WO2015107924A1 - データ処理装置、及び、データ処理方法 - Google Patents

データ処理装置、及び、データ処理方法 Download PDF

Info

Publication number
WO2015107924A1
WO2015107924A1 PCT/JP2015/050090 JP2015050090W WO2015107924A1 WO 2015107924 A1 WO2015107924 A1 WO 2015107924A1 JP 2015050090 W JP2015050090 W JP 2015050090W WO 2015107924 A1 WO2015107924 A1 WO 2015107924A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
emergency alert
signaling
data processing
data
Prior art date
Application number
PCT/JP2015/050090
Other languages
English (en)
French (fr)
Inventor
直樹 吉持
山本 真紀子
横川 峰志
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201580003027.9A priority Critical patent/CN105814902B/zh
Priority to JP2015557782A priority patent/JP6451651B2/ja
Priority to EP15737268.1A priority patent/EP3096528B1/en
Priority to US15/028,801 priority patent/US10117001B2/en
Publication of WO2015107924A1 publication Critical patent/WO2015107924A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/8126Monomedia components thereof involving additional data, e.g. news, sports, stocks, weather forecasts
    • H04N21/814Monomedia components thereof involving additional data, e.g. news, sports, stocks, weather forecasts comprising emergency warnings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/59Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for emergency or urgency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/86Arrangements characterised by the broadcast information itself
    • H04H20/95Arrangements characterised by the broadcast information itself characterised by a specific format, e.g. MP3 (MPEG-1 Audio Layer 3)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/23605Creation or processing of packetized elementary streams [PES]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/488Data services, e.g. news ticker
    • H04N21/4882Data services, e.g. news ticker for displaying messages, e.g. warnings, reminders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6118Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving cable transmission, e.g. using a cable modem

Definitions

  • the present technology relates to a data processing device and a data processing method, for example, a data processing device that enables an emergency alert to be issued promptly in DVB-C2, and a data processing method.
  • Non-Patent Document 1 As a transmission standard of cable television broadcasting, for example, there is DVB-C2 which is a next-generation cable television standard standardized by DVB (Digital Video Broadcasting) (Non-Patent Document 1).
  • DVB-C2 a highly efficient modulation scheme, coding scheme, PLP (Physical Layer Pipe) (PLP) bundling, etc. are defined.
  • PLP Physical Layer Pipe
  • Japan has a high frequency of occurrence of earthquakes, and there is a very high demand for urgent warning to be issued regarding earthquakes.
  • the present technology has been made in view of such a situation, and enables DVB-C2 to quickly emit an emergency alert.
  • the first data processing apparatus of the present technology is a data processing apparatus including a generation unit that generates L1 signaling including an emergency alert signal related to an emergency alert in L1 signaling part 2 of DVB (Digital Video Broadcasting) -C2.
  • L1 signaling including an emergency alert signal related to an emergency alert in L1 signaling part 2 of DVB (Digital Video Broadcasting) -C2.
  • the first data processing method of the present technology is a data processing method including the step of generating L1 signaling including an emergency alert signal related to an emergency alert in L1 signaling part 2 of DVB (Digital Video Broadcasting) -C2.
  • L1 signaling including an emergency alert signal related to an emergency alert is generated in L1 signaling part 2 of DVB (Digital Video Broadcasting) -C2.
  • the second data processing apparatus of the present technology is transmitted from a transmitting apparatus including a generation unit that generates L1 signaling including an emergency alert signal related to an emergency alert in L1 signaling part 2 of Digital Video Broadcasting (DVB) -C2. It is a data processing device provided with a processing part which processes said L1 signaling obtained from coming data.
  • a transmitting apparatus including a generation unit that generates L1 signaling including an emergency alert signal related to an emergency alert in L1 signaling part 2 of Digital Video Broadcasting (DVB) -C2.
  • It is a data processing device provided with a processing part which processes said L1 signaling obtained from coming data.
  • a second data processing method is transmitted from a transmitting device including a generation unit that generates L1 signaling including an emergency alert signal related to an emergency alert in L1 signaling part 2 of Digital Video Broadcasting (DVB) -C2.
  • a data processing method comprising the step of processing the L1 signaling obtained from incoming data.
  • transmission is provided with a generation unit that generates L1 signaling including an emergency alert signal related to an emergency alert in L1 signaling part 2 of DVB (Digital Video Broadcasting) -C2.
  • L1 signaling including an emergency alert signal related to an emergency alert in L1 signaling part 2 of DVB (Digital Video Broadcasting) -C2.
  • the L1 signaling obtained from the data transmitted from the device is processed.
  • the data processing apparatus may be an independent apparatus or an internal block constituting one apparatus.
  • an emergency alert can be issued promptly.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of a transmission system to which the present technology is applied.
  • FIG. 2 is a block diagram showing a configuration example of a transmission device 11.
  • FIG. 6 is a diagram showing a structure of a C2 frame configured by a frame configuration unit 30. It is a figure which shows the format (syntax) of L1 signaling part 2.
  • FIG. 5 is a flowchart illustrating an example of processing (transmission processing) of the transmission device 11;
  • FIG. 2 is a block diagram showing a configuration example of a receiving device 12; 5 is a flowchart illustrating processing (reception processing) of the reception device 12;
  • Fig. 21 is a block diagram illustrating a configuration example of an embodiment of a computer to which the present technology is applied.
  • FIG. 1 is a transmission system to which the present technology is applied (a system is a logical aggregation of a plurality of devices, regardless of whether devices of respective configurations are in the same case or not). It is a block diagram showing an example of composition of an embodiment.
  • the transmission system includes a transmitter 11 and a receiver 12.
  • the transmission device 11 performs, for example, transmission (digital transmission) (data transmission) of a television broadcast program or the like. That is, for example, the transmission device 11 can transmit a stream of target data to be transmitted, such as image data and audio data as a program, to a cable television network (wired connection, for example, in compliance with the DVB-C2 standard). Transmission (transmission) via the transmission line 13.
  • the receiving device 12 receives the data transmitted from the transmitting device 11 via the transmission path 13, restores the original stream, and outputs it.
  • the transmission system shown in FIG. 1 includes data transmission conforming to the DVB-C2 standard, data transmission conforming to the standard such as DVB-T2, DVB-S2, and ATSC (Advanced Television Systems Committee standards), and other data. It can be applied to transmission.
  • satellite channels, terrestrial waves, etc. can be adopted other than the cable television network.
  • FIG. 2 is a block diagram showing an example of the configuration of the transmission device 11 of FIG.
  • the transmitting device 11 includes a data processing unit 21, a forward error correction (FEC) unit 22, a mapping unit 23, a data slice packet configuration unit 24, a data slice configuration unit 25, an L1 signaling generation unit 26, an FEC unit 27, A mapping unit 28, a preamble header adding unit 29, a frame forming unit 30, an IFFT (Inverse Fast Fourier Transform) unit 31, a DAC (Digital to Analog Converter) 32, and a modulation unit 33.
  • FEC forward error correction
  • actual data which is target data such as TS (Transport Stream)
  • PLP Transport Stream
  • the data processing unit 21 constructs a BB frame by adding a BB (Base Band) header or the like to actual data (PLP) supplied thereto, and supplies the BB frame to the FEC unit 22.
  • BB Base Band
  • the FEC unit 22 performs error correction coding such as BCH coding or LDPC coding on the BB frame from the data processing unit 21, for example, and supplies the FEC frame obtained as a result to the mapping unit 23.
  • error correction coding such as BCH coding or LDPC coding
  • the mapping unit 23 maps the FEC frame from the FEC unit 22 to a signal point on a constellation determined by a predetermined digital orthogonal modulation modulation scheme in units of symbols, which is a predetermined number of bits, as a mapping result.
  • the symbols are supplied to the data slice packet configuration unit 24 in units of FEC frames.
  • the data slice packet configuration unit 24 configures a data slice packet by adding an FEC frame header to one or two of the FEC frames from the mapping unit 23.
  • the FEC frame header is L1 signaling part 1 (L1 signaling part 1)
  • the FEC frame header is a PLP_ID that identifies the PLP that constitutes the FEC frame to which the FEC frame header is added.
  • MODCOD representing the modulation scheme (MOD) of orthogonal modulation in the mapping of the FEC frame, and information such as the code length of the error correction coding applied to the FEC frame.
  • the data slice packet configuration unit 24 configures a data slice packet, and supplies the data slice packet to the data slice configuration unit 25.
  • the data slice configuration unit 25 configures a data slice from the data slice packet from the data slice packet configuration unit 24 and supplies the data slice to the frame configuration unit 30.
  • the L1 signaling generation unit 26 generates L1 signaling including an emergency alert signal related to an emergency alert in L1 signaling part 2 (L1 signaling part 2) of DVB-C2 including control data necessary for demodulation of actual data, The data is supplied to the FEC unit 27.
  • a signal of one or more bits can be adopted as the emergency alert signal.
  • the emergency alert signal for example, a 1-bit signal representing the presence or absence of a specific disaster such as an earthquake can be employed.
  • the emergency alert signal for example, a signal of 2 bits or more representing the presence or absence of a disaster such as an earthquake, a tsunami, a tornado, and the type of the disaster can be adopted.
  • the emergency alert signal for example, a signal of 2 bits or more representing the presence or absence of a specific disaster such as an earthquake and the scale of the disaster can be adopted.
  • a 1-bit signal is adopted as the emergency alert signal.
  • the FEC unit 27 performs error correction coding on the L1 signaling from the L1 signaling generation unit 26, and supplies the L1 signaling as the error correction coding result to the mapping unit 28.
  • the mapping unit 28 maps L1 signaling from the FEC unit 27 to signal points on a constellation determined by a predetermined digital orthogonal modulation modulation scheme in units of symbols, which is a predetermined number of bits, as a mapping result.
  • the L1 signaling (symbols thereof) is supplied to the preamble header adder 29.
  • the preamble header adding unit 29 adds a preamble header to the head of L1 signaling from the mapping unit 23, and supplies a preamble symbol obtained as a result to the frame configuration unit 30.
  • the preamble header includes the length of L1 signaling (L1 signaling part 2) and the like.
  • the frame configuration unit 30 configures a C2 frame from (the symbol of) the data slice from the data slice configuration unit 25 and the preamble symbol from the preamble header attachment unit 29, and supplies the C2 frame to the IFFT unit 31.
  • the IFFT unit 31 performs IFFT of the C2 frame from the frame configuration unit 30, and supplies a signal obtained as a result to the DAC 32.
  • the DAC 32 DA converts the signal from the IFFT unit 31 and supplies the signal to the modulation unit 33.
  • the modulation unit 33 modulates the signal from the DAC 32 into an RF (Radio Frequency) signal, and transmits the signal via the transmission path 13 (FIG. 1).
  • RF Radio Frequency
  • FIG. 3 is a diagram showing the structure of the C2 frame configured by the frame configuration unit 30. As shown in FIG. 3
  • the C2 frame (C2 frame) is composed of a preamble symbol (Preamble Symbol (s)) and a data symbol (Data Symbols).
  • the preamble symbol includes L1 signaling, that is, L1 signaling part 2 (L1 signaling part 2) including an emergency alert signal.
  • the data symbols are symbols of data slices obtained by the data slice configuration unit 25 (FIG. 2).
  • FIG. 4 is a diagram showing the format (syntax) of L1 signaling part 2. As shown in FIG. 4
  • L1 signaling part 2 means L1 signaling part 2 defined in DVB-C.2: ETSI EN 302 769 V1.2.1 (2011-04).
  • RESERVED_1, RESERVED_2, RESERVED_3, and RESERVED_4 indicated by A1, A2, A3 and A4 in FIG. 4 are present.
  • any (one or more bits) of fields RESERVED_1, RESERVED_2, RESERVED_3, and RESERVED_4 is newly defined as an emergency alert field, and the emergency alert signal is stored in the emergency alert field. It can be included.
  • the field RESERVED_1 is in a loop which is repeated by the number PLP number DSLICE_NUM_PLP. Therefore, when the field RESERVED_1 includes the emergency alert signal, the emergency alert signal will be included by the number of PLPs.
  • the field RESERVED_2 is in a loop that is repeated by the number NUM_DSLICE of data slices (DATA SLICE). Therefore, when the field RESERVED_2 includes the emergency alert signal, the emergency alert signal will be included by the number of data slices.
  • the field RESERVED_3 is present in a loop which is repeated by the number NUM_NOTCH of notches. Therefore, when the field RESERVED_3 includes the emergency alert signal, the emergency alert signal will be included by the number of notches.
  • notches do not necessarily exist. Therefore, in the case where the field RESERVED_3 includes the emergency alert signal, it becomes difficult to transmit the emergency alert signal when there is no notch.
  • the emergency alert signal can be transmitted only once (instead of repeatedly transmitting) for one C2 frame. That is, the emergency alert signal can be efficiently transmitted.
  • an emergency alert field can be added to the L1 signaling part 2 separately from the unused fields RESERVED_1 to RESERVED_4, and the emergency alert signal can be included in the emergency alert field.
  • the emergency alert signal can be included not in L1 signaling part 2 but in TS or the like as actual data.
  • the receiver 12 decodes the data symbol of the C2 frame (FIG. 3) to obtain the emergency alert signal. Decoding of the TS, etc. is required, and the transmission delay from the transmission of the emergency alert signal by the transmitter 11 to the acquisition of the emergency alert signal by the receiver 12 becomes large.
  • the emergency alert can be issued promptly in DVB-C2.
  • FIG. 5 is a flowchart for explaining an example of processing (transmission processing) of the transmission device 11 of FIG.
  • step S11 the data processing unit 21 configures a BB frame by adding a BB header to actual data supplied thereto, and the like, and supplies the frame to the FEC unit 22. Go to S12.
  • step S12 the FEC unit 22 performs error correction coding on the BB frame from the data processing unit 21, supplies the FEC frame obtained as a result to the mapping unit 23, and the process proceeds to step S13. .
  • step S13 the mapping unit 23 maps the FEC frame from the FEC unit 22 to the signal point on the predetermined constellation in units of a predetermined number of bits as a symbol, and the symbol as the mapping result is an FEC frame
  • the unit is supplied to the data slice packet configuration unit 24, and the process proceeds to step S14.
  • step S14 the data slice packet configuration unit 24 configures a data slice packet by adding an FEC frame header to the FEC frame from the mapping unit 23, and supplies the data slice packet to the data slice configuration unit 25. , And proceeds to step S15.
  • step S15 the data slice configuration unit 25 configures a data slice from the data slice packet from the data slice packet configuration unit 24, supplies it as a data symbol to the frame configuration unit 30, and the process proceeds to step S25. .
  • the transmission apparatus 11 performs the processes of steps S21 to S24 in parallel with the processes of steps S11 to S15 described above.
  • step S21 the L1 signaling generation unit 26 generates L1 signaling including the emergency alert signal in L1 signaling part 2 including control data necessary for demodulation of actual data, and supplies the L1 signaling to the FEC unit 27 The processing proceeds to step S22.
  • step S22 the FEC unit 27 performs error correction coding on the L1 signaling from the L1 signaling generation unit 26, supplies the L1 signaling as the error correction coding result to the mapping unit 28, and performs processing.
  • the process proceeds to step S23.
  • step S23 the mapping unit 28 maps the L1 signaling from the FEC unit 27 to the signal point on the constellation in a predetermined bit unit as a symbol, and (the symbol of) the L1 signaling as the mapping result is After being supplied to the preamble header adder 29, the process proceeds to step S24.
  • step S24 the preamble header adding unit 29 adds a preamble header to the head of L1 signaling from the mapping unit 23, supplies the preamble symbol obtained as a result to the frame configuration unit 30, and the process proceeds to step S25. Go to
  • step S25 the frame configuration unit 30 configures a C2 frame (FIG. 3) from the data symbols of the data slice from the data slice configuration unit 25 and the preamble symbols from the preamble header attachment unit 29, and makes the IFFT unit 31
  • step S26 the process proceeds to step S26.
  • step S26 the IFFT unit 31 performs IFFT of the C2 frame from the frame configuration unit 30, supplies the resulting signal to the DAC 32, and the process proceeds to step S27.
  • step S27 the DAC 32 DA converts the signal from the IFFT unit 31 and supplies the signal to the modulation unit 33, and the process proceeds to step S28.
  • step S28 the modulation unit 33 modulates the signal from the DAC 32 into an RF signal and transmits the signal via the transmission path 13 (FIG. 1).
  • FIG. 6 is a block diagram showing a configuration example of the receiving device 12 of FIG.
  • the receiver 12 includes a demodulator 51, an ADC (Analog to Digital Converter) 52, an FFT (Fast Fourier Transform) 53, a frame decomposer 54, a data slice decomposer 55, a data slice packet decomposer 56, A mapping unit 57, an FEC unit 58, a data processing unit 59, a preamble header analysis unit 60, a demapping unit 61, an FEC unit 62, an L1 signaling processing unit 63, and an emergency alert signal processing unit 64.
  • ADC Analog to Digital Converter
  • FFT Fast Fourier Transform
  • the demodulator 51 receives an RF signal transmitted from the transmitter 11 via the transmission path 13 (FIG. 1). The demodulator 51 demodulates the RF signal, and supplies the resultant demodulated signal to the ADC 52.
  • the ADC 52 AD converts the demodulated signal from the demodulator 51 and supplies the digital signal obtained as a result to the FFT unit 53.
  • the FFT unit 53 performs FFT of the digital signal from the ADC 52, and supplies (the signal of) the C2 frame obtained as a result to the frame decomposition unit 54.
  • the frame decomposition unit 54 decomposes the C2 frame (FIG. 3) from the FFT unit 53 into data symbols (symbols of data slices) and preamble symbols, and supplies the data symbols to the data slice decomposition unit 55,
  • the preamble symbol is supplied to the preamble header analysis unit 60.
  • the data slice decomposing unit 55 decomposes the data symbol from the frame decomposing unit 54, that is, (the symbol of) the data slice into data slice packets, and supplies the data slice packet to the data slice packet decomposing unit 56.
  • the data slice packet decomposition unit 56 decomposes the data slice packet into an FEC frame by removing the FEC frame header from the data slice packet from the data slice decomposition unit 55, and supplies it to the demapping unit 57.
  • the modulation scheme, the code length and the like are recognized, and the demapping unit 57 and the FEC unit 58 in the subsequent stage are controlled.
  • the demapping unit 57 performs demapping of (the symbols of) the FEC frame from the data slice packet decomposing unit 56, and supplies the demapping to the FEC unit 58.
  • the FEC unit 58 decodes the error correction code as error correction corresponding to the error correction coding of the FEC unit 22 of FIG. 2 with respect to the FEC frame after demapping from the demapping unit 57.
  • the BB frame obtained by the second data processing unit 21 is restored and supplied to the data processing unit 59.
  • the data processing unit 59 decomposes the BB frame from the FEC unit 58, and restores and outputs actual data.
  • the preamble header analysis unit 60 analyzes the preamble header included in the preamble symbol from the frame decomposition unit 54 to determine the length of L1 signaling (L1 signaling part 2 including the emergency alert signal) included in the preamble symbol. Recognize and extract L1 signaling and supply to demapping 61.
  • the demapping unit 61 demaps (the symbols of) L1 signaling from the preamble header analysis unit 60 and supplies the demapping to the FEC unit 62.
  • the FEC unit 62 decodes the error correction code as the error correction corresponding to the error correction coding of the FEC unit 27 of FIG. 2 with respect to the L1 signaling after demapping from the demapping unit 61.
  • the L1 signaling obtained by the L1 signaling generation unit 26 of 2 is restored and supplied to the L1 signaling processing unit 63.
  • the L1 signaling processing unit 63 processes the L1 signaling from the FEC unit 62 to restore and output control data included in the L1 signaling. In accordance with the control data, each unit constituting the receiving device 12 is controlled.
  • the L1 signaling processing unit 63 processes the L1 signaling from the FEC unit 62 to restore the emergency alert signal included in the L1 signaling, and supplies the emergency alert signal processing unit 64 with the signal.
  • the emergency alert signal processing unit 64 outputs an emergency alert in response to the emergency alert signal from the L1 signaling processing unit 63.
  • the emergency alert signal processing unit 64 when the emergency alert signal from the L1 signaling processing unit 63 indicates that an earthquake has occurred, for example, the emergency alert signal processing unit 64 outputs an emergency alert by an image, a sound, or the like.
  • FIG. 7 is a flowchart for explaining the processing (reception processing) of the reception device 12 of FIG.
  • step S51 the demodulation unit 51 receives and demodulates the RF signal, supplies the resulting demodulated signal to the ADC 52, and the process proceeds to step S52.
  • step S52 the ADC 52 AD converts the demodulated signal from the demodulator 51, supplies the digital signal obtained as a result to the FFT unit 53, and the process proceeds to step S53.
  • step S53 the FFT unit 53 performs FFT of the digital signal from the ADC 52, supplies the resulting C2 frame to the frame decomposition unit 54, and the process proceeds to step S54.
  • step S54 the frame decomposition unit 54 decomposes the C2 frame from the FFT unit 53 into a data slice (data symbol) and a preamble symbol, and supplies the data slice to the data slice decomposition unit 55.
  • a data slice data symbol
  • a preamble symbol supplied to the preamble header analysis unit 60, and the process proceeds to step S55.
  • step S55 the preamble header analysis unit 60 analyzes the preamble header included in the preamble symbol from the frame decomposition unit 54, extracts L1 signaling from the preamble symbol, supplies this to the demapping 61, and The process proceeds to step S56.
  • step S56 the demapping unit 61 demaps the L1 signaling from the preamble header analysis unit 60, supplies the L1 signaling to the FEC unit 62, and the process proceeds to step S57.
  • step S57 the FEC unit 62 performs error correction on the L1 signaling after demapping from the demapping unit 61, supplies the L1 signaling to the L1 signaling processing unit 63, and the process proceeds to step S58.
  • step S58 the L1 signaling processing unit 63 processes the L1 signaling from the FEC unit 62 to restore and output control data included in the L1 signaling. Also, the L1 signaling processing unit 63 processes the L1 signaling from the FEC unit 62 to restore the emergency alert signal included in the L1 signaling, and supplies the emergency alert signal processing unit 64 with the signal.
  • Control data included in L1 signaling includes information necessary for decoding a data slice (data symbol), and when L1 signaling processing unit 63 obtains control data included in L1 signaling, the control data is In the data slice decomposing unit 55 to the data processing unit 59, it is possible to decode data slices (data symbols).
  • step S59 the data slice decomposing unit 55 decomposes (the symbol of) the data slice from the frame decomposing unit 54 into data slice packets, supplies the data slice packet to the data slice packet decomposing unit 56, and proceeds to step S60.
  • step S60 the data slice packet decomposition unit 56 decomposes the data slice packet from the data slice decomposition unit 55 into an FEC frame and supplies the FEC frame to the demapping unit 57, and the process proceeds to step S61.
  • step S61 the demapping unit 57 demaps (the symbols of) the FEC frame from the data slice packet decomposing unit 56, supplies the symbol to the FEC unit 58, and the process proceeds to step S62.
  • step S62 the FEC unit 58 performs error correction on the demapping FEC frame from the demapping unit 57, supplies the BB frame obtained as a result to the data processing unit 59, and the process Go to S63.
  • step S63 the data processing unit 59 decomposes the BB frame from the FEC unit 58, and restores and outputs actual data.
  • the receiving device 12 of FIG. 6 acquires the emergency alert signal included in the L1 signaling part 2 with a short transmission delay. be able to. As a result, in the receiving device 12, an emergency alert can be issued promptly.
  • FIG. 8 shows a configuration example of an embodiment of a computer in which a program for executing the series of processes described above is installed.
  • the program can be recorded in advance in a hard disk 105 or a ROM 103 as a recording medium built in the computer.
  • the program can be stored (recorded) in the removable recording medium 111.
  • Such removable recording medium 111 can be provided as so-called package software.
  • examples of the removable recording medium 111 include a flexible disc, a compact disc read only memory (CD-ROM), a magneto optical disc (MO), a digital versatile disc (DVD), a magnetic disc, a semiconductor memory, and the like.
  • the program may be installed on the computer from the removable recording medium 111 as described above, or may be downloaded to the computer via a communication network or a broadcast network and installed on the built-in hard disk 105. That is, for example, the program is wirelessly transferred from the download site to the computer via an artificial satellite for digital satellite broadcasting, or transferred to the computer via a network such as a LAN (Local Area Network) or the Internet. be able to.
  • a network such as a LAN (Local Area Network) or the Internet.
  • the computer incorporates a CPU (Central Processing Unit) 102, and an input / output interface 110 is connected to the CPU 102 via a bus 101.
  • a CPU Central Processing Unit
  • the CPU 102 executes a program stored in a ROM (Read Only Memory) 103 accordingly. .
  • the CPU 102 loads a program stored in the hard disk 105 into a random access memory (RAM) 104 and executes the program.
  • RAM random access memory
  • the CPU 102 performs the processing according to the above-described flowchart or the processing performed by the configuration of the above-described block diagram. Then, the CPU 102 outputs the processing result from the output unit 106, transmits the processing result from the communication unit 108, or records the processing result on the hard disk 105, for example, through the input / output interface 110, as necessary.
  • the input unit 107 is configured of a keyboard, a mouse, a microphone, and the like. Further, the output unit 106 is configured of an LCD (Liquid Crystal Display), a speaker, and the like.
  • LCD Liquid Crystal Display
  • the processing performed by the computer according to the program does not necessarily have to be performed chronologically in the order described as the flowchart. That is, the processing performed by the computer according to the program includes processing executed in parallel or separately (for example, parallel processing or processing by an object).
  • the program may be processed by one computer (processor) or may be distributed and processed by a plurality of computers. Furthermore, the program may be transferred to a remote computer for execution.
  • the system means a set of a plurality of components (apparatus, modules (parts), etc.), and it does not matter whether all the components are in the same housing or not. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device housing a plurality of modules in one housing are all systems. .
  • the present technology can have a cloud computing configuration in which one function is shared and processed by a plurality of devices via a network.
  • each step described in the above-described flowchart can be executed by one device or in a shared manner by a plurality of devices.
  • the plurality of processes included in one step can be executed by being shared by a plurality of devices in addition to being executed by one device.
  • the present technology can be configured as follows.
  • a data processing apparatus comprising: a generation unit that generates L1 signaling including an emergency alert signal related to an emergency alert in L1 signaling part 2 of DVB (Digital Video Broadcasting) -C2.
  • the emergency alert signal is a signal of one or more bits.
  • the emergency alert signal is a 1-bit signal.
  • the data processing device according to any one of ⁇ 1> to ⁇ 3>, wherein the emergency alert signal is included in RESERVED_4 of the L1 signaling part 2.
  • ⁇ 5> The data processing device according to any one of ⁇ 1> to ⁇ 3>, wherein the emergency alert signal is included in RESERVED_1, RESERVED_2 or RESERVED_3 of the L1 signaling part 2.
  • ⁇ 6> The data processing device according to any one of ⁇ 1> to ⁇ 3>, wherein the emergency alert signal is included after RESERVED_TONE of the L1 signaling part 2.
  • a data processing method including the step of generating L1 signaling including an emergency alert signal related to an emergency alert in L1 signaling part 2 of DVB (Digital Video Broadcasting) -C2.
  • the Digital Video Broadcasting (DVB) -C2 L1 signaling part 2 includes a generation unit for generating L1 signaling including an emergency alert signal related to an emergency alert.
  • the transmitter processes the L1 signaling obtained from data transmitted from A data processing apparatus comprising a processing unit.
  • the emergency alert signal is a signal of one or more bits.
  • the emergency alert signal is a 1-bit signal.
  • the data processing device according to any one of ⁇ 8> to ⁇ 10>, wherein the emergency alert signal is included in RESERVED_4 of the L1 signaling part 2.
  • the data processing device includes a generation unit for generating L1 signaling including an emergency alert signal related to an emergency alert.
  • the transmitter processes the L1 signaling obtained from data transmitted from Data processing method including steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

 本技術は、DVB-C2において、緊急警報を、迅速に発することができるようにするデータ処理装置、及び、データ処理方法に関する。 送信装置は、DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する。受信装置は、送信装置から送信されてくるデータから得られるL1シグナリングを処理する。本技術は、例えば、DVB-C2において、緊急警報を発する場合に適用することができる。

Description

データ処理装置、及び、データ処理方法
 本技術は、データ処理装置、及び、データ処理方法に関し、例えば、DVB-C2において、緊急警報を、迅速に発することができるようにするデータ処理装置、及び、データ処理方法に関する。
 ケーブルテレビジョン放送の伝送規格としては、例えば、DVB(Digital Video Broadcasting)で規格化された、次世代ケーブルテレビジョン規格であるDVB-C2がある(非特許文献1)。
 DVB-C2では、高効率な変調方式や符号化方式、PLPバンドリング(PLP(Physical Layer Pipe) bundling)等が規定されている。
DVB-C.2 :ETSI EN 302 769 V1.2.1 (2011-04)
 現在、日本のケーブルテレビジョン放送に、DVB-C2の導入が検討されている。
 ところで、日本は、地震が発生する頻度が高く、地震について、緊急警報を、迅速に発することの要請が極めて高い。
 また、日本でなくても、津波や竜巻等の災害について、緊急警報を、迅速に発することの要請は高い。
 しかしながら、DVB-C2には、緊急警報に関する緊急警報信号を伝送することについては、規定されていない。
 本技術は、このような状況に鑑みてなされたものであり、DVB-C2において、緊急警報を、迅速に発することができるようにするものである。
 本技術の第1のデータ処理装置は、DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する生成部を備えるデータ処理装置である。
 本技術の第1のデータ処理方法は、DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する
 ステップを含むデータ処理方法である。
 本技術の第1のデータ処理装置及びデータ処理方法においては、DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングが生成される。
 本技術の第2のデータ処理装置は、DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する生成部を備える送信装置から送信されてくるデータから得られる前記L1シグナリングを処理する処理部を備えるデータ処理装置である。
 本技術の第2のデータ処理方法は、DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する生成部を備える送信装置から送信されてくるデータから得られる前記L1シグナリングを処理するステップを含むデータ処理方法である。
 本技術の第2のデータ処理装置及びデータ処理方法においては、DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する生成部を備える送信装置から送信されてくるデータから得られる前記L1シグナリングが処理される。
 なお、データ処理装置は、独立した装置であっても良いし、1つの装置を構成している内部ブロックであっても良い。
 本技術によれば、DVB-C2において、緊急警報を、迅速に発することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用した伝送システムの一実施の形態の構成例を示すブロック図である。 送信装置11の構成例を示すブロック図である。 フレーム構成部30で構成されるC2フレームの構造を示す図である。 L1シグナリングパート2のフォーマット(シンタクス)を示す図である。 送信装置11の処理(送信処理)の例を説明するフローチャートである。 受信装置12の構成例を示すブロック図である。 受信装置12の処理(受信処理)を説明するフローチャートである。 本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。
 <本技術を適用した伝送システムの一実施の形態>
 図1は、本技術を適用した伝送システム(システムとは、複数の装置が論理的に集合した物をいい、各構成の装置が同一筐体中にあるか否かは、問わない)の一実施の形態の構成例を示すブロック図である。
 図1において、伝送システムは、送信装置11と受信装置12とを有する。
 送信装置11は、例えば、テレビジョン放送の番組等の送信(ディジタル放送)(データ伝送)を行う。すなわち、送信装置11は、例えば、番組としての画像データや音声データ等の、送信の対象である対象データのストリームを、例えば、DVB-C2の規格に準拠して、ケーブルテレビジョン網(有線回線)である伝送路13を介して送信(伝送)する。
 受信装置12は、送信装置11から伝送路13を介して送信されてくるデータを受信し、元のストリームに復元して出力する。
 なお、図1の伝送システムは、DVB-C2の規格に準拠したデータ伝送の他、DVB-T2やDVB-S2,ATSC(Advanced Television Systems Committee standards)等の規格に準拠したデータ伝送、その他のデータ伝送に適用することができる。
 また、伝送路13としては、ケーブルテレビジョン網の他、衛星回線や地上波等を採用することができる。
 <送信装置11の構成例>
 図2は、図1の送信装置11の構成例を示すブロック図である。
 図2において、送信装置11は、データ処理部21、FEC(Forward Error Correction)部22、マッピング部23、データスライスパケット構成部24、データスライス構成部25、L1シグナリング生成部26、FEC部27、マッピング部28、プリアンブルヘッダ付加部29、フレーム構成部30、IFFT(Inverse Fast Fourier Transform)部31、DAC(Digital to Analog Converter)32、及び、変調部33を有する。
 データ処理部21には、例えば、TS(Transport Stream)等の対象データである実データがPLPとして供給される。
 データ処理部21は、そこに供給される実データ(PLP)に、BB(Base Band)ヘッダを付加すること等によって、BBフレームを構成し、FEC部22に供給する。
 FEC部22は、データ処理部21からのBBフレームを対象として、例えば、BCH符号化やLDPC符号化等の誤り訂正符号化を行い、その結果得られるFECフレームを、マッピング部23に供給する。
 マッピング部23は、FEC部22からのFECフレームを、所定のビット数であるシンボルの単位で、所定のディジタル直交変調の変調方式で定めるコンスタレーション上の信号点にマッピングし、そのマッピング結果としてのシンボルを、FECフレーム単位で、データスライスパケット構成部24に供給する。
 データスライスパケット構成部24は、マッピング部23からのFECフレームの1個又は2個に対して、FECフレームヘッダを付加することで、データスライスパケットを構成する。
 ここで、DVB-C2では、FECフレームヘッダが、L1シグナリングパート1(L1 signalling part 1)であり、FECフレームヘッダには、そのFECフレームヘッダが付加されるFECフレームを構成するPLPを識別するPLP_IDや、そのFECフレームのマッピングにおける直交変調の変調方式(MOD)を表すMODCOD、そのFECフレームに施された誤り訂正符号化の符号長等の情報が含まれる。
 データスライスパケット構成部24は、データスライスパケットを構成し、データスライス構成部25に供給する。
 データスライス構成部25は、データスライスパケット構成部24からのデータスライスパケットから、データスライスを構成し、フレーム構成部30に供給する。
 L1シグナリング生成部26は、実データの復調に必要な制御データを含む、DVB-C2のL1シグナリングパート2(L1 signalling part 2)に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成し、FEC部27に供給する。
 ここで、緊急警報信号としては、1ビット以上の信号を採用することができる。
 すなわち、緊急警報信号としては、例えば、地震等の特定の災害の有無を表す1ビットの信号を採用することができる。
 また、緊急警報信号としては、例えば、地震や、津波、竜巻等の災害の有無と、その災害の種類とを表す2ビット以上の信号を採用することができる。
 さらに、緊急警報信号としては、例えば、地震等の特定の災害の有無と、その災害の規模とを表す2ビット以上の信号を採用することができる。
 本実施の形態では、説明を簡単にするため、緊急警報信号として、例えば、1ビットの信号を採用することとする。
 FEC部27は、L1シグナリング生成部26からのL1シグナリングを対象として、誤り訂正符号化を行い、その誤り訂正符号化結果としてのL1シグナリングを、マッピング部28に供給する。
 マッピング部28は、FEC部27からのL1シグナリングを、所定のビット数であるシンボルの単位で、所定のディジタル直交変調の変調方式で定めるコンスタレーション上の信号点にマッピングし、そのマッピング結果としてのL1シグナリング(のシンボル)を、プリアンブルヘッダ付加部29に供給する。
 プリアンブルヘッダ付加部29は、マッピング部23からのL1シグナリングの先頭に、プリアンブルヘッダを付加し、その結果得られるプリアンブルシンボルを、フレーム構成部30に供給する。
 ここで、プリアンブルヘッダには、L1シグナリング(L1シグナリングパート2)の長さ等が含まれる。
 フレーム構成部30は、データスライス構成部25からのデータスライス(のシンボル)と、プリアンブルヘッダ付加部29からのプリアンブルシンボルとから、C2フレームを構成し、IFFT部31に供給する。
 IFFT部31は、フレーム構成部30からのC2フレームのIFFTを行い、その結果得られる信号を、DAC32に供給する。
 DAC32は、IFFT部31からの信号をDA変換し、変調部33に供給する。
 変調部33は、DAC32からの信号を、RF(Radio Frequency)信号に変調し、伝送路13(図1)を介して伝送する。
 図3は、フレーム構成部30で構成されるC2フレームの構造を示す図である。
 C2フレーム(C2 Frame)は、プリアンブルシンボル(Preamble Symbol(s))とデータシンボル(Data Symbles)とから構成される。
 プリアンブルシンボルには、L1シグナリング、すなわち、L1シグナリングパート2(L1 signalling part 2)に、緊急警報信号を含めたものが含まれる。
 データシンボルは、データスライス構成部25(図2)で得られるデータスライスのシンボルである。
 図4は、L1シグナリングパート2のフォーマット(シンタクス)を示す図である。
 ここで、本実施の形態において、L1シグナリングパート2とは、DVB-C.2 :ETSI EN 302 769 V1.2.1 (2011-04)で規定されているL1 signalling part 2を意味する。
 L1シグナリングパート2には、図4において、A1,A2,A3、及び、A4で示す未使用のフィールドRESERVED_1,RESERVED_2,RESERVED_3、及び、RESERVED_4が存在する。
 緊急警報信号については、フィールドRESERVED_1,RESERVED_2,RESERVED_3、及び、RESERVED_4のうちのいずれか(の1ビット以上)を、緊急警報用フィールドとして新たに定義し、その緊急警報用フィールドに、緊急警報信号を含めることができる。
 ここで、フィールドRESERVED_1は、PLPの数DSLICE_NUM_PLPだけ繰り返されるループの中に存在する。したがって、フィールドRESERVED_1に、緊急警報信号を含める場合には、緊急警報信号が、PLPの数だけ含められることになる。
 また、フィールドRESERVED_2は、データスライス(DATA SLICE)の数NUM_DSLICEだけ繰り返されるループの中に存在する。したがって、フィールドRESERVED_2に、緊急警報信号を含める場合には、緊急警報信号が、データスライスの数だけ含められることになる。
 さらに、フィールドRESERVED_3は、ノッチ(Notch)の数NUM_NOTCHだけ繰り返されるループの中に存在する。したがって、フィールドRESERVED_3に、緊急警報信号を含める場合には、緊急警報信号が、ノッチの数だけ含められることになる。
 また、ノッチは、必ずしも存在するわけではない。したがって、フィールドRESERVED_3に、緊急警報信号を含める場合においては、ノッチが存在しないときには、緊急警報信号を送信することが困難になる。
 一方、フィールドRESERVED_4は、フィールドRESERVED_TONEの後に、1個だけ常時存在する。したがって、フィールドRESERVED_4に、緊急警報信号を含める場合には、緊急警報信号を、1個のC2フレームにつき、(何度も送信するのではなく、)1回だけ送信することができる。すなわち、緊急警報信号を、効率的に送信することができる。
 なお、緊急警報信号については、L1シグナリングパート2内に、未使用のフィールドRESERVED_1ないしRESERVED_4とは別に、緊急警報用フィールドを追加し、その緊急警報用フィールドに、緊急警報信号を含めることができる。
 しかしながら、L1シグナリングパート2内に、未使用のフィールドRESERVED_1ないしRESERVED_4とは別に、緊急警報用フィールドを追加する場合には、現状のDVB-C2に準拠した受信装置の処理に影響を及し、前方互換性が損なわれることがあり得る。
 また、緊急警報信号は、L1シグナリングパート2ではなく、実データとしてのTS等に含めることができる。
 しかしながら、緊急警報信号を、L1シグナリングパート2ではなく、実データとしてのTS等に含める場合には、受信装置12において、緊急警報信号を得るのに、C2フレーム(図3)のデータシンボルの復号、及び、TSの復号等が必要となり、送信装置11で緊急警報信号が送信されてから、受信装置12で緊急警報信号を得るまでの伝送遅延が大になる。
 特に、地震の緊急警報信号については、緊急警報信号の伝送遅延が、1秒でも短いことが強く要請されるため、伝送遅延が大であることは望ましくない。
 一方、L1シグナリングパート2は、C2フレームで最初に復号されるため、緊急警報信号の伝送遅延が短い。したがって、緊急警報信号を、L1シグナリングパート2に含めることにより、DVB-C2において、緊急警報を、迅速に発することができる。
 図5は、図2の送信装置11の処理(送信処理)の例を説明するフローチャートである。
 送信処理では、ステップS11において、データ処理部21は、そこに供給される実データに、BBヘッダを付加すること等によって、BBフレームを構成し、FEC部22に供給して、処理は、ステップS12に進む。
 ステップS12では、FEC部22は、データ処理部21からのBBフレームを対象として誤り訂正符号化を行い、その結果得られるFECフレームを、マッピング部23に供給して、処理は、ステップS13に進む。
 ステップS13では、マッピング部23は、FEC部22からのFECフレームを、シンボルとしての所定のビット数単位で、所定のコンスタレーション上の信号点にマッピングし、そのマッピング結果としてのシンボルを、FECフレーム単位で、データスライスパケット構成部24に供給して、処理は、ステップS14に進む。
 ステップS14では、データスライスパケット構成部24は、マッピング部23からのFECフレームに対して、FECフレームヘッダを付加することで、データスライスパケットを構成し、データスライス構成部25に供給し、処理は、ステップS15に進む。
 ステップS15では、データスライス構成部25は、データスライスパケット構成部24からのデータスライスパケットから、データスライスを構成し、データシンボルとして、フレーム構成部30に供給して、処理は、ステップS25に進む。
 送信装置11は、以上のステップS11ないしS15の処理と並列して、ステップS21ないしS24の処理を行う。
 すなわち、ステップS21において、L1シグナリング生成部26は、実データの復調に必要な制御データを含むL1シグナリングパート2に、緊急警報信号を含めたL1シグナリングを生成し、FEC部27に供給して、処理は、ステップS22に進む。
 ステップS22では、FEC部27は、L1シグナリング生成部26からのL1シグナリングを対象として、誤り訂正符号化を行い、その誤り訂正符号化結果としてのL1シグナリングを、マッピング部28に供給して、処理は、ステップS23に進む。
 ステップS23では、マッピング部28は、FEC部27からのL1シグナリングを、シンボルとしての所定のビット単位で、コンスタレーション上の信号点にマッピングし、そのマッピング結果としてのL1シグナリング(のシンボル)を、プリアンブルヘッダ付加部29に供給して、処理は、ステップS24に進む。
 ステップS24では、プリアンブルヘッダ付加部29は、マッピング部23からのL1シグナリングの先頭に、プリアンブルヘッダを付加し、その結果得られるプリアンブルシンボルを、フレーム構成部30に供給して、処理は、ステップS25に進む。
 ステップS25では、フレーム構成部30は、データスライス構成部25からのデータスライスのデータシンボルと、プリアンブルヘッダ付加部29からのプリアンブルシンボルとから、C2フレーム(図3)を構成し、IFFT部31に供給して、処理は、ステップS26に進む。
 ステップS26では、IFFT部31は、フレーム構成部30からのC2フレームのIFFTを行い、その結果得られる信号を、DAC32に供給して、処理は、ステップS27に進む。
 ステップS27では、DAC32は、IFFT部31からの信号をDA変換し、変調部33に供給して、処理は、ステップS28に進む。
 ステップS28では、変調部33は、DAC32からの信号を、RF信号に変調し、伝送路13(図1)を介して伝送する。
 <受信装置12の構成例>
 図6は、図1の受信装置12の構成例を示すブロック図である。
 図6において、受信装置12は、復調部51、ADC(Analog to Digital Converter)52、FFT(Fast Fourier Transform)部53、フレーム分解部54、データスライス分解部55、データスライスパケット分解部56、デマッピング部57、FEC部58、データ処理部59、プリアンブルヘッダ解析部60、デマッピング部61、FEC部62、L1シグナリング処理部63、及び、緊急警報信号処理部64を有する。
 復調部51は、送信装置11から伝送路13(図1)を介して送信されてくるRF信号を受信する。復調部51は、RF信号を復調し、その結果得られる復調信号を、ADC52に供給する。
 ADC52は、復調部51からの復調信号をAD変換し、その結果得られるディジタル信号を、FFT部53に供給する。
 FFT部53は、ADC52からのディジタル信号のFFTを行い、その結果得られるC2フレーム(の信号)を、フレーム分解部54に供給する。
 フレーム分解部54は、FFT部53からのC2フレーム(図3)を、データシンボル(データスライスのシンボル)と、プリアンブルシンボルとに分解し、データシンボルを、データスライス分解部55に供給するとともに、プリアンブルシンボルを、プリアンブルヘッダ解析部60に供給する。
 データスライス分解部55は、フレーム分解部54からのデータシンボル、すなわち、データスライス(のシンボル)を、データスライスパケットに分解し、データスライスパケット分解部56に供給する。
 データスライスパケット分解部56は、データスライス分解部55からのデータスライスパケットから、FECフレームヘッダを除去することで、データスライスパケットを、FECフレームに分解し、デマッピング部57に供給する。
 ここで、データスライスパケット分解部56で除去されたFECフレームヘッダに基づいて、変調方式や符号長等が認識され、後段のデマッピング部57やFEC部58が制御される。
 デマッピング部57は、データスライスパケット分解部56からのFECフレーム(のシンボル)のデマッピングを行い、FEC部58に供給する。
 FEC部58は、デマッピング部57からのデマッピング後のFECフレームに対して、図2のFEC部22の誤り訂正符号化に対応する誤り訂正としての誤り訂正符号の復号を行うことで、図2のデータ処理部21で得られるBBフレームを復元し、データ処理部59に供給する。
 データ処理部59は、FEC部58からのBBフレームを分解し、実データを復元して出力する。
 プリアンブルヘッダ解析部60は、フレーム分解部54からのプリアンブルシンボルに含まれるプリアンブルヘッダを解析することで、そのプリアンブルシンボルに含まれるL1シグナリング(緊急警報信号が含まれるL1シグナリングパート2)の長さを認識し、L1シグナリングを抽出して、デマッピング61に供給する。
 デマッピング部61は、プリアンブルヘッダ解析部60からのL1シグナリング(のシンボル)のデマッピングを行い、FEC部62に供給する。
 FEC部62は、デマッピング部61からのデマッピング後のL1シグナリングに対して、図2のFEC部27の誤り訂正符号化に対応する誤り訂正としての誤り訂正符号の復号を行うことで、図2のL1シグナリング生成部26で得られるL1シグナリングを復元し、L1シグナリング処理部63に供給する。
 L1シグナリング処理部63は、FEC部62からのL1シグナリングを処理することにより、そのL1シグナリングに含まれる制御データを復元して出力する。この制御データに従って、受信装置12を構成する各部が制御される。
 また、L1シグナリング処理部63は、FEC部62からのL1シグナリングを処理することにより、そのL1シグナリングに含まれる緊急警報信号を復元し、緊急警報信号処理部64に供給する。
 緊急警報信号処理部64は、L1シグナリング処理部63からの緊急警報信号に応じて、緊急警報を出力する。
 すなわち、緊急警報信号処理部64は、L1シグナリング処理部63からの緊急警報信号が、例えば、地震が生じたことを表している場合、画像や音等による緊急警報を出力する。
 図7は、図6の受信装置12の処理(受信処理)を説明するフローチャートである。
 ステップS51において、復調部51は、RF信号を受信して復調し、その結果得られる復調信号を、ADC52に供給して、処理は、ステップS52に進む。
 ステップS52では、ADC52は、復調部51からの復調信号をAD変換し、その結果得られるディジタル信号を、FFT部53に供給して、処理は、ステップS53に進む。
 ステップS53では、FFT部53は、ADC52からのディジタル信号のFFTを行い、その結果得られるC2フレームを、フレーム分解部54に供給して、処理は、ステップS54に進む。
 ステップS54では、フレーム分解部54は、FFT部53からのC2フレームを、データスライス(データシンボル)と、プリアンブルシンボルとに分解し、データスライスを、データスライス分解部55に供給するとともに、プリアンブルシンボルを、プリアンブルヘッダ解析部60に供給して、処理は、ステップS55に進む。
 ステップS55では、プリアンブルヘッダ解析部60は、フレーム分解部54からのプリアンブルシンボルに含まれるプリアンブルヘッダを解析して、プリアンブルシンボルから、L1シグナリングを抽出し、デマッピング61に供給して、処理は、ステップS56に進む。
 ステップS56では、デマッピング部61は、プリアンブルヘッダ解析部60からのL1シグナリングのデマッピングを行い、FEC部62に供給して、処理は、ステップS57に進む。
 ステップS57では、FEC部62は、デマッピング部61からのデマッピング後のL1シグナリングに対して誤り訂正を行い、L1シグナリング処理部63に供給して、処理は、ステップS58に進む。
 ステップS58では、L1シグナリング処理部63は、FEC部62からのL1シグナリングを処理することにより、そのL1シグナリングに含まれる制御データを復元して出力する。また、L1シグナリング処理部63は、FEC部62からのL1シグナリングを処理することにより、そのL1シグナリングに含まれる緊急警報信号を復元し、緊急警報信号処理部64に供給する。
 L1シグナリングに含まれる制御データには、データスライス(データシンボル)の復号に必要な情報が含まれており、L1シグナリング処理部63において、L1シグナリングに含まれる制御データが得られると、その制御データに基づき、データスライス分解部55ないしデータ処理部59において、データスライス(データシンボル)の復号が可能になる。
 すなわち、ステップS59において、データスライス分解部55は、フレーム分解部54からのデータスライス(のシンボル)を、データスライスパケットに分解し、データスライスパケット分解部56に供給して、ステップS60に進む。
 ステップS60では、データスライスパケット分解部56は、データスライス分解部55からのデータスライスパケットを、FECフレームに分解し、デマッピング部57に供給して、処理は、ステップS61に進む。
 ステップS61では、デマッピング部57は、データスライスパケット分解部56からのFECフレーム(のシンボル)のデマッピングを行い、FEC部58に供給して、処理は、ステップS62に進む。
 ステップS62では、FEC部58は、デマッピング部57からのデマッピング後のFECフレームに対して誤り訂正を行い、その結果得られるBBフレームを、データ処理部59に供給して、処理は、ステップS63に進む。
 ステップS63では、データ処理部59は、FEC部58からのBBフレームを分解し、実データを復元して出力する。
 図2の送信装置11では、緊急警報信号が、L1シグナリングパート2に含められるので、図6の受信装置12では、L1シグナリングパート2に含まれている緊急警報信号を、短い伝送遅延で取得することができる。その結果、受信装置12では、緊急警報を、迅速に発することができる。
 <本技術を適用したコンピュータの説明>
 次に、上述した一連の処理は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、汎用のコンピュータ等にインストールされる。
 そこで、図8は、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示している。
 プログラムは、コンピュータに内蔵されている記録媒体としてのハードディスク105やROM103に予め記録しておくことができる。
 あるいはまた、プログラムは、リムーバブル記録媒体111に格納(記録)しておくことができる。このようなリムーバブル記録媒体111は、いわゆるパッケージソフトウエアとして提供することができる。ここで、リムーバブル記録媒体111としては、例えば、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto Optical)ディスク,DVD(Digital Versatile Disc)、磁気ディスク、半導体メモリ等がある。
 なお、プログラムは、上述したようなリムーバブル記録媒体111からコンピュータにインストールする他、通信網や放送網を介して、コンピュータにダウンロードし、内蔵するハードディスク105にインストールすることができる。すなわち、プログラムは、例えば、ダウンロードサイトから、ディジタル衛星放送用の人工衛星を介して、コンピュータに無線で転送したり、LAN(Local Area Network)、インターネットといったネットワークを介して、コンピュータに有線で転送することができる。
 コンピュータは、CPU(Central Processing Unit)102を内蔵しており、CPU102には、バス101を介して、入出力インタフェース110が接続されている。
 CPU102は、入出力インタフェース110を介して、ユーザによって、入力部107が操作等されることにより指令が入力されると、それに従って、ROM(Read Only Memory)103に格納されているプログラムを実行する。あるいは、CPU102は、ハードディスク105に格納されたプログラムを、RAM(Random Access Memory)104にロードして実行する。
 これにより、CPU102は、上述したフローチャートにしたがった処理、あるいは上述したブロック図の構成により行われる処理を行う。そして、CPU102は、その処理結果を、必要に応じて、例えば、入出力インタフェース110を介して、出力部106から出力、あるいは、通信部108から送信、さらには、ハードディスク105に記録等させる。
 なお、入力部107は、キーボードや、マウス、マイク等で構成される。また、出力部106は、LCD(Liquid Crystal Display)やスピーカ等で構成される。
 ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。
 また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。さらに、プログラムは、遠方のコンピュータに転送されて実行されるものであっても良い。
 さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 なお、本技術は、以下のような構成をとることができる。
 <1>
 DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する生成部を備える
 データ処理装置。
 <2>
 前記緊急警報信号は、1ビット以上の信号である
 <1>に記載のデータ処理装置。
 <3>
 前記緊急警報信号は、1ビットの信号である
 <1>又は<2>に記載のデータ処理装置。
 <4>
 前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_4に含まれる
 <1>ないし<3>のいずれかに記載のデータ処理装置。
 <5>
 前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_1,RESERVED_2、又は、RESERVED_3に含まれる
 <1>ないし<3>のいずれかに記載のデータ処理装置。
 <6>
 前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_TONEの後に含まれる
 <1>ないし<3>のいずれかに記載のデータ処理装置。
 <7>
 DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する
 ステップを含むデータ処理方法。
 <8>
 DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する生成部を備える
 送信装置
 から送信されてくるデータから得られる前記L1シグナリングを処理する処理部を備える
 データ処理装置。
 <9>
 前記緊急警報信号は、1ビット以上の信号である
 <8>に記載のデータ処理装置。
 <10>
 前記緊急警報信号は、1ビットの信号である
 <8>又は<9>に記載のデータ処理装置。
 <11>
 前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_4に含まれる
 <8>ないし<10>のいずれかに記載のデータ処理装置。
 <12>
 前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_1,RESERVED_2、又は、RESERVED_3に含まれる
 <8>ないし<10>のいずれかに記載のデータ処理装置。
 <13>
 前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_TONEの後に含まれる
 <8>ないし<10>のいずれかに記載のデータ処理装置。
 <14>
 DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する生成部を備える
 送信装置
 から送信されてくるデータから得られる前記L1シグナリングを処理する
 ステップを含むデータ処理方法。
 11 送信装置, 12 受信装置, 13 伝送路, 21 データ処理部, 22 FEC部, 23 マッピング部, 24 データスライスパケット構成部, 25 データスライス構成部, 26 L1シグナリング生成部, 27 FEC部, 28 マッピング部, 29 プリアンブルヘッダ付加部, 30 フレーム構成部, 31 IFFT部, 32 DAC, 33 変調部, 51 復調部, 52 ADC, 53 FFT部, 54 フレーム分解部, 55 データスライス分解部, 56 データスライスパケット分解部, 57 デマッピング部, 58 FEC部, 59 データ処理部, 60 プリアンブルヘッダ解析部, 61 デマッピング部, 62 FEC部, 63 L1シグナリング処理部, 64 緊急警報信号処理部, 101 バス, 102 CPU, 103 ROM, 104 RAM, 105 ハードディスク, 106 出力部, 107 入力部, 108 通信部, 109 ドライブ, 110 入出力インタフェース, 111 リムーバブル記録媒体

Claims (14)

  1.  DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する生成部を備える
     データ処理装置。
  2.  前記緊急警報信号は、1ビット以上の信号である
     請求項1に記載のデータ処理装置。
  3.  前記緊急警報信号は、1ビットの信号である
     請求項1に記載のデータ処理装置。
  4.  前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_4に含まれる
     請求項3に記載のデータ処理装置。
  5.  前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_1,RESERVED_2、又は、RESERVED_3に含まれる
     請求項3に記載のデータ処理装置。
  6.  前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_TONEの後に含まれる
     請求項3に記載のデータ処理装置。
  7.  DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する
     ステップを含むデータ処理方法。
  8.  DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する生成部を備える
     送信装置
     から送信されてくるデータから得られる前記L1シグナリングを処理する処理部を備える
     データ処理装置。
  9.  前記緊急警報信号は、1ビット以上の信号である
     請求項8に記載のデータ処理装置。
  10.  前記緊急警報信号は、1ビットの信号である
     請求項8に記載のデータ処理装置。
  11.  前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_4に含まれる
     請求項10に記載のデータ処理装置。
  12.  前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_1,RESERVED_2、又は、RESERVED_3に含まれる
     請求項10に記載のデータ処理装置。
  13.  前記緊急警報信号は、前記L1シグナリングパート2のRESERVED_TONEの後に含まれる
     請求項10に記載のデータ処理装置。
  14.  DVB(Digital Video Broadcasting)-C2のL1シグナリングパート2に、緊急警報に関する緊急警報信号を含めたL1シグナリングを生成する生成部を備える
     送信装置
     から送信されてくるデータから得られる前記L1シグナリングを処理する
     ステップを含むデータ処理方法。
PCT/JP2015/050090 2014-01-16 2015-01-06 データ処理装置、及び、データ処理方法 WO2015107924A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580003027.9A CN105814902B (zh) 2014-01-16 2015-01-06 数据处理装置和数据处理方法
JP2015557782A JP6451651B2 (ja) 2014-01-16 2015-01-06 データ処理装置、及び、データ処理方法
EP15737268.1A EP3096528B1 (en) 2014-01-16 2015-01-06 Data processing device and data processing method
US15/028,801 US10117001B2 (en) 2014-01-16 2015-01-06 Data processing device and data processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014005654 2014-01-16
JP2014-005654 2014-01-16

Publications (1)

Publication Number Publication Date
WO2015107924A1 true WO2015107924A1 (ja) 2015-07-23

Family

ID=53542815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050090 WO2015107924A1 (ja) 2014-01-16 2015-01-06 データ処理装置、及び、データ処理方法

Country Status (5)

Country Link
US (1) US10117001B2 (ja)
EP (1) EP3096528B1 (ja)
JP (1) JP6451651B2 (ja)
CN (1) CN105814902B (ja)
WO (1) WO2015107924A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210036793A1 (en) * 2018-02-05 2021-02-04 Sony Semiconductor Solutions Corporation Demodulation circuit, processing circuit, processing method, and processing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX367680B (es) * 2014-07-17 2019-09-02 Lg Electronics Inc Dispositivo de transmision de difusion, metodo por el cual el dispositivo de transmision de difusion procesa datos, dispositivo de recepcion de difusion y metodo por el cual el dispositivo de recepcion de difusion procesa datos.
US11206461B2 (en) * 2016-07-05 2021-12-21 Sharp Kabushiki Kaisha Systems and methods for communicating user settings in conjunction with execution of an application
TWI731187B (zh) * 2016-11-09 2021-06-21 日商索尼半導體解決方案公司 收訊裝置、收訊方法、送訊裝置、及送訊方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251298A (ja) * 2006-03-14 2007-09-27 Matsushita Electric Ind Co Ltd デジタル放送再送信装置、デジタル放送受信機およびデジタル放送再送信システム
JP2013520850A (ja) * 2010-02-26 2013-06-06 パナソニック株式会社 送信方法、受信方法、送信装置、受信装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490262B1 (ko) * 2008-01-02 2015-02-05 엘지전자 주식회사 신호 송수신 방법 및 신호 송수신 장치
CN103595686B (zh) * 2008-10-21 2017-05-31 Lg电子株式会社 用于发送和接收信号的装置以及用于发送和接收信号的方法
US8503551B2 (en) * 2009-02-13 2013-08-06 Lg Electronics Inc. Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
EP2362650A1 (en) * 2010-02-26 2011-08-31 Panasonic Corporation Efficient physical layer signalling for a digital broadcast system
US8648712B2 (en) * 2010-06-17 2014-02-11 J. Roy Pottle Electronic emergency messaging system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251298A (ja) * 2006-03-14 2007-09-27 Matsushita Electric Ind Co Ltd デジタル放送再送信装置、デジタル放送受信機およびデジタル放送再送信システム
JP2013520850A (ja) * 2010-02-26 2013-06-06 パナソニック株式会社 送信方法、受信方法、送信装置、受信装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"J-STD-042A-2007: A Joint Standard Developed by SCTE and CEA", ANSI/SCTE, vol. 18, 2007, pages 3 - 17, XP055213348 *
DVB-C.2: ETSI EN 302 769 V1.2.1, April 2011 (2011-04-01)
ETSI TS 102 991, V1.2.1, June 2011 (2011-06-01), pages 13, 65 - 73, XP055357327 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210036793A1 (en) * 2018-02-05 2021-02-04 Sony Semiconductor Solutions Corporation Demodulation circuit, processing circuit, processing method, and processing device
US11515955B2 (en) * 2018-02-05 2022-11-29 Sony Semiconductor Solutions Corporation Demodulation circuit, processing circuit, processing method, and processing device

Also Published As

Publication number Publication date
US20160255416A1 (en) 2016-09-01
CN105814902A (zh) 2016-07-27
EP3096528A4 (en) 2017-09-06
JPWO2015107924A1 (ja) 2017-03-23
EP3096528A1 (en) 2016-11-23
CN105814902B (zh) 2019-10-29
US10117001B2 (en) 2018-10-30
JP6451651B2 (ja) 2019-01-16
EP3096528B1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6451651B2 (ja) データ処理装置、及び、データ処理方法
EP3169074B1 (en) Transmission device, transmission method, receiving device and receiving method
JP2019134485A (ja) データ処理装置、データ処理方法、送受信システム、及び、送受信方法
US11490138B2 (en) Reception apparatus, reception method, transmission apparatus, and transmission method for indicating presence or absence of signaling information in a payload of a packet
JP7232364B2 (ja) 送信装置及び送信方法
US11722713B2 (en) Data processing device and data processing method
JP2022113754A (ja) 送信装置及び送信方法
JP7055749B2 (ja) 受信装置、受信方法、送信装置、及び、送信方法
JP6379632B2 (ja) 受信装置、受信方法、送信装置、及び、送信方法
WO2016181806A1 (ja) 送信装置、送信方法、受信装置、及び、受信方法
JPWO2016084633A1 (ja) 受信装置、受信方法、送信装置、及び、送信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737268

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15028801

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015557782

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201603864

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2015737268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015737268

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE