 to 133 respectively, transmitted through the liquid crystal layer 120, and emitted from the transparent electrode substrate 110. Further, the liquid crystal alignment of each portion of the liquid crystal layer 120 through which the light beams 101 to 103 are transmitted is changed by each voltage applied to the reflective electrodes 131 to 133 by the transistors 171 to 173.
  • the light 101 to 103 is modulated according to each voltage applied to the reflective electrodes 131 to 133 by the transistors 171 to 173, and the modulated light 101 to 103 is emitted from the transparent electrode substrate 110 as zeroth-order light .
  • the light beams 104 and 105 pass through the gap between the reflective electrodes 131 to 133 of the light incident from the transparent electrode substrate 110 and transmitted through the liquid crystal layer 120 and reflected by the light shielding layers 152 and 153. Each light is emitted from the transparent electrode substrate 110 again through the gap. Interference of the lights 104 and 105 with the lights 101 to 103 generates interference fringes, and primary light, secondary light,... Emitted from the transparent electrode substrate 110 in a direction different from zero-order light.
  • primary light, secondary light,... are generated under the influence of the light 104, 105 reflected between the pixels of the reflective electrodes 131 to 133.
  • the light incident on the reflective LCOS 100 is a laser light, the coherency becomes high, so that primary light, secondary light,.
  • FIGS. 1A and 1B The scale of each part in FIGS. 1A and 1B is illustrated differently from the actual dimensions.
  • FIG. 2 is a view showing an example of diffracted light in the reflective LCOS in the YZ plane.
  • FIG. 3 is a view showing an example of diffracted light in the reflective LCOS in the XY plane.
  • the same parts as those shown in FIGS. 1A and 1B are designated by the same reference numerals and the description thereof will be omitted.
  • the direction X and the direction Y indicate the horizontal direction and the vertical direction on the reflective surface of the reflective LCOS 100.
  • the direction Z indicates the incident direction of the lights 101 to 103 on the reflective LCOS 100.
  • the diffracted light of the light 102 is demonstrated as an example, the same may be said of the diffracted light of the lights 101 and 103.
  • the ⁇ my to ⁇ 1y-order light and the 1y to my-order light shown in FIGS. 2 and 3 are diffracted lights generated in the direction Y in the reflective LCOS 100.
  • the diffracted light of the reflective LCOS 100 is generated in the plus direction and the minus direction, respectively.
  • the ⁇ mx to ⁇ 1x order light and the 1x to mx order light shown in FIG. 3 are diffracted lights generated in the direction X in the reflective LCOS 100.
  • the diffracted light of the reflective LCOS 100 is generated in the plus direction and the minus direction, respectively.
  • each diffracted light of the reflective LCOS 100 is two-dimensionally generated.
  • FIG. 4 is a diagram showing an example of each parameter in the reflective LCOS.
  • the same parts as those shown in FIG. 1A will be assigned the same reference numerals and descriptions thereof will be omitted.
  • a shown in FIG. 4 is a pattern gap of the reflective electrodes 131 to 133. That is, a is the length of each gap of the reflective electrodes 131 to 133.
  • a ridge is a pattern pitch (arrangement distance) of the reflective electrodes 131 to 133. That is, ⁇ is the sum of the width per reflecting electrode 131 to 133 and a (pattern gap).
  • D1 is the depth of the pattern gap of the reflective LCOS 100. That is, d1 is the thickness (the length in the light traveling direction) of each of the reflective electrodes 131 to 133. d2 is the thickness of the silicon oxide film layer 140 constituting the silicon substrate. In other words, d2 is the length in the traveling direction of the light passing through the gap between the reflective electrodes 131 to 133 and being reflected by the light shielding layers 152 and 153, and the reflecting member (light shielding layer) 151 to 154).
  • n1 is the refractive index of the liquid crystal layer 120. Reference symbol n 2 denotes the refractive index of the silicon substrate from the reflective electrode to the reflective member (light shielding layers 151 to 154) located below the reflective electrode, which is the refractive index of the silicon oxide film layer 140 here.
  • M-order diffraction efficiency eta M1d in one dimensional direction (e.g., see FIG. 2) of the reflection type LCOS100 since it can be considered similar to the m-th order diffraction efficiency in the one-dimensional diffraction grating, be represented by, for example, the following equation (1) it can.
  • j is an imaginary unit.
  • ⁇ (x) in the above equation (1) represents a phase shift function, and can be represented by the following equation (2), for example.
  • is the wavelength of incident light (lights 101 to 105).
  • m is a diffraction order and is an integer of 1 or more.
  • the diffraction efficiency ⁇ 02D of zero-order light in the two-dimensional direction can be represented by the following equation (4), for example, using ⁇ 01D shown in the equation (3).
  • m-order (m is an integer of 1 or more) diffraction efficiency m m1D in the one-dimensional direction can be expressed by the following equation (5) obtained by expanding the equation (1), for example.
  • the condition that the diffraction efficiency ⁇ 02D of zero-order light is 80% (0.8) or more in the reflective LCOS 100 can be represented by, for example, the following equation (6) .
  • the ratio of the reflective electrodes 131 to 133 in the surface on which the reflective electrodes 131 to 133 are provided is referred to as the aperture ratio.
  • the aperture ratio can be indicated, for example, by (( ⁇ a) / ⁇ ) 2 .
  • the aperture ratio of the reflective LCOS 100 is 80% (0.8) or more as in the following (7) equation
  • the condition that the diffraction efficiency ⁇ 02D of zero-order light is 80% or more is, for example, the following (8) It can be shown by the formula.
  • This is a parameter that may be used, for example, when applying the reflective LCOS 100 to an optical pickup device or the like.
  • n 8
  • n2 1.48
  • the diffraction efficiency of zero-order light in the reflective LCOS 100 is 80% It can be more than.
  • the thickness d1 of the reflective electrodes 131 to 133 0.28 ⁇ m, the diffraction efficiency of zero-order light can be optimized.
  • the vertical axis indicates the ratio of zero-order light (zero-order light efficiency) in the light emitted from the reflective LCOS 100.
  • FIG. 5 is a diagram showing an example of the relationship between the thickness of the reflective electrode and the zero-order light efficiency.
  • the zero-order light efficiency of the reflective LCOS 100 periodically changes with respect to the thickness d1 of the reflective electrodes 131 to 133.
