WO2015107685A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2015107685A1
WO2015107685A1 PCT/JP2014/050884 JP2014050884W WO2015107685A1 WO 2015107685 A1 WO2015107685 A1 WO 2015107685A1 JP 2014050884 W JP2014050884 W JP 2014050884W WO 2015107685 A1 WO2015107685 A1 WO 2015107685A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronous motor
voltage
permanent magnet
magnet synchronous
current
Prior art date
Application number
PCT/JP2014/050884
Other languages
English (en)
French (fr)
Inventor
敏 井堀
和茂 堀田
祐介 荒尾
繁之 馬場
良 田中
敦彦 中村
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2015557663A priority Critical patent/JP6282292B2/ja
Priority to CN201480073173.4A priority patent/CN105917566B/zh
Priority to PCT/JP2014/050884 priority patent/WO2015107685A1/ja
Priority to EP14879123.9A priority patent/EP3098962A4/en
Publication of WO2015107685A1 publication Critical patent/WO2015107685A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping

Definitions

  • the present invention relates to a power converter for driving a permanent magnet synchronous motor.
  • Patent Document 1 states that “a DC power source, an inverter device, and a filter capacitor connected between the DC power source and the inverter device, and at least one synchronous motor by the inverter device.
  • the DC side voltage of the inverter device becomes equal to or higher than the second reference value set based on the induced voltage.
  • the DC power supply is operated as described above.
  • An object of the present invention is to provide a power conversion device that alerts the user even during operation of the power conversion device.
  • a forward converter that rectifies an AC voltage of an AC power source and converts it into a DC voltage, and a smoothing capacitor that smoothes the DC voltage converted by the forward converter.
  • a DC intermediate circuit an upper arm side semiconductor element connected to the (+) potential side of the DC intermediate circuit, and a lower arm side semiconductor element connected to the ( ⁇ ) potential side of the DC intermediate circuit.
  • An inverter that converts the DC voltage smoothed by the DC intermediate circuit into an AC voltage, and a current detector that detects a current flowing through the inverter, and performs variable speed control of the permanent magnet synchronous motor.
  • the semiconductor device on one arm side of the semiconductor device on the upper arm side or the semiconductor device on the lower arm side After stopping the output of power from the power conversion device to the permanent magnet synchronous motor, the semiconductor device on one arm side of the semiconductor device on the upper arm side or the semiconductor device on the lower arm side.
  • the semiconductor device on the upper arm side or the semiconductor device on the lower arm side When the one or more elements are turned on and all the semiconductor elements on the other arm side are turned off, and the predetermined current is detected by the current detector, the permanent magnet synchronous motor is rotating.
  • a control circuit that outputs a signal indicating the presence is provided.
  • FIG. 1 is an example of a configuration diagram of the power conversion apparatus according to the first embodiment.
  • FIG. 1 shows a case where an AC power source is used as an arbitrary input power source.
  • the forward converter 1 converts AC power into DC power.
  • the smoothing capacitor 2 is provided in the direct current intermediate circuit.
  • the reverse converter 3 converts DC power into AC power having an arbitrary frequency.
  • the inverse converter 3 is composed of a semiconductor element including a switching element and a diode connected in parallel to the switching element.
  • an IGBT is mounted as a typical switching element.
  • the switching element is not limited to the IGBT, and any element having a form as a switching element may be used.
  • SiC silicon carbide
  • GaN gallium nitride
  • the cooling fan 6 cools the power modules in the forward converter 1 and the reverse converter 3.
  • the digital operation panel 7 sets, changes, abnormal states, and monitor displays various control data of the power conversion device.
  • the operation panel 7 is provided with a display unit capable of displaying an abnormality. When an abnormality is detected in the power conversion device, the display is displayed on the display unit.
  • the type of the operation panel 7 of the present embodiment is not particularly limited, but as a digital operation panel, the operation panel 7 can be operated while viewing the display on the display unit in consideration of the operability of the apparatus user. Yes.
  • the display unit is not necessarily configured integrally with the operation panel 7, but it is desirable that the display unit be configured integrally so that an operator of the operation panel 7 can operate while viewing the display.
  • Various control data of the power converter input from the operation panel 7 is stored in a storage unit (not shown).
  • the control circuit 5 controls the switching elements of the inverter 3 based on various control data input from the digital operation panel 7 and controls the power converter 10 as a whole.
  • 4 for example, a microcomputer or the like
  • the control circuit 5 is mounted, and is configured to perform necessary control processing in accordance with various control data input from the digital operation panel 7. Further, it is configured to perform necessary control processing according to various control data input from the host device 12 (for example, a communication device, a wireless device, or a command device).
  • Sig1 is an alarm output signal that informs whether the permanent magnet synchronous motor is rotating or stopped. Of course, this alarm signal may be transmitted to the host device 12.
  • control arithmetic device 4 (for example, a microcomputer or the like) performs an operation based on information from the storage data of the storage unit in which various control data are stored.
  • the current detector CT detects the U-phase and W-phase line currents of the permanent magnet synchronous motor.
  • FIG. 1 shows an example in which two CTs are used, three CTs may be used to detect each U-phase, V-phase, and W-phase line current.
  • the drive circuit 8 drives the switching element of the inverse converter 3 based on a command from the control circuit 5.
  • a switching regulator circuit (DC / DC converter) 13 is mounted in the drive circuit 8 to generate each DC voltage necessary for the operation of the power converter and supply them to each component.
  • the 14 is a circuit for detecting the voltage of the output terminal of the power converter. When the output of the power converter is cut off, the speed electromotive force of the permanent magnet synchronous motor is detected.
  • the R1 terminal and the T1 terminal are power supply terminals of the switching regulator circuit 13.
  • the DC voltage detection circuit 9 detects the voltage of the smoothing capacitor 2 constituting the DC intermediate circuit. Also, when supplying a DC power supply instead of an AC power supply as an arbitrary input power supply, connect the + side of the DC power supply to the (+) potential side of the DC intermediate circuit and connect it to the ( ⁇ ) potential side of the DC intermediate circuit. Connect the negative side of the DC power supply. Furthermore, the AC terminals R, S and T may be connected, the + side of the DC power source may be connected to this connection point, and the-side of the DC power source may be connected to the ( ⁇ ) potential side of the DC intermediate circuit. Conversely, the + side of the DC power supply may be connected to the (+) potential side of the DC intermediate circuit, the AC terminals R, S, and T may be connected, and the ⁇ side of the DC power supply may be connected to this connection point.
  • FIG. 2 is an example of another configuration diagram of the power conversion device according to the embodiment.
  • the same reference numerals are given to the same configurations and the same functions as those in FIG. What is different from FIG. 1 is the detection position of the current detector.
  • SH1, SHi, and SHd are shunt resistance current detectors for current detection, SH1 detects a current on the ( ⁇ ) side of the DC intermediate circuit, and SHi ( ⁇ ) of the DC intermediate circuit constituting the inverse converter 3
  • SH1 detects a current on the ( ⁇ ) side of the DC intermediate circuit
  • the U-phase, V-phase, and W-phase IGBTs that are the switching elements of the lower arm connected to the potential side are connected, and SHd is connected to a diode that is connected in parallel to the IGBTs that are the switching elements.
  • the shunt resistance current detector SHi provided on the DC bus side of the power converter is a current detector that detects a current flowing through each IGBT, and the shunt resistance current detector SHd is connected in parallel to each IGBT. It is a current detector that detects the current flowing through the diode.
  • the current flowing through the permanent magnet synchronous motor can be detected by a shunt resistance current detector provided on the DC bus side of the power converter.
  • the shunt resistance current detectors SHi and SHd are connected to a semiconductor element composed of a lower arm IGBT and a diode connected to the ( ⁇ ) potential side of the DC intermediate circuit constituting the inverse converter 3.
  • the current may be detected by connecting to a semiconductor element composed of an IGBT and a diode of the upper arm connected to the (+) potential side of the DC intermediate circuit constituting the converter 3.
  • FIG. 3 is an example of a single-line diagram of the system according to the embodiment.
  • NFB is a no-fuse breaker
  • MC is an electromagnetic contactor
  • R1 terminal and T1 terminal are power supply terminals of the switching regulator circuit 13. If the power converter breaks down due to some abnormality, resetting the abnormality and starting it again depending on the broken parts will cause the power converter to break down secondarily, increasing the degree of destruction.
  • the power supply to the input R, S, T terminals of the power converter which is the main power supply, is cut off by the magnetic contactor MC, and the switching regulator circuit is passed from the output side of the no-fuse breaker NFB through the R1 terminal and T1 terminal. 13 is operated.
  • the power source inside the power converter for example, a digital power source such as a microcomputer
  • the power supply inside the power converter can be turned on / off through a control circuit and a drive circuit including a microcomputer.
  • the speed electromotive force Es of the permanent magnet synchronous motor remains, when the gate voltage of only the lower arm switching element UN is turned on (VP, WP, UN, VN, WN are turned off). A current always flows, and a current does not flow unless the speed electromotive force Es remains. That is, it can be determined that the synchronous motor is rotating when the current flows, and is stopped when it does not flow even without the main power supply of the power converter. The operator can confirm the display of the abnormality, etc., and can accurately consider the response.
  • the permanent magnet synchronous motor When the permanent magnet synchronous motor is driven by the power converter 10, if the power converter cuts off the output (stops output) due to some abnormality (for example, overcurrent, overvoltage, undervoltage, instantaneous power failure, etc.), the permanent magnet synchronous motor Will rotate by inertia. Since the permanent magnet synchronous motor generates a magnetic flux ⁇ by a magnet, a sinusoidal speed electromotive force proportional to the number of rotations is synchronized when the inertial rotation occurs even when no power is supplied to the synchronous motor. It always occurs at the terminal of the motor. The speed electromotive force of the permanent magnet synchronous motor will be described with reference to (c) and (d) of FIG.
  • the switching regulator circuit 13 if the switching regulator circuit 13 is operated by the R1 terminal and the T1 terminal, it can be displayed whether the synchronous motor is rotating or stopped. Therefore, maintenance is performed after confirming that the synchronous motor is stopped. If this is done, it is possible to prevent an electric shock from being easily caused.
  • FIG. 4 is an example of a voltage detection circuit according to the embodiment.
  • the “inertia rotation detection mode” of the synchronous motor is selected in advance using the digital operation panel 7, the speed electromotive force of the permanent magnet synchronous motor is detected when the output of the power converter is cut off.
  • the permanent magnet synchronous motor since the magnetic flux ⁇ is generated by the magnet, when the inertial rotation is performed even when the power is not supplied, a sinusoidal speed electromotive force Es proportional to the rotation speed is obtained from the synchronous motor. Occurs at the terminal.
  • This signal is input to a microcomputer (not shown), and the presence or absence of rotation of the synchronous motor is detected by counting pulses.
  • the pulses proportional to the speed electromotive force are counted, the number of rotations of the synchronous motor can be determined. That is, since the rotational speed Nr ( ⁇ 1 / fr) is known, the presence or absence of rotation of the synchronous motor can be accurately determined.
  • a signal indicating that the permanent magnet synchronous motor is rotating is output, and when the value is equal to or less than the predetermined value, the permanent magnet synchronous motor is stopped. It may be controlled to output a signal indicating this.
  • the half-wave rectifier circuit and the comparator are not limited.
  • This signal is input to a microcomputer (not shown), and the presence or absence of voltage is detected to detect the presence or absence of rotation of the synchronous motor.
  • Vuv or Vwu may be used as the speed electromotive force
  • the phase voltages Vu ⁇ , Vv ⁇ , Vw ⁇ may be used with the ( ⁇ ) potential side of the power converter as a reference
  • the speed Even if the electromotive forces Vuv, Vvw, and Vwu are subjected to three-phase full-wave rectification and the presence / absence of rotation of the synchronous motor is detected from the speed electromotive force, the intention of this embodiment is not changed.
  • (A) and (b) are only examples.
  • the alarm output signal Sig1 for example, if the synchronous motor is rotating, the alarm output signal is 'H', and if the synchronous motor is stopped, the alarm output signal is 'L'.
  • An alarm lamp can be turned on using the alarm output signal to alert the user.
  • FIG. 5 is a simplified equivalent circuit of an induction motor and a permanent magnet synchronous motor.
  • the speed electromotive force (residual voltage) of the induction motor will be described in the sense of comparison with a permanent magnet synchronous motor.
  • FIG. 5A is an equivalent circuit of an induction motor, and includes a primary voltage V1, a primary resistance R1, a primary leakage inductance L1, a primary current I1, a secondary resistance R2, a secondary leakage inductance L2, a secondary current I2, and an excitation inductance M. (Magnetic flux ⁇ m) and exciting current Im, and the speed is controlled by changing the frequency value and voltage value of the primary voltage.
  • the attenuation characteristic of the speed electromotive force (residual voltage) of the induction motor is, for example, when the commercial power supply is shut off from the state of being driven by the commercial power supply, Speed electromotive force is generated. Even when the power converter cuts off the output, the motor generates a sinusoidal speed electromotive force proportional to the speed that was rotating when the power was turned off, like the commercial power supply.
  • the speed electromotive force V1 (residual voltage) varies in attenuation behavior depending on the connected load characteristics.
  • the residual voltage V1 is expressed by the following equation.
  • the attenuation behavior of the induction motor residual voltage after power-off is the same as that when driving the commercial power supply even when driven by the power converter.
  • Fig. 5 (b) is a diagram showing the behavior of the residual voltage after the power supply to the induction motor is cut off.
  • the time to is the time when the power supply from the power converter is shut off, and the residual voltage V1 of the induction motor after to shows the behavior according to the number (1).
  • FIG. 5C is an equivalent circuit of a permanent magnet synchronous motor, which includes an armature voltage (primary voltage) Va, an armature resistance Ra, an armature inductance La, an armature current Ia, a speed electromotive force Es, and a magnetic flux of the permanent magnet.
  • the speed is controlled by changing the frequency value and voltage value of the armature voltage.
  • the speed electromotive force (residual voltage) of the permanent magnet synchronous motor is, for example, a sinusoidal wave proportional to the speed that was rotating when the power supply was cut off when the commercial power supply was cut off from the state of being driven by the commercial power supply.
  • Speed electromotive force is generated. Even when the power converter cuts off the output, the synchronous motor generates a sinusoidal speed electromotive force proportional to the speed that was rotating when the power was turned off, like the commercial power supply.
  • the speed electromotive force generates a non-attenuating voltage proportional to the number of rotations of the synchronous motor during its rotation by the action of magnetic flux generated by the installed permanent magnet.
  • FIG. 5 (d) is a diagram showing the behavior of the speed electromotive force (residual voltage) after the power supply to the permanent magnet synchronous motor is cut off.
  • the speed electromotive force (residual voltage) V1 of the induction motor is damped, whereas the speed electromotive force (residual voltage) Va of the permanent magnet synchronous motor is largely different in that it exhibits a non-damping behavior proportional to the rotational speed. is there.
  • FIG. 6 is an example of a rotation state detection operation mode diagram and a time chart diagram of the permanent magnet synchronous motor according to the embodiment.
  • the inverter 3 is composed of the UP, VP and WP switching elements on the upper arm side connected to the (+) potential side of the DC intermediate circuit and the ( ⁇ ) potential side of the DC intermediate circuit.
  • the lower arm side UN, VN, and WN switching elements connected to each other.
  • the power converter stops due to some abnormality while the power converter is driving the permanent magnet synchronous motor ( After all the elements UP, VP, WP, UN, VN, and WN constituting the inverter 3 are turned off, only the lower arm switching element UN is turned on (VP, WP) among the elements that constitute the inverter 3 , UN, VN and WN are turned off), and currents Iau and Iaw due to the speed electromotive force Es of the permanent magnet synchronous motor are detected by the current detector CT.
  • any abnormality occurring in the power converter is, for example, an instantaneous power failure or insufficient voltage of a power source supplied to the power converter, or an excess for protecting a switching element constituting the inverter of the power converter.
  • turning on the switching element UN means applying a voltage signal of “H” level to the gate G of the switching element UN to make the switching element UN conductive.
  • FIG. 6B is an example of a time chart.
  • the control circuit 5 sends a signal to the digital operation panel 7 to display on the display that the synchronous motor is rotating. .
  • the switching element UN of the lower arm is turned on at every preset time Td (VP, WP, UN, VN, WN are turned off), current detection is repeated by the current detector CT, and a predetermined current value is set.
  • the control circuit 5 issues a signal to the digital operation panel 7 to display on the display device that the synchronous motor is rotating when it exceeds, and that the synchronous motor is stopped when the current value is below a predetermined current value.
  • the predetermined current value may be 0 ampere or more, and does not limit the current value.
  • the preset time Td may be arbitrarily set by the operator using the digital operation panel 7.
  • the speed electromotive force of the permanent magnet synchronous motor described in the embodiment of FIG. By turning on only the switching element UN of the lower arm described in the embodiment and detecting the current flowing in the current detector CT, or detecting the current of the semiconductor element constituting the inverse converter with the shunt resistance current detector The presence or absence of rotation of the synchronous motor is determined according to the detected current value, and whether the motor is rotating or stopped is displayed on the display.
  • FIG. 7 is a rotational state detection operation mode diagram and a time chart diagram of the permanent magnet synchronous motor according to the second embodiment.
  • the same reference numerals are assigned to the same configurations and the same functions as those in FIG.
  • the inverter 3 is composed of UP, VP and WP switching elements on the upper arm side connected to the (+) potential side of the DC intermediate circuit and the ( ⁇ ) potential side of the DC intermediate circuit.
  • the shunt resistance current detectors SHix, SHi, SHiz and UN, VN which detect the currents of the UN, VN, WN switching elements on the lower arm side and the UN, VN, WN switching elements on the lower arm side connected to It is composed of shunt resistance current detectors SHdx, SHdy, and SHdz that detect currents of diode elements connected in parallel to the switching elements of WN.
  • the power converter stops due to some abnormality while the power converter is driving the permanent magnet synchronous motor ( After all the elements UP, VP, WP, UN, VN, and WN constituting the inverter 3 are turned off, only the lower arm switching element UN is turned on (VP, WP) among the elements that constitute the inverter 3 , UN, VN, and WN are turned off), and currents Iau, Iav, and Iaw due to the speed electromotive force Es of the permanent magnet synchronous motor are detected by the shunt resistance current detectors SHix, SHiy, and SHdz.
  • FIG. 7B is an example of a time chart.
  • the power converter stops due to some abnormality all elements UP, VP, WP, UN, VN, WN constituting the reverse converter 3 are turned off
  • only the lower arm switching element UN is turned on during the period ts, A voltage corresponding to the current flowing by the shunt resistance current detector is detected, and when the voltage corresponding to a predetermined current value is exceeded, the fact that the synchronous motor is rotating is displayed on the display.
  • voltage detection corresponding to the current flowing through the shunt resistance current detector is repeated, and the voltage corresponding to a predetermined current value is exceeded.
  • the fact that the synchronous motor is rotating is displayed on the display unit that the synchronous motor is stopped when the voltage is equal to or lower than a voltage corresponding to a predetermined current value.
  • the preset time Td is not constant, and the repetition time is variable as Td1, Td2, -----, and Tdn according to the voltage detection value corresponding to the current flowing in the shunt resistance current detector. It is an example.
  • the preset time Td may be arbitrarily set by the operator on the digital operation panel 7.
  • FIG. 8 is a rotation state detection operation mode diagram of the permanent magnet synchronous motor according to the third embodiment. 6 and FIG. 7 in the first embodiment are denoted by the same reference numerals for the same configuration and the same function.
  • the inverter 3 is composed of the upper arm UP, VP, WP switching elements connected to the (+) potential side of the DC intermediate circuit and the ( ⁇ ) potential side of the DC intermediate circuit.
  • the lower arm side UN, VN, and WN switching elements connected to each other.
  • the currents Iau and Iaw due to the speed electromotive force Es of the permanent magnet synchronous motor are detected by the current detector CT, and it can be seen that the synchronous motor is rotating when the current flows, and is stopped when the current does not flow.
  • FIG. 8B is an example in which all the elements UN, VN, and WN on the lower arm side are turned on. As can be seen from the figure, the switching elements VN and WN of the V phase and the W phase are turned on. However, since no current flows through the V-phase and W-phase switching elements, the current flows through the diodes connected in parallel to the V-phase and W-phase switching elements VN and WN.
  • FIG. 9 is another example of a rotation state detection operation mode diagram of the permanent magnet synchronous motor according to the embodiment.
  • the inverter 3 is composed of the UP, VP and WP switching elements on the upper arm side connected to the (+) potential side of the DC intermediate circuit and the ( ⁇ ) potential side of the DC intermediate circuit.
  • the shunt resistance current detectors SHix, SHi, SHiz and UN, VN which detect the currents of the UN, VN, WN switching elements on the lower arm side and the UN, VN, WN switching elements on the lower arm side connected to It is composed of shunt resistance current detectors SHdx, SHdy, and SHdz that detect currents of diode elements connected in parallel to the switching elements of WN.
  • FIG. 9B which is the embodiment, when only the switching elements VP and WP of the upper arm are turned on (UP, UN, VN, WN are turned off), the current flowing through the switching elements and the permanent magnet synchronous motor The route of Iau and Iaw is shown.
  • FIG. 9B shows an example in which all elements UP, VP, and WP on the upper arm side are turned on.
  • the U-phase switching is performed even when the U-phase switching element UP is turned on. Since no current flows through the element, it flows through a diode connected in parallel to the U-phase switching element UP, and therefore the same effect as in FIG. 7 can be obtained.
  • FIG. 10 is another example of a rotation state detection operation mode diagram of the permanent magnet synchronous motor according to the embodiment.
  • the same reference numerals are assigned to the same configurations and the same functions as those in FIG.
  • the difference from FIG. 7A is that the switching element is composed of a SiC-MOSFET.
  • the SiC-MOSFET can flow a current from the drain to the source (positive direction) or from the source to the drain (negative direction) in a forward bias state where a gate voltage is applied. That is, this is an example in which the diode connected in parallel to the SiC-MOSFET is eliminated by utilizing the characteristics of the SiC-MOSFET capable of flowing current in the positive direction and the negative direction.
  • the positive and negative currents flowing through the switching element SiC-MOSFET can be detected only by the shunt resistance current detectors SHix, SHiy, and SHiz that detect the current of the switching element (SHdx, SHdy, and SHdz are not required).
  • a current flows through a body diode (parasitic diode) (not shown), which can be detected by a shunt resistance current detector.
  • the same reference numerals are assigned to the same configurations and the same functions as those in FIG. 9A.
  • the difference from FIG. 9A is that the switching element is composed of a SiC-MOSFET. This is an example in which the diode connected in parallel to the SiC-MOSFET is eliminated by using the characteristics of the SiC-MOSFET capable of flowing a current in the positive direction and the negative direction.
  • FIG. 11 is another example of a rotation state detection time chart of the permanent magnet synchronous motor according to the fourth embodiment.
  • the switching element UN of the lower arm is turned on during the period of ts, the current flowing in the current detector CT is detected, and the synchronous motor is rotating when a predetermined current value is exceeded.
  • This is an example of displaying on the display. After the power converter stops due to some abnormality (all elements UP, VP, WP, UN, VN, and WN constituting the reverse converter 3 are turned off), only the lower arm switching element UN is turned on.
  • the current detected by the current detector reaches the overcurrent level Ioc (current level provided in advance to protect the switching elements constituting the inverse converter).
  • Ioc current level provided in advance to protect the switching elements constituting the inverse converter.
  • the power converter trips overcurrent. For this reason, normally, only the switching element UN is turned on during the ts period, but since the overcurrent level Ioc is reached after ts1, the power converter is cut off (UN pulse is turned off) at this time. Thereafter, the trip abnormality is automatically reset, but the timing of this reset may be carried out until the presence or absence of rotation of the synchronous motor is displayed. Of course, it is not necessary to reset if the trip abnormality is not latched.
  • the overcurrent trip is automatically reset when an overcurrent trip occurs, and only the switching element UN of the lower arm is again reset. Enables on and auto reset operates as long as overcurrent trip continues.
  • the “inertia rotation detection mode” of the synchronous motor it is not necessary to execute an automatic reset if the latch is configured not to latch even when the overcurrent level is reached.
  • the power converter is temporarily shut off (UN pulse is turned off), and only the lower arm switching element UN is turned on again. As long as the overcurrent level Ioc is reached, the lower arm switching element UN is turned on. Only repeat on.
  • the overcurrent level Ioc current level: latch provided in advance to protect the switching element constituting the inverse converter
  • the present invention is not limited to this level value.
  • the intention of the embodiment does not change even when the first current setting level Iad0 is set in advance and is dedicated to the “inertia rotation detection mode” lower than the overcurrent level Ioc.
  • the power conversion device is temporarily cut off (UN pulse is turned off), and only the switching element UN of the lower arm is turned on again. As long as it reaches, only the switching element UN of the lower arm is repeatedly turned on.
  • a correlation of Td1 ⁇ Td2 ⁇ Td3 is preset between the times Td1 and Td3. That is, that the detected current reaches the overcurrent level Ioc means that the inertial rotation speed of the synchronous motor is high. To avoid this overcurrent level, only the switching element UN of the next lower arm is used. It is desirable to make the timing for turning on longer than the previous time. If the length is increased, the time during which the synchronous motor rotates by inertia also becomes longer, and the rotational speed also decreases. For this reason, the next Td2 is set to be longer than Td1, and the next Td3 is set to be longer than Td2.
  • a correlation of Td4>Td5>Td6> Td7 is preset between the times Td4 and Tdn. That is, three levels of predetermined current values Iad1, Iad2, and Iad3 are provided, and the correlation between these levels and a predetermined repetition time Td is determined as follows.
  • the repetition time Td is automatically varied according to the current value detected by the current detector, so that the operator does not have to set the repetition time Td. There is.
  • the predetermined current value is provided with three levels Iad1, Iad2, and Iad3, and the correlation between these levels and the predetermined repetition time Td is determined.
  • the number of current values is not limited, but not limited to three levels, n current value setting levels (Iad1, ------, Iadn) are provided, and automatically according to the current value setting level.
  • the repetition time Td may be varied.
  • FIG. 12 is a display example of the digital operation panel according to the fourth embodiment.
  • the presence or absence of the rotation state of the permanent magnet synchronous motor is displayed on the display part A of the digital operation panel 7 mounted on the surface of the power conversion device 10.
  • (A) is the example which displayed on the display part A that "the motor is rotating” when it is detected that the permanent magnet synchronous motor is rotating.
  • (B) is an example of displaying “motor stopped” on the display unit A when it is detected that the permanent magnet synchronous motor is stopped.
  • the display content is not limited to "motor rotating” or “motor stopped”
  • the actual “rotation speed” for example, “1000 (r / m)”, “0 (r / m)”, “1000”, “0”
  • “voltage generation present”, “voltage generation absent” or “voltage danger” may be used. That is, it is only necessary for the operator to know that “the motor is rotating” or “the motor is stopped”, and the display content is not limited.
  • the display content can be displayed on the host device 12.
  • the speed electromotive force according to the rotation speed of the permanent magnet synchronous motor or the presence / absence of current flowing through the synchronous motor is detected.
  • the display shows whether the synchronous motor is rotating or stopped, it is possible to alert the user so that the user can visually recognize it. The risk of touching can be eliminated.
  • the synchronous motor is normally stopped by the power conversion device, and even if the fan is temporarily stopped, the fan is rotated again by the outside air, and the synchronous motor is inertially rotated. There is. Even in such an application, the user can be alerted by displaying the presence or absence of rotation of the synchronous motor on the display or by lighting the alarm lamp using the alarm output signal Sig1.
  • SYMBOLS 1 Forward converter, 2 ... Smoothing capacitor, 3 ... Inverse converter, 4 ... Control arithmetic unit, 5 ... Control circuit, 6 ... Cooling fan, 7 ... Digital operation panel, 8 ... Drive circuit, 9 ... Voltage detection circuit DESCRIPTION OF SYMBOLS 10 ... Power converter device, 11 ... Load device, 12 ... Host device, 13 ... Switching regulator circuit, 14 ... Voltage detection circuit, CT ... Current detector, SH1, SHi, SHd ... Shunt resistance current detector, PM motor ... Permanent magnet synchronous motor, NFB ... No fuse breaker, MC ... Electromagnetic contactor, Ioc ... Overcurrent level, Iad1, Iad2, Iad3 ... Predetermined current value setting level

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 順変換器と、平滑コンデンサを有する直流中間回路と、前記直流中間回路の(+)電位側に接続された上アーム側の半導体素子と前記直流中間回路の(-)電位側に接続された下アーム側の半導体素子とを備え、前記直流中間回路にて平滑された直流電圧を交流電圧に変換する逆変換器と、前記逆変換器に流れる電流を検出する電流検出器と、を備え、永久磁石同期電動機を可変速制御する電力変換装置において、前記電力変換装置から前記永久磁石同期電動機への電力の出力を停止した後、前記上アーム側の半導体素子または前記下アーム側の半導体素子のうち、一方のアーム側の半導体素子の一個以上をオンし、かつ、他方のアーム側の半導体素子を全てオフとする制御をして、前記電流検出器において所定の電流を検出した場合に、前記永久磁石同期電動機が回転中であることを示す信号を出力する制御回路を備える構成とする。

Description

電力変換装置
 本発明は、永久磁石同期電動機を駆動する電力変換装置に関する。
 特許文献1の段落[0008]には、「直流電源と、インバータ装置と、前記直流電源と前記インバータ装置の間に接続されたフィルタコンデンサとを備え、前記インバータ装置により少なくとも1台以上の同期電動機を駆動し、惰行時に前記同期電動機の誘起電圧が第1の基準値以上になった場合、前記インバータ装置の直流側の電圧が前記誘起電圧に基づいて設定される第2の基準値以上になるように前記直流電源を動作させるものである。」と開示されている。
特開2010-154661号公報
 永久磁石同期電動機は、磁石により磁束Φが生成されているため、同期電動機に電源が供給されなくても惰性回転している場合には、その回転数に比例した正弦波状の速度起電力が同期電動機の端子に発生する。
 しかし、何らかの要因で電力変換装置が出力を停止した際、同期電動機が惰性回転している状態では、電動機端子に速度起電力が常時発生している点については、製品の取扱説明書などに記載しているが、電動機端子に電圧(起電力)が常時発生しているという観念がユーザにないのが一般的である。
 このため、電力変換装置と永久磁石同期電動機の配線長が長い場合に、電力変換装置の設置場所で同期電動機が回転していることが分からず、電力変換装置の出力を遮断したため大丈夫と誤認し、電力変換装置の出力端子に不用意に触れる危険性がある。
 本発明は、電力変換装置の操作中においてもユーザに注意喚起する電力変換装置を提供することを目的とする。
 上記目的と達成するために、例えば、本発明では、交流電源の交流電圧を整流して直流電圧に変換する順変換器と、前記順変換器にて変換された直流電圧を平滑する平滑コンデンサを有する直流中間回路と、前記直流中間回路の(+)電位側に接続された上アーム側の半導体素子と前記直流中間回路の(-)電位側に接続された下アーム側の半導体素子とを備え、前記直流中間回路にて平滑された直流電圧を交流電圧に変換する逆変換器と、前記逆変換器に流れる電流を検出する電流検出器と、を備え、永久磁石同期電動機を可変速制御する電力変換装置において、前記電力変換装置から前記永久磁石同期電動機への電力の出力を停止した後、前記上アーム側の半導体素子または前記下アーム側の半導体素子のうち、一方のアーム側の半導体素子の一個以上をオンし、かつ、他方のアーム側の半導体素子を全てオフとする制御をして、前記電流検出器において所定の電流を検出した場合に、前記永久磁石同期電動機が回転中であることを示す信号を出力する制御回路を備える構成とする。
 本発明によれば、ユーザの注意を促すことにより安全性を高めた電力変換装置を提供することができる。
実施例に係る電力変換装置の構成図の一例である。 実施例に係る電力変換装置の他の構成図の一例である。 実施例に係るシステムの単線結線図の一例である。 実施例に係る電圧検出回路の一例である。 誘導電動機と永久磁石同期電動機の簡易等価回路である。 実施例に係る永久磁石同期電動機の回転状態検出動作モード図とタイムチャート図の一例である。 実施例に係る永久磁石同期電動機の回転状態検出動作モード図とタイムチャート図である。 実施例に係る永久磁石同期電動機の回転状態検出動作モード図である。 実施例に係る永久磁石同期電動機の回転状態検出動作モード図の他の一例である。 実施例に係る永久磁石同期電動機の回転状態検出動作モード図の他の一例である。 実施例に係る永久磁石同期電動機の回転状態検出タイムチャート図の他の一例である。 実施例に係るデジタル操作パネルの表示例である。
 以下図面を用いて本実施例1について説明する。なお、各図における共通の構成については同一の参照番号を付してある。また、本実施例1は図示例に限定されるものではない。実施例1における電力変換装置の形態を以下に図を用いて説明する。図1は、実施例1に係る電力変換装置の構成図の一例である。
 図1の電力変換装置10は、負荷装置11に直結されたPMモータ(以下、永久磁石同期電動機と呼ぶ)に電力を供給するための順変換器1、平滑用コンデンサ2、逆変換器3、制御演算装置4、制御回路5、冷却ファン6、デジタル操作パネル7、ドライブ回路8、直流電圧検出回路9、スイッチングレギュレータ回路13、電圧検出回路14を備えて構成される。図1では、任意の入力電源として交流電源を用いた場合を示す。順変換器1は、交流電力を直流電力に変換する。平滑用コンデンサ2は、直流中間回路に備えられている。
 逆変換器3は、直流電力を任意の周波数の交流電力に変換する。逆変換器3は、スイッチング素子と該スイッチング素子に並列に接続されたダイオードからなる半導体素子で構成されている。逆変換器3内には、代表的なスイッチング素子として例えばIGBTが搭載されている。ここで、スイッチング素子としてはIGBTに限定されるものではなく、スイッチング素子としての形態を有するものであれば良い。例えば、シリコン(Si)の物性値限界を乗り越える性能を有したワイドバンドギャップ半導体素子であるSiC(シリコンカーバイト)やGaN(ガリュームナイトライド)などでもよい。
 冷却ファン6は、順変換器1及び逆変換器3内のパワーモジュールを冷却する。デジタル操作パネル7は、電力変換装置の各種制御データを設定、変更、異常状態及びモニタ表示を行う。操作パネル7には異常表示が可能な表示部が設けられており、電力変換装置における異常が検出されると当該表示部に表示される。本実施例の操作パネル7としては、特に種類が限定されるものではないが、デジタル操作パネルとして装置使用者の操作性を考慮して表示部の表示を見ながら操作が行えるように構成している。
 なお、表示部は必ずしも操作パネル7と一体に構成する必要はないが、操作パネル7の操作者が、表示を見ながら操作できるように一体構成とすることが望ましい。操作パネル7から入力された電力変換装置の各種制御データは図示しない記憶部に格納される。
 制御回路5は、デジタル操作パネル7によって入力される各種の制御データに基づいて逆変換器3のスイッチング素子を制御すると共に、電力変換装置10全体の制御を司る働きをするもので、制御演算装置4(例えば、マイコンなど)が搭載されており、デジタル操作パネル7から入力される各種の制御データに応じて必要な制御処理が行なえるように構成されている。また、上位装置12(例えば、通信装置や無線装置や指令装置)から入力される各種の制御データに応じて必要な制御処理も行なえるように構成されている。
 Sig1は、永久磁石同期電動機が回転しているか停止しているかを知らせる警報出力信号である。もちろんこの警報信号を上位装置12に送信してもよい。
 内部構成は省略するが、各種の制御データが格納された記憶部の記憶データからの情報に基づいて制御演算装置4(例えば、マイコンなど)が演算を行う。
 電流検出器CTは、永久磁石同期電動機のU相、W相の線電流を検出する。V相の線電流は、交流条件(iu+iv+iw=0)から、iv=-(iu+iw)として求められる。図1ではCTを2個用いる例を示したが、CTを3個使用し、各U相、V相、W相の線電流を検出してもよい。
 ドライブ回路8は、制御回路5からの指令に基づいて逆変換器3のスイッチング素子を駆動する。ドライブ回路8内にはスイッチングレギュレータ回路(DC/DCコンバータ)13が搭載されており、電力変換装置の運転に必要な各直流電圧を生成し、これらを各構成に対して供給する。
 14は、電力変換装置の出力端子の電圧を検出する回路である。電力変換装置の出力が遮断されている場合に、永久磁石同期電動機の速度起電力を検出する。
 R1端子とT1端子は、スイッチングレギュレータ回路13の電源端子である。直流電圧検出回路9は、直流中間回路を構成する平滑用コンデンサ2の電圧を検出する。また、任意の入力電源として交流電源ではなく、直流電源を供給する場合には、直流中間回路の(+)電位側に直流電源の+側を接続し、直流中間回路の(-)電位側に直流電源の-側を接続すればよい。さらには、交流端子RとSとTを接続し、この接続点に直流電源の+側を接続し、直流中間回路の(-)電位側に直流電源の-側を接続してもよいし、逆に、直流中間回路の(+)電位側に直流電源の+側を接続し、交流端子RとSとTを接続し、この接続点に直流電源の-側を接続してもよい。
 図2は、実施例に係る電力変換装置の他の構成図の一例である。図1と共通の構成および同一の機能については、同一の参照番号を付してある。図1と異なるのは、電流検出器の検出位置である。
 SH1、SHi、SHdは電流検出用のシャント抵抗電流検出器であり、SH1は直流中間回路の(-)側の電流を検出し、SHiは逆変換器3を構成する直流中間回路の(-)電位側に接続された下アームの各スイッチング素子であるU相とV相とW相のIGBTに接続され、SHdは各スイッチング素子であるIGBTに並列に接続されたダイオードに接続されている。
 すなわち、電力変換装置の直流母線側に設けられたシャント抵抗電流検出器SHiは、各IGBTに流れる電流を検出する電流検出器であり、シャント抵抗電流検出器SHdは各IGBTに並列に接続されたダイオードに流れる電流を検出する電流検出器である。
 電力変換装置の直流母線側に設けられたシャント抵抗電流検出器で永久磁石同期電動機に流れる電流を検出できる。また、シャント抵抗電流検出器SHi、SHdは、逆変換器3を構成する直流中間回路の(-)電位側に接続された下アームのIGBTとダイオードからなる半導体素子に接続されているが、逆変換器3を構成する直流中間回路の(+)電位側に接続された上アームのIGBTとダイオードからなる半導体素子に接続して電流を検出してもよい。
 図3は、実施例に係るシステムの単線結線図の一例である。NFBはノーヒューズブレーカで、MCは電磁接触器で、R1端子とT1端子は、スイッチングレギュレータ回路13の電源端子である。電力変換装置が何らかの異常で破壊した場合、破壊部品によっては、異常をリセットし再度始動すると電力変換装置を二次的に破壊し、破壊の度合いが拡大するため、これを防止する目的から、電力変換装置の異常時には主電源である電力変換装置の入力R、S、T各端子への給電を電磁接触器MCで遮断し、ノーヒューズブレーカNFBの出力側からR1端子とT1端子を通してスイッチングレギュレータ回路13を動作させる。このようにR1端子とT1端子をノーヒューズブレーカNFBの出力側から供給する構成の場合、電力変換装置の主電源がなくても、電力変換装置内部の電源(例えば、マイコンなどのデジタル系の電源、スイッチング素子のドライブ電源、アナログ系の電源など)を動作させることができるため、電力変換装置が何らかの異常で停止し、上位の電磁接触器MCを遮断しても、電力変換装置内部の電源により、マイコンを含む制御回路やドライブ回路を通してスイッチング素子をオン・オフすることが可能となる。このため、例えば、永久磁石同期電動機の速度起電力Esが残留していれば、下アームのスイッチング素子UNのみのゲート電圧をオン(VP、WP、UN、VN、WNをオフ)にした際に必ず電流が流れ、速度起電力Esが残留していなければ電流は流れない。つまり、電流が流れれば同期電動機が回転中であり、流れなければ停止中であることが電力変換装置の主電源がなくても判別できる。異常の表示などを操作者が確認し正確に対応を検討することができる。
  電力変換装置10で永久磁石同期電動機を駆動している場合、何らかの異常(例えば、過電流、過電圧、不足電圧、瞬時停電など)で電力変換装置が出力を遮断(出力停止)すると永久磁石同期電動機は惰性回転することになる。永久磁石同期電動機は、磁石により磁束Φが生成されているため、同期電動機に電源が供給されなくても惰性回転している場合には、その回転数に比例した正弦波状の速度起電力が同期電動機の端子に常に発生している。永久磁石同期電動機の速度起電力については、図5の(c)と(d)で説明する。
 しかし、電力変換装置と同期電動機の配線長LLが長い場合、同期電動機から遠方にある電力変換装置の設置場所では操作者には同期電動機が回転しているのか停止しているのかが分からない。
  この場合、回転している同期電動機を再始動しようとすれば、同期電動機の磁極位置が不明のため、同期電動機の磁極位置と電力変換装置の出力位相が異なり、同期電動機特有の脱調現象により制御不能となる。
 また、何らかの要因で電力変換装置が破壊し電力変換装置が出力を停止したため、電力変換装置の電源を遮断した後、同期電動機が惰性回転している状態では、電動機端子に速度起電力が常時発生しているという観念がないため、電力変換装置の出力を遮断したため大丈夫と誤認したり、あるいは、同期電動機が停止しているものと誤認し、電力変換装置を交換するため出力端子U、V、Wの動力線を外そうとした際に、出力端子U、V、W端子に触れた瞬間に同期電動機の速度起電力により感電する危険性がある。
 この場合、R1端子とT1端子によりスイッチングレギュレータ回路13が動作していれば、同期電動機が回転しているか停止しているかを表示できるため、同期電動機が停止していることを確認してから保守をすれば不容易に感電することを防止できる。
 図4は、実施例に係る電圧検出回路の一例である。デジタル操作パネル7により、予め同期電動機の「惰性回転検出モード」を選択すると、電力変換装置の出力が遮断されている場合に、永久磁石同期電動機の速度起電力を検出する。永久磁石同期電動機は、磁石により磁束Φが生成されているため、電源が供給されなくても惰性回転している場合には、その回転数に比例した正弦波状の速度起電力Esが同期電動機の端子に発生する。
 図4(a)は、電力変換装置の出力端子VW間の速度起電力Vvw(=Es)を半波整流回路により電圧Vd1に変換し、比較器で基準電圧Vr1と比較し、パルス電圧Vo1に変換する。この信号が図示しないマイコンに入力され、パルスをカウントすることにより同期電動機の回転の有無を検出する。実施例では、速度起電力に比例したパルスをカウントするため、同期電動機の回転数を判別できる点にある。すなわち、回転数Nr(∝1/fr)が分かるため、同期電動機の回転の有無を正確に判別できる。パルスをカウントし予め定めた値を超えた場合に、永久磁石同期電動機が回転中であることを示す信号を出力し、予め定めた値以下の場合に、前記永久磁石同期電動機が停止中であることを示す信号を出力するように制御してもよい。もちろん、半波整流回路や比較器を限定するものではない。
 図4(b)は、電力変換装置の出力端子VW間の速度起電力Vvw(=Es)を全波整流回路により電圧Vd2に変換し、平滑回路で波形整形して比較器で基準電圧Vr2と比較し、電圧Vo2に変換する。この信号が図示しないマイコンに入力され、電圧の有無を検出することにより同期電動機の回転の有無を検出する。
 もちろん、速度起電力としてVuvを用いてもVwuを用いても、電力変換装置の(-)電位側を基準として相電圧Vu-、Vv-、Vw-を用いてもよいし、さらには、速度起電力VuvとVvwとVwuを三相全波整流して、速度起電力から同期電動機の回転の有無を検出しても本実施例の意図は変わらない。(a)と(b)は、一例に過ぎない。
 警報出力信号Sig1においては、例えば、同期電動機が回転している場合には警報出力信号は‘H’を、同期電動機が停止している場合には警報出力信号は‘L’を出力すれば、警報出力信号を用いて警報ランプを点灯させユーザに注意喚起することができる。
 図5は、誘導電動機と永久磁石同期電動機の簡易等価回路である。永久磁石同期電動機と比較する意味で、誘導電動機の速度起電力(残留電圧)について説明する。
  図5(a)は誘導電動機の等価回路であり、一次電圧V1、一次抵抗R1、一次漏れインダクタンスL1、一次電流I1、二次抵抗R2、二次漏れインダクタンスL2、二次電流I2、励磁インダクタンスM(磁束Φm)、励磁電流Imで構成され、一次電圧の周波数値と電圧値を可変することにより速度制御する。
 誘導電動機の速度起電力(残留電圧)の減衰特性は、例えば、商用電源で駆動されている状態から商用電源を遮断した場合、電動機には電源遮断時に回転していた速度に比例した正弦波状の速度起電力が発生する。電力変換装置が出力を遮断した場合においても商用電源同様に電動機には電源遮断時に回転していた速度に比例した正弦波状の速度起電力が発生する。
 この速度起電力V1(残留電圧)は、接続された負荷特性により減衰挙動が異なる。残留電圧V1は、下式で表される。
V1(t)=M(-1/τ+jωr)*I20*e(-t/τ)*e(jωrt)  ---  数(1)
ここで、
      I20:二次電流の第二種初期値
     M:一次と二次間の相互インダクタンス
     τ:電動機の回路時定数(L/R)
     ωr:電動機の回転角周波数(ωr=2π*fr)
     t:時間
 電源遮断後の誘導電動機残留電圧の減衰挙動については、電力変換装置で駆動した場合においても商用電源駆動時と同様である。
  図5(b)は、誘導電動機への供給電源が遮断された後の残留電圧の挙動を示した図である。時刻toは電力変換装置からの供給電源を遮断した時点であり、to後における誘導電動機の残留電圧V1は、数(1)に従った挙動を示す。
 ここで、数(1)より、回転子角速度ωrが急激に下降しないという条件下(例えば、換気ファン:負荷が小さく、慣性モーメントGDが大きい)では、数(1)は数(2)となる。この時の残留電圧の周期は、時定数τに大きく依存しほぼ等周期で減衰してゆく。
V1(t)∝Vdo*e(-t/τ)  --------------------------------  数(2)
 一方、回転子角速度が急激に下降するという条件下(例えば、ポンプ:粘性が大きく、慣性モーメントGDが小さい)のもとでは、数(1)は数(3)となる。この場合、残留電圧の周期も振幅も急激に減衰変化する。
V1(t)∝Vd(ωr)*e(jωrt)  --------------------------  数(3)
 すなわち、誘導電動機残留電圧V1は、負荷条件に大きく依存し、電動機の回転角周波数ωr(=2πfr)と誘導電動機の回路時定数τに従って減衰する特性を有し、比較的短時間に数V程度まで減衰する。このため、誘導電動機の場合には、電動機への供給電源が遮断され、その後に電動機端子に触れても感電する危険性はない。
  図5(c)は、永久磁石同期電動機の等価回路であり、電機子電圧(一次電圧)Va、電機子抵抗Ra、電機子インダクタンスLa、電機子電流Ia、速度起電力Es、永久磁石の磁束Φmで構成され、電機子電圧の周波数値と電圧値を可変することにより速度制御する。
 永久磁石同期電動機の速度起電力(残留電圧)は、例えば、商用電源で駆動されている状態から商用電源を遮断した場合、同期電動機には電源遮断時に回転していた速度に比例した正弦波状の速度起電力が発生する。電力変換装置が出力を遮断した場合においても商用電源同様に同期電動機には電源遮断時に回転していた速度に比例した正弦波状の速度起電力が発生する。この速度起電力は、装着された永久磁石により生成される磁束の作用により、同期電動機が回転している間中その回転数に比例した非減衰電圧が発生する。
 永久磁石同期電動機の速度起電力Vaは、下式で表される。
Va=Es=ke*Φm*ωr∝fr  ------------------------- 数(4)
ここで、
     ke:定数
     Φm:磁束
     ωr:同期電動機の回転子角速度(ωr=2π*fr)
 電源遮断後の永久磁石同期電動機残留電圧の挙動については、電力変換装置で駆動した場合においても商用電源駆動時と同様である。
  図5(d)は、永久磁石同期電動機への供給電源が遮断された後の速度起電力(残留電圧)の挙動を示した図である。時刻toは電力変換装置からの供給電源を遮断した時点であり、to後における永久磁石同期電動機の残留電圧Vaは、数(4)に従った挙動を示す。すなわち、残留電圧Vaは、同期電動機の回転角周波数ωr(=2πfr)に従った特性を有し、装着された永久磁石により生成される磁束Φmの作用により、同期電動機が回転している間中その回転数に比例した非減衰電圧が発生する。
 誘導電動機の速度起電力(残留電圧)V1が減衰挙動するのに対し、永久磁石同期電動機の速度起電力(残留電圧)Vaは、回転数に比例した非減衰挙動を示す点が大きな相違点である。
 このため、永久磁石同期電動機の場合には、同期電動機への供給電源が遮断されても、その後も速度起電力(残留電圧)が発生し続けるため、同期電動機端子あるいは電力変換装置の出力端子に触れると感電する危険性を内在している。
 図6は、実施例に係る永久磁石同期電動機の回転状態検出動作モード図とタイムチャート図の一例である。図6(a)に示すように逆変換器3は、直流中間回路の(+)電位側に接続された上アーム側のUP、VP、WPのスイッチング素子と直流中間回路の(-)電位側に接続された下アーム側のUN、VN、WNのスイッチング素子で構成される。
 実施例である(a)の回路構成において、下アームのスイッチング素子UNのみがオン動作した際にスイッチング素子と永久磁石同期電動機に流れる電流IauとIavとIawのルートを示したものである。この際に同期電動機のU相には、速度起電力Esを同期動機のインピーダンスで割った電流Iauが流れる。
 実施例では、デジタル操作パネル7により、予め同期電動機の「惰性回転検出モード」を選択すると、電力変換装置が永久磁石同期電動機を駆動している最中に、電力変換装置が何らかの異常で停止(逆変換器3を構成する全素子UP、VP、WP、UN、VN、WNをオフ)した後、逆変換器3を構成する素子の中で下アームのスイッチング素子UNのみをオン(VP、WP、UN、VN、WNをオフ)にし、永久磁石同期電動機の速度起電力Esによる電流IauとIawを電流検出器CTで検出する。電流Iavについては、Iav=-(Iau+Iaw)として求めることができる。
 ここで、電力変換装置に発生した何らかの異常とは、例えば、電力変換装置に供給する電源の瞬時停電や不足電圧、あるいは、電力変換装置の逆変換器を構成するスイッチング素子を保護するための過電流や過電圧、あるいは、上位装置から指令された緊急遮断やフリーラン停止などであり、同期電動機を駆動している最中に同期電動機への電力供給を遮断するものである。
 永久磁石同期電動機の速度起電力Esが残留していれば、下アームのスイッチング素子UNのみをオン(VP、WP、UN、VN、WNをオフ)にした際に必ず電流が流れ、速度起電力Esが残留していなければ電流は流れない。つまり、電流が流れれば同期電動機が回転中であり、流れなければ停止中であることが分かる。
 ここで、スイッチング素子UNをオンとは、スイッチング素子UNのゲートGに“H”レベルの電圧信号を与えスイッチング素子UNを導通させることである。
 また、下アーム側の1個のスイッチング素子(例えば、UN)のみをオン(UP、VP、WP、VN、WNをオフ)動作させても、下アーム側の2個のスイッチング素子(例えば、UNとVN)のみをオン(UP、VP、WP、WNをオフ)動作させても、下アーム側の3個のスイッチング素子(例えば、UNとVNとWN)のみをオン(UP、VP、WPをオフ)動作させても同様の効果が得られる。
 図6(b)は、タイムチャート図の一例である。電力変換装置が何らかの異常で停止(逆変換器3を構成する全素子UP、VP、WP、UN、VN、WNをオフ)した後、tsの期間に下アームのスイッチング素子UNのみをオンにし、電流検出器CTで流れる電流を検出し、予め定めた電流値を超えた場合には、制御回路5がデジタル操作パネル7に信号を発し、同期電動機が回転中であることを表示器に表示する。そして、予め設定された時間Td毎に下アームのスイッチング素子UNのみをオン(VP、WP、UN、VN、WNをオフ)にし、電流検出器CTで電流検出を繰り返し、予め定めた電流値を超えた場合に同期電動機が回転中であることを、予め定めた電流値以下の場合に同期電動機が停止中であること制御回路5がデジタル操作パネル7に信号を発し表示器に表示する。
 本実施例では、例えば、Td=5秒毎に電流を検出し、同期電動機が回転しているのか停止しているのかを電流を検出して判断するためである。つまり、比較的長い時間Td毎に電流を検出すれば十分であるといえる。
 ここで、予め定めた電流値は、0アンペアでもそれ以上の値でもよく、電流値を限定するものではない。また、予め設定された時間Tdは、デジタル操作パネル7で操作者が任意に設定できるようにしてもよい。
 また、電力変換装置の出力が遮断されている場合に、上位装置12からの信号により、図4の実施例に記載した永久磁石同期電動機の速度起電力を検出したり、図6から図10の実施例に記載した下アームのスイッチング素子UNのみをオンにし電流検出器CTで流れる電流を検出したり、逆変換器を構成する半導体素子の電流をシャント抵抗電流検出器で検出したりすることにより、検出した電流値に応じて同期電動機の回転有無を判断し、回転中か停止中かを表示器に表示する。
  図7は、実施例2に係る永久磁石同期電動機の回転状態検出動作モード図とタイムチャート図である。実施例1における図6と共通の構成および同一の機能については、同一の参照番号を付してある。
 図7(a)に示すように逆変換器3は、直流中間回路の(+)電位側に接続された上アーム側のUP、VP、WPのスイッチング素子と直流中間回路の(-)電位側に接続された下アーム側のUN、VN、WNのスイッチング素子と各下アーム側のUN、VN、WNのスイッチング素子の電流を検出するシャント抵抗電流検出器SHix、SHiy、SHizとUN、VN、WNのスイッチング素子に並列に接続されたダイオード素子の電流を検出するシャント抵抗電流検出器SHdx、SHdy、SHdzとで構成される。
 実施例である(a)の回路構成において、下アームのスイッチング素子UNのみがオン(VP、WP、UN、VN、WNをオフ)動作した際にスイッチング素子と永久磁石同期電動機に流れる電流IauとIavとIawのルートを示したものである。この際に同期電動機のU相には、速度起電力Esを同期動機のインピーダンスで割った電流Iauが流れる。
 実施例では、デジタル操作パネル7により、予め同期電動機の「惰性回転検出モード」を選択すると、電力変換装置が永久磁石同期電動機を駆動している最中に、電力変換装置が何らかの異常で停止(逆変換器3を構成する全素子UP、VP、WP、UN、VN、WNをオフ)した後、逆変換器3を構成する素子の中で下アームのスイッチング素子UNのみをオン(VP、WP、UN、VN、WNをオフ)にし、永久磁石同期電動機の速度起電力Esによる電流IauとIavとIawをシャント抵抗電流検出器SHixとSHiyとSHdzで検出する。
 永久磁石同期電動機の速度起電力Esが残留していれば、下アームのスイッチング素子UNのみをオン(VP、WP、UN、VN、WNをオフ)にした際に必ず電流が流れ、速度起電力Esが残留していなければ電流は流れない。つまり、シャント抵抗電流検出器SHixでの電圧VSHixあるいはSHdyでの電圧VSHdyあるいはシャント抵抗電流検出器SHizでの電圧VSHizが検出されれば同期電動機が回転中であり、検出されなければ停止中であることが分かる。
 また、下アーム側の1個のスイッチング素子(例えば、UN)のみをオン(UP、VP、WP、VN、WNをオフ)動作させても、下アーム側の2個のスイッチング素子(例えば、UNとVN)のみをオン(UP、VP、WP、WNをオフ)動作させても、下アーム側の3個のスイッチング素子(例えば、UNとVNとWN)のみをオン(UP、VP、WPをオフ)動作させても同様の効果が得られる。
 図7(b)は、タイムチャート図の一例である。電力変換装置が何らかの異常で停止(逆変換器3を構成する全素子UP、VP、WP、UN、VN、WNをオフ)した後、tsの期間に下アームのスイッチング素子UNのみをオンにし、シャント抵抗電流検出器で流れる電流に相当する電圧を検出し、予め定めた電流値に相当する電圧を超えた場合に同期電動機が回転中であることを表示器に表示する。そして、予め設定された時間Td毎に下アームのスイッチング素子UNのみをオンにし、シャント抵抗電流検出器で流れる電流に相当する電圧検出を繰り返し、予め定めた電流値に相当する電圧を超えた場合に同期電動機が回転中であることを、予め定めた電流値に相当する電圧以下の場合に同期電動機が停止中であることを表示器に表示する。
 ここで、予め設定された時間Tdは一定ではなく、シャント抵抗電流検出器で流れる電流に相当する電圧検出値に応じて繰り返し時間をTd1、Td2、-----、Tdnと可変した場合の例である。
 予め設定された一定ではない時間Td毎に特定のスイッチング素子をオン、オフするのは、例えば、Td=5秒毎に実行し、検出した電流が前回検出値より小さい場合には、速度起電力が小さくなった、すなわち回転数が小さくなったとして次回の時間をTd=3秒毎にするということであり、同期電動機が回転しているのか停止しているのかを電流値を検出して判断するためである。もちろん、予め設定された時間Tdは、デジタル操作パネル7で操作者が任意に設定できるようにしてもよい。
 図8は、実施例3に係る永久磁石同期電動機の回転状態検出動作モード図である。実施例1における図6および図7と共通の構成および同一の機能については、同一の参照番号を付してある。
 図8(a)に示すように逆変換器3は、直流中間回路の(+)電位側に接続された上アーム側のUP、VP、WPのスイッチング素子と直流中間回路の(-)電位側に接続された下アーム側のUN、VN、WNのスイッチング素子で構成される。
 実施例である(a)の回路構成において、下アームのスイッチング素子UNとVNのみがオン(UP、VP、WP、WNをオフ)動作した際にスイッチング素子と永久磁石同期電動機に流れる電流IauとIavとIawのルートを示したものである。
 電流Iavについては、Iav=-(Iau+Iaw)として求めることができる。
 図からもわかるようにV相とW相のスイッチング素子VNとWNをオンしてもV相とW相スイッチング素子には電流は流れず、V相とW相のスイッチング素子VNとWNに並列に接続されたダイオードに流れるため、図6と同様の効果が得られる。
 永久磁石同期電動機の速度起電力Esによる電流IauとIawを電流検出器CTで検出し、電流が流れれば同期電動機が回転中であり、流れなければ停止中であることが分かる。
 また、図8(b)は、下アーム側の全素子UN、VN、WNをオンにした一例であるが、図からもわかるようにV相とW相のスイッチング素子VNとWNをオンしてもV相とW相スイッチング素子には電流は流れず、V相とW相のスイッチング素子VNとWNに並列に接続されたダイオードに流れるため、図6と同様の効果が得られる。
 すなわち、下アーム側の1個のスイッチング素子(例えば、UN)のみをオン(UP、VP、WP、VN、WNをオフ)動作させても、下アーム側の2個のスイッチング素子(例えば、UNとVN)のみをオン(UP、VP、WP、WNをオフ)動作させても、下アーム側の3個のスイッチング素子(例えば、UNとVNとWN)のみをオン(UP、VP、WPをオフ)動作させても同様の効果が得られる。
 図9は、実施例に係る永久磁石同期電動機の回転状態検出動作モード図の他の一例である。図9(a)に示すように逆変換器3は、直流中間回路の(+)電位側に接続された上アーム側のUP、VP、WPのスイッチング素子と直流中間回路の(-)電位側に接続された下アーム側のUN、VN、WNのスイッチング素子と各下アーム側のUN、VN、WNのスイッチング素子の電流を検出するシャント抵抗電流検出器SHix、SHiy、SHizとUN、VN、WNのスイッチング素子に並列に接続されたダイオード素子の電流を検出するシャント抵抗電流検出器SHdx、SHdy、SHdzとで構成される。
 実施例である図9(b)の回路構成において、上アームのスイッチング素子VPとWPのみがオン(UP、UN、VN、WNをオフ)動作した際にスイッチング素子と永久磁石同期電動機に流れる電流IauとIawのルートを示したものである。
 図からもわかるようにU相のスイッチング素子UPをオンしてもU相のスイッチング素子には電流は流れず、U相のスイッチング素子UPに並列に接続されたダイオードに流れるため、図7と同様の効果が得られる。
 シャント抵抗電流検出器SHduでの電圧VSHduあるいはSHivでの電圧VSHivあるいはSHiwでの電圧VSHiwが検出されれば同期電動機が回転中であり、検出されなければ停止中であることが分かる。
 また、図9(b)は、上アーム側の全素子UP、VP、WPをオンにした一例であるが、図からもわかるようにU相のスイッチング素子UPをオンしてもU相のスイッチング素子には電流は流れず、U相のスイッチング素子UPに並列に接続されたダイオードに流れるため、図7と同様の効果が得られる。
 すなわち、上アーム側の1個のスイッチング素子(例えば、UP)のみをオン(VP、WP、UN、VN、WNをオフ)動作させても、上アーム側の2個のスイッチング素子(例えば、UPとVP)のみをオン(WP、UN、VN、WNをオフ)動作させても、上アーム側の3個のスイッチング素子(例えば、UPとVPとWP)のみをオン(UN、VN、WNをオフ)動作させても同様の効果が得られる。
 図10は、実施例に係る永久磁石同期電動機の回転状態検出動作モード図の他の一例である。図10(a)の構成図において、図7(a)と共通の構成および同一の機能については、同一の参照番号を付してある。図7(a)と異なるのは、スイッチング素子としてSiC-MOSFETで構成した点である。
 SiC-MOSFETは、ゲート電圧を印加している順バイアス状態では、ドレインからソース(正方向)へ、あるいは、ソースからドレイン(負方向)に電流を流すことができる。すなわち、正方向および負方向に電流を流すことができるSiC-MOSFETの特性を利用して、SiC-MOSFETに並列に接続されるダイオードを削除した例である。
 このため、スイッチング素子の電流を検出するシャント抵抗電流検出器SHix、SHiy、SHizのみ(SHdx、SHdy、SHdzは不要)でスイッチング素子SiC-MOSFETに流れる正および負の電流を検出することができる。デッドタイムの期間は、図示しないボディーダイオード(寄生ダイオード)に電流が流れるが、シャント抵抗電流検出器で検出できる。このため、図10(a)の構成においても図7(a)と同様の制御が可能で、図7(b)と同様の効果が得られる。
 また、図10(b)の構成図において、図9(a)と共通の構成および同一の機能については、同一の参照番号を付してある。図9(a)と異なるのは、スイッチング素子としてSiC-MOSFETで構成した点である。正方向および負方向に電流を流すことができるSiC-MOSFETの特性を利用して、SiC-MOSFETに並列に接続されるダイオードを削除した例である。
 このため、スイッチング素子の電流を検出するシャント抵抗電流検出器SHiu、SHiv、SHiwのみ(SHdu、SHdv、SHdwは不要)でスイッチング素子SiC-MOSFETに流れる正および負の電流を検出することができる。もちろん、デッドタイムの期間は、図示しないボディーダイオード(寄生ダイオード)に電流が流れるが、シャント抵抗電流検出器で検出できる。このため、やはり図10(b)の構成においても図9(a)と同様の制御が可能で、図9(b)と同様の効果が得られる。
 図11は、実施例4に係る永久磁石同期電動機の回転状態検出タイムチャート図の他の一例である。図6の実施例と同様に、tsの期間に下アームのスイッチング素子UNのみをオンにし、電流検出器CTで流れる電流を検出し、予め定めた電流値を超えた場合に同期電動機が回転中であることを表示器に表示する例である。電力変換装置が何らかの異常で停止(逆変換器3を構成する全素子UP、VP、WP、UN、VN、WNをオフ)した後、下アームのスイッチング素子UNのみをオンにするが、同期電動機の回転数が高い場合には大きな電流が流れ、電流検出器にて検出された電流が過電流レベルIoc(逆変換器を構成するスイッチング素子を保護するために予め設けられた電流レベル)に達し、電力変換装置が過電流トリップする。このため、通常は、ts期間スイッチング素子UNのみをオンにするがts1後に過電流レベルIocに達したため、この時点で電力変換装置を遮断(UNパルスをオフ)する。その後は、このトリップ異常を自動リセットするが、このリセットのタイミングは、同期電動機の回転の有無を表示するまでに実施すればよい。もちろん、トリップ異常をラッチしていなければリセットする必要はない。
 実施例4では、同期電動機の回転数が高いため、過電流トリップが3回発生した例である。時刻t0で、下アームのスイッチング素子UNのみをオンにするが、同期電動機の回転数が高いため大きな電流が流れ、検出電流が過電流レベルIocに達し、ts=ts1(時刻t1)で電力変換装置を遮断(UNパルスをオフ)し、過電流トリップする。ラッチされたこの過電流Iocトリップを自動リセットする。
 そして、次の時刻t2(時刻t1からTd=Td1経過)まで「モータ回転中」を表示し、時刻t2で再度下アームのスイッチング素子UNのみをオンにするが、同期電動機の回転数が未だ高いため大きな電流が流れ、検出電流が再び過電流レベルIocに達し、ts=ts1(時刻t3)で電力変換装置を遮断(UNパルスをオフ)し、過電流トリップする。ラッチされたこの過電流Iocトリップを自動リセットする。
 次の時刻t4(時刻t3からTd=Td2経過)まで「モータ回転中」を表示し、時刻t4で再度下アームのスイッチング素子UNのみをオンにするが、同期電動機の回転数が未だ高いため大きな電流が流れ、検出電流が再び過電流レベルIocに達し、ts=ts1(時刻t5)で電力変換装置を遮断(UNパルスをオフ)し、過電流トリップする。ラッチされたこの過電流Iocトリップを自動リセットする。
 もちろん、デジタル操作パネル7により、予め同期電動機の「惰性回転検出モード」を選択すれば、過電流トリップが発生した場合には自動的に過電流トリップをリセットし、再度下アームのスイッチング素子UNのみオンを可能にし、過電流トリップが続く限り自動リセットが動作する。もちろん、同期電動機の「惰性回転検出モード」を選択した場合には、この過電流レベルに達してもラッチしない構成にすれば自動リセットを実行する必要はない。過電流レベルIocに達した場合には、電力変換装置を一旦遮断(UNパルスをオフ)し、再度下アームのスイッチング素子UNのみオンにし、この過電流レベルIocに達する限り下アームのスイッチング素子UNのみオンを繰り返す。
 さらに、次の時刻t6(時刻t5からTd=Td3経過)まで「モータ回転中」を表示し、時刻t6で再度下アームのスイッチング素子UNのみをオンにするが、同期電動機の回転数が低くなり、検出電流が予め定めたIocとIad3の範囲内となったため、ts後(時刻t7)に電力変換装置を遮断(UNパルスをオフ)する。
 実施例4では、過電流レベルIoc(逆変換器を構成するスイッチング素子を保護するために予め設けられた電流レベル:ラッチ)を判断基準にしているが、このレベル値に限定したものではなく、過電流レベルIocよりも低い「惰性回転検出モード」専用の予め定めた第一の電流設定レベルIad0であっても実施例の意図は変わらない。この場合においても、この第一の電流設定レベルIad0に達した場合には、電力変換装置を一旦遮断(UNパルスをオフ)し、再度下アームのスイッチング素子UNのみオンにし、この電流値Iad0に達する限り下アームのスイッチング素子UNのみオンを繰り返す。
 ここで、時間Td1からTd3の間には、Td1<Td2<Td3の相関関係が予め設定されている。すなわち、検出電流が過電流レベルIocに達するということは、同期電動機の惰性回転数が高いことを意味しており、この過電流レベルを回避するためには、次回の下アームのスイッチング素子UNのみをオンにするタイミングを前回より長くすることが望ましい。長くすれば、同期電動機が惰性回転している時間も長くなるため、回転数も低下する。このため、Td1よりも次回のTd2の方が長く、さらにTd2よりも次回のTd3の方が長く設定してある。
 ここで、時刻t6で再度下アームのスイッチング素子UNのみをオンにし、時刻t7で検出電流が予め定めたIocとIad3の範囲内となったため、同期電動機の回転数が低下したと判断し、次の時刻t7から時刻t8(時刻t7からTd=Td4経過)までの時間を前回のTd3より短くするが、Td2より短くしてもより。
 そして、次の時刻t8(時刻t7からTd=Td4経過)まで「モータ回転中」を表示し、時刻t8で再度下アームのスイッチング素子UNのみをオンにし、同期電動機の回転数がさらに低くなり、検出電流が予め定めたIad2とIad3の範囲内となったため、ts後(時刻t9)に電力変換装置を遮断(UNパルスをオフ)する。
 次の時刻t10(時刻t9からTd=Td5経過)まで「モータ回転中」を表示し、時刻t10で再度下アームのスイッチング素子UNのみをオンにし、同期電動機の回転数がさらに低くなり、検出電流が予め定めたIad1とIad2の範囲内となったため、ts後(時刻t11)に電力変換装置を遮断(UNパルスをオフ)する。
 以上の動作を繰り返し、時刻t12(Td=Td7経過)で、再度下アームのスイッチング素子UNのみをオンにし、時刻t13での検出電流が予め定めたIad1以下で殆ど0となったため、時刻t13以降は「モータ停止中」と表示する。
 そして、電力変換装置に運転信号が入力されるまで、下アームのスイッチング素子UNのみをオンを繰り返し、同期電動機の回転の有無を検出継続してもよい。もちろん、同期電動機が停止したと判断できたため、時刻t13以後は、下アームのスイッチング素子UNのみをオンにする制御を中止してもよい。
 ここで、時間Td4からTdnの間には、Td4>Td5>Td6>Td7の相関関係が予め設定されている。すなわち、予め定めた電流値がIad1とIad2とIad3の3レベルが設けられており、これらのレベルと予め定めた繰り返し時間Tdとの相関が下記のように決めてある。
・Iad3≦Iau<Iocの場合、Td=Td4
・Iad2≦Iau<Iad3の場合、Td=Td5
・Iad1≦Iau<Iad2の場合、Td=Td6
・Iau<Iad1の場合、Td=Td7
これは、数(4)からも分かるように同期電動機に流れる電流値(検出電流値)が小さくなることは、速度起電力が小さくなった、すなわち回転数が低くなったことを意味する。 
 このため、検出電流値が小さくなれば、同期電動機の回転数が低くなったことを意味するため、同期電動機が停止するまでの時間が短くなるため、次回の返し時間Tdも前回より短くして電流を検出測定すれば、同期電動機の停止状態の把握時間を短くできる。
 このように予め相関を決めておけば、電流検出器にて検出された電流値に応じて自動的に繰り返し時間Tdが可変されるため、操作者が繰り返し時間Tdを設定する必要がないというメリットがある。
 実施例4では、予め定めた電流値がIad1とIad2とIad3の3個のレベルを設け、これらのレベルと予め定めた繰り返し時間Tdとの相関を決めてあるが、予め定めた電流値設定レベルの個数に制限を与えるものではなく、3個のレベルに限らずn個の電流値設定レベル(Iad1、------、Iadn)を設け、この電流値設定レベルに応じて自動的に繰り返し時間Tdを可変してもよい。
 図12は、実施例4に係るデジタル操作パネルの表示例である。電力変換装置10の表面に搭載されたデジタル操作パネル7の表示部Aに永久磁石同期電動機の回転状態の有無を表示する。(a)は、永久磁石同期電動機が回転していることが検出された場合に「モータ回転中」と表示部Aへ表示した例である。(b)は、永久磁石同期電動機が停止していることが検出された場合に「モータ停止中」と表示部Aへ表示した例である。
 また、表示内容も「モータ回転中」あるいは「モータ停止中」に限定するものではなく、
実際の「回転数」(例えば、「1000(r/m)」、「0(r/m)」あるいは、「1000」、「0」)を表示してもよい。あるいは、「電圧発生有」、「電圧発生無」でも「電圧危険」でもよい。すなわち、「モータが回転している」あるいは「モータが停止している」ことが操作者に分かればよく、表示内容を限定したものではない。もちろん、当該表示内容を上位装置12に表示することができる。
 以上の実施例で示したように、例えば、電力変換装置に異常が発生しその出力が停止した後、永久磁石同期電動機の回転数に応じた速度起電力あるいは同期電動機に流れる電流の有無を検出し、同期電動機が回転しているか、あるいは停止しているかを表示器に表示するため、ユーザが目視で認識できるように注意喚起することが可能であり、電力変換装置の出力端子に不用意に触れる危険性を排除することができる。
 また、例えば、換気ファンなどの用途の場合、電力変換装置で同期電動機を正常に停止し、ファンも一旦停止しても外気である空気により再度ファンが回され、同期電動機が惰性回転されることがある。このような用途においても、同期電動機の回転有無を表示器に表示したり、警報出力信号Sig1を用いて警報ランプを点灯させることによりユーザに注意喚起することができる。
1…順変換器、2…平滑用コンデンサ、3…逆変換器、4…制御演算装置、5…制御回路、6…冷却ファン、7…デジタル操作パネル、8…ドライブ回路、9…電圧検出回路、10…電力変換装置、11…負荷装置、12…上位装置、13…スイッチングレギュレータ回路、14…電圧検出回路、CT…電流検出器、SH1,SHi,SHd…シャント抵抗電流検出器、PMモータ…永久磁石同期電動機、NFB…ノーヒューズブレーカ、MC…電磁接触器、Ioc…過電流レベル、Iad1,Iad2,Iad3…予め定めた電流値設定レベル

Claims (14)

  1.  交流電源の交流電圧を整流して直流電圧に変換する順変換器と、
     前記順変換器にて変換された直流電圧を平滑する平滑コンデンサを有する直流中間回路と、
     前記直流中間回路の(+)電位側に接続された上アーム側の半導体素子と前記直流中間回路の(-)電位側に接続された下アーム側の半導体素子とを備え、前記直流中間回路にて平滑された直流電圧を交流電圧に変換する逆変換器と、
     前記逆変換器に流れる電流を検出する電流検出器と、
     を備え、永久磁石同期電動機を可変速制御する電力変換装置において、
     前記電力変換装置から前記永久磁石同期電動機への電力の出力を停止した後、前記上アーム側の半導体素子または前記下アーム側の半導体素子のうち、一方のアーム側の半導体素子の一個以上をオンし、かつ、他方のアーム側の半導体素子を全てオフとする制御をして、前記電流検出器において所定の電流を検出した場合に、前記永久磁石同期電動機が回転中であることを示す信号を出力する制御回路を備えることを特徴とする永久磁石同期電動機駆動用電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     前記一方のアーム側の半導体素子は、予め設定された時間Tdの周期でオンとなることを特徴とする電力変換装置。
  3.  請求項1に記載の電力変換装置であって、
     前記電流検出器は、該電力変換装置から出力される電流または該電力変換装置の前記上アーム側または前記下アーム側の半導体素子の電流を検出することを特徴とする電力変換装置。
  4.  請求項2に記載の電力変換装置であって、
     前記予め設定された時間Tdは、前記電流検出器にて検出された電流に応じて可変となることを特徴とする電力変換装置。
  5.  請求項1に記載の電力変換装置であって、
     前記制御回路は、前記電流検出器にて検出された電流が予め定めた値を超えた場合に、前記永久磁石同期電動機が回転中であること示す信号を表示器に発して表示する制御を行い、前記電流検出器にて検出された電流が予め定めた値以下の場合に、前記永久磁石同期電動機が停止中であることを示す信号を表示器に発して表示する制御を行うことを特徴とする電力変換装置。
  6.  請求項1に記載の電力変換装置であって、
     前記制御回路は、前記電流検出器にて検出された電流が過電流レベルに達し前記電力変換装置がトリップした場合に、そのトリップ状態を自動解除することを特徴とする電力変換装置。
  7.  請求項4に記載の電力変換装置であって、
     前記制御回路は、前記電流検出器にて検出された電流が過電流レベルに達し前記電力変換装置がトリップした場合、次回の前記時間Tdは前回の前記時間Tdよりも長くする制御を行うことを特徴とする電力変換装置。
  8.  請求項1に記載の電力変換装置であって、
     前記制御回路は、前記電流検出器にて検出された電流が予め定めた値より小さくなった場合は、前記上アーム側の半導体素子または前記下アーム側の半導体素子のうち、一方のアーム側の半導体素子の一個以上をオンし、かつ、他方のアーム側の半導体素子を全てオフとする制御を中止することを特徴とする電力変換装置。
  9.  交流電源の交流電圧を整流して直流電圧に変換する順変換器と、
     前記順変換器にて変換された直流電圧を平滑する平滑コンデンサを有する直流中間回路と、
     半導体素子で構成され、前記直流中間回路にて平滑された直流電圧を交流電圧に変換する逆変換器と、
     電力変換装置の出力端子間の電圧を検出する電圧検出回路と、
     を備え、永久磁石同期電動機を可変速制御する電力変換装置において、
     前記電力変換装置の電力の出力を停止した後、前記電圧検出回路にて所定の電圧が検出された場合に、前記永久磁石同期電動機が回転中であることを示す信号を出力する制御回路と、を備えることを特徴とする電力変換装置。
  10.  請求項9に記載の電力変換装置であって、
     前記制御回路は、前記電圧検出回路にて検出された電圧が予め定めた値を超えた場合に、前記永久磁石同期電動機が回転中であること示す信号を表示器に発して表示する制御を行い、前記電圧検出回路にて検出された電圧が予め定めた値以下の場合に、前記永久磁石同期電動機が停止中であることを示す信号を表示器に発して表示する制御を行うことを特徴とする電力変換装置。
  11.  請求項9に記載の電力変換装置であって、
     前記電圧検出回路にて検出された電圧をパルス電圧に変換し、該パルスをカウントし予め定めた値を超えた場合に、前記永久磁石同期電動機が回転中であることを示す信号を出力することを特徴とする電力変換装置。
  12.  請求項11に記載の電力変換装置であって、
     前記パルスをカウントし予め定めた値以下の場合に、前記永久磁石同期電動機が停止中であることを示す信号を出力することを特徴とする電力変換装置。
  13.  請求項1または9に記載の電力変換装置において、
     前記電力変換装置の運転条件を設定する操作パネルを備え、
     前記制御回路が、前記永久磁石同期電動機が回転中あるいは停止中であると判断した場合、回転中あるいは停止中であることを前記操作パネルに表示するように制御することを特徴とする電力変換装置。
  14.  請求項1または9に記載の電力変換装置において、
     前記電力変換装置の運転条件を設定する上位装置を備え、
     前記制御回路が、前記永久磁石同期電動機が回転中あるいは停止中であると判断した場合、回転中あるいは停止中であることを前記上位装置に表示するように制御することを特徴とする電力変換装置。
PCT/JP2014/050884 2014-01-20 2014-01-20 電力変換装置 WO2015107685A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015557663A JP6282292B2 (ja) 2014-01-20 2014-01-20 電力変換装置
CN201480073173.4A CN105917566B (zh) 2014-01-20 2014-01-20 电力转换装置
PCT/JP2014/050884 WO2015107685A1 (ja) 2014-01-20 2014-01-20 電力変換装置
EP14879123.9A EP3098962A4 (en) 2014-01-20 2014-01-20 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050884 WO2015107685A1 (ja) 2014-01-20 2014-01-20 電力変換装置

Publications (1)

Publication Number Publication Date
WO2015107685A1 true WO2015107685A1 (ja) 2015-07-23

Family

ID=53542603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050884 WO2015107685A1 (ja) 2014-01-20 2014-01-20 電力変換装置

Country Status (4)

Country Link
EP (1) EP3098962A4 (ja)
JP (1) JP6282292B2 (ja)
CN (1) CN105917566B (ja)
WO (1) WO2015107685A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044938A (ja) * 2019-09-11 2021-03-18 キヤノン株式会社 モータ制御装置およびその制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112953289B (zh) * 2021-04-15 2022-11-22 哈尔滨工业大学 谐振直流环节软开关逆变器及其调制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331894A (ja) * 1995-05-29 1996-12-13 Sanken Electric Co Ltd 交流電動機の惰性回転情報検出方法及び装置
JP2002034284A (ja) * 2000-07-19 2002-01-31 Seiko Epson Corp モータ回転検出システム及びディスク装置
JP2005041171A (ja) * 2003-07-24 2005-02-17 Nec Engineering Ltd モータ制御装置
JP2009019561A (ja) * 2007-07-11 2009-01-29 Ihi Corp 電動機付ターボチャージャ制御システム
JP2009106092A (ja) * 2007-10-24 2009-05-14 Omron Corp 停止検知装置、停止検知方法および安全システム
JP2010154661A (ja) 2008-12-25 2010-07-08 Hitachi Ltd 同期電動機制御装置
WO2012032571A1 (ja) * 2010-09-07 2012-03-15 株式会社日立産機システム 交流電動機の回転方向検出方法及びそれを利用した交流電動機の電力変換装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3585904D1 (de) * 1984-09-05 1992-05-27 Meidensha Electric Mfg Co Ltd Verfahren und vorrichtung zum wiederanfahren eines umformers fuer rotierende motoren.
JP2003348885A (ja) * 2002-05-23 2003-12-05 Sanyo Electric Co Ltd 永久磁石型同期モータの制御方法及び制御装置
JP4534612B2 (ja) * 2004-06-09 2010-09-01 日産自動車株式会社 モータ駆動制御装置
US9385642B2 (en) * 2012-03-07 2016-07-05 Mitsubishi Electric Corporation Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331894A (ja) * 1995-05-29 1996-12-13 Sanken Electric Co Ltd 交流電動機の惰性回転情報検出方法及び装置
JP2002034284A (ja) * 2000-07-19 2002-01-31 Seiko Epson Corp モータ回転検出システム及びディスク装置
JP2005041171A (ja) * 2003-07-24 2005-02-17 Nec Engineering Ltd モータ制御装置
JP2009019561A (ja) * 2007-07-11 2009-01-29 Ihi Corp 電動機付ターボチャージャ制御システム
JP2009106092A (ja) * 2007-10-24 2009-05-14 Omron Corp 停止検知装置、停止検知方法および安全システム
JP2010154661A (ja) 2008-12-25 2010-07-08 Hitachi Ltd 同期電動機制御装置
WO2012032571A1 (ja) * 2010-09-07 2012-03-15 株式会社日立産機システム 交流電動機の回転方向検出方法及びそれを利用した交流電動機の電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3098962A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044938A (ja) * 2019-09-11 2021-03-18 キヤノン株式会社 モータ制御装置およびその制御方法
JP7414436B2 (ja) 2019-09-11 2024-01-16 キヤノン株式会社 モータ制御装置およびその制御方法

Also Published As

Publication number Publication date
EP3098962A1 (en) 2016-11-30
JPWO2015107685A1 (ja) 2017-03-23
JP6282292B2 (ja) 2018-02-21
CN105917566A (zh) 2016-08-31
EP3098962A4 (en) 2018-01-17
CN105917566B (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
KR102087573B1 (ko) 인버터용 작동 상태 회로, 및 인버터의 작동 상태 설정 방법
US20120075893A1 (en) Inverter device overvoltage protection method
JP5817021B2 (ja) モータ駆動回路、およびそれを備えるモータユニット
JPWO2018163363A1 (ja) 電動機の駆動装置および冷凍サイクル適用機器
JP6134813B2 (ja) 電力変換装置および電力変換装置の制御方法
JP5876846B2 (ja) 電動機駆動装置
US9203341B2 (en) Switch arrangement
EP2320555A2 (en) Motor control apparatus
JP6282292B2 (ja) 電力変換装置
JP2014236533A (ja) 電力変換装置および制御方法
JP2010268551A (ja) インバータ装置
JP6704948B2 (ja) モータの駆動制御装置およびモータの駆動制御方法
JP6925527B2 (ja) モータ駆動装置、モータ駆動装置の制御装置、モータ駆動装置の制御方法、及び空気調和機
JP4590658B2 (ja) 制御装置
JP6165683B2 (ja) インバータ装置
JP2006141110A (ja) 電動機制御装置
JP2007053842A (ja) 電動機の制御装置
JP2016073065A (ja) モータ制御装置
JP6093817B2 (ja) モータ制御装置
JP6883760B2 (ja) モータ駆動装置
KR102523153B1 (ko) 이상 동작 방지 알고리즘을 수행하는 모터 구동 장치
JP5890215B2 (ja) ポンプ駆動用の電力変換装置
JP2013226045A (ja) モータ制御装置
KR20110035115A (ko) 단상 유도 전동기 제어 장치 및 방법
WO2015033427A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557663

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014879123

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014879123

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE