WO2015107974A1 - アーク溶接制御方法 - Google Patents

アーク溶接制御方法 Download PDF

Info

Publication number
WO2015107974A1
WO2015107974A1 PCT/JP2015/050384 JP2015050384W WO2015107974A1 WO 2015107974 A1 WO2015107974 A1 WO 2015107974A1 JP 2015050384 W JP2015050384 W JP 2015050384W WO 2015107974 A1 WO2015107974 A1 WO 2015107974A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed
period
reverse
welding
amplitude
Prior art date
Application number
PCT/JP2015/050384
Other languages
English (en)
French (fr)
Inventor
章博 井手
Original Assignee
株式会社ダイヘン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイヘン filed Critical 株式会社ダイヘン
Priority to US15/105,714 priority Critical patent/US10456853B2/en
Priority to KR1020167012492A priority patent/KR102193084B1/ko
Priority to CN201580002522.8A priority patent/CN105705285B/zh
Priority to JP2015557809A priority patent/JP6555818B2/ja
Priority to EP15737906.6A priority patent/EP3095546B1/en
Publication of WO2015107974A1 publication Critical patent/WO2015107974A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means

Definitions

  • a welding wire as a consumable electrode is fed at a constant speed, and an arc is generated between the welding wire and the base material to perform welding.
  • the welding wire and the base material are often in a welding state in which a short circuit period and an arc period are alternately repeated.
  • FIG. 3 is a waveform diagram in the welding method in which the feeding speed is periodically forwarded and reversed.
  • FIG. 6A shows the waveforms of the feed speed setting signal Fr (solid line) and the actual feed speed Fw (broken line)
  • FIG. 5B shows the waveform of the welding current Iw
  • FIG. 4D shows the waveform of the average feed speed setting signal Far.
  • the feed speed setting signal Fr and the feed speed Fw are a forward feed period above 0 and a reverse feed period below. Forward feeding is feeding in the direction in which the welding wire is brought closer to the base material, and reverse feeding is feeding in a direction away from the base material.
  • the feed speed setting signal Fr changes in a sine wave shape and has a waveform shifted to the forward feed side. For this reason, the average value of the feed speed setting signal Fr is a positive value, and the welding wire is fed forward on average.
  • the maximum value for forward feed is the forward feed amplitude Ws
  • the absolute value of the maximum value for reverse feed is the reverse feed amplitude Wr.
  • the period from time t1 to t3 is the normal transmission period Ts
  • the period from time t3 to t5 is the reverse transmission period Tr. Therefore, the feed speed pattern of the feed speed setting signal Fr shown in FIG. 5A is a sine wave composed of the parameters of the forward feed amplitude Ws, the reverse feed amplitude Wr, the forward feed period Ts, and the reverse feed period Tr. .
  • Ws 50 m / min
  • Wr 40 m / min
  • Ts 5.4 ms
  • Tr 4.6 ms.
  • one cycle is 10 ms, and the short circuit period and the arc period are repeated at 100 Hz.
  • the average value of the feeding speed is about 4 m / min (the average value of the welding current is about 150 A).
  • the average feed speed setting signal Far shown in FIG. 4D is a signal for setting an average value of the feed speed Fw.
  • the feed speed pattern of the feed speed setting signal Fr is set so that the average value of the feed speed Fw is equal to the average feed speed setting signal Far. That is, the forward feed amplitude Ws, the reverse feed amplitude Wr, the forward feed period Ts, and the reverse feed period Tr are stored in advance corresponding to the average feed speed setting signal Far.
  • a constant voltage control welding power source is used for consumable electrode arc welding. Short-circuiting between the welding wire and the base material often occurs before and after the maximum value of the feed speed Fw at time t21. In the figure, the case occurs at time t22 during the forward feed deceleration period after the maximum value of forward feed. When a short circuit occurs at time t22, the welding voltage Vw rapidly decreases to a short circuit voltage value of several V as shown in FIG. 10C, and the welding current Iw gradually increases as shown in FIG.
  • the feeding speed Fw is in the reverse feed period from time t31, the welding wire is fed backward.
  • the short circuit is released by this reverse feed, and the arc is regenerated at time t32.
  • the reoccurrence of the arc often occurs around the maximum value of the reverse feed of the feed speed Fw at time t41.
  • the case occurs at time t32 during the reverse acceleration period before the maximum reverse feed value. Therefore, the period from time t22 to t32 is a short circuit period.
  • the welding voltage Vw When the arc is regenerated at time t32, the welding voltage Vw rapidly increases to an arc voltage value of several tens of volts as shown in FIG. As shown in FIG. 5B, the welding current Iw starts to change from the maximum value during the short circuit period.
  • the feed speed Fw is in the reverse feed state, so that the welding wire is pulled up and the arc length is gradually increased.
  • the welding voltage Vw increases and the welding current Iw decreases because constant voltage control is performed. Therefore, during the reverse feed period during the arc period from time t32 to t51, the welding voltage Vw gradually increases as shown in FIG. 3C, and the welding current Iw gradually increases as shown in FIG. Get smaller.
  • a period from time t32 to t62 is an arc period.
  • the welding wire is fed forward and the arc length is gradually shortened.
  • the welding voltage Vw is reduced and the constant current control is performed, so that the welding current Iw is increased. Therefore, during the forward feed period during the arc period from time t51 to t62, the welding voltage Vw gradually decreases as shown in FIG. 5C, and the welding current Iw gradually increases as shown in FIG. growing.
  • the feed speed setting signal of the feed speed pattern corresponding to the value of the average feed speed setting signal Far is set.
  • the waveform of the feed speed setting signal Fr that periodically changes and the waveform of the feed speed Fw are shifted due to the transient characteristics of the feed motor and the influence of the feed resistance of the feed path. Different types of feed motors use different transient characteristics. Further, when the type of welding torch used is different, the feeding resistance of the feeding path is different. Furthermore, when welding is repeated, the feeding path gradually wears and the feeding resistance changes. A shift between the waveform of the feed speed setting signal Fr and the waveform of the feed speed Fw changes with the change of the feed resistance.
  • An object of the present invention is to provide an arc welding control method capable of stabilization.
  • the present invention provides: Periodically repeats forward and reverse feed of the welding wire with a feed rate pattern consisting of forward feed amplitude, reverse feed amplitude, forward feed period and reverse feed period stored in correspondence with the average feed speed set value
  • a feed rate pattern consisting of forward feed amplitude, reverse feed amplitude, forward feed period and reverse feed period stored in correspondence with the average feed speed set value
  • An average feed speed of the welding wire is detected, and the forward feed amplitude, the reverse feed amplitude, the forward feed period, or the reverse so that the average feed speed set value is equal to the average feed speed detected value.
  • Automatically changing the feeding speed pattern by changing at least one of the feeding periods; It is characterized by this.
  • the present invention stores the automatically corrected feed speed pattern at the end of welding. It is characterized by this.
  • the present invention is characterized in that a change range is provided in the forward feed amplitude, the reverse feed amplitude, the forward feed period, and the reverse feed period.
  • the average value of the feeding speed can always be maintained in a state equal to the average feeding speed set value. For this reason, in the present invention, in welding in which forward feeding and reverse feeding of the welding wire are periodically repeated, even if the feeding resistance changes, the average value of the feeding speed can be maintained constant. Quality can be stabilized.
  • the feed motor WM receives a feed control signal Fc, which will be described later, and feeds the welding wire 1 at a feed speed Fw by periodically repeating forward feed and reverse feed.
  • the feed motor WM includes an encoder (not shown), and a feed speed detection signal Fd is output from the encoder. A motor with fast transient response is used as the feed motor WM.
  • the feeding motor WM may be installed near the tip of the welding torch 4. In some cases, two feed motors WM are used to form a push-pull feed system.
  • the average feed speed setting circuit FAR outputs a predetermined average feed speed setting signal Far.
  • the average feed speed detection circuit FAD receives the feed speed detection signal Fd, calculates an average value of this signal, and outputs an average feed speed detection signal Fad.
  • the feed error amplifying circuit EF receives the average feed speed setting signal Far and the average feed speed detection signal Fad as inputs, and receives an average feed speed setting signal Far (+) and an average feed speed detection signal Fad ( The error with-) is amplified and a feed error amplification signal Ef is output.
  • the average value of the feed speed Fw becomes the average feed speed setting signal Far shown in FIG. Is equal to the value of.
  • the case where all of the forward feed amplitude, the reverse feed amplitude, the forward feed period, and the reverse feed period are corrected has been described. However, at least one of these parameters may be corrected. Further, the correction may be performed every predetermined cycle of the feed speed setting signal Fr. Also, the correction gain of each parameter may be a different value for each parameter. In the above, the case where the feed speed setting signal Fr changes in a sine wave shape is illustrated, but it may change in a trapezoidal wave shape, a triangular wave shape, or the like.
  • the first embodiment it is possible to store the automatically corrected feeding speed pattern at the end of welding. That is, it is possible to store the finally corrected forward feed amplitude, reverse feed amplitude, forward feed period, and reverse feed period at the time when the welding is completed. Thereby, in the next welding, since welding can be started with a corrected appropriate feeding speed pattern, it is possible to further stabilize the welding quality.
  • a change range is provided for the correction values of the forward feed amplitude, the reverse feed amplitude, the forward feed period, and the reverse feed period. That is, the change range is limited by setting an upper limit value and a lower limit value for the correction value of each parameter.
  • This change range is set as a range in which the welding state is stable. Thereby, it can suppress that a welding state becomes an unstable state by correction of a parameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Arc Welding Control (AREA)

Abstract

平均送給速度設定信号(Far)に対応して記憶されている正送振幅(Ws)、逆送振幅(Wr)、正送期間(Ts)及び逆送期間(Tr)から成る送給速度設定信号(Fr)の送給速度パターンで、溶接ワイヤ(1)の正送と逆送とを周期的に繰り返し、短絡期間とアーク期間とを発生させて溶接を行うアーク溶接において、溶接中の送給速度(Fw)の平均値を検出し、平均送給速度設定信号(Far)とこの送給速度(Fw)の平均値とが等しくなるように、正送振幅(Ws)、逆送振幅(Wr)、正送期間(Ts)又は逆送期間(Tr)の少なくとも1つを変化させて送給速度パターンを自動修正することで、送給経路の送給抵抗が変動しても、送給速度(Fw)の平均値を常に一定に維持することができるので、溶接状態の安定性を向上させる。

Description

アーク溶接制御方法
 本発明は、平均送給速度設定値に対応して記憶されている正送の振幅、逆送の振幅、正送の期間及び逆送の期間から成る送給速度パターンで溶接ワイヤの正送と逆送とを周期的に繰り返して、短絡期間とアーク期間とを発生させて溶接を行うアーク溶接制御方法に関するものである。
 一般的な消耗電極式アーク溶接では、消耗電極である溶接ワイヤを一定速度で送給し、溶接ワイヤと母材との間にアークを発生させて溶接が行なわれる。消耗電極式アーク溶接では、溶接ワイヤと母材とが短絡期間とアーク期間とを交互に繰り返す溶接状態になることが多い。
 溶接品質をさらに向上させるために、溶接ワイヤの正送と逆送とを周期的に繰り返して溶接する方法が提案されている(例えば、特許文献1参照)。以下、この溶接方法について説明する。
 図3は、送給速度の正送と逆送とを周期的に繰り返す溶接方法における波形図である。同図(A)は送給速度設定信号Fr(実線)及び実際の送給速度Fw(破線)の波形を示し、同図(B)は溶接電流Iwの波形を示し、同図(C)は溶接電圧Vwの波形を示し、同図(D)は平均送給速度設定信号Farの波形を示す。以下、同図を参照して説明する。
 同図(A)に示すように、送給速度設定信号Fr及び送給速度Fwは、0よりも上側が正送期間となり、下側が逆送期間となる。正送とは溶接ワイヤを母材に近づける方向に送給することであり、逆送とは母材から離反する方向に送給することである。送給速度設定信号Frは、正弦波状に変化しており、正送側にシフトした波形となっている。このために、送給速度設定信号Frの平均値は正の値となり、溶接ワイヤは平均的には正送されている。
 同図(A)の実線で示すように、送給速度設定信号Frは、時刻t1時点では0であり、時刻t1~t2の期間は正送加速期間となり、時刻t2で正送の最大値となり、時刻t2~t3の期間は正送減速期間となり、時刻t3で0となり、時刻t3~t4の期間は逆送加速期間となり、時刻t4で逆送の最大値となり、時刻t4~t5の期間は逆送減速期間となる。そして、時刻t5~t6の期間は再び正送加速期間となり、時刻t6~t7の期間は再び正送減速期間となる。正送の最大値が正送振幅Wsとなり、逆送の最大値の絶対値が逆送振幅Wrとなる。時刻t1~t3の期間が正送期間Tsとなり、時刻t3~t5の期間が逆送期間Trとなる。したがって、同図(A)に示す送給速度設定信号Frの送給速度パターンは、正送振幅Ws、逆送振幅Wr、正送期間Ts及び逆送期間Trの各パラメータから成る正弦波となる。例えば、Ws=50m/min、Wr=40m/min、Ts=5.4ms、Tr=4.6msである。この場合は、1周期は10msとなり、短絡期間とアーク期間とが100Hzで繰り返されることになる。この場合の送給速度の平均値は約4m/min(溶接電流平均値は約150A)となる。
 同図(A)の破線で示すように、送給速度Fwは実際の送給速度であり、送給速度設定信号Frよりも遅れて立ち上がり、遅れて立ち下る正弦波となる。送給速度Fwは、時刻t11時点では0であり、時刻t11~t21の期間は正送加速期間となり、時刻t21で正送の最大値となり、時刻t21~t31の期間は正送減速期間となり、時刻t31で0となり、時刻t31~t41の期間は逆送加速期間となり、時刻t41で逆送の最大値となり、時刻t41~t51の期間は逆送減速期間となる。そして、時刻t51~t61の期間は再び正送加速期間となり、時刻t61~t71の期間は再び正送減速期間となる。このようになるのは、送給モータの過渡特性及び送給経路の送給抵抗のためである。
 同図(D)に示す平均送給速度設定信号Farは、送給速度Fwの平均値を設定する信号である。送給速度Fwの平均値が平均送給速度設定信号Farと等しくなるように送給速度設定信号Frの送給速度パターンが設定されている。すなわち、平均送給速度設定信号Farに対応して正送振幅Ws、逆送振幅Wr、正送期間Ts及び逆送期間Trが予め記憶されている。
 消耗電極式アーク溶接には定電圧制御の溶接電源が使用される。溶接ワイヤと母材との短絡は、時刻t21の送給速度Fwの正送最大値の前後で発生することが多い。同図では、正送の最大値の後の正送減速期間中の時刻t22で発生した場合である。時刻t22において短絡が発生すると、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減し、同図(B)に示すように、溶接電流Iwは次第に増加する。
 同図(A)に示すように、送給速度Fwは、時刻t31からは逆送期間になるので、溶接ワイヤは逆送される。この逆送によって短絡が解除されて、時刻t32においてアークが再発生する。アークの再発生は、時刻t41の送給速度Fwの逆送の最大値の前後で発生することが多い。同図では、逆送の最大値の前の逆送加速期間中の時刻t32で発生した場合である。したがって、時刻t22~t32の期間が短絡期間となる。
 時刻t32においてアークが再発生すると、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増する。同図(B)に示すように、溶接電流Iwは、短絡期間中の最大値の状態から変化を開始する。
 時刻t32~t51の期間中は、同図(A)に示すように、送給速度Fwは逆送状態であるので、溶接ワイヤは引き上げられてアーク長は次第に長くなる。アーク長が長くなると、溶接電圧Vwは大きくなり、定電圧制御されているので溶接電流Iwは小さくなる。したがって、時刻t32~t51のアーク期間中の逆送期間中は、同図(C)に示すように、溶接電圧Vwは次第に大きくなり、同図(B)に示すように、溶接電流Iwは次第に小さくなる。
 そして、次の短絡が、時刻t61~t71の送給速度Fwの正送減速期間中の時刻t62に発生する。時刻t32~t62の期間がアーク期間となる。時刻t51~t62の期間中は、同図(A)に示すように、送給速度Fwは正送状態であるので、溶接ワイヤは正送されてアーク長は次第に短くなる。アーク長が短くなると、溶接電圧Vwは小さくなり、定電圧制御されているので溶接電流Iwは大きくなる。したがって、時刻t51~t62のアーク期間中の正送期間中は、同図(C)に示すように、溶接電圧Vwは次第に小さくなり、同図(B)に示すように、溶接電流Iwは次第に大きくなる。
 上述したように、溶接ワイヤの正送と逆送とを繰り返す溶接方法では、定速送給の従来技術では不可能であった短絡とアークとの繰り返しの周期を所望値に設定することができるので、スパッタ発生量の削減、ビード外観の改善等の溶接品質の向上を図ることができる。
日本国特許第5201266号公報
 上述したように、従来技術では、平均送給速度設定信号Farを設定すると、この平均送給速度設定信号Farの値に対応した送給速度パターンの送給速度設定信号が設定される。周期的に変化する送給速度設定信号Frの波形と送給速度Fwの波形とは、送給モータの過渡特性及び送給経路の送給抵抗の影響によってずれが生じる。使用する送給モータの種類が異なると過渡特性が異なる。また、使用する溶接トーチの種類が異なると送給経路の送給抵抗が異なる。さらには、溶接を繰り返して行なっていると、次第に送給経路が磨耗して送給抵抗が変化する。これらの送給抵抗の変化に伴って送給速度設定信号Frの波形と送給速度Fwの波形とのずれが変化する。すなわち、平均送給速度設定信号Farの値が同一であっても、送給抵抗が変化すると、送給速度Fwの平均値が変化することになり、溶接電流Iwの平均値が変化することになる。この結果、溶接品質が変動することになる。
 そこで、本発明では、溶接ワイヤの正送と逆送とを周期的に繰り返す溶接において、送給抵抗が変化しても、送給速度の平均値を一定に維持することができ、溶接品質の安定化を図ることができるアーク溶接制御方法を提供することを目的とする。
 上述した課題を解決するために、本発明は、
平均送給速度設定値に対応して記憶されている正送振幅、逆送振幅、正送期間及び逆送期間から成る送給速度パターンで溶接ワイヤの正送と逆送とを周期的に繰り返して、短絡期間とアーク期間とを発生させて溶接を行うアーク溶接制御方法において、
 前記溶接ワイヤの平均送給速度を検出し、前記平均送給速度設定値とこの平均送給速度検出値とが等しくなるように前記正送振幅、前記逆送振幅、前記正送期間又は前記逆送期間の少なくとも1つを変化させて前記送給速度パターンを自動修正する、
ことを特徴とするものである。
 本発明は、溶接終了時に、前記自動修正された前記送給速度パターンを記憶する、
ことを特徴とするものである。
 本発明は、前記正送振幅、前記逆送振幅、前記正送期間及び前記逆送期間に変化範囲を設けた
ことを特徴とするものである。
 本発明によれば、送給抵抗が変化しても、常に送給速度の平均値を平均送給速度設定値と等しい状態に維持することができる。このために、本発明では、溶接ワイヤの正送と逆送とを周期的に繰り返す溶接において、送給抵抗が変化しても、送給速度の平均値を一定に維持することができ、溶接品質の安定化を図ることができる。
本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。 本発明の実施の形態1に係るアーク溶接制御方法を説明するための図1の溶接電源における各信号のタイミングチャートである。 従来技術において、送給速度の正送と逆送とを周期的に繰り返す溶接方法における波形図である。
 以下、図面を参照して本発明の実施の形態について説明する。
[実施の形態1]
 図1は、本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。
 電源主回路PMは、3相200V等の商用電源(図示は省略)を入力として、後述する駆動信号Dvに従ってインバータ制御等による出力制御を行い、出力電圧Eを出力する。この電源主回路PMは、図示は省略するが、商用電源を整流する1次整流器、整流された直流を平滑する平滑コンデンサ、平滑された直流を高周波交流に変換する上記の駆動信号Dvによって駆動されるインバータ回路、高周波交流を溶接に適した電圧値に降圧する高周波変圧器、降圧された高周波交流を直流に整流する2次整流器を備えている。
 リアクトルWLは、上記の出力電圧Eを平滑する。このリアクトルWLのインダクタンス値は、例えば200μHである。
 送給モータWMは、後述する送給制御信号Fcを入力として、正送と逆送とを周期的に繰り返して溶接ワイヤ1を送給速度Fwで送給する。送給モータWMはエンコーダ(図示は省略)を備えており、このエンコーダから送給速度検出信号Fdが出力される。送給モータWMには、過渡応答性の速いモータが使用される。溶接ワイヤ1の送給速度Fwの変化率及び送給方向の反転を速くするために、送給モータWMは溶接トーチ4の先端の近くに設置される場合がある。また、送給モータWMを2個使用して、プッシュプル方式の送給系とする場合もある。
 溶接ワイヤ1は、上記の送給モータWMに結合された送給ロール5の回転によって溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。溶接トーチ4内の給電チップ(図示は省略)と母材2との間には溶接電圧Vwが印加し、溶接電流Iwが通電する。
 出力電圧設定回路ERは、予め定めた出力電圧設定信号Erを出力する。出力電圧検出回路EDは、上記の出力電圧Eを検出し平滑して、出力電圧検出信号Edを出力する。
 電圧誤差増幅回路EAは、上記の出力電圧設定信号Er及び上記の出力電圧検出信号Edを入力として、出力電圧設定信号Er(+)と出力電圧検出信号Ed(-)との誤差を増幅して、電圧誤差増幅信号Eaを出力する。この回路によって、溶接電源は定電圧制御される。
 溶接開始回路STは、トーチスイッチのオン又はオフに対応してHighレベル又はLowレベルになる溶接開始信号Stを出力する。この溶接開始信号StがHighレベルになると溶接が開始され、Lowレベルになると停止される。
 駆動回路DVは、この溶接開始信号St及び上記の電圧誤差増幅信号Eaを入力として、溶接開始信号StがHighレベルのときは、電圧誤差増幅信号Eaに基づいてPWM変調制御を行い、上記のインバータ回路を駆動するための駆動信号Dvを出力する。
 平均送給速度設定回路FARは、予め定めた平均送給速度設定信号Farを出力する。平均送給速度検出回路FADは、上記の送給速度検出信号Fdを入力として、この信号の平均値を算出して、平均送給速度検出信号Fadを出力する。送給誤差増幅回路EFは、上記の平均送給速度設定信号Far及び上記の平均送給速度検出信号Fadを入力として、平均送給速度設定信号Far(+)と平均送給速度検出信号Fad(-)との誤差を増幅して、送給誤差増幅信号Efを出力する。
 正送振幅設定回路WSRは、上記の平均送給速度設定信号Far、後述する正送振幅修正信号Wss及び上記の溶接開始信号Stを入力として、以下の処理を行ない、正送振幅設定信号Wsrを出力する。
1)平均送給速度設定信号Farに対応して記憶されている正送振幅設定信号Wsrを出力する。
2)溶接開始信号StがHighレベル(開始)からLowレベル(停止)に変化したときは、その時点における正送振幅修正信号Wssの値を正送振幅設定信号Wsrに上書き記憶する。
 正送振幅修正回路WSSは、この正送振幅設定信号Wsr及び上記の送給誤差増幅信号Efを入力として、溶接中はWss=Wsr+∫Ef・dtの演算によって修正を行い、正送振幅修正信号Wssとして出力する。送給誤差増幅信号Efが正の値のときは、平均送給速度検出信号Fadの値が平均送給速度設定信号Farの値よりも小さい場合であるので、正送振幅修正信号Wssは増加するように修正される。逆に、送給誤差増幅信号Efが負の値のときは、正送振幅修正信号Wssは減少するように修正される。修正は、下限値と上限値とによって設定された変化範囲内で行なわれる。
 逆送振幅設定回路WRRは、上記の平均送給速度設定信号Far、後述する逆送振幅修正信号Wrs及び上記の溶接開始信号Stを入力として、以下の処理を行ない、逆送振幅設定信号Wrrを出力する。
1)平均送給速度設定信号Farに対応して記憶されている逆送振幅設定信号Wrrを出力する。
2)溶接開始信号StがHighレベル(開始)からLowレベル(停止)に変化したときは、その時点における逆送振幅修正信号Wrsの値を逆送振幅設定信号Wrrに上書き記憶する。
 逆送振幅修正回路WRSは、この逆送振幅設定信号Wrr及び上記の送給誤差増幅信号Efを入力として、溶接中はWrs=Wrr-∫Ef・dtの演算によって修正を行い、逆送振幅修正信号Wrsとして出力する。送給誤差増幅信号Efが正の値のときは、平均送給速度検出信号Fadの値が平均送給速度設定信号Farの値よりも小さい場合であるので、逆送振幅修正信号Wrsは減少するように修正される。逆に、送給誤差増幅信号Efが負の値のときは、逆送振幅修正信号Wrsは増加するように修正される。修正は、下限値と上限値とによって設定された変化範囲内で行なわれる。
 正送期間設定回路TSRは、上記の平均送給速度設定信号Far、後述する正送期間修正信号Tss及び上記の溶接開始信号Stを入力として、以下の処理を行ない、正送期間設定信号Tsrを出力する。
1)平均送給速度設定信号Farに対応して記憶されている正送期間設定信号Tsrを出力する。
2)溶接開始信号StがHighレベル(開始)からLowレベル(停止)に変化したときは、その時点における正送期間修正信号Tssの値を正送期間設定信号Tsrに上書き記憶する。
 正送期間修正回路TSSは、この正送期間設定信号Tsr及び上記の送給誤差増幅信号Efを入力として、溶接中はTss=Tsr+∫Ef・dtの演算によって修正を行い、正送期間修正信号Tssとして出力する。送給誤差増幅信号Efが正の値のときは、平均送給速度検出信号Fadの値が平均送給速度設定信号Farの値よりも小さい場合であるので、正送期間修正信号Tssは増加するように修正される。逆に、送給誤差増幅信号Efが負の値のときは、正送期間修正信号Tssは減少するように修正される。修正は、下限値と上限値とによって設定された変化範囲内で行なわれる。
 逆送期間設定回路TRRは、上記の平均送給速度設定信号Far、後述する逆送期間修正信号Trs及び上記の溶接開始信号Stを入力として、以下の処理を行ない、逆送期間設定信号Trrを出力する。
1)平均送給速度設定信号Farに対応して記憶されている逆送期間設定信号Trrを出力する。
2)溶接開始信号StがHighレベル(開始)からLowレベル(停止)に変化したときは、その時点における逆送期間修正信号Trsの値を逆送期間設定信号Trrに上書き記憶する。
 逆送期間修正回路TRSは、この逆送期間設定信号Trr及び上記の送給誤差増幅信号Efを入力として、溶接中はTrs=Trr-∫Ef・dtの演算によって修正を行い、逆送期間修正信号Trsとして出力する。送給誤差増幅信号Efが正の値のときは、平均送給速度検出信号Fadの値が平均送給速度設定信号Farの値よりも小さい場合であるので、逆送期間修正信号Trsは減少するように修正される。逆に、送給誤差増幅信号Efが負の値のときは、逆送期間修正信号Trsは増加するように修正される。修正は、下限値と上限値とによって設定された変化範囲内で行なわれる。
 送給速度設定回路FRは、上記の正送振幅修正信号Wss、上記の逆送振幅修正信号Wrs、上記の正送期間修正信号Tss及び上記の逆送期間修正信号Trsを入力として、これらのパラメータから形成される正弦波状の送給速度パターンである送給速度設定信号Frを出力する。この送給速度設定信号Frが0以上のときは正送期間となり、0未満のときは逆送期間となる。
 送給制御回路FCは、この送給速度設定信号Fr及び上記の溶接開始信号Stを入力として、溶接開始信号StがHighレベル(開始)のときは送給速度設定信号Frの値に相当する送給速度Fwで溶接ワイヤ1を送給するための送給制御信号Fcを上記の送給モータWMに出力し、溶接開始信号StがLowレベル(停止)のときは送給停止指令となる送給制御信号Fcを出力する。
 図2は、本発明の実施の形態1に係るアーク溶接制御方法を説明するための図1の溶接電源における各信号のタイミングチャートである。同図(A)は送給速度設定信号Frの時間変化を示し、同図(B)は溶接電流Iwの時間変化を示し、同図(C)は溶接電圧Vwの時間変化を示し、同図(D)は平均送給速度設定信号Farの時間変化を示す。同図は上述した図3と対応しており、同一の動作についての説明は繰り返さない。以下、同図を参照して説明する。
 同図(A)の実線で示すように、送給速度設定信号Frは、時刻t1~t5の周期において、正送振幅はWs1となり、逆送振幅はWr1となり、正送期間はTs1となり、逆送期間はTr1となっている。ここで、時刻t5において、平均送給速度検出信号Fadの値が平均送給速度設定信号Farの値よりも小である場合とする。Fad<Farであるので、図1の正送振幅修正回路WSSによって、次周期(時刻t5~t9)における正送振幅はWs2に修正されて、Ws2>Ws1となる。
 同様に、図1の逆送振幅修正回路WRSによって、次周期(時刻t5~t9)における逆送振幅はWr2に修正されて、Wr2<Wr1となる。
 同様に、図1の正送期間修正回路TSSによって、次周期(時刻t5~t9)における正送期間はTs2に修正されて、Ts2>Ts1となる。
 同様に、図1の逆送期間修正回路TRSによって、次周期(時刻t5~t9)における逆送期間はTr2に修正されて、Tr2<Tr1となる。
 上述したように、時刻t5~t9の送給速度設定信号Frの送給速度パターンが修正されることによって、送給速度Fwの平均値が同図(D)に示す平均送給速度設定信号Farの値と等しくなる。
 また、時刻t5において、Fad>Farであった場合は、Ws2<Ws1、Wr2>Wr1、Ts2<Ts1、Tr2>Tr1にそれぞれ修正されることになる。
 上記においては、正送振幅、逆送振幅、正送期間及び逆送期間を全て修正する場合について説明したが、これらのパラメータの内の少なくとも1つを修正するようにしても良い。また、修正を送給速度設定信号Frの所定周期ごとに行うようにしても良い。また、各パラメータの修正ゲインをパラメータごとに異なる値としても良い。上記においては、送給速度設定信号Frが正弦波状に変化する場合を例示したが、台形波状、三角波状等に変化するようにしても良い。
 上述した実施の形態1によれば、平均送給速度を検出し、平均送給速度設定値とこの平均送給速度検出値とが等しくなるように、正送振幅、逆送振幅、正送期間又は逆送期間の少なくとも1つを変化させて、送給速度パターンを自動修正する。これにより、送給抵抗が変化しても、常に送給速度の平均値を平均送給速度設定値と等しい状態に維持することができる。このために、本実施の形態では、溶接ワイヤの正送と逆送とを周期的に繰り返す溶接において、送給抵抗が変化しても、送給速度の平均値を一定に維持することができ、溶接品質の安定化を図ることができる。
 さらに、実施の形態1によれば、溶接終了時に、自動修正された送給速度パターンを記憶することができる。すなわち、溶接が終了した時点における最終的に修正された正送振幅、逆送振幅、正送期間及び逆送期間を記憶することができる。これにより、次の溶接においては、修正済みの適正な送給速度パターンで溶接を開始することができるので、溶接品質の安定化をさらに図ることができる。
 さらに、実施の形態1によれば、正送振幅、逆送振幅、正送期間及び逆送期間の修正値に変化範囲を設けている。すなわち、各パラメータの修正値に上限値と下限値を設定して、変化範囲を制限している。この変化範囲は、溶接状態が安定となる範囲として設定される。これにより、パラメータの修正によって溶接状態が不安定状態になることを抑制することができる。
 本発明によれば、溶接ワイヤの正送と逆送とを周期的に繰り返す溶接において、送給抵抗が変化しても、送給速度の平均値を一定に維持することができ、溶接品質の安定化を図ることが可能なアーク溶接制御方法を提供することができる。
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
 本出願は、2014年1月15日出願の日本特許出願(特願2014-004700)に基づくものであり、その内容はここに取り込まれる。
1     溶接ワイヤ
2     母材
3     アーク
4     溶接トーチ
5     送給ロール
DV   駆動回路
Dv   駆動信号
E     出力電圧
EA   電圧誤差増幅回路
Ea   電圧誤差増幅信号
ED   出力電圧検出回路
Ed   出力電圧検出信号
EF   送給誤差増幅回路
Ef   送給誤差増幅信号
ER   出力電圧設定回路
Er   出力電圧設定信号
FAD 平均送給速度検出回路
Fad 平均送給速度検出信号
FAR 平均送給速度設定回路
Far 平均送給速度設定信号
FC   送給制御回路
Fc   送給制御信号
Fd   送給速度検出信号
FR   送給速度設定回路
Fr   送給速度設定信号
Fw   送給速度
Iw   溶接電流
PM   電源主回路
ST   溶接開始回路
St   溶接開始信号
Tr   逆送期間
TRR 逆送期間設定回路
Trr 逆送期間設定信号
TRS 逆送期間修正回路
Trs 逆送期間修正信号
Ts   正送期間
TSR 正送期間設定回路
Tsr 正送期間設定信号
TSS 正送期間修正回路
Tss 正送期間修正信号
Vw   溶接電圧
WL   リアクトル
WM   送給モータ
Wr   逆送振幅
WRR 逆送振幅設定回路
Wrr 逆送振幅設定信号
WRS 逆送振幅修正回路
Wrs 逆送振幅修正信号
Ws   正送振幅
WSR 正送振幅設定回路
Wsr 正送振幅設定信号
WSS 正送振幅修正回路
Wss 正送振幅修正信号

Claims (3)

  1.  平均送給速度設定値に対応して記憶されている正送振幅、逆送振幅、正送期間及び逆送期間から成る送給速度パターンで溶接ワイヤの正送と逆送とを周期的に繰り返して、短絡期間とアーク期間とを発生させて溶接を行うアーク溶接制御方法において、
     前記溶接ワイヤの平均送給速度を検出し、前記平均送給速度設定値とこの平均送給速度検出値とが等しくなるように前記正送振幅、前記逆送振幅、前記正送期間又は前記逆送期間の少なくとも1つを変化させて前記送給速度パターンを自動修正する、
    ことを特徴とするアーク溶接制御方法。
  2.  溶接終了時に、前記自動修正された前記送給速度パターンを記憶する、
    ことを特徴とする請求項1記載のアーク溶接制御方法。
  3.  前記正送振幅、前記逆送振幅、前記正送期間及び前記逆送期間に変化範囲を設けた
    ことを特徴とする請求項1又は2記載のアーク溶接制御方法。
PCT/JP2015/050384 2014-01-15 2015-01-08 アーク溶接制御方法 WO2015107974A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/105,714 US10456853B2 (en) 2014-01-15 2015-01-08 Arc welding control method
KR1020167012492A KR102193084B1 (ko) 2014-01-15 2015-01-08 아크 용접 제어 방법
CN201580002522.8A CN105705285B (zh) 2014-01-15 2015-01-08 电弧焊接控制方法
JP2015557809A JP6555818B2 (ja) 2014-01-15 2015-01-08 アーク溶接制御方法
EP15737906.6A EP3095546B1 (en) 2014-01-15 2015-01-08 Arc welding control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-004700 2014-01-15
JP2014004700 2014-01-15

Publications (1)

Publication Number Publication Date
WO2015107974A1 true WO2015107974A1 (ja) 2015-07-23

Family

ID=53542864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050384 WO2015107974A1 (ja) 2014-01-15 2015-01-08 アーク溶接制御方法

Country Status (6)

Country Link
US (1) US10456853B2 (ja)
EP (1) EP3095546B1 (ja)
JP (1) JP6555818B2 (ja)
KR (1) KR102193084B1 (ja)
CN (1) CN105705285B (ja)
WO (1) WO2015107974A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007619A (ja) * 2014-06-24 2016-01-18 株式会社ダイヘン アーク溶接制御方法
CN106552984A (zh) * 2015-09-28 2017-04-05 株式会社达谊恒 正反进给交流电弧焊接方法
JP2018176280A (ja) * 2017-04-06 2018-11-15 リンカーン グローバル,インコーポレイテッド アーク溶接及びワイヤ操作制御のためのシステムと方法
JPWO2019203162A1 (ja) * 2018-04-18 2021-05-13 パナソニックIpマネジメント株式会社 アーク溶接制御方法
JP2023501863A (ja) * 2020-04-29 2023-01-20 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 溶接プロセスおよび溶接プロセスを実施するための溶接装置
JP7430969B2 (ja) 2020-06-17 2024-02-14 株式会社ダイヘン アーク溶接装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488823B (zh) 2014-09-08 2019-02-05 株式会社达谊恒 电弧焊接控制方法
US11311958B1 (en) * 2019-05-13 2022-04-26 Airgas, Inc. Digital welding and cutting efficiency analysis, process evaluation and response feedback system for process optimization

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226732A (ja) * 1998-02-16 1999-08-24 Hitachi Constr Mach Co Ltd 自動溶接装置における溶接ワイヤ送給制御装置
JP2000158136A (ja) * 1998-11-20 2000-06-13 Daihen Corp チップ・被溶接物間距離算出方法並びに溶接線倣い制御方法及び装置
JP2007275995A (ja) * 2007-07-27 2007-10-25 Matsushita Electric Ind Co Ltd 溶接終了制御方法及びアーク溶接機
US20110309063A1 (en) * 2010-06-17 2011-12-22 lllinois Tool Works Inc. Welding wire feeder with magnetic rotational speed sensor
WO2012164833A1 (ja) * 2011-06-03 2012-12-06 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
JP5201266B2 (ja) 2009-07-29 2013-06-05 パナソニック株式会社 アーク溶接方法およびアーク溶接装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT282707B (de) 1967-07-18 1970-07-10 Philips Nv Elektronenstrahlröhre mit einer Elektronenstrahlquelle zum Erzeugen mehrerer Elektronenbündel
IT1038966B (it) 1975-06-12 1979-11-30 Itw Fastex Italia Spa Madrevite in materiale plastico funzionante da tassello
US5973291A (en) * 1998-08-11 1999-10-26 Lincoln Global, Inc. Method and system for determining the feedability of welding wire
US7339135B2 (en) * 2004-06-04 2008-03-04 Illinois Tool Works Inc. Welding arc stabilization process
JP5349100B2 (ja) * 2009-03-23 2013-11-20 株式会社ダイヘン 溶接電源装置
US8513568B2 (en) 2009-06-19 2013-08-20 Panasonic Corporation Consumable electrode arc welding method and consumable electrode arc welding device
WO2011004586A1 (ja) * 2009-07-10 2011-01-13 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
EP2335857B1 (en) * 2009-07-29 2016-08-31 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding device
JP2011212707A (ja) * 2010-03-31 2011-10-27 Daihen Corp アーク溶接方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226732A (ja) * 1998-02-16 1999-08-24 Hitachi Constr Mach Co Ltd 自動溶接装置における溶接ワイヤ送給制御装置
JP2000158136A (ja) * 1998-11-20 2000-06-13 Daihen Corp チップ・被溶接物間距離算出方法並びに溶接線倣い制御方法及び装置
JP2007275995A (ja) * 2007-07-27 2007-10-25 Matsushita Electric Ind Co Ltd 溶接終了制御方法及びアーク溶接機
JP5201266B2 (ja) 2009-07-29 2013-06-05 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
US20110309063A1 (en) * 2010-06-17 2011-12-22 lllinois Tool Works Inc. Welding wire feeder with magnetic rotational speed sensor
WO2012164833A1 (ja) * 2011-06-03 2012-12-06 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007619A (ja) * 2014-06-24 2016-01-18 株式会社ダイヘン アーク溶接制御方法
CN106552984A (zh) * 2015-09-28 2017-04-05 株式会社达谊恒 正反进给交流电弧焊接方法
CN106552984B (zh) * 2015-09-28 2020-07-07 株式会社达谊恒 正反进给交流电弧焊接方法
JP2018176280A (ja) * 2017-04-06 2018-11-15 リンカーン グローバル,インコーポレイテッド アーク溶接及びワイヤ操作制御のためのシステムと方法
JPWO2019203162A1 (ja) * 2018-04-18 2021-05-13 パナソニックIpマネジメント株式会社 アーク溶接制御方法
JP7365598B2 (ja) 2018-04-18 2023-10-20 パナソニックIpマネジメント株式会社 アーク溶接制御方法
JP2023501863A (ja) * 2020-04-29 2023-01-20 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 溶接プロセスおよび溶接プロセスを実施するための溶接装置
JP7249467B2 (ja) 2020-04-29 2023-03-30 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 溶接プロセスおよび溶接プロセスを実施するための溶接装置
JP7430969B2 (ja) 2020-06-17 2024-02-14 株式会社ダイヘン アーク溶接装置

Also Published As

Publication number Publication date
KR20160105770A (ko) 2016-09-07
JP6555818B2 (ja) 2019-08-07
US10456853B2 (en) 2019-10-29
CN105705285A (zh) 2016-06-22
US20170001254A1 (en) 2017-01-05
KR102193084B1 (ko) 2020-12-18
EP3095546A4 (en) 2017-10-11
EP3095546B1 (en) 2019-03-13
EP3095546A1 (en) 2016-11-23
CN105705285B (zh) 2018-11-16
JPWO2015107974A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6555818B2 (ja) アーク溶接制御方法
JP6472387B2 (ja) アーク溶接制御方法
JP2018001270A (ja) アーク溶接制御方法
WO2015125643A1 (ja) アーク溶接電源
KR102213614B1 (ko) 아크 용접 제어 방법
JP2017013088A (ja) 正逆送給アーク溶接方法
JP6448622B2 (ja) アーク溶接制御方法
JP6544865B2 (ja) アーク溶接制御方法
JP6555825B2 (ja) アーク溶接制御方法
WO2016125540A1 (ja) アーク溶接制御方法
JP6396162B2 (ja) アーク溶接制御方法
WO2015166793A1 (ja) アーク溶接制御方法
JP2016087610A (ja) アーク溶接の状態監視方法
JP6261614B2 (ja) アーク溶接制御方法
JP6347721B2 (ja) アーク溶接制御方法
JP6198327B2 (ja) アーク溶接制御方法
JP6516291B2 (ja) 正逆送給アーク溶接方法
JP2015231632A (ja) アーク溶接制御方法
JP2016203221A (ja) 正逆送給アーク溶接の倣い制御方法
JP2015147245A (ja) アーク溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557809

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167012492

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15105714

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015737906

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015737906

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE