WO2015101360A1 - 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法 - Google Patents

一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法 Download PDF

Info

Publication number
WO2015101360A1
WO2015101360A1 PCT/CN2015/071390 CN2015071390W WO2015101360A1 WO 2015101360 A1 WO2015101360 A1 WO 2015101360A1 CN 2015071390 W CN2015071390 W CN 2015071390W WO 2015101360 A1 WO2015101360 A1 WO 2015101360A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
biomass
steam generator
gas
combustion
Prior art date
Application number
PCT/CN2015/071390
Other languages
English (en)
French (fr)
Inventor
陈义龙
张岩丰
韩旭
李宏
陶磊明
Original Assignee
中盈长江国际新能源投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中盈长江国际新能源投资有限公司 filed Critical 中盈长江国际新能源投资有限公司
Priority to BR112016015807-5A priority Critical patent/BR112016015807A2/pt
Priority to EP15733305.5A priority patent/EP3093271A4/en
Priority to SG11201605681SA priority patent/SG11201605681SA/en
Priority to CA2955998A priority patent/CA2955998A1/en
Publication of WO2015101360A1 publication Critical patent/WO2015101360A1/zh
Priority to US15/203,781 priority patent/US20170001871A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/18Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge
    • C10B47/22Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge in dispersed form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/005After-treatment of coke, e.g. calcination desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/02Steam superheating characterised by heating method with heat supply by hot flue gases from the furnace of the steam boiler
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/02Combustion or pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the invention relates to a device and method for accelerating the gas production speed of biomass pyrolysis and obtaining nano-scale silicon dioxide materials.
  • silica is abundant in many natural resources, high-purity amorphous silica is rarely found in natural resources. At present, there have been reports of using inorganic materials to produce amorphous silica, but the process has high production costs, high energy consumption, and serious environmental pollution.
  • the patent ZL02807291.X introduces the process of producing high-purity amorphous silica from rice husks, but it does not consider organic matter and energy utilization issues. , Can not make the effective use of biomass.
  • the application publication patent 102653406 introduced the anaerobic pyrolysis of rice husks to prepare amorphous silica, the raw materials were pretreated by pickling and drying to destroy the macromolecular chain structure such as lignocellulose to promote the pyrolysis reaction.
  • the technical problem to be solved by the present invention is to provide a device and method for accelerating the gas production rate of biomass pyrolysis and obtaining nano-scale silicon dioxide materials.
  • a device for accelerating the gas production rate of biomass pyrolysis and obtaining nano-scale silica materials characterized in that it includes a screw feeding device, a pretreatment stirrer, a pyrolysis device, a combustion device, a steam generator, and a calcining device
  • the biomass raw material is fed into the pretreatment mixer through the screw feeding device, the stirred biomass raw material is mixed with the superheated steam generated by the steam generator and then enters the pyrolysis device, the pyrolysis device
  • the precipitated combustible gas enters the combustion device for combustion, the hot flue gas produced by the combustion device heats the steam generator to generate superheated steam, and the ash discharged from the ash port at the lower part of the pyrolysis device enters the calcining device Calcined.
  • the steam generator is an electric steam generator, an oil-fired steam generator or a gas-fired steam generator.
  • the steam generator is an oil-fired steam generator.
  • the fuel vapor generator includes a cavity and a serpentine coil, a saturated boiling water tank and a two-way fin superheating coil arranged in the cavity from bottom to top.
  • a method for accelerating the gas production rate of biomass pyrolysis and obtaining nano-scale silica materials is characterized in that the method is to first stir the biomass raw materials uniformly, and then use superheated steam to heat and dry, and the superheated steam is used for heating and drying.
  • the temperature is 120 ⁇ 150°C, and the dried biomass materials are pyrolyzed under anaerobic conditions.
  • the pyrolysis temperature is 600 ⁇ 800°C.
  • To The decomposed combustible gas is burned, the hot flue gas generated by the combustion is heated to the steam generator to generate superheated steam, and the ash discharged from the ash port at the lower part of the pyrolysis device is calcined under aerobic conditions to obtain amorphous nano Grade silica material.
