WO2015102201A1 - 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지 - Google Patents

리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지 Download PDF

Info

Publication number
WO2015102201A1
WO2015102201A1 PCT/KR2014/007836 KR2014007836W WO2015102201A1 WO 2015102201 A1 WO2015102201 A1 WO 2015102201A1 KR 2014007836 W KR2014007836 W KR 2014007836W WO 2015102201 A1 WO2015102201 A1 WO 2015102201A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
secondary battery
active material
silicon
negative electrode
Prior art date
Application number
PCT/KR2014/007836
Other languages
English (en)
French (fr)
Inventor
심규은
이주명
장동규
양우영
Original Assignee
삼성정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학 주식회사 filed Critical 삼성정밀화학 주식회사
Priority to US15/108,127 priority Critical patent/US10050259B2/en
Priority to CN201480071594.3A priority patent/CN106165157B/zh
Publication of WO2015102201A1 publication Critical patent/WO2015102201A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a negative electrode active material for lithium secondary batteries and a lithium secondary battery, and more particularly, to a method for manufacturing a negative electrode active material for lithium secondary batteries and a lithium secondary battery capable of minimizing surface oxidation of Si nanoparticles.
  • Lithium secondary batteries used by charging and discharging through intercalation and deintercalation of lithium ions are becoming essential power sources for medium and large devices such as electric vehicles as well as portable electronic devices for information and communication.
  • Graphite-based negative electrode active materials have been used as a representative negative electrode material of lithium secondary batteries, but the theoretical capacity is limited to 372 mAh / g. Therefore, studies on high-capacity materials such as silicon or tin or metallic composites are being conducted. In addition, there is a growing interest in changing titanium and zinc oxides and their high specific surface area nanostructures in consideration of high capacity and chemical stability.
  • silicon is one of the high capacity negative electrode active materials of a lithium secondary battery having a theoretical capacity of about 4200 mAh / g by reaction with lithium.
  • silicon causes a change in crystal structure upon reaction with lithium, and during charging, when silicon absorbs and stores the maximum amount of lithium, Li 4 . 4 Si, which expands to about 4.12 times the volume of silicon prior to volume expansion.
  • Mechanical stress applied to the volume expansion of silicon causes cracks in the inside and the surface of the electrode, and when the lithium ions are released by the discharge, the silicon shrinks again.
  • Repeating such a charge / discharge cycle causes pulverization of the negative electrode active material, and causes the phenomenon that the undifferentiated negative electrode active material aggregates and is electrically detached from the current collector.
  • the capacity is drastically lowered, resulting in a short cycle life.
  • a method of controlling the sudden volume change of the Si metal material by reducing the particle size has been attempted.
  • a Si-C composite is manufactured by mechanically crushing Si and dispersing it in a conductive material.
  • the surface is easily oxidized in the process of nano-particles of silicon to form an oxide film on the silicon particles, thereby lowering the initial charge and discharge efficiency of the battery, the battery capacity is also reduced.
  • the problem caused by the surface oxidation becomes even more a problem as the fraction of the oxide film volume relative to the metal volume becomes large, especially when the particle size is reduced to nanoscale.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-215887 describes a method of coating the surface of Si particles with a carbon layer by chemical vapor deposition.
  • Japanese Patent Laid-Open No. 2000-215887 describes a method of coating the surface of Si particles with a carbon layer by chemical vapor deposition.
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-190902 discloses a method of devising a laminated structure of a silicon active material to mitigate volume expansion
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-2163764 discloses a silicon particle. It discloses a method of absorbing volume change by leaving an empty space between the nucleus portion and the porous outer portion.
  • the method of improving the cycle characteristics of the negative electrode material by covering the silicon surface is only economically inefficient, and can exhibit a low capacity degree that is much lower than the original theoretical capacity of silicon, resulting in low battery performance.
  • Patent Document 1 JP2000-215887 A
  • Patent Document 2 JP2005-190902 A
  • Patent Document 3 JP2006-216374 A
  • the present invention provides a method of manufacturing a negative active material for a lithium secondary battery that can minimize surface oxidation of Si nanoparticles.
  • the present invention also provides a lithium secondary battery that can improve the initial efficiency and life retention rate of the battery by including a negative electrode active material for a lithium secondary battery prepared by the above method.
  • the present invention provides a negative active material for a lithium secondary battery prepared by mechanically crushing or pulverizing particulate silicon in the form of secondary particles formed by agglomeration of crystalline and amorphous Si primary particles under dry or wet conditions. Provide a method.
  • the present invention provides a lithium secondary battery comprising a negative electrode active material prepared by the above method.
  • Metal silicon can be easily produced by nanoparticles through a grinding process, but there is a problem in that battery performance is degraded due to surface oxidation of silicon accompanying the process. Accordingly, Si nanoparticles having minimal oxidation on the surface of silicon may be obtained by pulverizing or pulverizing secondary particles in which crystalline or amorphous Si primary particles, which are produced as byproducts, are aggregated. In addition, by using this as a negative electrode active material it is possible to improve the initial efficiency and life characteristics of the lithium secondary battery.
  • the present invention provides a method of manufacturing a negative active material for a lithium secondary battery, which is prepared by mechanically crushing or pulverizing particulate silicon in the form of secondary particles formed by aggregation of crystalline and amorphous Si primary particles under dry or wet conditions.
  • the mechanical grinding or pulverization can be carried out under dry or wet conditions.
  • Drying literally means making the particles small in the powder (powder) state, and wet means making the particles small in the state of mixing the powder with the diluent (liquid phase).
  • the mechanical grinding or pulverization may be performed by a milling process.
  • the milling process may be performed using beads mills, high energy ball mills, planetary ball mills, stirred ball mills, vibration mills, and the like.
  • Bead mills and ball mills are made of a chemically inert material that does not react with silicon, and may be, for example, one made of zirconia.
  • the size of the bead mill or ball mill may be, for example, 0.03 to 10 mm, but is not limited thereto.
  • Milling process time may be carried out for an appropriate time in consideration of the size of the silicon-based particles used, the final particle size to be obtained, and the size of the bead mill or ball mill used in the milling process, for example for 0.1 to 10 hours Can be performed.
  • the average particle diameter (D 50 ) of the secondary particles may be 1 to 15 ⁇ m. If it is out of the above range can reduce the risk of negative electrode mixture density decrease and high-speed negative electrode coating processability inhibition.
  • the average particle diameter indicates a value measured as the volume average value D 50 (i.e., the particle diameter or median diameter at which the cumulative volume is 50%) in the particle size distribution measured by laser light diffraction method.
  • a diluent capable of suppressing surface oxidation of Si particles.
  • the diluent may inhibit surface oxidation of silicon particles by protecting newly exposed ground or crushed surfaces from oxygen in the air.
  • an organic solvent having a small viscosity may be used as the diluent (liquid phase).
  • the viscosity of the diluent is preferably used at a weight% of 500 mpa ⁇ s or less. When the viscosity of the diluent is 500 mpa ⁇ s or more, the pulverization kinetic energy is absorbed by the diluent to lower the grinding and crushing effect of the silicon particles.
  • the particulate silicon in the form of secondary particles formed by agglomeration of the crystalline and amorphous silicon primary particles may be obtained as a silicon production product using a fluidized bed reactor (FBR) method.
  • FBR fluidized bed reactor
  • This production product is introduced into the fluidized bed reactor with an internal temperature of 400 °C or more under the argon air flow, the polysilicon particles (seed), and after feeding the monosilane, amorphous silicon primary particles and the seed produced by the pyrolysis reaction of the monosilane Is a mixed silicon secondary particle in which the grown crystalline silicon primary particles are mixed and agglomerated and classified by a classifier (TC-15, manufactured by Nisshin Engineering Co., Ltd.) to obtain a silicon powder having a D 50 of 10 ⁇ m.
  • TC-15 manufactured by Nisshin Engineering Co., Ltd.
  • the silicon secondary particles BET (Brnauer, Emmett & Teller) specific surface area by measuring 2m 2 / g ⁇ 50m 2 / g is preferable, and lithium ions when the specific surface area 2m 2 / g is less than the reaction area Reactivity may decrease, and if it exceeds 50 m 2 / g, both the initial efficiency and cycle characteristics may deteriorate due to an increase in the binder requirement for maintaining current collection and deterioration of negative electrode manufacturing characteristics for lithium secondary batteries. .
  • BET Brunauer, Emmett & Teller
  • the present invention provides a lithium secondary battery including the prepared negative active material.
  • a negative electrode active material layer including the prepared negative electrode active material is formed on an electrode current collector to manufacture a negative electrode for a lithium secondary battery.
  • the electrode current collector one selected from the group consisting of copper foil, nickel foil, stainless steel, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof can be used.
  • the active material layer includes a binder and optionally a conductive material together with the negative electrode active material.
  • the binder may be polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), cellulose, polyethylene, polypropylene, styrenebutadiene rubber (SBR), polyimide, polyacrylic acid, poly Methyl methacrylate (PMMA), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), water-soluble polyacrylic acid (PAA), and the like may be used, but are not limited thereto.
  • conductive material natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, silver or the like may be used. Conductive materials can be mixed and used.
  • a negative electrode active material optionally, a conductive material and a binder are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP), an organic solvent, or water to prepare a slurry composition, and an electrode current collector. It can apply
  • NMP N-methyl-2-pyrrolidone
  • the lithium secondary battery includes a negative electrode including the negative electrode active material; A positive electrode comprising a positive electrode active material capable of intercalating and deintercalating lithium ions; Separator; And an electrolyte including a non-aqueous organic solvent and a lithium salt.
  • materials such as a positive electrode, a separator, electrolyte, and a battery shape, are not limited.
  • the amorphous and crystalline mixed silicon products (D 50 9.9 ⁇ m) obtained through the pyrolysis of polysilicon and silane gas using the FBR method were obtained by using beads of 5 mm size in a planetary ball mill with 100 ml internal volume. Dry grinding for minutes gave silicon particles having a D 50 of 7.7 ⁇ m.
  • the obtained silicon particles, artificial graphite conductive agent and polyimide binder were prepared in a weight ratio of 40:45:15.
  • the binder was dissolved in a solvent (N-methylpyrrolidone, 99%, Aldrich Co.) for 10 minutes using a mixer (Thiky mixer), and then pulverized particles and a conductive agent were added and stirred for 15 minutes to obtain a homogeneous slurry.
  • a solvent N-methylpyrrolidone, 99%, Aldrich Co.
  • the slurry thus prepared was applied to a copper foil using a blade, dried in an oven at 110 ° C. for 20 minutes to evaporate the solvent, and then pressed using a roll press.
  • the prepared negative electrode was dried in a 120 °C vacuum oven for 12 hours.
  • the positive electrode used lithium metal foil.
  • EMC ethylene carbonate
  • EMC ethyl methyl carbonate
  • a coin-type lithium secondary battery was manufactured using a solution dissolved in ethylene carbonate (VC, 2% by weight) as an electrolyte.
  • the amorphous and crystalline mixed silicon products (D 50 9.9 ⁇ m) obtained through the pyrolysis of polysilicon and silane gas using the FBR method were obtained by using beads of 5 mm size in a planetary ball mill with 100 ml internal volume. The first dry grinding for minutes, 30 minutes secondary grinding with beads of 3 mm size, and the third dry grinding for 30 minutes with beads of 1 mm size to obtain silicon particles having a D 50 2.1 ⁇ m.
  • a lithium secondary battery was manufactured in the same manner as in Example 1 using the obtained silicon particles as a negative electrode active material.
  • a lithium secondary battery was manufactured in the same manner as in Example 1 using the obtained silicon particles as a negative electrode active material.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, using an amorphous and crystalline mixed silicon product (D 50 9.9 ⁇ m) obtained through pyrolysis of polysilicon and silane gas using the FBR method.
  • FIGS. 1, 2, and 3 and 4 SEM photographs of the silicon particles obtained in Examples 1 and 2 are shown in FIGS. 1, 2, and 3 and 4, respectively. SEM images of the additional unpulverized silicon particles used in Comparative Example 1 are shown in FIGS. 5 and 6.
  • the coin-type lithium secondary batteries prepared in Examples 1 and 2 and Comparative Example 1 were left in a 25 ° C. thermostat for 24 hours, and then the secondary battery charge / discharge test apparatus (Toyo System) was used and the voltage range of the test cell was adjusted. Charge and discharge were set once at 0.02V-1.5V and 0.05C in CC / CV mode, and the charging capacity and initial charge / discharge efficiency were calculated. After the first cycle, 20 cycles were repeated after charging and discharging with a current of CC (Constant Current) / CV (Constant Voltage) mode of 0.5C.
  • CC Constant Current
  • CV Constant Voltage
  • the ratio of the discharge capacity to the primary charge capacity was evaluated as the initial efficiency, and the capacity retention rate was evaluated in 20 cycles.
  • the silicon pulverized particles prepared in Examples 1, 2 and 3 have an initial efficiency similar to that of Comparative Example 1, and particularly excellent compared to Comparative Example 1, which is not subjected to the grinding process. It can be seen that the life characteristics are exhibited.
  • the initial efficiency indicates that the surface oxidation of the particles can be minimized by a short dry / wet grinding process, and the improvement of the life characteristics is due to the increase in the specific surface area of the silicon particles crushed to an appropriate size, thereby increasing the contact area with the conductive agent in the electrode. This was because the interfacial resistance could be kept low.

Abstract

본 발명은 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지에 관한 것으로서, 결정질 및 비결정질 Si 1차 입자들이 응집되어 형성된 2차 입자 형태의 미립자상 실리콘을 건식 또는 습식 조건 하에서 기계적 분쇄 또는 해쇄하여 제조되는 리튬 이차전지용 음극 활물질의 제조방법을 제공한다.

Description

리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
본 발명은 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지에 관한 것으로서, 더욱 상세하게는 Si 나노입자의 표면 산화를 최소화할 수 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지에 관한 것이다.
전자, 정보통신 산업은 전자기기의 휴대화, 소형화, 경량화 및 고성능화를 통하여 급속한 발전을 보이고 있고, 이들 전자기기의 전원으로서 고용량, 고성능을 구현할 수 있는 리튬 이차전지에 대한 수요가 급증하고 있다. 리튬 이온의 흡장(Intercalation), 방출(Deintercalation)을 통해 충·방전을 거듭하며 사용되는 리튬 이차전지는 정보통신을 위한 휴대용 전자기기는 물론 전기자동차 등 중대형 디바이스의 필수적 전원으로 자리 잡고 있다.
리튬 이차전지의 대표적인 음극소재로 흑연계의 음극 활물질이 많이 이용되어왔으나 이론용량이 372mAh/g으로 제한적이어서 고용량 소재인 실리콘이나 주석 또는 이들과 금속성 복합체에 대한 연구가 진행되고 있다. 또한 고용량과 화학적 안정성을 고려한 티타늄과 아연산화물 그리고 이들의 높은 비표면적을 갖는 나노 구조체 변화에 대한 관심이 높아지고 있다.
특히 실리콘은 리튬과 반응에 의해 이론용량이 약 4200mAh/g를 갖는 리튬 이차전지의 고용량 음극 활물질 중 하나이다.
그러나, 실리콘은 리튬과의 반응시 결정구조에 변화가 야기되며, 충전시 실리콘은 리튬을 최대량 흡수 저장하면, Li4.4Si로 전환되는데, 이때 부피 팽창 전 실리콘의 부피에 비해 약 4.12배까지 팽창한다. 실리콘의 부피 팽창시 가해지는 기계적 응력(mechanical stress)은 전극 내부와 표면에 크랙(crack)을 발생시키고, 방전에 의하여 리튬 이온이 방출되면 실리콘은 다시 수축된다. 이러한 충·방전 사이클을 반복하게 되면 음극 활물질의 미분화(pulverization)가 발생하고, 미분화된 음극 활물질이 응집되어 전류 집전체로부터 전기적으로 탈리되는 현상을 야기한다. 또한, 음극 활물질 상호간 접촉 계면의 큰 변화에 따른 저항 증가로 인해, 충·방전 사이클이 진행됨에 따라 용량이 급격하게 저하되어 사이클 수명이 짧아지는 문제점을 가지고 있다.
이러한 문제점을 해결하기 위하여, 입자의 크기를 줄여 Si 금속재료의 급격한 부피변화를 제어하는 방법이 시도되었는데, 그 방법으로서 Si를 기계적으로 미세하게 분쇄한 후 전도성 물질 내에 분산시켜 Si-C 복합체를 제조하여 음극 활물질로 사용하는 방법이 시도된바 있다. 구체적으로, 실리콘을 나노 입자화하는 과정에서 표면이 쉽게 산화되어 실리콘 입자에 산화 피막을 형성하게 되고, 이로 인해 전지의 초기 충·방전 효율이 저하되며, 전지용량 또한 감소되었다. 이러한 표면 산화로 인한 문제점은 특히 입자의 사이즈가 나노 스케일로 작아질 경우 금속 부피에 대한 산화피막 부피의 분율이 커지면서 더욱더 큰 문제가 된다.
산화피막 형성을 억제하고 도전성을 개선할 목적으로, 특허문헌 1(일본특허공개 2000-215887호)은 Si입자 표면을 화학 증착법에 의해 탄소층으로 피복하는 방법을 기재하고 있다. 그러나, 실리콘 음극이 극복해야 할 과제인 충·방전에 수반되는 큰 체적 변화의 완화, 이에 수반되는 집전성의 열화와 사이클 특성 저하를 방지할 수는 없었다.
이 밖에도 특허문헌 2(일본특허공개 2005-190902호)에 실리콘 활물질의 적층구조를 고안하여 체적 팽창을 완화하는 방법에 대해 개시하고 있고, 특허문헌 3(일본특허공개 2006-216374호)는 실리콘 입자로 이루어진 핵부와 다공질 외곽부 사이에 빈 공간을 두어 체적변화를 흡수하는 방법에 대해 개시하고 있다. 그러나, 이상과 같이 실리콘 표면을 피복하여 음극재의 사이클 특성을 높이는 방법은 공정 자체가 경제적으로 비효율적이고, 실리콘 본래의 이론용량에 매우 못 미치는 낮은 용량 정도를 발휘할 수 있는 것에 지나지 않아 전지성능이 낮았다.
이에 리튬 이차전지 충·방전시 수반되는 실리콘 입자의 체적변화를 완화하여, 실리콘 입자의 미분화 현상을 저감시킬 수 있고, 공정이 단순하며, 휴대전화나 전기자동차 등과 같이 반복의 사이클 특성이 중요시되는 용도에 적합한 리튬 이차전지용 음극 활물질 개발이 요망되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) JP2000-215887 A
(특허문헌 2) JP2005-190902 A
(특허문헌 3) JP2006-216374 A
본 발명은 Si 나노입자의 표면 산화를 최소화할 수 있는 리튬 이차전지용 음극 활물질의 제조방법을 제공하는 것이다.
본 발명은 또한 상기 방법으로 제조된 리튬 이차전지용 음극 활물질을 포함함으로써 전지의 초기효율 및 수명 유지율을 향상시킬 수 있는 리튬 이차전지를 제공하는 것이다.
상기와 같은 과제를 해결하기 위하여 본 발명은 결정질 및 비결정질 Si 1차 입자들이 응집되어 형성된 2차 입자 형태의 미립자상 실리콘을 건식 또는 습식 조건 하에서 기계적 분쇄 또는 해쇄하여 제조되는 리튬 이차전지용 음극 활물질의 제조방법을 제공한다.
또한, 본 발명은 상기 방법으로 제조되는 음극 활물질을 포함하는 리튬 이차전지를 제공한다.
금속 실리콘은 분쇄 과정을 통해서 쉽게 나노입자가 제조 가능하지만 그 과정에 수반되는 실리콘의 표면 산화로 인해 전지 성능이 저하되는 문제점이 있다. 이에 폴리실리콘 제조 시 부산물로 생성되는 결정질 또는 비결정질의 Si 1차 입자가 응집된 2차 입자를 분쇄 혹은 해쇄함으로써 실리콘 표면의 산화가 최소화된 Si 나노입자를 얻을 수 있다. 또한 이를 음극 활물질로 이용함으로써 리튬 이차전지의 초기효율 및 수명특성을 향상시킬 수 있다.
도 1 및 2 는 실시예 1에서 제조된 실리콘 입자의 SEM 분석 사진이다.
도 3 및 4 는 실시예 2에서 제조된 실리콘 입자의 SEM 분석 사진이다.
도 5 및 6 은 비교예 1에서 사용한 실리콘 입자의 SEM 분석 사진이다.
본 발명은 결정질 및 비결정질 Si 1차 입자들이 응집되어 형성된 2차 입자 형태의 미립자상 실리콘을 건식 또는 습식 조건 하에서 기계적 분쇄 또는 해쇄하여 제조되는 리튬 이차전지용 음극 활물질의 제조방법을 제공한다.
상기 기계적 분쇄 또는 해쇄는 건식 또는 습식 조건 하에서 실시할 수 있다.
건식은 말 그대로 분말(분체) 상태에서 입자를 작게 만드는 것이고, 습식은 분체와 희석제(액상)를 혼합한 상태에서 입자를 작게 만드는 것을 의미한다.
바람직하게는, 상기 기계적 분쇄 또는 해쇄는 밀링 공정으로 수행할 수 있다. 밀링 공정은 비즈밀(beads mill), 고에너지 볼밀(high energy ball mill), 유성 볼밀(planetary ball mill), 교반 볼밀(stirred ball mill), 진동 밀(vibration mill) 등을 이용하여 수행될 수 있다. 비즈밀이나 볼밀은 실리콘과 반응하지 않는, 화학적으로 불활성인 재질로 된 것을 사용하며, 예를 들어 지르코니아 재질로 된 것을 사용할 수 있다. 비즈밀 또는 볼밀의 사이즈는 예를 들어 0.03 내지 10mm일 수 있으나, 이에 한정되는 것은 아니다.
밀링 공정 시간은 사용되는 실리콘계 입자의 사이즈, 얻고자 하는 최종 입자 사이즈, 및 밀링 공정시 사용하는 비즈밀 또는 볼밀의 사이즈 등을 고려하여 적절한 시간 동안 수행될 수 있으며, 예를 들어 0.1 내지 10시간 동안 수행될 수 있다.
상기 기계적 분쇄 또는 해쇄 입자를 음극 활물질로 이용할 경우, 2차입자의 평균입경(D50)이 1 내지 15㎛인 것이 좋다. 상기 범위를 벗어나는 경우 음극합제밀도 저하 및 고속 음극 도포공정성 저해의 위험성을 낮출 수 있다. 상기 평균입경은 레이저광 회절법에 의한 입도 분포 측정에서의 체적평균값 D50(즉, 누적 체적이 50%가 될 때의 입자직경 또는 메디안 직경)으로서 측정한 값을 나타낸다.
상기 분쇄 또는 해쇄 과정에서 공정시간이 길어질 경우, Si 입자의 표면 산화를 억제할 수 있는 희석제(액상)를 도입할 수 있다. 상기 희석제는 새롭게 노출되는 분쇄 혹은 해쇄면을 공기 중 산소로부터 보호하여 규소 입자의 표면 산화를 억제할 수 있다. 상기 희석제(액상)로는 점도가 작은 유기계 용매 등이 사용될 수 있다. 특히 상기 희석제의 점도는 중량% 500mpa·s 이하로 사용하는 것이 바람직하다. 상기 희석제의 점도가 500mpa·s 이상일 경우 분쇄 운동에너지가 희석제에 흡수되어 규소 입자의 분쇄 및 해쇄효과가 낮아진다.
건식 혹은 습식 분쇄 및 해쇄 공정시간이 길어지게 되면 공기 중 산소에 노출되는 시간이 길어져 산화 억제 효과가 미비하고, 습식 분쇄 및 해쇄시간이 10시간을 초과하는 경우 전지 특성을 저해할 우려가 있다.
상기 결정질 및 비결정질 규소 1차 입자들이 응집되어 형성된 2차 입자 형태의 미립자상 실리콘은 FBR(fluidized bed reactor)법을 이용한 실리콘 제조 생산물로서 얻어질 수 있다. 이러한 제조 생산물은 내부온도 400℃이상의 유동층 반응기 내에 아르곤 기류 하에서 다결정 실리콘 미립자(seed)를 도입하고, 모노실란을 송입한 후, 상기 모노실란의 열분해 반응에 의해 제조된 비정질 실리콘 1차 입자와 상기 시드가 성장한 결정성 실리콘 1차 입자가 혼합 성장하여 응집된 혼상 실리콘 2차 입자이며, 이를 분급기(닛신엔지니어링사제 TC-15)로 분급하여, D50=10㎛인 실리콘 분말을 얻어 이용한다.
상기 실리콘 2차 입자는 BET(Brnauer,Emmett & Teller) 측정에 의한 비표면적이 2m2/g ~ 50m2/g 인 것이 바람직하며, 상기 비표면적이 2m2/g 미만일 경우 리튬 이온과 반응면적이 줄어들어 반응성이 저하될 우려가 있고, 50m2/g을 초과할 경우 집전성을 유지하기 위한 바인더 소요량의 증가와 리튬2차전지용 음극 제조특성의 저하로 초기효율 및 사이클 특성이 모두 악화될 우려가 있다.
본 발명은 상기 제조된 음극 활물질을 포함하는 리튬 이차 전지를 제공한다.
전극 집전체 위에 상기 제조된 음극 활물질을 포함하는 음극 활물질층을 형성하여 리튬 이차 전지용 음극을 제조한다.
전극 집전체로는 구리 박, 니켈 박, 스테인레스 강, 티타늄 박, 니켈 발포체, 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
또한, 활물질층에는 상기 음극 활물질과 함께 바인더 및 선택적으로 도전재가 포함된다. 상기 바인더로는 폴리테트라플루오르에틸렌(PTFE), 폴리비닐리덴 플루오라이드(PVdF), 셀룰로오스, 폴리에틸렌, 폴리프로필렌, 스타이렌부타다이엔러버(SBR), 폴리이미드, 폴리아크릴릭산(Polyacrylic acid), 폴리메틸메타그릴레이트(PMMA), 폴리아크릴로나이트릴(PAN), 스티렌부타디엔러버(SBR), 카르복시메틸셀룰로오스 (CMC), 및 수용성 폴리아크릴산(PAA) 등을 사용할 수 있으나 여기에 한정되는 것은 아니다.
상기 도전재로는 천연 흑연, 인조 흑연, 카본블랙, 아세틸렌블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등을 사용할 수 있고, 또한 폴리페닐렌 유도체 등의 도전성 재료를 혼합하여 사용할 수 있다.
상기와 같은 구성을 갖는 음극은 음극 활물질, 선택적으로 도전재 및 바인더를 N-메틸-2-피롤리돈(NMP)이나 유기 용제 또는 물 등의 용매에 분산시켜 슬러리 조성물을 제조하고, 전극 집전체에 도포하여 건조, 압연하여 제조할 수 있다.
리튬 이차전지는 상기 음극활물질을 포함하는 음극; 리튬 이온을 인터칼레이션 및 디인터칼레이션할 수 있는 양극 활물질을 포함하는 양극; 세퍼레이터; 및 비수성 유기 용매 및 리튬염을 포함하는 전해질을 포함할 수 있다. 이 경우 양극, 세퍼레이터 및 전해질 등의 재료 및 전지 형상 등은 한정되지 않는다.
이하, 실시예들을 들어 본 발명에 관하여 더욱 상세히 설명하지만, 본 발명이 이러한 실시예들에 한정되는 것은 아니다.
실시예 1
FBR법을 이용 폴리실리콘과 실란류 가스의 열분해를 통해 얻은 비정질 및 결정질 혼상실리콘 생산물(D50 9.9㎛)을 내부용적이 100ml인 유성볼밀(Planetary ball-mill)에서 5mm 크기의 비즈를 이용하여 30분 동안 건식 분쇄하여 D50 7.7㎛인 실리콘 입자를 수득하였다.
상기 얻어진 실리콘 입자와 인조흑연 도전제, 폴리이미드 바인더를 40 : 45 : 15의 중량비로 준비하였다. 바인더를 혼합기(Thiky mixer)를 사용하여 용매인 NMP(N-methylpyrrolidone, 99%, Aldrich Co.)에 10 분간 용해시킨 후, 분쇄입자와 도전제를 넣고 15분간 교반하여 균질한 슬러리를 얻었다.
상기 제조된 슬러리를 구리호일에 블레이드를 이용하여 바른 후, 110℃ 오븐에서 20분 건조하여 용매를 증발시킨 다음, 롤 프레스를 사용해 압착하였다. 제조된 음극을 120℃ 진공오븐에서 12시간 동안 건조하였다. 양극은 리튬 금속 호일을 사용하였다. 상기 건조된 음극을 지름 1.6cm 크기로 자른 후, 상기 제조된 양극, 및 1M LiPF6가 에틸렌카보네이트(EC)/에틸 메틸 카보네이트(EMC)/디메틸카보네이트 (v/v = 25/35/40) 및 비닐렌 카보네이트(VC, 2 중량%)에 녹아있는 용액을 전해질로 사용하여 코인형 리튬 이차전지를 제조하였다.
실시예 2
FBR법을 이용 폴리실리콘과 실란류 가스의 열분해를 통해 얻은 비정질 및 결정질 혼상실리콘 생산물(D50 9.9㎛)을 내부용적이 100ml인 유성볼밀(Planetary ball-mill)에서 5mm 크기의 비즈를 이용하여 30분 동안 1차 건식 분쇄하고, 3mm 크기의 비즈로 30분 2차 분쇄하고, 1mm 크기의 비즈로 30분 3차 건식분쇄하여 D50 2.1㎛인 실리콘 입자를 수득하였다.
상기 얻어진 실리콘 입자를 음극 활물질로 사용하여 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 3
FBR법을 이용 폴리실리콘과 실란류 가스의 열분해를 통해 얻은 비정질 및 결정질 혼상실리콘 생산물(D50 9.9㎛)을 내부용적이 150ml인 비즈밀(Beads-mill)에 습식희석제로 NMP(N-methylpyrrolidone, 99%, Aldrich Co.)를 사용, 5mm 크기의 비즈를 이용하여 15분 동안 1차 습식분쇄하여 D50 1.8㎛인 실리콘 입자를 수득하였다.
상기 얻어진 실리콘 입자를 음극 활물질로 사용하여 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 1
FBR법을 이용 폴리실리콘과 실란류 가스의 열분해를 통해 얻은 비정질 및 결정질 혼상실리콘 생산물(D50 9.9㎛)을 음극 활물질로 사용하여 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
<입도분포 분석>
실시예 1, 실시예 2에서 얻어진 실리콘 입자의 SEM 사진을 각각 도 1, 2 및 도 3, 4 에 나타내었다. 비교예 1에서 사용한 추가 분쇄되지 않은 실리콘 입자의 SEM 사진을 도 5, 6 에 나타내었다.
실시예 1, 실시예 2, 실시예 3에서 얻어진 실리콘 입자의 분쇄시간 및 입도 분포 분석결과를 하기의 표 1에 나타내었다.
표 1
분쇄시간 D10 (㎛) D50 (㎛) D90 (㎛) 비표면적 BET(m2/g)
실시예1 30분 1.13 7.70 17.19 4.64
실시예2 90분 0.41 2.05 4.68 6.45
실시예3 15분 0.35 1.8 5.5 7.01
비교예1 - 1.46 9.9 21.31 3.72
<전지특성 평가>
실시예 1, 2 및 비교예 1에서 제작한 코인형 리튬 이차전지는 25℃ 항온조에 24시간 방치한 후, 이차전지 충·방전 시험장치(Toyo System사)를 사용하고, 테스트 셀의 전압영역을 0.02V-1.5V로 설정, CC/CV모드로 0.05C로 충·방전을 1회 진행하고 충전용량 및 초기 충·방전 효율을 구했다. 첫 사이클 이후에는 CC(Constant Current)/CV(Constant Voltage)모드 0.5C의 전류로 충·방전하여 20사이클 반복했다.
1차 충전용량에 대한 방전용량의 비를 초기효율로 평가하고, 20cycle 진행시 용량 유지율을 평가하여 하기의 표 2에 나타내었다.
표 2
초기효율(%) 방전용량(mAh/cc) 충전용량(mAh/cc) 20cycle용량유지율(%) D50 (㎛)
실시예 1 85.8 1468 1711 73.4 7.70
실시예 2 85.2 1508 1771 71.7 2.05
실시예 3 86.0 1505 1750 72.8 1.80
비교예 1 84.1 1340 1594 59.8 9.95
상기 표 1에 나타나 있듯이, 실시예 1, 실시예 2 및 실시예 3에서 제조된 실리콘 분쇄입자는 초기효율이 비교예 1과 유사하며, 특히 분쇄과정을 거치지 않은 비교예 1과 비교하여 월등히 우수한 사이클 수명 특성을 나타내는 것을 알 수 있다. 초기효율은 짧은 건식/습식 분쇄공정으로 입자의 표면 산화를 최소화시킬 수 있었음을 나타내며, 수명특성의 향상은 적절한 크기로 분쇄된 실리콘 입자의 비표면적 증가에 의해 전극내 도전제와의 접촉 면적이 증대되어 계면 저항을 낮게 유지할 수 있었기 때문이다.

Claims (9)

  1. 결정질 및 비결정질 Si 1차 입자들이 응집되어 형성된 2차 입자 형태의 미립자상 실리콘을 건식 또는 습식 조건 하에서 기계적 분쇄 또는 해쇄하여 제조되는 리튬 이차전지용 음극 활물질의 제조방법.
  2. 제1항에 있어서, 상기 기계적 분쇄 또는 해쇄는 밀링 공정에 의해 수행되는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  3. 제2항에 있어서, 상기 밀링 공정은 비즈밀 또는 볼밀을 이용하여 수행하는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  4. 제1항에 있어서, 기계적 분쇄 또는 해쇄 후 음극 활물질 입자의 평균입경(D50)이 1 내지 15㎛인 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  5. 제1항에 있어서, 기계적 분쇄 또는 해쇄 과정에 Si 입자의 표면 산화를 억제하는 첨가제를 첨가하는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  6. 제5항에 있어서, 상기 첨가제는 콜타르 피치인 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  7. 제1항에 있어서, 상기 결정질 및 비결정질 규소 1차 입자들이 응집되어 형성된 2차 입자 형태의 미립자상 실리콘은 FBR법을 이용한 실리콘 제조 생산물로 얻어지는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 방법으로 제조된 리튬 이차전지용 음극 활물질.
  9. 제8항에 따른 리튬 이차전지용 음극 활물질을 포함하는 리튬 이차전지.
PCT/KR2014/007836 2013-12-30 2014-08-22 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지 WO2015102201A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/108,127 US10050259B2 (en) 2013-12-30 2014-08-22 Production method for negative electrode active material for lithium secondary battery, and lithium secondary battery
CN201480071594.3A CN106165157B (zh) 2013-12-30 2014-08-22 用于锂二次电池的负极活性材料的制造方法、和锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130167145A KR102176590B1 (ko) 2013-12-30 2013-12-30 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
KR10-2013-0167145 2013-12-30

Publications (1)

Publication Number Publication Date
WO2015102201A1 true WO2015102201A1 (ko) 2015-07-09

Family

ID=53493525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007836 WO2015102201A1 (ko) 2013-12-30 2014-08-22 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지

Country Status (4)

Country Link
US (1) US10050259B2 (ko)
KR (1) KR102176590B1 (ko)
CN (1) CN106165157B (ko)
WO (1) WO2015102201A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102259966B1 (ko) * 2017-06-27 2021-06-02 주식회사 엘지에너지솔루션 리튬이차전지 및 이의 제조방법
KR101968733B1 (ko) 2017-09-26 2019-04-12 울산과학기술원 복합음극활물질, 이의 제조 방법 및 이를 포함하는 음극을 구비한 리튬이차전지
US11970401B2 (en) * 2020-05-11 2024-04-30 Advano, Inc. Amorphization of silicon
KR20220120240A (ko) * 2021-02-23 2022-08-30 에스케이온 주식회사 이차전지용 음극 및 이를 포함하는 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088056A (ko) * 2001-05-14 2002-11-25 샤프 가부시키가이샤 (100)실리콘 상의 에피텍시얼 니켈 실리사이드 또는비결정 실리콘 상의 안정된 니켈 실리사이드를 포함하는소자 및 그 제조방법
JP2005310476A (ja) * 2004-04-20 2005-11-04 Mitsubishi Heavy Ind Ltd リチウム電池用負極材料、負極電極、リチウム電池及びその製造方法、装置
KR20120129926A (ko) * 2010-02-24 2012-11-28 히다치 막셀 에너지 가부시키가이샤 정극 재료, 그 제조 방법, 비수 이차 전지용 정극 및 비수 이차 전지
WO2013025707A1 (en) * 2011-08-15 2013-02-21 Dow Corning Corporation Electrode composition comprising a silicon powder and method of controlling the crystallinity of a silicon powder
KR20130113749A (ko) * 2012-04-06 2013-10-16 주식회사 루트제이제이 규소 화합물과 고분자 전해질을 이용한 이차전지 및 이의 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3393885B2 (ja) * 1992-11-02 2003-04-07 信之 高橋 粉末分散放電加工液および放電加工法
JP3079343B2 (ja) * 1993-07-13 2000-08-21 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP4393610B2 (ja) 1999-01-26 2010-01-06 日本コークス工業株式会社 リチウム二次電池用負極材料、リチウム二次電池、及び同二次電池の充電方法
JP4368193B2 (ja) 2003-12-26 2009-11-18 三洋電機株式会社 リチウム前駆体電池及びリチウム二次電池の製造方法
JP2006216374A (ja) 2005-02-03 2006-08-17 Sony Corp 負極材料およびそれを用いた電池
US8105718B2 (en) * 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
JP6010279B2 (ja) * 2011-04-08 2016-10-19 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法
US20140225030A1 (en) 2012-08-14 2014-08-14 Hemlock Semiconductor Corporation Method of controlling the crystallinity of a silicon powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088056A (ko) * 2001-05-14 2002-11-25 샤프 가부시키가이샤 (100)실리콘 상의 에피텍시얼 니켈 실리사이드 또는비결정 실리콘 상의 안정된 니켈 실리사이드를 포함하는소자 및 그 제조방법
JP2005310476A (ja) * 2004-04-20 2005-11-04 Mitsubishi Heavy Ind Ltd リチウム電池用負極材料、負極電極、リチウム電池及びその製造方法、装置
KR20120129926A (ko) * 2010-02-24 2012-11-28 히다치 막셀 에너지 가부시키가이샤 정극 재료, 그 제조 방법, 비수 이차 전지용 정극 및 비수 이차 전지
WO2013025707A1 (en) * 2011-08-15 2013-02-21 Dow Corning Corporation Electrode composition comprising a silicon powder and method of controlling the crystallinity of a silicon powder
KR20130113749A (ko) * 2012-04-06 2013-10-16 주식회사 루트제이제이 규소 화합물과 고분자 전해질을 이용한 이차전지 및 이의 제조방법

Also Published As

Publication number Publication date
US20160329556A1 (en) 2016-11-10
CN106165157A (zh) 2016-11-23
KR102176590B1 (ko) 2020-11-09
KR20150078068A (ko) 2015-07-08
US10050259B2 (en) 2018-08-14
CN106165157B (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
EP3326230B1 (en) Silicon-carbon composite particulate material
WO2015005648A1 (ko) 리튬이차전지용 음극 활물질, 이를 포함하는 음극용 조성물 및 리튬이차전지
CN104736479B (zh) 经表面改性的阴极活性物质用硅纳米粒子及其制造方法
EP2996180B1 (en) Anode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the same
EP2458662B1 (en) Anode material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery including the anode material
CN110931764A (zh) 锂离子二次电池的负极材料、负极片、及锂离子二次电池
CN104091934A (zh) 一种多元复合负极材料、其制备方法及包含其的锂离子电池
EP3667779B1 (en) Sulfur-carbon composite, preparation method thereof, and lithium secondary battery comprising same
WO2017104405A1 (ja) 電極用材料、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
KR20100040663A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
Zhang et al. Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries
EP2966712B1 (en) Silicon-containing particle, negative electrode material for use in non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
EP4170752A1 (en) Negative electrode material, preparation method therefor, and lithium ion battery
EP3667799A1 (en) Carbon material, positive electrode for all-solid-state batteries, negative electrode for all-solid-state batteries, and all-solid-state battery
WO2011162529A2 (ko) 안전성이 향상된 음극활물질 및 이를 포함하는 이차전지
WO2015093725A1 (ko) 비수계 리튬이차전지용 고용량 양극재료 및 그의 제조 방법
JP7293645B2 (ja) リチウム二次電池用複合活物質およびその製造方法
WO2015102201A1 (ko) 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
Wang et al. Electrochemical stability of optimized Si/C composites anode for lithium-ion batteries
JP7009255B2 (ja) リチウムイオン二次電池負極用バインダー及び負極材
JP6739142B2 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
WO2023208058A1 (zh) 负极极片及其制备方法、电池、及负极材料的制备方法
JP6674072B1 (ja) 全固体電池用集電層、全固体電池、及び炭素材料
CN111373581A (zh) 负极活性材料、包含所述负极活性材料的负极和包含所述负极的二次电池
EP4060767A1 (en) Negative electrode material, electrochemical device including same, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15108127

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876911

Country of ref document: EP

Kind code of ref document: A1