WO2015101284A1 - 电池包、充电组合、电动工具以及断线检测方法 - Google Patents

电池包、充电组合、电动工具以及断线检测方法 Download PDF

Info

Publication number
WO2015101284A1
WO2015101284A1 PCT/CN2014/095537 CN2014095537W WO2015101284A1 WO 2015101284 A1 WO2015101284 A1 WO 2015101284A1 CN 2014095537 W CN2014095537 W CN 2014095537W WO 2015101284 A1 WO2015101284 A1 WO 2015101284A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
series
unit
voltage
module
Prior art date
Application number
PCT/CN2014/095537
Other languages
English (en)
French (fr)
Inventor
杨德中
石平波
刘雷
耿正
王磊
段俊雅
项英典
Original Assignee
南京德朔实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京德朔实业有限公司 filed Critical 南京德朔实业有限公司
Priority to CA2935503A priority Critical patent/CA2935503C/en
Priority to EP14876444.2A priority patent/EP3079220B1/en
Priority to NZ722133A priority patent/NZ722133A/en
Priority to AU2014375491A priority patent/AU2014375491B2/en
Publication of WO2015101284A1 publication Critical patent/WO2015101284A1/zh

Links

Images

Classifications

    • H02J7/0026
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/68Testing of releasable connections, e.g. of terminals mounted on a printed circuit board
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack, and more particularly to a battery pack, a charging assembly, a power tool, and a disconnection detecting method.
  • an object of the present invention is to provide a battery pack having an output voltage of at least 56 V and a charging assembly and a power tool including the battery pack, which are both tested by the battery pack to ensure the use of the battery pack. Safety.
  • One or more series units that are connected in series with each other;
  • a voltage detecting module for respectively detecting voltage signals of the high voltage terminals of the plurality of series units
  • a battery pack control module configured to receive a voltage signal detected by the voltage detecting module and calculate a voltage value of the serial unit
  • the series unit comprises more than two cells, and a plurality of cells in one series unit are connected in parallel;
  • the battery pack control module can determine whether there is a disconnected battery cell in the series unit according to the voltage value of the series unit.
  • the battery pack control module includes:
  • the disconnection detecting module can determine whether there is a disconnected battery cell in the series unit according to the relative relationship between the voltage value and the time of the series unit.
  • the disconnection detection module includes:
  • timing unit for providing time data
  • a slope calculation unit for calculating a slope value of a voltage value of the series unit with respect to time
  • a judging unit configured to determine, according to the slope value of the series unit, whether there is a disconnected cell in the series unit.
  • the battery pack control module includes:
  • the disconnection detecting module can determine whether there is a disconnected battery cell in the series unit according to calculating the internal resistance value of the series unit.
  • the disconnection detection module includes:
  • a current detecting unit configured to detect a current value of the serial unit
  • An internal resistance calculation unit configured to calculate an internal resistance value of the series unit according to the voltage value and the current value of the series unit
  • the determining unit is configured to determine, according to the internal resistance value of the series unit, whether there is a disconnected battery cell in the series unit.
  • the present invention also provides a battery pack having an output voltage of at least 56V, which includes:
  • One or more series units that are connected in series with each other;
  • a voltage detecting module for respectively detecting voltage signals of the high voltage terminals of the plurality of series units
  • a battery pack control module configured to receive a voltage signal detected by the voltage detecting module and calculate a voltage value of the serial unit
  • the series unit comprises more than two cells, and a plurality of cells in a series unit are connected in parallel;
  • the battery pack also includes:
  • the disconnection detecting module can determine whether there is a disconnected battery cell in the series unit according to the voltage value of the series unit.
  • the disconnection detection module includes:
  • timing unit for providing time data
  • a slope calculation unit for calculating a slope value of a voltage value of the series unit with respect to time
  • a judging unit configured to determine, according to the slope value of the series unit, whether there is a disconnected cell in the series unit.
  • the disconnection detection module includes:
  • a current detecting unit configured to detect a current value of the serial unit
  • An internal resistance calculation unit for calculating an internal resistance of the series unit according to the voltage value and the current value of the series unit Value
  • the determining unit is configured to determine, according to the internal resistance value of the series unit, whether there is a disconnected battery cell in the series unit.
  • the invention also proposes a charging combination comprising a battery pack and a charger charger for charging the same,
  • the battery pack includes: one or more series units that are connected in series with each other;
  • the series unit includes two or more cells, and a plurality of cells in one series unit are connected in parallel;
  • the charging combination also includes:
  • a voltage detecting module configured to respectively detect voltage signals of the high voltage terminals of the plurality of series units
  • a battery pack control module configured to receive a voltage signal detected by the voltage detecting module and calculate a voltage value of the serial unit
  • the disconnection detecting module can determine whether there is a disconnected battery cell in the series unit according to the voltage value of the series unit.
  • the invention also provides a power tool comprising an electric device and a battery pack, wherein the battery pack can supply power to the electric device, the battery pack comprises one or more series units connected in series with each other; the series unit comprises more than two batteries. a plurality of cells in a series unit are connected in parallel;
  • Power tools and also include:
  • a voltage detecting module configured to respectively detect voltage signals of the high voltage terminals of the plurality of series units
  • a battery pack control module configured to receive a voltage signal detected by the voltage detecting module and calculate a voltage value of the serial unit
  • the disconnection detecting module can determine whether there is a disconnected battery cell in the series unit according to the voltage value of the series unit.
  • the present invention also provides a disconnection detecting method for detecting whether a line between cells connected in parallel in a battery pack is disconnected, and the battery pack includes one or more series units connected in series with each other, and the series combination includes two or more parallel connections.
  • detection methods include:
  • Whether or not there is a disconnected cell in the series unit is determined based on the slope value of the series combination.
  • the present invention also provides a disconnection detecting method for detecting whether a line between cells connected in parallel in a battery pack is disconnected, and the battery pack includes one or more series units connected in series with each other, and the series combination includes Two or more batteries in parallel; detection methods include:
  • the present invention also provides a battery pack having an output voltage of at least 56V, which includes:
  • One or more series units that are connected in series with each other;
  • a voltage detecting module configured to respectively detect voltage signals of the high voltage terminals of the plurality of series units
  • a battery pack control module configured to receive a voltage signal detected by the voltage detecting module and calculate a voltage value of the serial unit
  • the series unit comprises more than one battery core, and a plurality of battery cells in one series unit are connected in parallel; the voltage detecting module and the battery core group form an electrical connection.
  • the voltage detection module includes:
  • a detection circuit one end connected to the high voltage end of the series unit and the other end connected to the battery pack control module;
  • the battery pack control module detects the voltage signals of the high voltage terminals of the plurality of series units by using a plurality of detecting circuits.
  • the voltage detecting module further includes:
  • a time sharing module for controlling at least two detection circuits
  • the battery pack control module controls the plurality of detection circuits to be turned on and off by the time sharing module.
  • the battery pack control module includes:
  • a first MCU unit configured to receive a voltage signal of a portion of the detection circuit
  • a second MCU unit for receiving a voltage signal of another portion of the detecting circuit
  • the voltage detection module includes:
  • a first time sharing module configured to control the voltage signal to be sent to the plurality of detection circuits of the first MCU unit for time-sharing
  • a second time sharing module configured to control the voltage signal to be sent to the plurality of detection circuits of the second MCU unit for time-sharing
  • the first MCU unit controls the first time sharing module
  • the second MCU unit controls the second time sharing module
  • the second MCU unit can transmit data to the first MCU unit.
  • the detection circuit that transmits the voltage signal to the first MCU unit is respectively connected to the adjacent one The high voltage terminal of the series unit; the detection circuit that transmits the voltage signal to the second MCU unit is connected to the high voltage terminal of the adjacent series unit, respectively.
  • the number of detection circuits controlled by the first MCU unit is equal to the number of detection circuits controlled by the second MCU unit.
  • the detection circuit includes:
  • the switching element can be controlled by the time sharing module to turn the detection circuit on or off;
  • the switching elements include:
  • control end configured to receive a signal of the time sharing module and control whether the two connection ends are turned on or off;
  • the two connections include:
  • the output is connected to the battery pack control module.
  • the detecting circuit comprises: a voltage dividing resistor, which can stabilize the voltage signal received by the main control within a preset range.
  • the invention is beneficial in that a battery pack having an output voltage of at least 56 V and a charging assembly and a power tool including the battery pack are provided, which are both ensured during charging and discharging by detecting the battery pack. safety.
  • Figure 1 is a schematic block diagram of a preferred embodiment of the battery pack of the present invention.
  • Figure 2 is a schematic block diagram of a preferred embodiment of the battery pack of the present invention for implementing a voltage detecting portion
  • FIG. 3 is a schematic block diagram of another preferred embodiment of the battery pack of the present invention for implementing a voltage detecting portion
  • Figure 4 is a schematic block diagram of a preferred embodiment of the charger of the present invention.
  • FIG. 5 is a schematic block diagram of a preferred embodiment of the charging assembly of the present invention.
  • Figure 6 is a schematic diagram of a series unit interrupt line
  • Figure 7 is a logic block diagram showing specific steps of the battery pack detecting method of the present invention.
  • Figure 8 is a schematic block diagram of a preferred embodiment of a powered device in a power tool of the present invention.
  • the battery pack 100 mainly includes a battery pack 11, a terminal module 12, a temperature module 13, a voltage detecting module 14, a battery pack communication module 15, and a battery pack control module 16 that controls them.
  • the battery pack 11 includes: one or more series units 111. When the number of the series units 111 is 2 or more, the different series units 111 are connected in series, and the whole of them constitutes the battery group 11.
  • One series unit 111 includes: one or more cells 111a. When the number of the cells 111a in the same series unit 111 is larger than 2, the different cells 111a are connected in parallel to form a series unit 111.
  • one series unit 111 includes two parallel cells 111a.
  • the terminal module 12 and the battery pack 11 and the battery pack control module 16 respectively constitute an electrical connection, and are provided with a battery pack positive terminal B+ and a battery pack negative terminal B- for connecting with the outside to realize electric energy or signal transmission.
  • the terminal module 12 When the battery pack 100 is being charged, the terminal module 12 enables the battery cells 111a in the battery pack 11 to be in a state of charge, while also providing power to other modules and components inside the battery pack 100.
  • the temperature module 13 includes a temperature measuring element 131 and a temperature signal module 132, wherein the temperature measuring element 131 is used to detect the internal temperature of the battery pack 100.
  • the temperature measuring element 131 is disposed inside the battery pack 100. Specifically, the temperature measuring element 131 is disposed at a position in the battery pack 100 close to the battery core 111a so as to be able to detect a change in the temperature of the battery cell 111a. As a preferred solution, the temperature measuring element 131 can employ a thermistor, especially an NTC thermistor.
  • the temperature signal module 132 is electrically connected to the temperature measuring component 131 and the battery pack control module 16, respectively, which can feed back the detection result of the temperature measuring component 131 to the battery pack control module 16 and be controlled by the battery pack control module 16.
  • the temperature signal module 132 is provided with a battery pack temperature terminal T for electrical connection with an external temperature terminal.
  • the voltage detecting module 14 is configured to detect voltage values of the respective series units 111 in the battery pack 11, and the voltage detecting module 14 is electrically connected to the battery pack 11 and the battery pack control module 16, respectively.
  • the voltage detecting module 14 detects the voltage signal in the battery pack 11 and transmits the voltage signal to the battery pack control module 16.
  • the battery pack control module 16 calculates a voltage value according to the voltage signal transmitted by the voltage detecting module 14 to implement the battery pack 100. Voltage safety monitoring.
  • the battery pack communication module 15 is used to implement data or signal exchange, and the battery pack control module 16 Form an electrical connection.
  • the battery pack communication module 15 can implement data transmission by using a hardware connection or a wireless connection.
  • the battery pack 100 Since the battery pack 100 has a high voltage and output power, the reliability of the communication connection is required when connected to a charger, a power device, or the like.
  • the battery pack communication module 15 implements data transfer by means of hardware connection.
  • the battery pack communication module 15 is provided with a battery pack communication terminal D.
  • the battery pack communication terminal D can be physically connected to a corresponding terminal of the charger and the electric device.
  • the battery pack control module 16 is mainly used to implement functions such as logic operation and process control, and can control various components and modules in the battery pack 100 to ensure the safety of the battery pack 100 during charging and discharging.
  • the battery pack 100 further includes a battery pack power display module (not shown) electrically connected to the battery pack control module 16 for displaying the remaining power in the battery pack 100.
  • the battery pack 100 has an output voltage of at least 56 V.
  • the output voltage referred to herein refers to the ability of the battery pack 100 to have an output voltage when it is fully charged. Generally, as the discharge process progresses, the voltage output from the battery pack 100 The ability will decline.
  • the "battery pack 100 having an output voltage of at least 56 V" as referred to herein does not exclude the case where the battery pack 100 reduces the output voltage by an internal circuit when necessary, and the "battery pack 100 has an output voltage of at least 56 V" means only the battery.
  • the package 100 has the ability to output a voltage of 56V.
  • the power capacity of the battery pack 100 is greater than 100 Wh.
  • the battery pack 100 includes 14 series units 111, each of which includes one or two batteries 111a, each of which has a nominal voltage of 4V.
  • the cell group 11 thus constructed has at least a total voltage of 56 V when each of the cells 111a is at a nominal voltage.
  • the voltage detecting module 14 in the battery pack 100 will be mainly described below.
  • the voltage detecting module 14 is configured to detect the voltage signal of the high voltage terminal of the series unit 111, respectively.
  • the voltage detection module 14 includes a detection circuit 143.
  • the other end of the detection circuit 143 is connected to the high voltage end of the series unit 111 and is connected to the battery pack control module 16.
  • the module 14 is provided with a plurality of detection circuits 143.
  • the battery pack control module 16 If the battery pack control module 16 is simultaneously subjected to voltage signals from a plurality of detection circuits 143, the battery pack control module 16 needs to be provided with at least one microprocessor having a plurality of signal interfaces or a plurality of microprocessors.
  • the processor is required to be high, and the number of signal interfaces of the microprocessor must correspond to the number of detection circuits 143 to be accessed, and the adaptability is poor; using the latter scheme undoubtedly increases the cost and The space occupied.
  • a microprocessor typically has an interface for voltage signals, but microprocessors tend to have higher processing rates.
  • the voltage detection module 14 of the present invention further includes a time sharing module 146.
  • the function of the time sharing module 146 is to control the detection circuit 143, which can at least control the detection circuit 143 to be disconnected at both ends or to be turned on at both ends.
  • a plurality of detection circuits 143 are connected and then connected to the battery pack control module 16 through the same line.
  • a plurality of detecting circuits 143 connected together serve as a detecting group 141,
  • the plurality of detection circuits 143 in one detection group 141 transmit the collected voltage signals to the battery pack control module 16 through the same bus under the control of the same time sharing module 146.
  • the battery pack control module 16 causes the plurality of detecting circuits 143 to be turned on in time by controlling the time sharing module 146. This is equivalent to the battery pack control module 16 receiving only the voltage signal of one of the detection circuits 143 at a time, so that only one microprocessor having a single signal interface is required. Moreover, the time sharing module 146 and the detection circuit 143 as peripheral circuits of the battery pack control module 16 can be specifically set according to the number of the series units 111 without having to configure different microprocessors because the number of the series units 111 is different.
  • the time sharing module 146 is electrically connected to the battery pack control module 16, and the battery pack control module 16 can control the time sharing module 146 to indirectly control the time sharing of the plurality of detection circuits 143.
  • the detecting circuit 143 includes an on-off element 144 including two connecting ends and a control end (not shown), wherein the two connecting ends are divided into: detecting end 144a connected to the series unit 111 And an output for connecting to the battery pack control module 16.
  • the control terminal receives the signal of the time sharing module 146 and controls the two connection terminals of the switching element to be turned on or off.
  • the switching element 144 in the detecting circuit 143 in the same detecting group 141 is finally Connect to the same location and connect to battery pack control module 16.
  • the detecting circuit 143 further includes a voltage dividing resistor 145.
  • the voltage dividing resistor 145 may be connected to the output terminal 144b side of the switching element 144 as shown in FIG. 2, or may be connected to the switching element. 144 detects the side of the terminal 144a.
  • the time sharing module 146 causes all of the switching elements 144 in one detection group 141 to be turned on in time under the control of the battery pack control module 16, two connections of the switching element 144 of one detection circuit 143.
  • the terminal is turned on, the two terminals of the switching element 144 of the remaining detecting circuit 143 are disconnected, and it is ensured that only one switching element 144 is turned on at a time in one detecting group 141.
  • the time sharing module 146 can control the time during which the switching element 144 is turned on and the switching time interval between the different switching elements 144 by controlling the length of the signal sent to the control terminal of the switching element 144.
  • the battery pack control module 16 controls the time sharing module 146 to sequentially turn on and off the switching element 144, and the switching starts from the detecting circuit 143 on the low voltage side (the right side in FIG. 2).
  • the secondary switching causes the total voltage dividing resistor 142 to be connected in series with the different voltage dividing resistors 145 and to form a loop with a different number of series units 111.
  • the battery pack control module 16 can calculate the maximum value by collecting the voltage value of the total voltage dividing resistor 142.
  • the voltage value on the serial unit 111 on the right side (because the total voltage dividing resistor 142 and the voltage dividing resistor 145 are fixed values), after the detecting operation is completed, the battery pack control module 16 controls the time sharing module 146 to perform the switching operation.
  • the rightmost switching element 144 is opened to turn on the second right switching element 144.
  • the battery pack control module 16 calculates the rightmost and right second series unit 111 by collecting the voltage value on the total voltage dividing resistor 142 again. The sum of the voltages, and subtracting the voltage value of the rightmost series unit 111 previously measured, can be used to obtain the voltage value of the second series unit 111 on the right side.
  • the switching elements 144 in the respective detecting circuits 143 are sequentially switched and corresponding calculations are performed, so that all the series units 111 can be monitored.
  • the voltage value shared by the total voltage dividing resistor 142 is as constant as possible within a certain range, so that the input is controlled to the battery pack.
  • the voltage signal on module 16 is relatively stable and does not cause unnecessary interference.
  • the battery pack control module switching element 144 can be a triode, a field effect transistor, or the like.
  • the battery pack 100 in order to achieve a higher output voltage and have a larger power capacity, it contains more series units 111.
  • the microprocessor needs to have a higher clock frequency and processing capability, which undoubtedly increases the power consumption and the detection period is longer.
  • the voltage detecting module 14 includes: a first detecting group 147 and a second detecting group 148
  • the battery pack control module 16 includes: a first detecting group 147 and a second detecting group respectively 148 is a first MCU unit 161 and a second MCU unit 162 that are inspected and electrically connected thereto.