  • the method is to feed the biomass raw materials into the pretreatment mixer through the screw feeding device, mix with the superheated steam generated by the steam generator, and heat and dry, and the uniformly mixed and dried materials are quickly precipitated and combustible through the pyrolysis device.
  • the combustible gas is then passed into the combustion device for combustion.
  • the hot flue gas generated by the combustion device is used to heat the steam generator to produce superheated steam.
  • the ash and slag periodically discharged from the ash port at the lower part of the pyrolysis device are calcined and cooled in the calcining device. Afterwards, it is recovered as an amorphous nano-scale silica material.
  • the calcination is air atmosphere calcination, and the calcination temperature is 500-800°C.
  • the combustible gas produced by pyrolysis is one of CO, CO 2 , H 2 , CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 8 , and C 3 H 10 One or a mixture of any two or more.
  • the biomass raw material is rice husk.
  • the present invention is a comprehensive utilization technology that uses superheated steam to pretreat biomass raw materials, accelerates the thermal decomposition of biomass raw materials to obtain combustible gas, and obtains a comprehensive utilization technology of nano-scale silica materials, characterized by the generation of waste heat After the biomass material is quickly heated and dried by the water vapor, it undergoes rapid anaerobic pyrolysis in the interval of 600-800°C, destroys the macromolecular chains such as cellulose, hemicellulose, and lignin in the biomass, and quickly precipitates high calorific value heat.
  • the decomposition gas After the decomposition gas is burned, it is passed into the waste heat steam generator, and the generated water vapor is recycled; the remaining solid ash from the pyrolysis is calcined aerobic to further remove residual carbon-containing impurities, and finally processed and recovered to obtain silica less than 100 nanometers.
  • Industrial materials After the decomposition gas is burned, it is passed into the waste heat steam generator, and the generated water vapor is recycled; the remaining solid ash from the pyrolysis is calcined aerobic to further remove residual carbon-containing impurities, and finally processed and recovered to obtain silica less than 100 nanometers. Industrial materials.
  • the water vapor is generated by heating the flue gas waste heat after the pyrolysis reaction, which not only recycles the flue gas waste heat, but also solves the problem of the high water content of conventional biomass raw materials (mainly rice husk), which consumes the pyrolysis reaction. Heat, resulting in the problem of reduced pyrolysis speed and efficiency, and at the same time reduces the tar production during the pyrolysis of biomass raw materials (mainly rice husk).
  • the drying speed is higher than that of the hot air drying biomass raw materials at the same temperature, so that the pyrolysis gas of the system is increased.
  • the precipitation rate is 20% higher than that of the conventional system pyrolysis gas, and the heat value of the obtained pyrolysis gas is 10% higher than that of the conventional pyrolysis method.
  • FIG. 1 is a schematic structural diagram of an apparatus for accelerating the rate of biomass pyrolysis and gas production and obtaining nano-scale silica materials according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the structure of the steam generator in Fig. 1.
  • Figure 3 is an SEM image of Example 1 of the present invention.
  • Figure 4 is an XRD chart of Example 1 and Example 2 of the present invention and biomass raw materials.
  • 1-screw feeding device 2-pretreatment stirrer, 3-pyrolysis device, 4-steam generator, 5-calcining device, 6-combustion device, 7-snake coil, 8-saturated boiling Water tank, 9-two-way fin superheated coil, 10-cavity.
  • FIG. 1 and Figure 2 it is a device for accelerating the rate of biomass pyrolysis and gas production and obtaining nano-scale silica materials provided by this embodiment, which includes a screw feeding device 1, a pretreatment stirrer 2 , Pyrolysis device 3, combustion device 6, steam generator 4 and calcining device 5.
  • the biomass raw material is fed into the pretreatment agitator 2 through the screw feeding device 1.
  • the agitated biomass raw material is mixed with the superheated steam generated by the steam generator 4 and then enters the pyrolysis device 3, and the pyrolysis device 3 separates Combustible gas enters the combustion device 6 to burn, the hot flue gas generated by the combustion of the combustion device 6 heats the steam generator 4 to generate superheated steam, and the ash discharged from the ash port at the lower part of the pyrolysis device 3 enters the calcining device 5 for calcination .
