WO2018045836A1 - 反射式全息显示装置及其显示方法 - Google Patents

反射式全息显示装置及其显示方法 Download PDF

Info

Publication number
WO2018045836A1
WO2018045836A1 PCT/CN2017/094042 CN2017094042W WO2018045836A1 WO 2018045836 A1 WO2018045836 A1 WO 2018045836A1 CN 2017094042 W CN2017094042 W CN 2017094042W WO 2018045836 A1 WO2018045836 A1 WO 2018045836A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
phase plate
holographic display
light
reflective holographic
Prior art date
Application number
PCT/CN2017/094042
Other languages
English (en)
French (fr)
Inventor
谭纪风
董学
王维
谷新
关峰
王美丽
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/750,917 priority Critical patent/US10579015B2/en
Publication of WO2018045836A1 publication Critical patent/WO2018045836A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0224Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0841Encoding method mapping the synthesized field into a restricted set of values representative of the modulator parameters, e.g. detour phase coding
    • G03H2001/0858Cell encoding wherein each computed values is represented by at least two pixels of the modulator, e.g. detour phase coding
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • G03H2001/2231Reflection reconstruction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • G03H2001/2263Multicoloured holobject
    • G03H2001/2271RGB holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/13Phase mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/23Diffractive element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/30Modulation
    • G03H2225/33Complex modulation
    • G03H2225/34Amplitude and phase coupled modulation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/52Reflective modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/55Having optical element registered to each pixel
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2240/00Hologram nature or properties
    • G03H2240/20Details of physical variations exhibited in the hologram
    • G03H2240/40Dynamic of the variations
    • G03H2240/42Discrete level

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a reflective holographic display device and a display method thereof.
  • a transmissive holographic display image is one of the most basic holographic display images.
  • the object is irradiated with coherent light, and the reflected light and the scattered light on the surface of the object reach the phase plate (recording dry plate) to form an object light wave; and another reference light wave (planar light wave or spherical light wave) is introduced to illuminate the phase plate.
  • another reference light wave plane light wave or spherical light wave
  • an interference pattern that is, a holographic display image
  • the phase plate is illuminated by the same light wave as the reference light wave, and the human eye can view the holographic plate in the transmitted light, and the reconstructed image identical to the original can be viewed at the original object behind the holographic plate.
  • Virtual image is one of the most basic holographic display images.
  • phase plate is irradiated with the same light wave as the conjugate light wave of the reference light wave, that is, the spherical light wave that is concentrated from the right side of the phase plate toward the phase plate and is concentrated a little, is diffracted by the phase plate and condensed to form a real image of the original object.
  • phase and intensity information are fixed, and only one image can be displayed. Only a plurality of images can be formed by superposition of the phase dry plates, and dynamic display cannot be realized.
  • An object of an embodiment of the present disclosure is to provide a reflective holographic display device and a display method thereof.
  • a reflective holographic display device comprising:
  • a front light source module for providing reference light
  • the display panel configured to adjust amplitude information of the reference light
  • the display panel includes a reflective layer
  • the front light source module is located on a light exit side of the display panel
  • phase plate for adjusting phase information of the reference light, the phase plate being located on a light exiting side of the reflective layer.
  • the display panel further includes a plurality of pixel unit groups, each of the plurality of pixel unit groups including at least one independently driven sub-pixel.
  • each sub-pixel in the same set of pixel cells displays the same color.
  • the phase plate includes a plurality of phase plate units in one-to-one correspondence with each of the pixel unit groups; each of the phase plate units includes a plurality of sub-regions.
  • the heights of the phase plates corresponding to the respective sub-regions in the same phase plate unit are different.
  • phase plates corresponding to the respective sub-regions in the same phase plate unit have different refractive indices.
  • each sub-pixel has a one-to-one correspondence with each sub-region.
  • one sub-pixel corresponds to a plurality of sub-regions.
  • the display panel includes an array substrate; the reflective layer is disposed on the array substrate.
  • the phase plate is disposed directly on the light exit side of the reflective layer.
  • the display panel further includes an opposite substrate opposite to the array substrate;
  • the phase plate is disposed on a side of the opposite substrate facing the array substrate;
  • the phase plate is disposed on a side of the opposite substrate away from the array substrate.
  • the phase plate is disposed on a side of the front light source module away from the display panel;
  • the phase plate is disposed on a side of the front light source module facing the display panel.
  • a color film layer and/or a polarizer is disposed on the light exit side of the display panel.
  • a color film layer is disposed on the light exiting side of the array substrate, and the phase plate is disposed between the reflective layer and the color film layer.
  • the amplitude information includes grayscale and color of the reference light.
  • the front light source module is a side-entry light source module and includes a light guide plate and a light emitting diode on a light incident side of the light guide plate.
  • the front light source module is a direct type light source module and includes a back plate and a light emitting diode on the back plate and adjacent to a light emitting side of the display panel.
  • the display panel includes a liquid crystal display panel, and the reference light provided by the front light source module is collimated light.
  • the phase plate includes a transmission grating, a reflection grating, a blazed grating, or an echelon grating.
  • a display method of the above reflective holographic display device comprising:
  • the amplitude information of the reference light is adjusted by the display panel to present a dynamic holographic image.
  • FIG. 1 is a schematic structural diagram of a reflective holographic display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a first modification of the reflective holographic display device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a second modification of the reflective holographic display device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a third modification of the reflective holographic display device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a fourth modification of the reflective holographic display device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a fifth modification of the reflective holographic display device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a sixth modification of the reflective holographic display device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a schematic diagram of a reflective holographic display device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a correspondence relationship between sub-pixels and sub-regions in a reflective holographic display device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another correspondence between a sub-pixel and a sub-area in a reflective holographic display device according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a display method of a reflective holographic display device according to an embodiment of the present invention.
  • each film layer in the drawings do not reflect the true proportion of the reflective holographic display device, and the purpose is only to schematically illustrate the present invention.
  • Embodiments of the present invention provide a reflective holographic display device, as shown in FIGS. 1 to 7, including: a front light source module 1 for providing reference light, and a phase plate for adjusting phase information of reference light Or a delay plate 2, and a display panel 3 for adjusting amplitude information of the reference light; wherein
  • the front light source module 1 is located on the light exit side of the display panel 3;
  • the display panel 3 has a reflective layer 31;
  • the phase plate 2 is located on the light exit side of the reflective layer 31.
  • the display panels 3 in FIGS. 1 to 7 are all liquid crystal display panels, and reference numeral 32 in the drawings denotes a liquid crystal layer.
  • the display panel in the reflective holographic display device provided by the embodiment of the present invention can be configured not only as a liquid crystal display panel but also as another display panel, and is not limited to the structure involved in the drawings of the present invention, and the display panel is The type and structure of the type are not specifically limited herein.
  • the display panel is configured to adjust amplitude information of the reference light, and the amplitude information may include gray scale information and color information.
  • a front light source module for providing reference light, a phase plate for adjusting phase information of reference light, and amplitude information for adjusting reference light are provided.
  • a display panel wherein the front light source module is located on the light exit side of the display panel; the display panel has a reflective layer; and the phase plate is located on the light exit side of the reflective layer.
  • the reflective holographic display device provided by the embodiment of the present invention is provided with a front light source module 1, a phase plate 2, and a display panel 3, gray scale information and color information are provided by the display panel 3, and the phase is provided.
  • the information is provided by the phase plate 2, the reference light is provided through the front light source module 1, and then the adjustment of the display panel 3 and the phase plate 2 is performed to realize the imaging of the holographic image, by adjusting the gray scale and color on the display panel 3, and
  • the phase matching on the phase plate 2 can realize the switching of different brightness, color and depth of field images, thereby realizing the reflective dynamic three-dimensional holographic display and realizing the real rendering of the object in space.
  • the display panel includes the array substrate 34; and the reflective layer 31 may be directly disposed on the array substrate 34.
  • the phase plate 2 when the phase plate is located on the array substrate 34, as shown in FIG. 1 and FIG. 2, the phase plate 2 may be directly disposed on the reflective layer 31. .
  • the display panel further includes an opposite substrate 35 opposite to the array substrate 34; when the phase plate is located on the opposite substrate 35, as shown in the figure As shown in FIG. 3, the phase plate 2 may be disposed on a side of the opposite substrate 35 facing the array substrate 34; or, as shown in FIG. 4, the phase plate 2 may be disposed on a side of the opposite substrate 35 away from the array substrate 34.
  • the display panel may further include a color film layer 33, and the color film layer 33 may be disposed on the opposite substrate 35, or may be disposed on the array substrate 34.
  • the phase plate 2 may be directly disposed on the reflective layer 31, or, as shown in FIG. The phase plate 2 may be disposed on a side of the opposite substrate 35 away from the liquid crystal layer.
  • a phase plate 2 is disposed between the reflective layer 31 of the array substrate 34 and the color filter layer 33, or as shown in FIG. 3, the phase plate 2 may be disposed on the side of the opposite substrate 35 facing the array substrate 34.
  • the color film layer 33 is disposed directly on the reflective layer 31 of the array substrate 34.
  • the positional relationship between the color film layer 33 and the phase plate 2 can be various, not limited to the drawings 1 to The positional relationship in 4, for example, the phase plate 2 can be directly disposed on the color film layer 33 or the like.
  • FIG. 2 can reduce the risk of color mixing and prevent color shift phenomenon.
  • the phase plate 2 when the phase plate 2 is located on the front light source module, as shown in FIG. 5, the phase plate 2 may be disposed at The front light source module 1 is away from the side of the display panel 3; or, as shown in FIG. 6, the phase plate 2 may be disposed on a side of the front light source module 1 facing the display panel 3.
  • the polarizing plate 4 may be disposed on the light emitting side of the display panel; as shown in FIG. 7, the phase plate 2 may also be disposed on the polarizing plate. 4 on.
  • the color film layers 33 are all disposed on the side of the opposite substrate 35 facing the liquid crystal layer.
  • the color film layer can also be disposed on the array substrate 34.
  • the positional relationship between the color film layer and the phase plate may be various, and is not limited to the positional relationship in FIGS. 5 to 7.
  • the reflective layer 31 can also be used as a pixel electrode or a common electrode of the array substrate 34 at the same time to simplify the structure. Therefore, the reflective layer 31 may sometimes also be referred to as a reflective electrode.
  • the display panel includes a plurality of pixel unit groups; each pixel unit group includes at least one independently driven sub-pixel; each of the same pixel unit group
  • the pixels display the same color.
  • the number of sub-pixels is set to N, N ⁇ 2, and the larger the value of N, the clearer the reproduced image.
  • one pixel unit is divided into nine sub-pixels of the same size, which are respectively P1 to P9.
  • the phase plate 2 may have a plurality of phase plate units corresponding to each pixel unit group; each phase plate unit may be divided into a plurality of sub-regions; The phases of the sub-regions in the same phase plate unit are different.
  • the heights of the phase plates corresponding to the sub-regions in the same phase plate unit are different; or the refractive indices of the phase plates corresponding to the sub-regions in the same phase plate unit are different, so that different phases are selected, and the light can be emitted.
  • the phase of the light is different, and the light waves of different phases converge to the human eye, thereby achieving different depth of field.
  • the pixel unit group shown on the left side corresponds one-to-one with the phase plate unit shown on the right side, and the phase plate unit is divided into nine sub-areas of the same size, which are respectively R1 to R9.
  • the phase plate provided by the embodiment of the present invention is generally composed of a diffraction grating, and can be divided into a transmissive type and a reflective type according to different working modes.
  • the reflective grating is characterized by a trace on the metal mirror, total reflection occurs on the score, and is not diffracted in the direction of the reflected light, which is equivalent to a set of diffraction gratings;
  • the grating is an equally spaced scoring on the optical flat glass, the nick is not opaque, and the slit is not etched.
  • the diffraction angle ⁇ of the m-order diffracted wave of the grating is determined only by the grating period P, the wavelength ⁇ of the incident wave, and the incident angle ⁇ 0 .
  • the diffraction intensity of the 0th order and the first order diffraction of the transmission grating is relatively large, and the diffraction intensity of the higher order diffraction order is much smaller than the former two; the 0th order diffracted wave is along the direction of the incident light, the first order diffracted wave
  • the diffraction direction can be controlled by the period of the grating, so the adjustment of the ray angle is generally performed using a first-order diffraction wave (zero-order diffracted waves can also be used when the light-emitting direction is equal to or very close to the incident wave).
  • the grating period corresponding to the different color lights is determined by the formula (1).
  • the duty cycle is generally 0.5, but it can deviate from this value in actual product design (for example, to adjust the intensity of light output, balance the difference in brightness of different positions of the display panel, process conditions, etc.).
  • the height of the grating is generally about 300 nm, which can be slightly larger, such as 1 ⁇ m, or slightly smaller, such as 200 nm. For the purpose of eliminating, weakening or enhancing the zero-order diffracted wave of a certain color light, the height of the grating can be designed for this wavelength.
  • the phase difference of the color wave on the grating strip and the gap is When the half-wavelength is an odd multiple, the zero-order diffraction wave appears coherent cancellation, the zero-order wave coherence weakens, and the first-order wave is enhanced. When the phase difference is an integer multiple of the wavelength, the zero-order wave is coherently enhanced and the first-order wave is weakened. Different shades of light can be selected for different grating heights or the same.
  • the phase plate may be a transmission grating, a reflection grating, a blazed grating, or a step grating, and can be theoretically explained by the above formula.
  • a blazed grating is also a reflective grating, except that its grooved surface is not parallel to the grating surface, and there is an angle ⁇ between the two, so that the center of the diffraction of a single groove surface (equivalent to a single slit) is extremely large and The interference between the groove faces is largely separated by the zero-order main, and the light energy is greatly transferred from the interference zero-order main and concentrated to a certain level of spectrum to achieve the spectroscopy of the spectrum.
  • each sub-pixel One-to-one correspondence with each sub-area that is, P1 corresponds to R1, P2 corresponds to R2, P3 corresponds to R3, P4 corresponds to R4, P5 corresponds to R5, P6 corresponds to R6, P7 corresponds to R7, P8 corresponds to R8, P9 corresponds to P9
  • the reference light is selected as collimated light in one example; or, as shown in FIG.
  • one sub-pixel corresponds to a plurality of sub-regions, that is, P5 and R1, R2, R3, R4, and R5, respectively.
  • R6, R7, R8, and R9 correspond to each other, and the reference light is selected as incident light having a certain divergence angle.
  • the front light source module may be configured to be a side-in or a direct-in light.
  • the specific The light guide plate may be included, and the light emitting diode located on the light incident side of the light guide plate; or the current light source module may be a back light plate, and the light emitting diode located on the back plate and close to the light emitting side of the display panel.
  • the front light source module is configured to be direct-lit.
  • the reference light may be a surface light source or a point light source, collimated light or non-collimated light.
  • the reference light is set to collimate coherent light.
  • the holographic dry plate can be replaced with a Charge-coupled Device (CCD) or a Complementary Metal-Oxide-Semiconductor (CMOS) image sensor during holographic image entry, and the CCD or The three-dimensional shape of the surface of the object acquired by CMOS is converted into digital holographic information as information of the reference light.
  • CCD Charge-coupled Device
  • CMOS Complementary Metal-Oxide-Semiconductor
  • the reflective holographic display device provided by the embodiment of the present invention generally has other film layer structures such as a black matrix layer and an insulating layer, and a thin film transistor, a gate line, and a thin film transistor are generally formed on the substrate.
  • the specific structure may be implemented in various manners, which is not limited herein.
  • Other indispensable components of the reflective holographic display device are understood by those of ordinary skill in the art, and are not described herein, nor should they be construed as limiting the invention.
  • an embodiment of the present invention further provides a display method of the above reflective holographic display device. Since the principle of solving the problem is similar to the foregoing reflective holographic display device, the implementation of the method can be seen in the reflection. The implementation of the holographic display device will not be repeated here.
  • the display method of the reflective holographic display device provided by the embodiment of the present invention, as shown in FIG. 11 , specifically includes the following steps:
  • S1103 Adjust amplitude information of the reference light through the display panel to present a dynamic holographic image.
  • a reflective holographic display device and a display method thereof are provided in an embodiment of the present invention.
  • a front light source module for providing reference light and a phase plate for adjusting phase information of the reference light are disposed.
  • a display panel for adjusting amplitude information of the reference light wherein the front light source module is located on the light exit side of the display panel; the display panel has a reflective layer; and the phase plate is located on the light exit side of the reflective layer. Since the reflective holographic display device provided by the embodiment of the present invention is provided with a front light source module, a phase plate and a display panel, intensity and color information is provided by a (liquid crystal) display panel, and phase information is provided by the phase plate through collimation.
  • the backlight provides a reference light wave
  • the holographic image is imaged through adjustment of the liquid crystal display panel and the phase plate (delay plate).
  • the gray scale and color on the display panel and matching the phase on the phase plate different brightness can be achieved.
  • the switching of color and depth of field images enables reflective dynamic three-dimensional holographic display to realize the real representation of objects in space.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)

Abstract

一种反射式全息显示装置及其显示方法。反射式全息显示装置包括前置光源模组(1)、显示面板(3)和相位板(2)。前置光源模组(1)用于提供参考光;显示面板(3)用于调节参考光的振幅信息,显示面板(3)包括反射层(31),前置光源模组(1)位于显示面板(3)的出光侧;相位板(2)用于调节参考光的相位信息,相位板(2)位于反射层(31)的出光侧。

Description

反射式全息显示装置及其显示方法
本申请要求于2016年09月09日递交的、申请号为201610814868.4、发明名称为“一种反射式全息显示装置及其显示方法”的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本发明涉及显示技术领域,尤其涉及一种反射式全息显示装置及其显示方法。
背景技术
透射式全息显示图像是一种最基本的全息显示图像。在记录时,利用相干光照射物体,物体表面的反射光和散射光到达相位板(记录干板)后形成物光波;同时引入另一束参考光波(平面光波或球面光波)照射相位板。对相位板曝光后便可获得干涉图形,即全息显示图像。再现时,利用与参考光波相同的光波照射相位板,人眼在透射光中观看全息板,便可在全息板后的原物处观看到与原物完全相同的再现像,此时该像属于虚像。假如利用与参考光波的共轭光波相同的光波照射相位板,即从相位板右方射向相位板而会聚一点的球面光波,则经相位板衍射后会聚而形成原物的实像。
但是,在现有技术中,全息干板形成之后,相位和强度信息都已经固定,只能显示一幅图像,通过相位干板的叠加也只能形成几幅图像,无法实现动态显示。
发明内容
本公开的实施例的目的是提供一种反射式全息显示装置及其显示方法。
在一个方面中,提供了一种用于反射式全息显示装置,包括:
前置光源模组,用于提供参考光;
显示面板,用于调节所述参考光的振幅信息,所述显示面板包括反射层并且所述前置光源模组位于所述显示面板的出光侧;
相位板,用于调节所述参考光的相位信息,所述相位板位于所述反射层的出光侧。
在一个示例中,所述显示面板还包括多个像素单元组,所述多个像素单元组中的每个像素单元组包括至少一个独立驱动的子像素。
在一个示例中,同一所述像素单元组中的各子像素显示的颜色相同。
在一个示例中,所述相位板包括多个与每个所述像素单元组一一对应的相位板单元;每个所述相位板单元包括多个子区域。
在一个示例中,同一所述相位板单元中的各子区域对应的相位板的高度不同。
在一个示例中,同一所述相位板单元中的各子区域对应的相位板的折射率不同。
在一个示例中,在一个所述像素单元组和与该像素单元组对应的相位板单元中,各子像素与各子区域一一对应。
在一个示例中,在一个所述像素单元组和与该像素单元组对应的相位板单元中,一个子像素与多个子区域对应。
在一个示例中,所述显示面板包括阵列基板;所述反射层设置在所述阵列基板上。
在一个示例中,所述相位板直接设置在所述反射层的出光侧。
在一个示例中,所述显示面板还包括与所述阵列基板相对而置的对向基板;
所述相位板设置在所述对向基板面向所述阵列基板的一侧上;或,
所述相位板设置在所述对向基板远离所述阵列基板的一侧上。
在一个示例中,所述相位板设置在所述前置光源模组远离所述显示面板的一侧;或,
所述相位板设置在所述前置光源模组面向所述显示面板的一侧。
在一个示例中,所述显示面板的出光侧上设置有彩膜层和/或偏光片。
在一个示例中,所述阵列基板的出光侧上设置有彩膜层,所述相位板设置在所述反射层和彩膜层之间。
在一个示例中,所述振幅信息包括参考光的灰阶和颜色。
在一个示例中,所述前置光源模组为侧入式光源模组并且包括导光板和位于所述导光板入光侧的发光二极管。
在一个示例中,所述前置光源模组为直下式光源模组并且包括背板和位于所述背板上且靠近所述显示面板出光侧的发光二极管。
在一个示例中,所述显示面板包括液晶显示面板,所述前置光源模组提供的参考光是准直光。
在一个示例中,所述相位板包括透射光栅、反射光栅、闪耀光栅或阶梯光栅。 在另一方面中,提供了一种上述的反射式全息显示装置的显示方法,包括:
通过前置光源模组提供参考光;
通过相位板调节所述参考光的相位信息,以在设定的位置呈现全息显示;
通过显示面板调节所述参考光的振幅信息,以呈现动态全息图像。
附图说明
图1为本发明实施例提供的反射式全息显示装置的结构示意图;
图2为本发明实施例提供的反射式全息显示装置的第一变形例的结构示意图;
图3为本发明实施例提供的反射式全息显示装置的第二变形例的结构示意图;
图4为本发明实施例提供的反射式全息显示装置的第三变形例的结构示意图;
图5为本发明实施例提供的反射式全息显示装置的第四变形例的结构示意图;
图6为本发明实施例提供的反射式全息显示装置的第五变形例的结构示意图;
图7为本发明实施例提供的反射式全息显示装置的第六变形例的结构示意图;
图8为本发明实施例提供的反射式全息显示装置的原理示意图;
图9为本发明实施例提供的反射式全息显示装置中子像素与子区域之间的对应关系的示意图;
图10为本发明实施例提供的反射式全息显示装置中子像素与子区域之间的另一对应关系的示意图;
图11为本发明实施例提供的反射式全息显示装置的显示方法的流程图。
具体实施方式
下面结合附图,对本发明实施例提供的反射式全息显示装置及其显示方法的具体实施方式进行详细地说明。
其中,附图中各膜层的厚度和形状不反映反射式全息显示装置的真实比例,目的只是示意性说明本发明。
本发明的实施例提供了一种反射式全息显示装置,如图1至图7所示,包括:用于提供参考光的前置光源模组1,用于调节参考光的相位信息的相位板或延迟板2,和用于调节参考光的振幅信息的显示面板3;其中,
前置光源模组1位于显示面板3的出光侧;
显示面板3具有反射层31;
相位板2位于反射层31的出光侧。
需要说明的是,附图1至图7中的显示面板3均为液晶显示面板,附图中的标号32表示液晶层。而本发明实施例提供的上述反射式全息显示装置中的显示面板不仅仅可以设置为液晶显示面板,也可以设置为其它显示面板,不仅仅限于本发明附图中涉及到的结构,对于显示面板的种类和结构,在此不做具体限定。另外,显示面板用于调节参考光的振幅信息,该振幅信息可以包括灰阶信息和颜色信息。
在本发明实施例提供的上述反射式全息显示装置中设置了用于提供参考光的前置光源模组,用于调节参考光的相位信息的相位板,以及用于调节参考光的振幅信息的显示面板;其中,前置光源模组位于显示面板的出光侧;显示面板具有反射层;相位板位于反射层的出光侧。如图8所示,由于本发明实施例提供的上述反射式全息显示装置中设置有前置光源模组1、相位板2和显示面板3,灰阶信息和颜色信息由显示面板3提供,相位信息由相位板2提供,通过前置光源模组1提供参考光,再经显示面板3和相位板2的调节,实现全息图像的成像,通过调节显示面板3上的灰阶和颜色,以及与相位板2上的相位匹配,可实现不同亮度、颜色和景深图像的切换,从而实现反射式的动态三维全息显示,实现物体在空间的真实呈现。
在具体实施时,在本发明实施例提供的上述反射式全息显示装置中,如图1至图4所示,显示面板包括阵列基板34;反射层31可以直接设置在阵列基板34上。
在具体实施时,在本发明实施例提供的上述反射式全息显示装置中,当相位板位于阵列基板34上时,如图1和图2所示,相位板2可以直接设置在反射层31上。
在具体实施时,在本发明实施例提供的上述反射式全息显示装置中,显示面板还包括与阵列基板34相对而置的对向基板35;当相位板位于对向基板35上时,如图3所示,相位板2可以设置在对向基板35面向阵列基板34的一侧;或,如图4所示,相位板2可以设置在对向基板35远离阵列基板34的一侧。
需要说明的是,显示面板还可以包括彩膜层33,而彩膜层33可以设置在对向基板35上,或者,也可以设置在阵列基板34上。具体地,当彩膜层设置在对向基板35的面向液晶层32的一侧上时,如图1所示,相位板2可以直接设置在反射层31上,或者,如图4所示,相位板2可以设置在对向基板35远离液晶层的一侧上。
如图2所示,在阵列基板34的反射层31和彩膜层33之间设置相位板2,或者如图3所示,相位板2可以设置在对向基板35面向阵列基板34的一侧上而彩膜层33直接设置在阵列基板34的反射层31上。
当然,彩膜层33和相位板2的位置关系可以有很多种,不仅仅限于附图1至图 4中的位置关系,例如相位板2可以直接设置在彩膜层33上等等。
需要说明的是,图2中的结构可以降低混色风险,防止产生色偏现象。
另外,在具体实施时,在本发明实施例提供的上述反射式全息显示装置中,当相位板2位于前置光源模组上的情况中时,如图5所示,相位板2可以设置在前置光源模组1远离显示面板3的一侧;或,如图6所示,相位板2可以设置在前置光源模组1面向显示面板3的一侧。
或者,在具体实施时,在本发明实施例提供的上述反射式全息显示装置中,显示面板的出光侧上可以设置有偏光片4;如图7所示,相位板2还可以设置在偏光片4上。
需要说明的是,如图5至图7所示,彩膜层33均设置在对向基板35的面向液晶层的一侧上。当然,彩膜层也可以设置在阵列基板34上。此时,彩膜层和相位板的位置关系也可以有很多种,不仅仅限于附图5至图7中的位置关系。
另外,图5中的结构只需要经过一次位相板,光路更简单。
另外,需要说明的是,反射层31也可以同时用作阵列基板34的像素电极或公共电极,以简化结构。因此该反射层31有时也可以称为反射电极。
在具体实施时,在本发明实施例提供的上述反射式全息显示装置中,显示面板包括多个像素单元组;各像素单元组包括至少一个独立驱动的子像素;同一像素单元组中的各子像素显示的颜色相同。将子像素的个数设定为N个,N≥2,N值越大,重现的图像越清晰。如图9和图10所示,将一个像素单元组分成了9个大小相同的子像素,分别为P1~P9。
在具体实施时,在本发明实施例提供的上述反射式全息显示装置中,相位板2可以具有多个与各像素单元组一一对应的相位板单元;各相位板单元可以分成多个子区域;同一相位板单元中的各子区域的相位不同。
具体地,同一相位板单元中的各子区域对应的相位板的高度不同;或,同一相位板单元中的各子区域对应的相位板的折射率不同,这样选择不同的相位,可以实现出射光的相位不同,不同相位的光波汇聚到人眼,进而可以实现不同的景深。如图9和图10所示,左边示出的像素单元组与右边示出的相位板单元一一对应,相位板单元分成了9个大小相同的子区域,分别为R1~R9。
需要说明的是,本发明实施例提供的上述相位板一般是由衍射光栅构成,按照工作方式的不同,可以分为透射型和反射型。反射型光栅是在金属镜上刻画一道道痕迹,刻痕上发生全反射,未刻处在反射光方向发生衍射,相当于一组衍射光栅;透射 型光栅是在光学平玻璃上刻画出一道道等间距的刻痕,刻痕处不透光,未刻出是透光的狭缝。
理论上光栅的m级衍射波的衍射角θ仅由光栅周期P、入射波的波长λ以及入射角θ0决定,
sinθ-sinθ0=mλ/P(m=0,±1,±2,...)                (1)
一般情况下透射光栅的0级和一级衍射的衍射强度比较大,高阶的衍射级的衍射强度比前两者要小得多;0级衍射波是沿入射光方向的,一级衍射波的衍射方向可以由光栅的周期进行调控,所以此处对光线角度的调节一般使用的是一级衍射波(当出光方向等于或很接近入射波时,也可以使用零级衍射波)。当出光方向给定后,不同色光对应的光栅周期则由公式(1)决定。占空比一般为0.5,但在实际产品设计中可以偏离此值(比如出于调节出光的强度,平衡显示面板不同位置亮度的差异、工艺条件等原因)。光栅的高度,一般为300nm左右,可以稍微大一些如1μm,也可以稍微小一些如200nm。出于消除、减弱或增强某种色光零级衍射波的目的,光栅的高度可以针对该波长进行设计,由于入射角是固定的,当该色波在光栅的栅条和空隙上的位相差为半波长奇数倍时,零级衍射波出现相干相消,零级波相干减弱,一级波增强;当位相差为波长整数倍时,零级波相干增强,一级波减弱。不同的色光可以选择不同的光栅高度,也可以选择相同的。
上述相位板可以是透射光栅、反射光栅、闪耀光栅、阶梯光栅,理论上都可以用上述公式解释。闪耀光栅也是一种反射型光栅,不同之处在于它的刻槽面与光栅面不平行,两者之间有一夹角γ,从而使单个槽面(相当于单缝)衍射的中央极大和各个槽面间的干涉零级主极大分开,将光能量从干涉零级主极大转移并集中到某一级光谱上去,实现该级光谱的闪耀。
进一步地,在具体实施时,在本发明实施例提供的上述反射式全息显示装置中,在一个像素单元组和与该像素单元组对应的相位板单元中,如图9所示,各子像素与各子区域一一对应,即P1与R1对应,P2与R2对应,P3与R3对应,P4与R4对应,P5与R5对应,P6与R6对应,P7与R7对应,P8与R8对应,P9与R9对应,此时参考光在一个示例中被选择为准直光;或,如图10所示,一个子像素与多个子区域对应,即P5分别与R1、R2、R3、R4、R5、R6、R7、R8、R9对应,此时参考光被选择为具有一定发散角的入射光。
在具体实施时,在本发明实施例提供的上述反射式全息显示装置中,前置光源模组可以设置为侧入式入光或者直下式入光。当前置光源模组为侧入式入光时,具体 可以包括导光板,以及位于导光板入光侧的发光二极管;或,当前置光源模组为直下式入光时,具体可以包括背板,以及位于背板上且靠近显示面板出光侧的发光二极管。在一个示例中,该前置光源模组设置为直下式入光。
需要说明的是,参考光可以为面光源或点光源,准直光或非准直光。在一个示例中,该参考光设置为准直相干光。参考光的获取,可以在全息图像录入时将全息干板换成电荷耦合器件(Charge-coupled Device,CCD)或互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor,CMOS)图像传感器,将CCD或CMOS获取的物体表面三维形貌转化为数字全息信息,作为参考光的信息。
在具体实施时,本发明实施例提供的反射式全息显示装置中一般还会具有诸如黑矩阵层、绝缘层等其他膜层结构,以及在衬底基板上还一般形成有薄膜晶体管、栅线、数据线等结构,这些具体结构可以有多种实现方式,在此不做限定。对于该反射式全息显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。
基于同一发明构思,本发明实施例还提供了一种上述反射式全息显示装置的显示方法,由于该方法解决问题的原理与前述一种反射式全息显示装置相似,因此该方法的实施可以参见反射式全息显示装置的实施,重复之处不再赘述。
在具体实施时,本发明实施例提供的反射式全息显示装置的显示方法,如图11所示,具体包括以下步骤:
S1101、通过前置光源模组提供参考光;
S1102、通过相位板调节参考光的相位信息,以在设定的位置呈现全息显示;
S1103、通过显示面板调节参考光的振幅信息,以呈现动态全息图像。
本发明实施例提供的一种反射式全息显示装置及其显示方法,在反射式全息显示装置中设置了用于提供参考光的前置光源模组,用于调节参考光的相位信息的相位板,以及用于调节参考光的振幅信息的显示面板;其中,前置光源模组位于显示面板的出光侧;显示面板具有反射层;相位板位于反射层的出光侧。由于本发明实施例提供的上述反射式全息显示装置中设置有前置光源模组、相位板和显示面板,强度和颜色信息由(液晶)显示面板提供,相位信息由相位板提供,通过准直背光提供参考光波,再经液晶显示面板和相位板(延迟板)的调节实现全息图像的成像,通过调节显示面板上的灰阶和颜色,以及和相位板上相位的匹配,可实现不同亮度、颜色和景深图像的切换,从而实现反射式的动态三维全息显示,实现物体在空间的真实呈现。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的 精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种反射式全息显示装置,包括:
    前置光源模组,用于提供参考光;
    显示面板,用于调节所述参考光的振幅信息,所述显示面板包括反射层并且所述前置光源模组位于所述显示面板的出光侧;
    相位板,用于调节所述参考光的相位信息,所述相位板位于所述反射层的出光侧。
  2. 如权利要求1所述的反射式全息显示装置,其中,所述显示面板还包括多个像素单元组,所述多个像素单元组中的每个像素单元组包括至少一个独立驱动的子像素。
  3. 如权利要求2所述的反射式全息显示装置,其中,同一所述像素单元组中的各子像素显示的颜色相同。
  4. 如权利要求2所述的反射式全息显示装置,其中,所述相位板包括多个与每个所述像素单元组一一对应的相位板单元;每个所述相位板单元包括多个子区域。
  5. 如权利要求4所述的反射式全息显示装置,其中,同一所述相位板单元中的各子区域对应的相位板的高度不同。
  6. 如权利要求4所述的反射式全息显示装置,其中,同一所述相位板单元中的各子区域对应的相位板的折射率不同。
  7. 如权利要求4所述的反射式全息显示装置,其中,在一个所述像素单元组和与该像素单元组对应的相位板单元中,各子像素与各子区域一一对应。
  8. 如权利要求4所述的反射式全息显示装置,其中,在一个所述像素单元组和与该像素单元组对应的相位板单元中,一个子像素与多个子区域对应。
  9. 如权利要求1-8中任一项所述的反射式全息显示装置,其中,所述显示面板包括阵列基板;所述反射层设置在所述阵列基板上。
  10. 如权利要求9所述的反射式全息显示装置,其中,所述相位板直接设置在所述反射层的出光侧。
  11. 如权利要求9所述的反射式全息显示装置,其中,所述显示面板还包括与所述阵列基板相对而置的对向基板;
    所述相位板设置在所述对向基板面向所述阵列基板的一侧上;或,
    所述相位板设置在所述对向基板远离所述阵列基板的一侧上。
  12. 如权利要求9所述的反射式全息显示装置,其中,所述相位板设置在所述前置光源模组远离所述显示面板的一侧;或,
    所述相位板设置在所述前置光源模组面向所述显示面板的一侧。
  13. 如权利要求9所述的反射式全息显示装置,其中,所述显示面板的出光侧上设置有彩膜层和/或偏光片。
  14. 如权利要求11所述的反射式全息显示装置,其中,所述阵列基板的出光侧上设置有彩膜层,所述相位板设置在所述反射层和彩膜层之间。
  15. 如权利要求1-14中任一项所述的反射式全息显示装置,其中,所述振幅信息包括参考光的灰阶和颜色。
  16. 如权利要求1-15任一项所述的反射式全息显示装置,其中,所述前置光源模组为侧入式光源模组并且包括导光板和位于所述导光板入光侧的发光二极管。
  17. 如权利要求1-15中任一项所述的反射式全息显示装置,其中,所述前置光源模组为直下式光源模组并且包括背板和位于所述背板上且靠近所述显示面板出光侧的发光二极管。
  18. 如权利要求1-17中任一项所述的反射式全息显示装置,其中,所述显示面板包括液晶显示面板,所述前置光源模组提供的参考光是准直光。
  19. 如权利要求1-8中任一项所述的反射式全息显示装置,其中,所述相位板包括透射光栅、反射光栅、闪耀光栅或阶梯光栅。
  20. 一种如权利要求1-19任一项所述反射式全息显示装置的显示方法,包括:
    通过前置光源模组提供参考光;
    通过相位板调节所述参考光的相位信息,以在设定的位置呈现全息显示;
    通过显示面板调节所述参考光的振幅信息,以呈现动态全息图像。
PCT/CN2017/094042 2016-09-09 2017-07-24 反射式全息显示装置及其显示方法 WO2018045836A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/750,917 US10579015B2 (en) 2016-09-09 2017-07-24 Reflective holographic display apparatus and display method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610814868.4A CN106227017B (zh) 2016-09-09 2016-09-09 一种反射式全息显示装置及其显示方法
CN201610814868.4 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018045836A1 true WO2018045836A1 (zh) 2018-03-15

Family

ID=58074921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094042 WO2018045836A1 (zh) 2016-09-09 2017-07-24 反射式全息显示装置及其显示方法

Country Status (3)

Country Link
US (1) US10579015B2 (zh)
CN (1) CN106227017B (zh)
WO (1) WO2018045836A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154798A (zh) * 2016-09-08 2016-11-23 京东方科技集团股份有限公司 一种全息显示装置及其显示方法
CN106227017B (zh) * 2016-09-09 2018-12-25 京东方科技集团股份有限公司 一种反射式全息显示装置及其显示方法
CN106154800B (zh) * 2016-09-09 2018-12-25 京东方科技集团股份有限公司 全息显示装置及其全息显示方法
CN106814461B (zh) * 2016-12-20 2020-02-04 北京理工大学 一种三维显示系统及其显示方法
CN106940486B (zh) * 2017-04-25 2022-06-24 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN108665909B (zh) * 2018-05-10 2020-05-19 上海理工大学 一种小型化双光束超分辨光存储光路系统中相位板及装置
CN109782430B (zh) * 2019-03-22 2022-07-08 京东方科技集团股份有限公司 一种全息显示装置和全息显示装置的驱动方法
CN109765774B (zh) * 2019-03-22 2022-04-19 京东方科技集团股份有限公司 一种全息显示装置和全息显示装置的驱动方法
CN114189670B (zh) * 2020-09-15 2024-01-23 北京小米移动软件有限公司 显示方法、显示装置、显示设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122465A (en) * 1994-03-16 2000-09-19 Hitachi, Ltd. Reflective liquid crystal display having a hologram color filter
CN102483604A (zh) * 2009-06-23 2012-05-30 视瑞尔技术公司 用于调节具有复杂信息的波场的三维光调制装置
US20130021545A1 (en) * 2011-07-21 2013-01-24 Samsung Electronics Co., Ltd. Spatial light modulator and optical apparatus employing the same
CN103792826A (zh) * 2012-10-31 2014-05-14 乐金显示有限公司 数字全息图显示设备
CN105917277A (zh) * 2014-01-07 2016-08-31 视瑞尔技术公司 用于全息重建的显示设备
CN106154799A (zh) * 2016-09-08 2016-11-23 京东方科技集团股份有限公司 一种全息显示装置及其显示方法
CN106154798A (zh) * 2016-09-08 2016-11-23 京东方科技集团股份有限公司 一种全息显示装置及其显示方法
CN106227017A (zh) * 2016-09-09 2016-12-14 京东方科技集团股份有限公司 一种反射式全息显示装置及其显示方法
CN205992124U (zh) * 2016-09-09 2017-03-01 京东方科技集团股份有限公司 一种反射式全息显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289692A (ja) * 1990-04-06 1991-12-19 Matsushita Electric Ind Co Ltd 空間光変調素子及びこれを用いたホログラム画像情報記録装置
CN102033413B (zh) * 2009-09-25 2012-09-05 李志扬 基于随机相长干涉原理的立体显示装置
KR20130139706A (ko) * 2012-06-13 2013-12-23 삼성전자주식회사 복합 공간 광 변조기 및 이를 포함한 홀로그래픽 3차원 영상 표시 장치
CN205334016U (zh) * 2016-01-08 2016-06-22 京东方科技集团股份有限公司 一种显示装置
CN105842925A (zh) * 2016-06-13 2016-08-10 京东方科技集团股份有限公司 一种显示面板及显示方法、显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122465A (en) * 1994-03-16 2000-09-19 Hitachi, Ltd. Reflective liquid crystal display having a hologram color filter
CN102483604A (zh) * 2009-06-23 2012-05-30 视瑞尔技术公司 用于调节具有复杂信息的波场的三维光调制装置
US20130021545A1 (en) * 2011-07-21 2013-01-24 Samsung Electronics Co., Ltd. Spatial light modulator and optical apparatus employing the same
CN103792826A (zh) * 2012-10-31 2014-05-14 乐金显示有限公司 数字全息图显示设备
CN105917277A (zh) * 2014-01-07 2016-08-31 视瑞尔技术公司 用于全息重建的显示设备
CN106154799A (zh) * 2016-09-08 2016-11-23 京东方科技集团股份有限公司 一种全息显示装置及其显示方法
CN106154798A (zh) * 2016-09-08 2016-11-23 京东方科技集团股份有限公司 一种全息显示装置及其显示方法
CN106227017A (zh) * 2016-09-09 2016-12-14 京东方科技集团股份有限公司 一种反射式全息显示装置及其显示方法
CN205992124U (zh) * 2016-09-09 2017-03-01 京东方科技集团股份有限公司 一种反射式全息显示装置

Also Published As

Publication number Publication date
CN106227017B (zh) 2018-12-25
US10579015B2 (en) 2020-03-03
CN106227017A (zh) 2016-12-14
US20190196401A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2018045836A1 (zh) 反射式全息显示装置及其显示方法
US12072492B2 (en) Display device
AU2023201163B2 (en) Projector architecture incorporating artifact mitigation
US11953683B2 (en) Display device, in particular a head-mounted display, based on temporal and spatial multiplexing of hologram tiles
EP2856244B1 (en) Directional backlight
KR102094528B1 (ko) 홀로그래픽 또는 입체 디스플레이를 위한 빔 확장 및 각종 콜리메이터
WO2017107313A1 (zh) 一种裸眼3d激光显示装置
US11561393B2 (en) Light guide plate and image display device
US20130077154A1 (en) Autostereoscopic display
CN106154800B (zh) 全息显示装置及其全息显示方法
TWI464457B (zh) 數位全像顯示裝置
KR20160141588A (ko) 개선된 화질을 제공하는 공간 광변조기 및 이를 포함하는 홀로그래픽 디스플레이 장치
CN111656289A (zh) 显示装置及用于追踪虚拟可见区域的方法
CN205992124U (zh) 一种反射式全息显示装置
TWI403815B (zh) 可控式光調變器
RU2727853C1 (ru) Динамический дисплей полностью объемного изображения
KR100664872B1 (ko) 1차원 홀로그램을 이용한 영상 표시장치
US20100165428A1 (en) Device for Minimizing Diffraction-Related Dispersion in Spatial Light Modulators
KR20130054110A (ko) 패턴드 반파장 지연판을 이용한 광 결합 패널 및 그 제조 방법
JP7360908B2 (ja) 立体像表示装置および立体像表示方法
Kim et al. A novel backlight unit for volume-holographic optical elements-based time-multiplexed three-dimensional displays
JP2021016023A (ja) 画像表示装置
US20230024541A1 (en) Light modulation device having high light efficiency
US12099276B2 (en) Complex light modulator, holographic display device, and see-through display device
KR102707404B1 (ko) 아티팩트 완화를 통합한 투사기 아키텍처

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17848009

Country of ref document: EP

Kind code of ref document: A1