  • the thickness d1 that can be adopted from the thickness d1 range (for example, the range 511) in which the 0th-order light efficiency is 80% in the relationship 500, the 0th-order light efficiency of the reflective LCOS 100 is 80% It can be done.
  • FIG. 6 is a diagram showing an example of the relationship between the thickness of the silicon layer and the zero-order light efficiency.
  • the relationship 600 shown in FIG. 6 shows the relationship between the thickness d2 [ ⁇ m] of the silicon oxide film layer 140 and the ratio of zero-order light (zero-order light efficiency) in the light emitted from the reflective LCOS 100.
  • the zero-order light efficiency of the reflective LCOS 100 periodically changes with respect to the thickness d2 of the silicon oxide film layer 140.
  • the thickness d2 that can be adopted from the thickness d2 range (for example, the ranges 611 to 613) in which the 0th order light efficiency is 80% in the relation 600, the 0th order light efficiency of the reflective LCOS 100 can be obtained. It can be 80%.
  • FIG. 7 is a diagram showing an example of the relationship between the wavelength of light and the zero-order light efficiency.
  • the relationship 700 shown in FIG. 7 shows the relationship between the wavelength ⁇ [ ⁇ m] of light and the proportion of zero-order light (zero-order light efficiency) in the light emitted from the reflective LCOS 100.
  • the zeroth-order light efficiency of the reflective LCOS 100 periodically changes with respect to the wavelength ⁇ of light. For example, by selecting the adoptable wavelength ⁇ from the range of wavelengths ⁇ (for example, the ranges 711 and 712) in which the 0th-order light efficiency is 80% in the relationship 700, the 0th-order light efficiency of the reflective LCOS 100 is 80% It can be done.
  • the ratio of the highest point of the intensity of an aberrated diffraction image to the highest point of the intensity of an image by an achromatic lens is called Strail's intensity.
  • Streel strength 0.8 or more is called a Marechal evaluation standard as an allowance for a lens or the like.
  • the light utilization efficiency of 80% or more (loss is 20% or less) is required as a reference.
  • These evaluation criteria are described, for example, in non-patent documents (Toshiro Kishikawa, "Introduction to optics for user engineers", Optronics, Inc., Dec. 18, 2004).
  • the reflective LCOS 100 satisfying the equation (6) can achieve 80% or more of light use efficiency, which is an evaluation reference in an optical device, because the diffraction efficiency of zero-order light is 80% or more. .
  • the LCOS can be formed, for example, by a 0.35 [ ⁇ m] CMOS (Complementary Metal Oxide Semiconductor) process.
  • CMOS Complementary Metal Oxide Semiconductor
  • the thickness (for example, d2) of the silicon layer in LCOS is, for example, about 0.7 ⁇ m to 0.8 ⁇ m.
  • the silicon layer is mechanically polished using, for example, CMP (Chemical Mechanical Polishing), it is difficult to finely adjust the thickness of the silicon layer.
  • the thickness (for example, d1) of the top metal is, for example, about 0.16 [ ⁇ m] conventionally, but finely (for example, 0.01 [ ⁇ m] Can be adjusted).
  • the thickness of the silicon layer (for example, d2) should be around 0.7 ⁇ m to 0.8 ⁇ m, and the thickness of the top metal (for example, d1) may be 0.21 thicker than that of the conventional LCOS.
  • the thickness of the top metal is, for example, about 0.16 [ ⁇ m], for example, all layers are formed by the photolithography process using the i-line (wavelength 365 [nm]).
  • FIG. 8 is a diagram showing a configuration example of a spatial modulation device to which the reflective LCOS is applied.
  • a spatial modulation device 810 shown in FIG. 8 is a spatial modulation device to which the reflective LCOS 100 is applied.
  • the spatial modulator 810 comprises a reflective LCOS 100, a polarizing beam splitter 811, and a lens 812.
  • the laser light source 801 oscillates and emits laser light of a single wavelength, for example.
  • the lens 802 emits the laser light emitted from the laser light source 801 to the spatial modulation device 810.
  • the polarization beam splitter 811 of the spatial light modulator 810 reflects the laser light emitted from the lens 802 and emits it to the reflective LCOS 100.
  • the polarization beam splitter 811 emits the laser beam emitted from the reflective LCOS 100 to the lens 812 according to the polarization state.
  • the reflective LCOS 100 is a modulator that spatially modulates laser light. That is, the reflective LCOS 100 reflects the laser beam emitted from the polarization beam splitter 811 to the polarization beam splitter 811. In addition, the reflective LCOS 100 controls the polarization state of the reflected light in each pixel according to the voltage applied to each pixel (for example, the reflective electrodes 131 to 133) on the surface on which the laser light is reflected. Thereby, the intensity of the laser beam transmitted from the polarization beam splitter 811 to the side of the lens 812 can be controlled for each pixel.
  • the lens 812 narrows and emits the laser beam emitted from the polarization beam splitter 811.
  • the lens 812 may be configured by combining a plurality of lenses.
  • the reflective LCOS 100 satisfying the equation (6) can realize the light utilization efficiency of 80% or more. For this reason, by using the reflective LCOS 100 satisfying the equation (6), it is possible to realize the spatial modulation device 810 with high transmittance.
  • the reflection type liquid crystal optical element it is possible to reduce the light loss. In addition, stray light can be reduced.
  • the reflective LCOS 100 the conditions for satisfying the light utilization efficiency of 80% or more have been described, but in the above equation (6), for example, the diffraction efficiency ⁇ 02D of zero-order light is 85% or more, 90% or more, 95% or 99% It is good also as conditions which are considered as above. As a result, in the reflective LCOS 100, the light utilization efficiency of 85% or more, 90% or more, 95% or more, 99% or more, or the like can be realized.
  • the reflection-type liquid crystal optical element according to the present invention is useful for a reflection-type liquid crystal optical element that modulates light using liquid crystal, and in particular, a reflection-type liquid crystal optical element that modulates laser light of a single wavelength. Suitable for
  • Reflective LCOS 110 Transparent electrode substrate 120 Liquid crystal layer 131-133 Reflective electrode 140, 160 Silicon oxide film layer 151-154 Light shielding layer 171-173 Transistor 180 Silicon layer 191-193 Contact hole 194-196 Via 500, 600, 700 Relation 511, 611- 313,711 Range 801 laser light source 802, 812 lens 810 spatial modulator 811 polarization beam splitter

Abstract

 反射型LCOS(100)は、反射電極(131~133)が設けられたシリコン酸化膜層(140)と、透明電極基板(110)と、の間に液晶層(120)が挟まれた構造である。また、反射型LCOS(100)は、透明電極基板(110)および液晶層(120)を透過した光を反射電極(131~133)によって反射させて透明電極基板(110)から出射させる。また、反射型LCOS(100)は、反射電極(131~133)の配置の間隔をΛ、反射電極(131~133)の間隙の長さをa、反射電極(131~133)の厚さをd1、液晶層(120)の屈折率をn1、シリコン酸化膜層(140)の厚さをd2、シリコン酸化膜層(140)の屈折率をn2、光の波長をλとした場合に所定の条件を満たす。

Description

反射型液晶光学素子
 本発明は、光を変調する反射型液晶光学素子に関する。
 従来、画素ごとに液晶層の光透過率を制御して変調反射光を得る反射型画像表示装置が知られている(たとえば、下記特許文献1参照。)。また、シリコン基板と対向する透明基板の間に液晶を挟みこみ、シリコン基板側に液晶駆動回路と画素電極を設けた反射型のLCOS(Liquid Crystal On Silicon:液晶オンシリコン)が知られている。
特開平10-48626号公報
 しかしながら、上述した従来技術では、光を反射させる画素電極が並んでいる画素エリアに対して光が垂直に入射すると、入射した光の一部が斜め方向に反射し、光損失が大きくなる場合がある。
 本発明は、上述した従来技術による問題点を解消するため、光損失の低減を図ることができる反射型液晶光学素子を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明にかかる反射型液晶光学素子の一側面では、複数の画素電極が設けられたシリコン基板と、透明基板と、の間に液晶層が挟まれ、前記透明基板および前記液晶層を透過した光を前記複数の画素電極によって反射させて前記透明基板から出射し、前記複数の画素電極の間隙を通過した光を反射させる反射部材を有する反射型液晶光学素子であって、前記複数の画素電極の配置の間隔をΛ、前記複数の画素電極の間隙の長さをa、前記複数の画素電極の厚さをd1、前記液晶層の屈折率をn1、前記画素電極から前記反射部材までの距離をd2、前記画素電極から前記反射部材までの前記シリコン基板の屈折率をn2、前記光の波長をλ、とした場合に所定の式を満たす。
 これにより、出射光の回折効率をたとえば80%以上とすることができる。
 本発明によれば、光損失の低減を図ることができるという効果を奏する。
図1Aは、実施の形態にかかる反射型液晶光学素子の一部の断面の一例を示す図である。 図1Bは、図1Aに示した反射型液晶光学素子における光の一例を示す図である。 図2は、反射型LCOSにおける回折光の一例をYZ平面で示す図である。 図3は、反射型LCOSにおける回折光の一例をXY平面で示す図である。 図4は、反射型LCOSにおける各パラメータの一例を示す図である。 図5は、反射電極の厚さと0次光効率との関係の一例を示す図である。 図6は、シリコン層の厚さと0次光効率との関係の一例を示す図である。 図7は、光の波長と0次光効率との関係の一例を示す図である。 図8は、反射型LCOSを適用した空間変調装置の構成例を示す図である。
 以下に図面を参照して、本発明にかかる反射型液晶光学素子の実施の形態を詳細に説明する。
(実施の形態)
(実施の形態にかかる反射型液晶光学素子の一部の断面)
 図1Aは、実施の形態にかかる反射型液晶光学素子の一部の断面の一例を示す図である。図1Aに示す反射型LCOS100は、実施の形態にかかる反射型液晶光学素子の一例である。反射型LCOS100は、透明電極基板110と、液晶層120と、反射電極131~133と、シリコン酸化膜層140と、反射部材である遮光層151~154と、シリコン酸化膜層160と、トランジスタ171~173と、シリコン層180と、コンタクトホール191~193と、ビア194~196と、を備える。ここで、シリコン酸化膜層140,160と、シリコン層180とで、シリコン基板を構成する。
 反射型LCOS100は、反射電極131~133(複数の画素電極)が設けられたシリコン酸化膜層140(シリコン基板)と透明電極基板110(透明基板)との間に液晶層120が挟まれ、透明電極基板110および液晶層120を透過した光を反射電極131~133によって反射させて透明電極基板110から出射する反射型液晶光学素子である。反射型LCOS100は、光学ディスク等に用いる光ピックアップ装置やプロジェクタ等、各種の光デバイスに適用することができる。
 透明電極基板110は、たとえばガラス基板と透明電極を重ねることにより形成することができる。透明電極は、たとえばITO(酸化インジウムスズ)によって形成することができる。この場合は、たとえばガラス基板にITOをコーティングすることによって透明電極基板110を形成することができる。透明電極基板110には、たとえば反射型LCOS100の制御基板から電圧が印加される。
 液晶層120は、透明電極基板110と反射電極131~133との間に設けられる液晶層である。したがって、液晶層120は、透明電極基板110と反射電極131~133との間に印加される電圧に応じて液晶配向が変化する。液晶層120には、たとえばネマティック液晶を用いることができる。
 反射電極131~133は、光を反射させる反射型の画素電極である。反射電極131~133は、たとえば等間隔に、かつ間隙を有するようにシリコン酸化膜層140に配置される。反射電極131~133は、たとえばアルミによって形成することができる。
 図1Aでは反射型LCOS100の一部のみを図示しているため、反射電極としては反射電極131~133のみを図示しているが、反射型LCOS100はさらに多くの反射電極を有していてもよい。また、図1Aでは1次元方向に並んだ反射電極131~133のみを図示しているが、反射型LCOS100の各反射電極はシリコン酸化膜層140に対して2次元方向に(すなわちマトリクス状に)配置される。
 シリコン酸化膜層140は、反射電極131~133と遮光層151~154との間に設けられるSiO2(二酸化ケイ素)の層である。シリコン酸化膜層140には、シリコン酸化膜層140を貫通し、反射電極131~133とコンタクトホール191~193とを接続するビア194~196が設けられている。
 遮光層151~154は、シリコン酸化膜層140からシリコン酸化膜層160への光を遮光する遮光層である。また、遮光層151~154は、液晶層120を透過した光のうちの反射電極131~133の間隙を通過した光を反射させる反射部材である。遮光層151~154は、たとえばアルミによって形成することができる。図1Aでは反射型LCOS100の一部のみを図示しているため、遮光層としては遮光層151~154のみを図示しているが、反射型LCOS100はさらに多くの遮光層を有していてもよい。また、図1Aでは1次元方向に並んだ遮光層151~154のみを図示しているが、反射型LCOS100の各遮光層はシリコン酸化膜層140に対して2次元方向に配置される。
 シリコン酸化膜層160は、遮光層151~154とシリコン層180との間に設けられるSiO2(二酸化ケイ素)の層である。シリコン酸化膜層160には、シリコン酸化膜層160を貫通し、ビア194~196とトランジスタ171~173とを接続するコンタクトホール191~193が設けられている。
 シリコン層180にはトランジスタ171~173が設けられている。トランジスタ171~173は、それぞれコンタクトホール191~193およびビア194~196を介して反射電極131~133へ電圧を印加する。図1Aでは反射型LCOS100の一部のみを図示しているため、トランジスタとしてはトランジスタ171~173のみを図示しているが、反射型LCOS100は反射電極に対応するトランジスタを有する。また、図1Aでは1次元方向に並んだトランジスタ171~173のみを図示しているが、反射型LCOS100の各トランジスタは各反射電極に対応してシリコン酸化膜層140に対して2次元方向に配置される。
(反射型液晶光学素子における光)
 図1Bは、図1Aに示した反射型液晶光学素子における光の一例を示す図である。図1Bにおいて、図1Aに示した部分と同様の部分については同一の符号を付して説明を省略する。反射型LCOS100には、たとえば透明電極基板110から垂直に光が入射する。反射型LCOS100へ入射する光は、たとえばレーザ光源によって発振された単一波長のレーザ光である(たとえば図8参照)。
 図1Bに示す光101~103は、反射型LCOS100へ入射して液晶層120を透過した光のうちのそれぞれ反射電極131~133へ入射する各光である。光101~103は、それぞれ反射電極131~133において反射し、液晶層120を透過して透明電極基板110から出射される。また、トランジスタ171~173によって反射電極131~133へ印加される各電圧によって、液晶層120において光101~103が透過する各部分の液晶配向が変化する。
 このため、トランジスタ171~173によって反射電極131~133へ印加される各電圧に応じて光101~103が変調され、変調された光101~103が0次光として透明電極基板110から出射される。
 光104,105は、透明電極基板110から入射して液晶層120を透過した光のうちの反射電極131~133の間隙を通過して遮光層152,153において反射し、反射電極131~133の間隙を再度通過して透明電極基板110から出射される各光である。この光104,105が光101~103と干渉することにより干渉縞が発生し、0次光とは異なる方向で透明電極基板110から出射される1次光、2次光、…が発生する。
 このように、反射型LCOS100においては、反射電極131~133の画素間を抜けて反射した光104,105の影響により、1次光、2次光、…が発生する。特に、反射型LCOS100へ入射する光がレーザ光である場合は、干渉性が高くなるため、1次光、2次光、…が発生しやすくなる。
 1次光、2次光、…が多くなると0次光が少なくなるため、反射型LCOS100における光損失が大きくなる。また、1次光、2次光、…は迷光となるため、1次光、2次光、…が多くなると迷光が多くなる。
 なお、図1A,図1Bにおける各部の縮尺は、実際の寸法と異なって図示されている。
(反射型LCOSにおける回折光)
 図2は、反射型LCOSにおける回折光の一例をYZ平面で示す図である。図3は、反射型LCOSにおける回折光の一例をXY平面で示す図である。図2,図3において、図1A,図1Bに示した部分と同様の部分については同一の符号を付して説明を省略する。また、図2,図3において、方向Xおよび方向Yは、反射型LCOS100の反射面における横方向および縦方向を示す。また、方向Zは、反射型LCOS100への光101~103の入射方向を示す。図2,図3においては、一例として光102の回折光について説明するが、光101,103の回折光についても同様である。
 反射型LCOS100における回折光は、たとえばm=Λ/λ次まで発生する。Λは、反射型LCOS100のパターンピッチである(たとえば図4参照)。λは入射光(光101~103)の波長である。たとえば、λ=0.405[μm]、Λ=7.8[μm]とすると、19次光までの回折光が発生する。
 図2,図3に示す-my~-1y次光および1y~my次光は、反射型LCOS100において方向Yで発生する回折光である。このように、方向Yにおいて、反射型LCOS100の回折光はプラス方向およびマイナス方向にそれぞれ発生する。
 図3に示す-mx~-1x次光および1x~mx次光は、反射型LCOS100において方向Xで発生する回折光である。このように、方向Xにおいて、反射型LCOS100の回折光はプラス方向およびマイナス方向にそれぞれ発生する。
 このように、反射型LCOS100の各回折光は2次元的に発生する。
(反射型LCOSにおける各パラメータ)
 図4は、反射型LCOSにおける各パラメータの一例を示す図である。図4において、図1Aに示した部分と同様の部分については同一の符号を付して説明を省略する。
 図4に示すaは、反射電極131~133のパターンギャップである。すなわち、aは、反射電極131~133のそれぞれの間隙の長さである。Λは、反射電極131~133のパターンピッチ(配置の間隔)である。すなわち、Λは、反射電極131~133の1個あたりの幅と、a(パターンギャップ)と、の合計である。
 d1は、反射型LCOS100のパターンギャップの深さである。すなわち、d1は、反射電極131~133のそれぞれの厚さ(光の進行方向の長さ)である。d2は、シリコン基板を構成するシリコン酸化膜層140の厚さである。つまり、d2は、反射電極131~133の間隙を通過し、遮光層152,153において反射するまでの光の進行方向の長さであり、反射電極から反射電極の下部にある反射部材(遮光層151~154)までの距離に相当する。n1は、液晶層120の屈折率である。n2は、反射電極から反射電極の下部にある反射部材(遮光層151~154)までのシリコン基板における屈折率であり、ここでは、シリコン酸化膜層140の屈折率である。
 反射型LCOS100の1次元方向(たとえば図2参照)におけるm次回折効率ηm1Dは、1次元回折格子におけるm次回折効率と同様に考えることができるため、たとえば下記(1)式によって示すことができる。jは虚数単位である。
Figure JPOXMLDOC01-appb-M000004
 上記(1)式のΦ(x)は、位相シフト関数を示し、たとえば下記(2)式によって示すことができる。下記(2)式において、λは入射光(光101~105)の波長である。mは、回折次数であり、1以上の整数である。
Figure JPOXMLDOC01-appb-M000005
 上記(1)式より、0次光(m=0)の回折効率η01Dは、たとえば下記(3)式によって示すことができる。
Figure JPOXMLDOC01-appb-M000006
 そして、上述したように、反射型LCOS100においては回折光が2次元的に発生する。2次元方向における0次光の回折効率η02Dは、たとえば、上記(3)式に示したη01Dを用いて下記(4)式によって示すことができる。
Figure JPOXMLDOC01-appb-M000007
 一方、1次元方向におけるm次(mは1以上の整数)の回折効率ηm1Dは、たとえば上記(1)式を展開した下記(5)式によって示すことができる。
Figure JPOXMLDOC01-appb-M000008
 したがって、上記(3)~(5)式より、反射型LCOS100において0次光の回折効率η02Dが80%(0.8)以上となる条件は、たとえば下記(6)式によって示すことができる。
Figure JPOXMLDOC01-appb-M000009
 また、たとえば、反射電極131~133が設けられた面において反射電極131~133が占める割合を開口率と称する。開口率は、たとえば((Λ-a)/Λ)2によって示すことができる。下記(7)式のように反射型LCOS100の開口率が80%(0.8)以上である場合は、0次光の回折効率η02Dが80%以上となる条件は、たとえば下記(8)式によって示すことができる。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 一例として、λ=0.405[μm]、Λ/λ=19.3、a/Λ=0.05の場合について説明する。これは、たとえば反射型LCOS100を光ピックアップ装置等に適用する場合に用いられる場合があるパラメータである。この場合、n=8とすると、上記(8)式から1.50<=n1d1+n2d2<=1.74となる。したがって、1.50<=n1d1+n2d2<=1.74を満たすように、たとえば反射電極131~133の厚さd1を決定することにより、反射型LCOS100における0次光の回折効率を80%以上とすることができる。
 さらに、n2=1.48、d2=0.79[μm]、n1=1.6の場合について説明する。n2=1.48は、シリコン酸化膜層140にSiO2を用いた場合の一般的なパラメータである。d2=0.79[μm]は、シリコン酸化膜層140の一般的な範囲内のパラメータ化である(後述)。n1=1.6は、液晶層120にネマティック液晶を用いた場合の一般的なパラメータである。この場合、上記(8)式から0.21[μm]<=d1<=0.35[μm]となる。したがって、0.21[μm]<=d1<=0.35[μm]の範囲で反射電極131~133の厚さd1を決定することにより、反射型LCOS100における0次光の回折効率を80%以上とすることができる。たとえば、この場合に、反射電極131~133の厚さd1を0.28[μm]とすることで、0次光の回折効率の最適化を図ることができる。
(反射型LCOSの各パラメータと0次光効率との関係)
 つぎに、反射型LCOS100の各パラメータと0次光効率との関係について説明する。図5~図7において、縦軸は反射型LCOS100からの出射光のうちの0次光の割合(0次光効率)を示す。
 図5は、反射電極の厚さと0次光効率との関係の一例を示す図である。図5に示す関係500は、反射電極131~133の厚さd1[μm]と、反射型LCOS100からの出射光のうちの0次光の割合(0次光効率)と、の関係を示す。また、関係500は、λ=0.405[μm]、n2=1.48、d2=0.79[μm]、n1=1.6とした場合に上記(3)~(5)式によって算出される関係である。
 関係500に示すように、反射電極131~133の厚さd1に対して、反射型LCOS100の0次光効率は周期的に変化する。たとえば、関係500において0次光効率が80%となる厚さd1の範囲(たとえば範囲511)の中から採用可能な厚さd1を選択することで、反射型LCOS100の0次光効率を80%とすることができる。
 図6は、シリコン層の厚さと0次光効率との関係の一例を示す図である。図6に示す関係600は、シリコン酸化膜層140の厚さd2[μm]と、反射型LCOS100からの出射光のうちの0次光の割合(0次光効率)と、の関係を示す。また、関係600は、λ=0.405[μm]、n2=1.48、n1=1.6、d1=0.28[μm]とした場合に上記(3)~(5)式によって算出される関係である。
 関係600に示すように、シリコン酸化膜層140の厚さd2に対して、反射型LCOS100の0次光効率は周期的に変化する。たとえば、関係600において0次光効率が80%となる厚さd2の範囲(たとえば範囲611~613)の中から採用可能な厚さd2を選択することで、反射型LCOS100の0次光効率を80%とすることができる。
 図7は、光の波長と0次光効率との関係の一例を示す図である。図7に示す関係700は、光の波長λ[μm]と、反射型LCOS100からの出射光のうちの0次光の割合(0次光効率)と、の関係を示す。また、関係700は、n2=1.48、d2=0.79[μm]、n1=1.6、d1=0.28[μm]とした場合に上記(3)~(5)式によって算出される関係である。
 関係700に示すように、光の波長λに対して、反射型LCOS100の0次光効率は周期的に変化する。たとえば、関係700において0次光効率が80%となる波長λの範囲(たとえば範囲711,712)の中から採用可能な波長λを選択することで、反射型LCOS100の0次光効率を80%とすることができる。
(回折効率の基準について)
 たとえば、レンズ等において、収差のある回折像の強度の最高点の、無収差レンズによる像の強度の最高点に対する比をストレール強度という。そして、レンズ等の許容量として、ストレール強度0.8以上をマレシャル評価基準という。
 このように、光学デバイスにおいては、たとえば光利用効率80%以上(ロスが20%以下)が基準として要求される。これらの評価基準は、たとえば非特許文献(岸川利郎、「ユーザーエンジニアのための光学入門」、オプトロニクス社、2004年12月18日)等に記載されている。
 これに対して、上記(6)式を満たす反射型LCOS100は、0次光の回折効率が80%以上となるため、光学デバイスにおける評価基準である光利用効率80%以上を実現することができる。
(LCOSのパラメータ決定の一例)
 LCOSは、たとえば0.35[μm]のCMOS(Complementary Metal Oxide Semiconductor:相補型金属酸化膜半導体)プロセスによって形成することができる。
 0.35[μm]のCMOSプロセスでは、シリコン層(たとえばシリコン酸化膜層140)が薄すぎると平坦性が低下し、シリコン層が厚すぎるとビア(たとえばビア194~196)の加工が困難となる。このため、一般的に、LCOSにおけるシリコン層の厚さ(たとえばd2)はたとえば0.7[μm]~0.8[μm]近辺とされている。
 また、シリコン層はたとえばCMP(Chemical Mechanical Polishing)を用いてメカニカルに研磨されるため、シリコン層の厚さを細かく調整することは困難である。一方、トップメタル(たとえば反射電極131~133)の厚さ(たとえばd1)は、従来はたとえば0.16[μm]程度であるが、スパッタの時間調整等によって細かく(たとえば0.01[μm]単位で)調整することができる。
 したがって、たとえば、シリコン層の厚さ(たとえばd2)は通常の0.7[μm]~0.8[μm]近辺とし、トップメタルの厚さ(たとえばd1)を従来のLCOSより厚い0.21[μm]<=d1<=0.35[μm]とすることで、上記(6)式の条件を容易に満たすことができる。
(LCOSの製造工程)
 従来のLCOSにおいては、トップメタルの厚さがたとえば0.16[μm]程度であったため、たとえば全てのレイヤがi線(波長365[nm])を用いたフォトリソグラフィ工程によって形成されていた。
 しかし、反射型LCOS100の反射電極131~133の厚さd1はたとえば0.21[μm]<=d1<=0.35[μm]となり、従来のLCOSより厚いため、i線では加工が難しい。これに対して、たとえばトップメタル(たとえば反射電極131~133)のフォトリソグラフィ工程においてはKrFエキシマレーザ(波長248[nm])を用いることで、反射電極131~133の厚さd1を容易に0.21[μm]<=d1<=0.35[μm]とすることができる。
(反射型LCOSを適用した空間変調装置の構成例)
 図8は、反射型LCOSを適用した空間変調装置の構成例を示す図である。図8に示す空間変調装置810は、反射型LCOS100を適用した空間変調装置である。具体的には、空間変調装置810は、反射型LCOS100と、偏光ビームスプリッタ811と、レンズ812と、を備える。レーザ光源801は、たとえば単一波長のレーザ光を発振して出射する。レンズ802は、レーザ光源801から出射されたレーザ光を空間変調装置810へ出射する。
 空間変調装置810の偏光ビームスプリッタ811は、レンズ802から出射されたレーザ光を反射させて反射型LCOS100へ出射する。また、偏光ビームスプリッタ811は、反射型LCOS100から出射されたレーザ光を、偏光状態に応じてレンズ812へ出射する。
 反射型LCOS100は、レーザ光を空間的に変調する変調器である。すなわち、反射型LCOS100は、偏光ビームスプリッタ811から出射されたレーザ光を偏光ビームスプリッタ811へ反射させる。また、反射型LCOS100は、レーザ光が反射する面の各画素(たとえば反射電極131~133)に印加される電圧に応じて、各画素における反射光の偏光状態を制御する。これにより、偏光ビームスプリッタ811からレンズ812の側へ透過するレーザ光の強度を画素ごとに制御することができる。レンズ812は、偏光ビームスプリッタ811から出射されたレーザ光を絞って出射する。レンズ812は、レンズを複数枚組み合わせた構成としてもよい。
 上述したように、上記(6)式を満たす反射型LCOS100は光利用効率80%以上を実現することができる。このため、上記(6)式を満たす反射型LCOS100を用いることにより、透過率の高い空間変調装置810を実現することができる。
 以上説明したように、反射型液晶光学素子によれば光損失の低減を図ることができる。また、迷光の低減を図ることができる。
 なお、反射型LCOS100において光利用効率80%以上を満たす条件について説明したが、たとえば上記(6)式において、0次光の回折効率η02Dを85%以上、90%以上、95%または99%以上等とする条件としてもよい。これにより、反射型LCOS100において光利用効率85%以上、90%以上、95%以上、99%以上等を実現することができる。
 以上のように、本発明にかかる反射型液晶光学素子は、液晶を用いて光を変調する反射型液晶光学素子に有用であり、特に、単一波長のレーザ光を変調する反射型液晶光学素子に適している。
 100 反射型LCOS
 110 透明電極基板
 120 液晶層
 131~133 反射電極
 140,160 シリコン酸化膜層
 151~154 遮光層
 171~173 トランジスタ
 180 シリコン層
 191~193 コンタクトホール
 194~196 ビア
 500,600,700 関係
 511,611~613,711 範囲
 801 レーザ光源
 802,812 レンズ
 810 空間変調装置
 811 偏光ビームスプリッタ

Claims (5)

  1.  複数の画素電極が設けられたシリコン基板と、透明基板と、の間に液晶層が挟まれ、前記透明基板および前記液晶層を透過した光を前記複数の画素電極によって反射させて前記透明基板から出射し、前記複数の画素電極の間隙を通過した光を反射させる反射部材を有する反射型液晶光学素子であって、
     前記複数の画素電極の配置の間隔をΛ、
     前記複数の画素電極の間隙の長さをa、
     前記複数の画素電極の厚さをd1、
     前記液晶層の屈折率をn1、
     前記画素電極から前記反射部材までの距離をd2、
     前記画素電極から前記反射部材までの前記シリコン基板の屈折率をn2、
     前記光の波長をλ、
     とした場合に下記(1)式を満たすことを特徴とする反射型液晶光学素子。
    Figure JPOXMLDOC01-appb-M000001
  2.  下記(2)式および下記(3)式を満たすことを特徴とする請求項1に記載の反射型液晶光学素子。
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
  3.  λ=0.405[μm]、Λ/λ=19.3、a/Λ=0.05、n=8および1.50<=n1d1+n2d2<=1.74を満たすことを特徴とする請求項2に記載の反射型液晶光学素子。
  4.  n2=1.48、d2=0.79[μm]、n1=1.6および0.21[μm]<=d1<=0.35[μm]を満たすことを特徴とする請求項3に記載の反射型液晶光学素子。
  5.  前記光は、レーザ光源によって発振された単一波長のレーザ光であることを特徴とする請求項1~4のいずれか一つに記載の反射型液晶光学素子。
PCT/JP2015/051267 2014-01-20 2015-01-19 反射型液晶光学素子 WO2015108190A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014007809A JP2015138044A (ja) 2014-01-20 2014-01-20 反射型液晶光学素子
JP2014-007809 2014-01-20

Publications (1)

Publication Number Publication Date
WO2015108190A1 true WO2015108190A1 (ja) 2015-07-23

Family

ID=53543071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051267 WO2015108190A1 (ja) 2014-01-20 2015-01-19 反射型液晶光学素子

Country Status (2)

Country Link
JP (1) JP2015138044A (ja)
WO (1) WO2015108190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181614A1 (ja) * 2022-03-25 2023-09-28 株式会社ジャパンディスプレイ リフレクトアレイ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293224A (ja) * 1986-06-12 1987-12-19 Canon Inc 光学装置
JP2001311912A (ja) * 2000-04-28 2001-11-09 Minolta Co Ltd 照明光学系
JP2010127977A (ja) * 2008-11-25 2010-06-10 Asahi Glass Co Ltd 回折素子、光ヘッド装置および投射型表示装置
JP2012108346A (ja) * 2010-11-18 2012-06-07 Sun Tec Kk 波長選択光スイッチ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293224A (ja) * 1986-06-12 1987-12-19 Canon Inc 光学装置
JP2001311912A (ja) * 2000-04-28 2001-11-09 Minolta Co Ltd 照明光学系
JP2010127977A (ja) * 2008-11-25 2010-06-10 Asahi Glass Co Ltd 回折素子、光ヘッド装置および投射型表示装置
JP2012108346A (ja) * 2010-11-18 2012-06-07 Sun Tec Kk 波長選択光スイッチ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181614A1 (ja) * 2022-03-25 2023-09-28 株式会社ジャパンディスプレイ リフレクトアレイ

Also Published As

Publication number Publication date
JP2015138044A (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
CN108351089B (zh) 用于改进强度分布的波导涂层或基板
JP6696236B2 (ja) 表示装置および導光装置
US20190129085A1 (en) Holographic Waveguide Apparatus for Structured Light Projection
JP5528623B2 (ja) インコヒーレント化デバイス、およびこれを用いた光学装置
US9632299B2 (en) Digital holographic microscope
JP5040847B2 (ja) 光学素子、液晶装置、表示装置
WO2018045836A1 (zh) 反射式全息显示装置及其显示方法
US20080218699A1 (en) Display device having plurality of light sources and using diffractive light modulator, capable of reducing speckles
KR20090022596A (ko) 회절형 광변조기 및 이를 포함하는 디스플레이 장치
CN105911739B (zh) 硅基液晶面板
JP4866251B2 (ja) 光束分岐素子および光束干渉光学系および光束干渉露光装置
CN108957830B (zh) 显示装置和显示装置的控制方法、显示设备
US11428939B2 (en) Light-guiding plate, light-guiding plate manufacturing method, and video display device
CN110998418A (zh) 相位调制器、照明系统和投影仪
EP3939254A1 (en) Dual-modulation laser projection systems and methods
US20130342887A1 (en) Light modulator having a switchable volume grating
JP5768428B2 (ja) プロジェクター
WO2015108190A1 (ja) 反射型液晶光学素子
WO2014181539A1 (ja) 光学装置
WO2018074219A1 (ja) 液晶表示装置および投射型表示装置
JP5097371B2 (ja) 液晶表示装置
WO2017219606A1 (en) Light diffraction apparatus, display substrate, touch substrate and touch display apparatus, and method of modulating image display light intensity
KR20160022855A (ko) 착용형 디스플레이장치
WO2017104565A1 (ja) 光源装置および投影装置
US20240152022A1 (en) Passive dispersion compensation for an acousto-optic deflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737227

Country of ref document: EP

Kind code of ref document: A1