  • the steam generator 4 can be an electric steam generator, an oil steam generator or a gas steam generator.
  • the steam generator 4 is a fuel steam generator.
  • the fuel vapor generator includes a cavity 10 and a serpentine coil 7, a saturated boiling water tank 8 and a two-way fin superheating coil 9 arranged in the cavity 10 from bottom to top.
  • This embodiment also provides a method for accelerating the gas production rate of biomass pyrolysis and obtaining nano-scale silica materials, which includes the following steps:
  • the rice husks are simply screened and washed with water to remove impurities such as mud in the rice husks, and the rice husks are transported to the pretreatment mixer 2 through the screw feeder 1 and thoroughly mixed with steam from the subsequent process to dry and heat.
  • the mixture material is sent to the pyrolysis device 3, pyrolyzed in the 800°C interval in an oxygen-free environment, and the pyrolysis gas is quickly generated and sent to the combustion device 6 to release heat;
  • the specific steps for generating superheated steam are: the flue gas after the combustion reaction of the pyrolysis gas is passed into the steam generator 4, and the cold water passes through the serpentine coil 7, saturated boiling water tank 8, and two-way fin superheating plate from bottom to top. The three sections of pipe 9 are heated to obtain superheated steam;
  • the pyrolyzed solid ash product is sent to the calcining device 5, and it is calcined in an aerobic atmosphere at 800°C.
  • the calcined solid product is rice husk ash, and it is ground to obtain nano-scale silica material of less than 100nm. .
  • the pyrolysis gas generated in the above pyrolysis step is tested by a gas analyzer, and the components are CO, CO 2 , H 2 , CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C One of 3 H 8 or C 3 H 10 or a mixture of any two or more of them.
  • thermogravimetric analyzer is used to detect the weight loss curve of the dried biomass material on-line to obtain the pyrolysis gas evolution rate
  • a gas analyzer is used to detect the calorific value of the pyrolysis gas in real time.
  • the pyrolysis gas evolution rate of this embodiment is 20% higher than the pyrolysis gas evolution rate of the conventional system, and the calorific value of the obtained pyrolysis gas is 10% higher than that of the conventional pyrolysis method.
  • the final amorphous nano-silica was tested by scanning electron microscopy and XRD, as shown in Figure 3 and Figure 4, respectively. It can be seen that the silica is spherical particles, the particle size is less than 100nm, and the particles are relatively loose; it can be seen from the XRD pattern that there is no obvious specific crystal diffraction peak, so the product silica has an amorphous structure.
  • This embodiment provides a method for accelerating the gas production rate of biomass pyrolysis and obtaining nano-scale silica materials, which includes the following steps:
  • the rice husks are simply screened and washed with water to remove impurities such as mud in the rice husks, and the rice husks are transported to the pretreatment mixer 2 through the screw feeder 1 and fully mixed with the steam from the subsequent process to dry and heat;
  • the mixture material is sent to the pyrolysis device 3, where it is pyrolyzed in an oxygen-free environment at a temperature of 600°C, and the pyrolysis gas is quickly generated and sent to the combustion device 6 to release heat.
  • the pyrolyzed solid ash product is sent to the calcining device 5, and it is calcined in an aerobic atmosphere at 500°C.
  • the calcined solid product is rice husk ash, and it is ground to obtain nano-scale silica material of less than 100nm. .
  • the pyrolysis gas generated in the above pyrolysis step is tested by a gas analyzer, and the components are CO, CO 2 , H 2 , CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C One of 3 H 8 or C 3 H 10 or a mixture of any two or more of them.
  • the finally obtained amorphous nano-silica was tested by scanning electron microscopy and XRD (see Figure 4).
  • the silica is spherical particles with a particle size of less than 100nm, and the particles are relatively loose; it can be seen from the XRD pattern that there is no Obviously specific crystal diffraction peaks, so the product silica has an amorphous structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法。该装置包括螺旋给料装置、预处理搅拌器、热解装置、燃烧装置、蒸汽发生器及煅烧装置。生物质原料通过螺旋给料装置送入预处理搅拌器,搅拌后的生物质原料与蒸汽发生器产生的过热水蒸汽混合后进入热解装置,热解装置析出的可燃气体进入燃烧装置燃烧,燃烧装置燃烧所产生的热烟气加热蒸汽发生器产生过热水蒸气,热解装置下部的灰渣口排出的灰渣进入煅烧装置中煅烧。本发明使用过热水蒸气对生物质原料进行加热和干燥,比同温度热空气烘干生物质原料的方法干燥速度高,从而使系统的热解气体析出速度比常规系统热解气体析出速度和产气热值大大提高。

Description

一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法 技术领域
本发明涉及一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法。
背景技术
二氧化硅尽管在许多自然资源中是丰富的,但高纯度的无定形二氧化硅却很少在自然资源中找到。目前已有利用无机材料生产无定形二氧化硅的报道,但其工艺生产成本高,能耗大,环境污染严重。
除此,也有一些从生物质中提取二氧化硅的方法的报道:如专利ZL02807291.X介绍了从稻壳中生产高纯度的无定形二氧化硅的工艺,但都没有考虑有机物及能量利用问题,不能使生物质得到有效的利用。申请公开专利102653406虽然介绍了无氧热解稻壳制取无定形二氧化硅的工艺方法,通过对原料进行酸洗干燥的预处理手段,破坏木质纤维素等大分子链结构以促进热解反应,但没有考虑整个工艺系统中生物质原料含水量对热解产气速度和效率的影响,且热解温度过低易在热解气中产生大分子可凝气体,导致热解气运输管道、燃烧设备壁面出现焦油凝结等问题。
发明内容
本发明所要解决的技术问题是:提供一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法。
本发明为解决上述技术问题所采取的技术方案为:
一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置,其特征在于,它包括螺旋给料装置、预处理搅拌器、热解装置、燃烧装置、蒸汽发生器及煅烧装置;生物质原料通过所述螺旋给料装置送入预处理搅拌器,搅拌后的生物质原料与所述蒸汽发生器产生的过热水蒸汽混合后进入所述热解装置,所述热解装置析出的可燃气体进入燃烧装置燃烧,所述燃烧装置燃烧所产生的热烟气加热蒸汽发生器产生过热水蒸气,所述热解装置下部的灰渣口排出的灰渣进入所述煅烧装置中煅烧。
上述方案中,所述蒸汽发生器为电蒸汽发生器、燃油蒸汽发生器或燃气蒸汽发生器。
上述方案中,所述蒸汽发生器为燃油蒸汽发生器。
上述方案中,所述燃油蒸汽发生器包括腔体以及设置在腔体内的自下而上依次设置的蛇形盘管、饱和沸腾水箱及双路翅片过热盘管。
一种加快生物质热解产气速度并获得纳米级二氧化硅材料的方法,其特征在于,该方法是先将生物质原料搅拌均匀,然后采用过热水蒸气加热干燥,过热水蒸气的温度为120~150℃,均匀混合干燥后的生物质物料于无氧条件下热解,热解温度为600~800℃,将热 解析出的可燃气体燃烧,将燃烧所产生的热烟气加热蒸汽发生器产生过热水蒸气,将热解装置下部的灰渣口排出的灰渣在有氧条件下进行煅烧得到无定形的纳米级二氧化硅材料。
上述方案中,该方法是将生物质原料通过螺旋给料装置送入预处理搅拌器内,与蒸汽发生器产生的过热水蒸气混合加热干燥,均匀混合干燥的物料经过热解装置迅速析出可燃气体,然后将可燃气体通入燃烧装置燃烧,燃烧装置产生的热烟气用于加热蒸汽发生器产生过热水蒸气,热解装置下部的灰渣口定期排出的灰渣在煅烧装置中煅烧冷却后回收为无定形的纳米级二氧化硅材料。
上述方案中,所述煅烧为空气气氛煅烧,煅烧温度为500~800℃。
上述方案中,热解所产生的可燃气体为CO、CO2、H2、CH4、C2H2、C2H4、C2H6、C3H8、C3H10中的一种或任意两种以上的混合。
上述方案中,所述生物质原料为稻壳。
本发明的有益效果:
1)本发明是一种利用过热水蒸气对生物质原料进行预处理后,加快生物质原料热解析出可燃气体量、并获得纳米级二氧化硅材料的综合利用技术,特征为通过余热产生的水蒸气将生物质原料快速加热干燥后,在600~800℃区间内进行快速无氧热解,破坏生物质中的纤维素、半纤维素、木质素等大分子链,快速析出高热值热解气体燃烧后通入余热蒸汽发生器,产生的水蒸气得到循环利用;热解的剩余固体灰渣通过有氧煅烧,进一步去除残留含碳杂质,最后处理回收获得小于100纳米级的二氧化硅工业材料。
2)水蒸气是由热解反应后的烟气余热加热产生的,既循环利用了烟气余热,也解决了由于常规生物质原料(主要为稻壳)含水量较高,消耗热解反应的热量、导致热解速度和效率降低的问题,同时减少了热解生物质原料(主要为稻壳)过程中焦油产生。
3)由于使用120~150℃过热水蒸气对生物质原料(主要为稻壳)进行加热和干燥,比同温度热空气烘干生物质原料的方法干燥速度高,从而使系统的热解气体析出速度比常规系统热解气体析出速度提高20%,且获得的热解气热值较常规热解方式的产气热值提高10%。
4)过热水蒸汽干燥原料的手段虽然在化工、医药、食品及农副产品等加工行业得到广泛地应用,但是在本发明所述的生物质能源利用技术领域,尚无使用过热水蒸汽干燥生物质原料的案例;现有的过热水蒸汽干燥工艺在系统启动时,需要额外的燃气或其他能源对锅炉、等离子吹管等设备辅助整个系统稳定运行,而本发明利用的是采用系统内部的生物质热解气体燃烧废气的余热生产蒸汽,制造蒸汽的能量来源不同,系统能量利用的效率也得到提高,与传统余热循环系统利用技术的目的和用途也是不相同的。同时可以获得无定形二氧化硅材料产品。
附图说明
图1为本发明实施例提供的加快生物质热解产气速度并获得纳米级二氧化硅材料的装置的结构示意图。
图2为图1中的蒸汽发生器的结构示意图。
图3为本发明实施例1的SEM图。
图4为本发明实施例1和实施例2以及生物质原料的XRD图。
图中,1-螺旋给料装置,2-预处理搅拌器,3-热解装置,4-蒸汽发生器,5-煅烧装置,6-燃烧装置,7-蛇形盘管、8-饱和沸腾水箱,9-双路翅片过热盘管,10-腔体。
具体实施方式
下面结合附图和实施例对本发明作进一步的描述,当然下述实施例不应理解为对本发明的限制。
实施例1
如图1和图2所示,其为本实施例提供的一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置,它包括螺旋给料装置1、预处理搅拌器2、热解装置3、燃烧装置6、蒸汽发生器4及煅烧装置5。生物质原料通过螺旋给料装置1送入预处理搅拌器2,搅拌后的生物质原料与所述蒸汽发生器4产生的过热水蒸汽混合后进入热解装置3,热解装置3析出的可燃气体进入燃烧装置6燃烧,燃烧装置6燃烧所产生的热烟气加热蒸汽发生器4产生过热水蒸气,热解装置3下部的灰渣口排出的灰渣进入所述煅烧装置5中煅烧。该蒸汽发生器4可以为电蒸汽发生器、燃油蒸汽发生器或燃气蒸汽发生器。在本实施例中,该蒸汽发生器4为燃油蒸汽发生器。该燃油蒸汽发生器包括腔体10以及设置在腔体10内的自下而上依次设置的蛇形盘管7、饱和沸腾水箱8及双路翅片过热盘管9。
本实施例还提供一种加快生物质热解产气速度并获得纳米级二氧化硅材料的方法,其包括以下步骤:
1)将稻壳经简单筛选水洗,去除稻壳中的泥土等杂质,将稻壳通过螺旋给料装置1输送到预处理搅拌器2内,与来自后段工艺的水蒸气充分混合干燥加热。
2)混合物料送入热解装置3中,于无氧环境的800℃区间内热解,迅速产生热解气送入燃烧装置6放热;
3)余热烟气进入蒸汽发生器4产生120℃过热水蒸气,引回前端的预处理搅拌器2混合干燥生物质原料;
产生过热水蒸气的具体步骤为:热解气体燃烧反应后的烟气通入蒸汽发生器4中,冷水自下而上经过蛇形盘管7、饱和沸腾水箱8、双路翅片过热盘管9三段加热至得到过热水蒸气;
4)热解后的固体灰渣产物送入煅烧装置5,在800℃下在有氧气氛中进行煅烧,煅烧后的固体产物即稻壳灰,研磨即得小于100nm的纳米级二氧化硅材料。
将上述热解步骤产生的热解气经煤气分析仪测试,而得:其组分有CO、CO2、H2、CH4、C2H2、C2H4、C2H6、C3H8、或C3H10中的一种或者任意两种以上的混合。
在热解装置3处采用热重分析仪在线检测干燥后生物质物料的失重曲线得到热解气析出速度,同时采用气体分析仪实时检测析出的热解气体热值。本实施例的热解气体析出速度比常规系统热解气体析出速度提高20%,且获得的热解气热值较常规热解方式的产气热值提高10%。
将最终得到的无定形纳米二氧化硅进行扫描电镜和XRD测试,分别见图3和图4。可见:二氧化硅为圆球形颗粒,粒径均小于100nm,颗粒之间比较松散;通过XRD图谱可以看出,无明显特定结晶衍射峰,因而产物二氧化硅为无定形结构。
实施例2
本实施例提供一种加快生物质热解产气速度并获得纳米级二氧化硅材料的方法,其包括以下步骤:
1)将稻壳经简单筛选水洗,去除稻壳中的泥土等杂质,将稻壳通过螺旋给料装置1输送到预处理搅拌器2内,与来自后段工艺的水蒸气充分混合干燥加热;
2)混合物料送入热解装置3中,于无氧环境的600℃区间内热解,迅速产生热解气送入燃烧装置6放热。
3)余热烟气进入蒸汽发生器4产生150℃过热水蒸气,引回前端的预处理搅拌器2混合干燥生物质原料。
4)热解后的固体灰渣产物送入煅烧装置5,在500℃下在有氧气氛中进行煅烧,煅烧后的固体产物即稻壳灰,研磨即得小于100nm的纳米级二氧化硅材料。
将上述热解步骤产生的热解气经煤气分析仪测试,而得:其组分有CO、CO2、H2、CH4、C2H2、C2H4、C2H6、C3H8、或C3H10中的一种或者任意两种以上的混合。
将最终得到的无定形纳米二氧化硅进行扫描电镜和XRD测试(见图4),二氧化硅为圆球形颗粒,粒径均小于100nm,颗粒之间比较松散;通过XRD图谱可以看出,无明显特定结晶衍射峰,因而产物二氧化硅为无定形结构。
需要说明的是,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

  1. 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置,其特征在于,它包括螺旋给料装置、预处理搅拌器、热解装置、燃烧装置、蒸汽发生器及煅烧装置;生物质原料通过所述螺旋给料装置送入预处理搅拌器,搅拌后的生物质原料与所述蒸汽发生器产生的过热水蒸汽混合后进入所述热解装置,所述热解装置析出的可燃气体进入燃烧装置燃烧,所述燃烧装置燃烧所产生的热烟气加热蒸汽发生器产生过热水蒸气,所述热解装置下部的灰渣口排出的灰渣进入所述煅烧装置中煅烧。
  2. 如权利要求1所述的加快生物质热解产气速度并获得纳米级二氧化硅材料的装置,其特征在于,所述蒸汽发生器为电蒸汽发生器、燃油蒸汽发生器或燃气蒸汽发生器。
  3. 如权利要求2所述的加快生物质热解产气速度并获得纳米级二氧化硅材料的装置,其特征在于,所述蒸汽发生器为燃油蒸汽发生器。
  4. 如权利要求3所述的加快生物质热解产气速度并获得纳米级二氧化硅材料的装置,其特征在于,所述燃油蒸汽发生器包括腔体以及设置在腔体内的自下而上依次设置的蛇形盘管、饱和沸腾水箱及双路翅片过热盘管。
  5. 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的方法,其特征在于,该方法是先将生物质原料搅拌均匀,然后采用过热水蒸气加热干燥,过热水蒸气的温度为120~150℃,均匀混合干燥后的生物质物料于无氧条件下热解,热解温度为600~800℃,将热解析出的可燃气体燃烧,将燃烧所产生的热烟气加热蒸汽发生器产生过热水蒸气,将热解装置下部的灰渣口排出的灰渣在有氧条件下进行煅烧得到无定形的纳米级二氧化硅材料。
  6. 如权利要求5所述的加快生物质热解产气速度并获得纳米级二氧化硅材料的方法,其特征在于,该方法是将生物质原料通过螺旋给料装置送入预处理搅拌器内,与蒸汽发生器产生的过热水蒸气混合加热干燥,均匀混合干燥的物料经过热解装置迅速析出可燃气体,然后将可燃气体通入燃烧装置燃烧,燃烧装置产生的热烟气用于加热蒸汽发生器产生过热水蒸气,热解装置下部的灰渣口定期排出的灰渣在煅烧装置中煅烧冷却后回收为无定形的纳米级二氧化硅材料。
  7. 如权利要求5或6所述的加快生物质热解产气速度并获得纳米级二氧化硅材料的方法,其特征在于,所述煅烧为空气气氛煅烧,煅烧温度为500~800℃。
  8. 如权利要求5或6所述的加快生物质热解产气速度并获得纳米级二氧化硅材料的方法,其特征在于,热解所产生的可燃气体为CO、CO2、H2、CH4、C2H2、C2H4、C2H6、C3H8、C3H10中的一种或任意两种以上的混合。
  9. 如权利要求5或6所述的加快生物质热解产气速度并获得纳米级二氧化硅材料的方法,其特征在于,所述生物质原料为稻壳。
PCT/CN2015/071390 2014-01-06 2015-01-23 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法 WO2015101360A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112016015807-5A BR112016015807A2 (pt) 2014-01-06 2015-01-23 aparelho e método para o aumento da pirólise de biomassa e da velocidade de produção de gás e obtenção de material de sílica em escala nano
EP15733305.5A EP3093271A4 (en) 2014-01-06 2015-01-23 Apparatus and method for increasing biomass pyrolysis and gas production speed and obtaining nano-scale silica material
SG11201605681SA SG11201605681SA (en) 2014-01-06 2015-01-23 Apparatus and method for increasing biomass pyrolysis and gas production speed and obtaining nano-scale silica material
CA2955998A CA2955998A1 (en) 2014-01-06 2015-01-23 Apparatus and method for increasing biomass pyrolysis and gas production speed and obtaining nano-scale silica material
US15/203,781 US20170001871A1 (en) 2014-01-06 2016-07-06 Device and method for producing nano silica materails from pyrolysis of biomass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410004144.4 2014-01-06
CN201410004144.4A CN103695015B (zh) 2014-01-06 2014-01-06 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/203,781 Continuation-In-Part US20170001871A1 (en) 2014-01-06 2016-07-06 Device and method for producing nano silica materails from pyrolysis of biomass

Publications (1)

Publication Number Publication Date
WO2015101360A1 true WO2015101360A1 (zh) 2015-07-09

Family

ID=50356685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071390 WO2015101360A1 (zh) 2014-01-06 2015-01-23 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法

Country Status (7)

Country Link
US (1) US20170001871A1 (zh)
EP (1) EP3093271A4 (zh)
CN (1) CN103695015B (zh)
BR (1) BR112016015807A2 (zh)
CA (1) CA2955998A1 (zh)
SG (1) SG11201605681SA (zh)
WO (1) WO2015101360A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111017926A (zh) * 2019-12-06 2020-04-17 南京理工大学 一种绿色环保型生物质制备磁性碳纳米管/多孔碳材料的方法及装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695015B (zh) * 2014-01-06 2015-08-12 中盈长江国际新能源投资有限公司 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法
GB2537589B (en) 2015-03-05 2018-05-16 Standard Gas Ltd Pyrolysis or gasification apparatus and method
CN107033934B (zh) * 2017-03-21 2020-01-21 武汉天颖环境工程股份有限公司 一种生物质旋转推进热解装置
CN106829970A (zh) * 2017-03-31 2017-06-13 章斐虹 一种稻壳制备生物质纳米二氧化硅的方法
CN107967238A (zh) * 2017-11-20 2018-04-27 东南大学 一种提高稻秆热值的含氧烘焙工艺参数的确定方法
CN109628112B (zh) * 2019-01-07 2020-07-10 武汉钢铁有限公司 提高焦炉生产效率的方法
RU2725935C1 (ru) * 2020-02-27 2020-07-07 Роман Лазирович Илиев Способ и устройство получения продукта, содержащего аморфный диоксид кремния и аморфный углерод
CN115244000B (zh) * 2020-03-11 2024-09-20 株式会社久保田 非晶质二氧化硅的制造方法及非晶质二氧化硅的制造装置
CN113831926A (zh) * 2021-10-13 2021-12-24 深圳市捷晶能源科技有限公司 油墨渣无氧热解处理装置及方法
CN114921255B (zh) * 2022-05-16 2023-05-12 华中科技大学 一种热解装置及热电一体化处理系统
CN114956872B (zh) * 2022-06-28 2023-05-09 舒新前 一种活化煤矸石制备硅肥的方法
CN115337864B (zh) * 2022-07-08 2023-10-13 青岛科技大学 一种废塑料与废弃秸秆/废橡胶协同裂解制备两相生物质二氧化硅材料的方法及装备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2919038Y (zh) * 2006-06-21 2007-07-04 广西大学 用于外供热式生物质气化的燃烧器
CN101054526A (zh) * 2007-05-11 2007-10-17 南京工业大学 利用高温热管翅径向间接供热的生物质气化炉装置
CN101440026A (zh) * 2007-11-20 2009-05-27 让·皮斯科日 生产霍奇羰基化合物和低聚木质素的方法
CN102653406A (zh) 2012-01-05 2012-09-05 武汉凯迪工程技术研究总院有限公司 一种含有无定形二氧化硅的生物质的综合利用方法
CN203112518U (zh) * 2012-11-30 2013-08-07 天津大学 制备纳米二氧化硅稻壳灰的工业化生产装置
CN103695015A (zh) * 2014-01-06 2014-04-02 中盈长江国际新能源投资有限公司 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法
CN203668313U (zh) * 2014-01-06 2014-06-25 武汉凯迪工程技术研究总院有限公司 一种废气混合循环生成二氧化硅的生物质热解装置
CN203845985U (zh) * 2014-01-06 2014-09-24 中盈长江国际新能源投资有限公司 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2582711A (en) * 1947-05-17 1952-01-15 Standard Oil Dev Co Fluidized carbonization process
GB1140036A (en) * 1965-03-15 1969-01-15 Babcock & Wilcox Ltd Improvements in vapour generating and superheating units in ship propulsion power plant
US5607011A (en) * 1991-01-25 1997-03-04 Abdelmalek; Fawzy T. Reverse heat exchanging system for boiler flue gas condensing and combustion air preheating
CA2058255C (en) * 1991-12-20 1997-02-11 Roland P. Leaute Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells
EP0823590B1 (en) * 1996-02-29 2005-02-02 Mitsubishi Heavy Industries, Ltd. Method and apparatus for producing superheated steam using heat generated through incineration of wastes
US8814961B2 (en) * 2009-06-09 2014-08-26 Sundrop Fuels, Inc. Various methods and apparatuses for a radiant-heat driven chemical reactor
CN103408009A (zh) * 2013-04-27 2013-11-27 吉林大学 一种由稻壳联产高比电容活性炭和纳米二氧化硅的制备方法
US9644150B2 (en) * 2014-12-18 2017-05-09 Inaeris Technologies, Llc Method of thermolyzing biomass in presence of hydrogen sulfide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2919038Y (zh) * 2006-06-21 2007-07-04 广西大学 用于外供热式生物质气化的燃烧器
CN101054526A (zh) * 2007-05-11 2007-10-17 南京工业大学 利用高温热管翅径向间接供热的生物质气化炉装置
CN101440026A (zh) * 2007-11-20 2009-05-27 让·皮斯科日 生产霍奇羰基化合物和低聚木质素的方法
CN102653406A (zh) 2012-01-05 2012-09-05 武汉凯迪工程技术研究总院有限公司 一种含有无定形二氧化硅的生物质的综合利用方法
CN203112518U (zh) * 2012-11-30 2013-08-07 天津大学 制备纳米二氧化硅稻壳灰的工业化生产装置
CN103695015A (zh) * 2014-01-06 2014-04-02 中盈长江国际新能源投资有限公司 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法
CN203668313U (zh) * 2014-01-06 2014-06-25 武汉凯迪工程技术研究总院有限公司 一种废气混合循环生成二氧化硅的生物质热解装置
CN203845985U (zh) * 2014-01-06 2014-09-24 中盈长江国际新能源投资有限公司 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LV , XIUYANG ET AL.: "Treatment of Rice Hull by Steam Explosion Process", TRANSACTIONS OF THE CSAE, vol. 16, no. 6, 30 November 2000 (2000-11-30), pages 96 - 98, XP008184195 *
See also references of EP3093271A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111017926A (zh) * 2019-12-06 2020-04-17 南京理工大学 一种绿色环保型生物质制备磁性碳纳米管/多孔碳材料的方法及装置

Also Published As

Publication number Publication date
EP3093271A4 (en) 2017-10-11
SG11201605681SA (en) 2016-09-29
US20170001871A1 (en) 2017-01-05
CA2955998A1 (en) 2015-07-09
CN103695015A (zh) 2014-04-02
EP3093271A1 (en) 2016-11-16
BR112016015807A2 (pt) 2020-09-24
CN103695015B (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2015101360A1 (zh) 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法
Wu et al. Evaluation of fuel properties and combustion behaviour of hydrochar derived from hydrothermal carbonisation of agricultural wastes
AU2012364501B2 (en) Comprehensive utilization method for biomass containing amorphous silicon dioxide
Zhao et al. Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization
Liu et al. Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): A comparative evaluation
WO2011116689A1 (zh) 一种通过热解将生物质制造合成气的工艺方法及系统
CN104355519A (zh) 基于水热碳化和微波快速热解的污泥综合处理方法
WO2022016800A1 (zh) 一种热能-微波能优化匹配的生物质热解装置及方法
ITTO20070438A1 (it) Apparato per la decomposizione di sostanze organiche vegetali e la produzione di gas combustibile per via termochimica, e relativo metodo
CN106753462A (zh) 一种分级定向热解污泥碳化方法
CN105238432A (zh) 自热式酸洗-热解-燃烧一体化制备高品质生物油和白炭黑的方法及装置
CN106085511A (zh) 一种垃圾炭资源化及提高热解气热值的方法和系统
CN105600790A (zh) 利用稻壳联产超纯纳米二氧化硅和生物油的方法
CN101955799B (zh) 粉煤综合利用制备煤焦油、煤气、水蒸气的方法
CN111019711B (zh) 一种生活垃圾热裂解气化工艺
CN203845985U (zh) 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置
CN106221719A (zh) 一种利用生物质微波热解制备生物油的方法
CN203668313U (zh) 一种废气混合循环生成二氧化硅的生物质热解装置
CN206051566U (zh) 一种废旧电子产品处理的系统
CN205035324U (zh) 自热式酸洗-热解-燃烧一体化制备高品质生物油和白炭黑的装置
CN212769855U (zh) 一种废弃塑料热解制氢的系统
CN203866251U (zh) 一种余热循环生成二氧化硅的生物质热解装置
CN112521979A (zh) 一种生物质石墨烯生产装置及工艺
CN110835544A (zh) 一种连续高效的废旧轮胎气化资源化处理系统及其处理方法
CN216377477U (zh) 一种污泥耦合制氢系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15733305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016015807

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015733305

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015733305

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201605133

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2955998

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 112016015807

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160706

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112016015807

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE REIVINDICADA; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES (NUMERO DA PRIORIDADE, DATA, DEPOSITANTE E INVENTORES), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. CABE SALIENTAR NAO FOI POSSIVEL INDIVIDUALIZAR OS TITULARES DA CITADA PRIORIDADE, INFORMACAO NECESSARIA PARA O EXAME DA CESSAO DO DOCUMENTO DE PRIORIDADE, SE FOR O CASO.

ENP Entry into the national phase

Ref document number: 112016015807

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160706