  • the first detection group 147 detects adjacent plurality of series units, and the second detection group 148 detects additional adjacent series units.
  • the detection circuits that transmit the voltage signals to the first MCU unit 161 are respectively connected to the adjacent series units; the detection circuits that transmit the voltage signals to the second MCU 162 units are respectively connected to the other adjacent series units.
  • the first MCU unit 161 can use an MCU chip with a relatively high computing power and a high running clock frequency.
  • the second MCU unit 162 can only implement detection and transmit the detection result to the first MCU unit 161 for processing. Therefore, it can adopt an MCU chip with a general computing capability, so that fast detection can be realized without causing the first MCU unit 161 mainly responsible for control to process too much data.
  • the number of series units 111 is even, which are divided into two parts: a first detection section 112 and a second detection section 113 which can be detected by the first detection group 147 and the second detection group 148, respectively, the first detection
  • the segment 112 and the second detecting segment 113 respectively comprise N/2 consecutive series units 111; the low voltage end of the battery group 11 is the low voltage end 112a of the first detecting segment 112, and the high voltage end of the battery group 11 is the second detecting segment.
  • the high voltage end 113a of 113 is the low voltage end of the battery group 112 and the second detection group 148.
  • the plurality of series units 111 are divided into two groups, and the first MCU unit 161 and the second MCU unit 162 respectively detect them. It should be noted that, for the first MCU unit 161 and the second MCU. For unit 162, when voltage acquisition is performed, the zero potential points of the respective MCU chips should be electrically connected to the lowest potentials 112a, 113b of the series unit 111 responsible for detection, respectively.
  • the voltage detecting module and the battery pack control module as described above may be provided.
  • the circuit described above is realized by the battery pack and the charger, the connection terminal of the battery pack and the electric device, and the internal circuit provided in the battery pack. Structure and detection capabilities.
  • the charger 200 includes a rectifier module 21, a charger detection module 22, a charging module 23, a temperature control module 24, a charger communication module 25, and a charger control module 26 that controls them and is electrically connected thereto. .
  • the rectifier module 21 is provided with power terminals L, N for connecting external power sources, which are used for accessing AC power as a source of energy for the charger, and the rectifier module 21 can convert the connected AC power into various parts of the charger 200.
  • the electrical energy used, such as the rectifier module 21, converts the alternating current into direct current for use by the charger control module 26 and the charging module 23.
  • the rectifier module 21 includes: an EMC circuit and an LLC circuit.
  • the charger detection module 22 is electrically connected to the rectifier module 21 and the charging module 23 respectively.
  • the rectifier module 21 of the charger detection module 22 can transmit power to the charging module 23 through the charger detection module 22 and simultaneously detect the power parameters of the charging module 23. Feedback is provided to the charger control module 26.
  • the charging module 23 is provided with a charger positive electrode C+ and a charger negative electrode C- for outputting charging electrical energy. When charging, they can be connected to the battery pack positive terminal B+ and the battery pack negative terminal B- of the battery pack 100, respectively.
  • the temperature control module 24 is electrically coupled to the charging module 23, which is capable of temperature sensing the charging module 23 and the battery pack 100 connected to the charger 200. Specifically, the temperature control module 24 is provided with a charger temperature terminal T'. When the battery pack positive terminal B+ of the battery pack 100 and the battery pack negative terminal B- are connected, the charger temperature terminal T' is also related to the battery pack temperature. The terminal T is connected, so that the temperature control module 24 can obtain the data or signal of the internal temperature of the battery pack 100 through the temperature measuring component 131 inside the battery pack 100, and then transmit the data or signal to the charger control module 26 for charger control. Module.
  • the charger 200 further includes: a heat sink 27 electrically connected to the charger control module 26 and a charger power display module 28 for displaying that the battery pack 100 has been charged by the charger 200 How much electricity is full.
  • the heat sink 27 is configured to forcibly dissipate the charger 200 or the battery pack 100 by the airflow when the temperature of the charger 200 is high or when the temperature of the battery pack 100 being charged is high.
  • the heat sink 27 is preferably An electric fan comprising: a motor and a fan (neither shown in the figure), wherein the electric The machine drives the fan to rotate, and the charger control module 26 can adjust the rotational speed of the motor by adjusting the duty ratio of the drive motor, thereby controlling the intensity of heat dissipation.
  • the fan in the charger 200 can also be indirectly controlled by the battery pack 100 by communication.
  • the charger communication module 25 is provided with a charger communication terminal D'.
  • the battery pack communication terminal D of the battery pack 100 is connected thereto, so that the charger control module 26 and the battery pack 100 in the charger 200 are connected.
  • the battery pack control module 16 constitutes an interaction of data or signals.
  • the charging assembly 300 as a preferred embodiment includes the battery pack 100 and the charger 200 described above.
  • the charger 200 Since the charger 200 has a high output voltage, in order to ensure safety, it is required that the charger 200 does not output power when the battery pack 100 is not connected.
  • the function of the charging protection is set in the charger 200.
  • the charger 200 further includes: a charging protection module (not shown).
  • the charging protection module is electrically connected to the charger temperature terminal T', and can detect whether the battery pack 100 has been connected to the battery pack 100 by detecting whether the charger temperature terminal T' has been connected to the battery pack temperature terminal T of the battery pack 100. If the battery pack 100 is not connected, the charging module 23 is controlled so that it does not output electric energy.
  • the charging protection module determines whether the battery pack 100 is connected to the charger 200 by collecting the voltage value on the charger temperature terminal T'. This can be achieved by setting the battery pack temperature terminal T of the battery pack 100 to have a certain voltage. When the charger temperature terminal T' is not connected to the battery pack temperature terminal T, the charger temperature terminal T' is suspended, and is in the When the charger temperature terminal T' is connected to the battery pack temperature terminal T, the charger temperature terminal T' has a certain voltage.
  • the charger protection circuit directly controls the charging module 23 through the charger temperature terminal T' when connected to the temperature measuring element 131 and not connected to the temperature measuring element 131.
  • the advantage of this is that, when the battery pack 100 is not inserted, the charger 200 does not have the charger positive C+ and the charger negative C-charged due to the hardware guarantee, thereby ensuring the safety of use, and the function is not set. Additional connection terminals, while based on the existing charger temperature terminal T' simplifies the connection terminal settings, saving costs.
  • the charger control module 26 can also detect the voltage signal of the charger temperature terminal T'.
  • the charger control module 26 can detect the voltage signal of the charger temperature terminal T', thereby triggering the charging procedure of the charger control module 26, without detecting the charger temperature.
  • the charger control module 26 enables the software protection program.
  • the charger 200 secures charging safety by both hardware and software during charging.
  • a charging control method will be described below based on the above battery pack 100, charger 200, and a charging combination 300 thereof.
  • control method protects both aspects, one of which is charging protection:
  • the charger control module 26 starts the charging protection program to control the charging module 23 when detecting that the battery pack 100 is connected, and the charger temperature terminal T' is electrically connected to the charging module 23 to constitute hardware protection, when the charger temperature terminal T' and the battery When the package temperature terminal T is disconnected, the charging module 23 turns off the power output of the charger positive C+ and the charger negative C-.
  • control method includes a method of activating the battery pack 100 in the over-discharged state by the charger 200.
  • the power of the battery pack 111 is insufficient to support the battery pack control module 16 to establish an effective connection with the charger control module 26 of the charger 200 for control and data interaction.
  • the activation method is as follows:
  • the charger 200 charger control module detects the charger temperature terminal T'.
  • the charger 200 determines whether the battery pack 100 is connected to the charger 200 based on the voltage signal of the charger temperature terminal T'; if the battery pack 100 has been connected, the next step is continued.
  • the charger 200 determines whether the data information transmitted by the battery pack 100 is received, and if the data information transmitted by the battery pack 100 is not received, the battery pack 100 is activated.
  • the charger control module 26 controls the charging module 23 to perform activation charging on the battery pack 100 until the battery pack control module 16 of the battery pack 100 and
  • the battery pack communication module 15 returns to normal so that the charger communication module 25 receives the communication information of the battery pack communication module 15 or reaches the upper limit of the activation time.
  • the activation charging is not performed immediately after the communication information is not received, but a time range can be set, and if the communication information is not detected within the time range, the activation charging is performed.
  • a constant current charging with a smaller current can be used when the charging is activated, and preferably the current is between 0.01 C and 0.1 C.
  • the current is between 0.01 C and 0.1 C.
  • the activation charge should continue for a period of time to ensure that the battery pack 100 is sufficient to transition to formal
  • the charging phase therefore, preferably, after the battery pack control module 16 and the battery pack communication module 15 of the battery pack 100 return to normal and the charger communication module 25 receives the communication information of the battery pack communication module 15, the charger control module 26 remains
  • the charging of the charging module 23 is continuously activated for a preset time. This preset duration is preferably 10 to 30 seconds.
  • the charger control module 26 of the charger detects that it is connected every time.
  • the battery pack 100 is only activated once for activation, and each activation charge has an upper limit of activation time, such as 2 to 5 minutes.
  • the battery pack 100 further includes a disconnection detecting module (not shown) capable of judging whether or not there is a disconnected battery cell in the series unit according to the voltage value of the series unit.
  • the disconnection detection module can be either part of the battery pack control module 16 or a separate functional module independent of the battery pack control module.
  • the wire breakage detection module can be detected by the relative relationship between the voltage value of the series unit 111 and the time, or by the change of the internal resistance value of the series unit 111.
  • the disconnection detection module includes: a timing unit for providing time data; a slope calculation unit for calculating a slope value of a voltage value of the series unit with respect to time; and a determination unit for determining a slope value according to the series unit It is judged whether or not there is a disconnected battery cell in the series unit.
  • the disconnection detecting module includes: a current detecting unit for detecting a current value of the serial unit; and an internal resistance calculating unit for calculating the serial unit according to the voltage value and the current value of the serial unit And a judging unit, configured to judge whether there is a disconnected cell in the series unit according to the internal resistance value of the series unit.
  • the disconnection detecting module in the above scheme may be disposed in the charger, and the disconnection detecting module may obtain the required when the battery pack 100 is connected with the charger. Data or signal.
  • the disconnection detecting module in the above scheme may be disposed in the electric tool, and the disconnection detecting module may obtain the connection when the battery pack 100 is connected with the electric device.
  • the electrical device can be either a powered device with a motor or a measuring device such as a laser range finder.
  • the charger and the electrical device should also have a control module (not shown) that controls the disconnection detection circuit.
  • the disconnection detecting method includes: detecting a voltage signal of the high voltage end of the series unit; calculating a slope value of the series unit voltage value with respect to time; The slope value of the cell determines whether there is a disconnected cell in the series cell.
  • the series unit 111 is connected in series with the remaining series unit 111, so that the amount of electricity passing through them is the same, but due to the disconnection
  • the voltage of the cell 11a whose voltage is compared with time must be different from that of the other normal series unit 111.
  • the slope value of each series unit 111 may be compared with the average value of the slope values of all series units, or may be compared with the range of the preset slope value.
  • the method specifically includes the following steps:
  • step S7 determining whether the maximum detection slope is greater than or equal to 2 times the minimum detection slope, and if so, proceeding to step S8, otherwise returning to step S2;
  • step S8 the serial unit 111 marking the maximum detection slope, the system reports an error, stops the charging process, and proceeds to step S9;
  • step S7 the specific determination condition is determined according to the specific situation in the series unit 111. For example, when the series unit 111 has three parallel cells 111a, for the case of one wire break and two wire breaks. In other words, the criteria for its slope need to be further refined.
  • step S7 the flow returns to step S2, and the end voltage value is measured in step S4 as the initial voltage value acquired in the step S2. This reduces the voltage detection action and reduces energy consumption.
  • the disconnection detection method includes:
  • the voltage signal of the high voltage end of the series unit 111 is detected; the internal resistance value of the series unit 111 is calculated; and whether the disconnected battery cell exists in the series unit is determined according to the internal resistance value of the series unit 111.
  • the disconnection detection can be realized by detecting the voltage value and the current value, and then calculating the instantaneous internal resistance value in the series unit 111 and comparing whether the internal resistance value is abnormal.
  • the internal resistance values can be compared in all the series units 111, and the internal resistance is The value is compared with the average value of the internal resistance value, and it is judged whether or not an abnormality occurs from the magnitude of the numerical fluctuation.
  • the former has the advantage that the dynamic detection can be judged with changes in temperature and actual conditions, and the latter is that the amount of data calculation is small, but when the internal resistance changes greatly, there may be inaccuracies.
  • Battery Pack Control Module A power tool that can be used as the power source by the battery pack 100 described above is described below.
  • the power tool includes a power device 400 in addition to the battery pack 100.
  • the power device 400 (shown in FIG. 8) includes a device communication module 401, a device control module 402, a power supply module 403, a discharge protection circuit 404, and a disconnection detection module 405.
  • the device communication module 401 has a device communication terminal D" for forming a communication connection with the battery pack communication terminal D in the battery pack 100.
  • the device control module 402 controls the device communication module 401.
  • the power supply module 403 is connected to the device positive pole P+ and the device negative pole P- for respectively connecting with the positive terminal B+ of the battery pack 100 and the battery pack negative terminal B- to realize power transmission.
  • the discharge protection circuit 404 is used to protect the safety of the battery pack during discharge, and is connected to a device temperature terminal T" for connecting to the battery pack temperature terminal T.
  • the discharge protection circuit 404 detects that the device temperature terminal T" is disconnected from the battery pack temperature terminal T, or detects that the temperature of the battery pack 100 is too high, the power device 400 stops discharging the battery pack 100.
  • the discharge protection circuit 404 generates a control signal to the device control module 402.
  • the device control module 402 cuts off part of the circuit in the power device 400, and uses the electrical component such as the motor in the electrical device 400 and the positive terminal B+ of the battery pack 100.
  • the current loop is disconnected from the negative terminal B- of the battery pack, so that the battery pack 100 stops discharging.
  • the device control module 402 After receiving the data sent by the battery pack 100 through the battery pack communication module 15, the device control module 402 verifies the correctness of the single data packet through the CRC cycle; if the check data is in error, the current data packet is automatically discarded, and the next data packet is waiting to be received. If the valid data packet is not received within the preset time, the device control module 402 enters the protection waiting program and stops the power device 400 from operating.
  • the device control module 402 feeds back data to the battery pack control module after receiving the valid data packet.
  • the battery pack control module does not receive the feedback data of the device control module 402
  • the battery pack control module continues to transmit the data packet and detects whether the battery pack is disconnected from the powered device 400.
  • the device control module 402 starts counting after determining that the sent data packet of the battery pack control module 16 is invalid data. If the device control module 402 receives the valid data packet sent by the battery pack control module 16 during the timing, the device The timing of control module 402 is cleared.
  • the device control module 402 enters a normal running program upon receiving a valid data packet.
  • the charger control module 26 of the charger 200 can also employ the same data transfer, verification, and fault tolerance methods as the battery pack control module 16 of the battery pack 100.
  • the battery pack control module 16 of the battery pack 100 can connect the adjacent series unit 111.
  • the voltage sum is compared, the smaller one of them is selected first, and all the smaller voltage values selected from between two adjacent series units 111 are used as comparison objects, and the smallest of them is sent to the device.
  • the control module serves as the basis for determining the undervoltage. This greatly reduces the amount of data transmission and improves efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

一种电池包、充电组合、电动工具以及断线检测方法,其中电池包(100)包括多个串联单元(111),电压检测模块(14),检测多个串联单元电压信号,电池包控制模块(16),接收电压检测模块检测的电压信号并计算串联单元电压值。其中,串联单元包括两个以上的电芯(111a),一个串联单元中的多个电芯并联,电池包控制模块能根据串联单元的电压值判断串联单元中是否存在断开连接的电芯,该电池包能保证使用安全。

Description

电池包、充电组合、电动工具以及断线检测方法 技术领域
本发明涉及一种电池包,更具体而言涉及电池包、充电组合、电动工具以及断线检测方法。
背景技术
电池包作为无线电动工具的动力来源一直是制约无线电动工具发展的主要环节,以往的电池包往往仅具有30V以下的输出电压,它们在驱动大功率的电动工具时,往往会造成动力不足续航能力差的问题。
现在尚没有一种输出电压超过30V且电路结构能保证在充电中使用安全的充电组合以及相应的充电控制方法。
发明内容
为解决现有技术的不足,本发明的目的在于提供一种至少具有56V的输出电压的电池包以及包含电池包的充电组合和电动工具,它们均通过对电池包进行检测以保证电池包的使用安全。
为了实现上述目标,本发明采用如下的技术方案:
一种电池包,至少具有56V的输出电压,其包括:
一个以上彼此之间构成串联的串联单元;
电压检测模块,用于分别检测多个串联单元高压端的电压信号;和
电池包控制模块,用于接收电压检测模块所检测的电压信号并计算出串联单元的电压值;
其中,串联单元包括两个以上的电芯,一个串联单元中的多个电芯并联;
电池包控制模块能根据串联单元的电压值判断串联单元中是否存在断开连接的电芯。
进一步地,电池包控制模块中包括:
断线检测模块,能根据串联单元的电压值和时间的相对关系判断串联单元中是否存在断开连接的电芯。
进一步地,断线检测模块包括:
计时单元,用于提供时间数据;
斜率计算单元,用于计算串联单元的电压值相对时间的斜率值;和
判断单元,用于根据串联单元的斜率值判断串联单元中是否存在断开连接的电芯。
进一步地,电池包控制模块中包括:
断线检测模块,能根据计算出串联单元的内阻值判断串联单元中是否存在断开连接的电芯。
进一步地,断线检测模块包括:
电流检测单元,用于检测串联单元的电流值;
内阻计算单元,用于根据串联单元的电压值和电流值计算串联单元的内阻值;和
判断单元,用于根据串联单元的内阻值判断串联单元中是否存在断开连接的电芯。
本发明还提出一种电池包,至少具有56V的输出电压,其包括:
一个以上彼此之间构成串联的串联单元;
电压检测模块,用于分别检测多个串联单元高压端的电压信号;和
电池包控制模块,用于接收电压检测模块所检测的电压信号并计算出串联单元的电压值;
其中串联单元包括两个以上的电芯,一个串联单元中的多个电芯并联;
电池包还包括:
断线检测模块,能根据串联单元的电压值判断串联单元中是否存在断开连接的电芯。
进一步地,断线检测模块包括:
计时单元,用于提供时间数据;
斜率计算单元,用于计算串联单元的电压值相对时间的斜率值;和
判断单元,用于根据串联单元的斜率值判断串联单元中是否存在断开连接的电芯。
进一步地,断线检测模块包括:
电流检测单元,用于检测串联单元的电流值;
内阻计算单元,用于根据串联单元的电压值和电流值计算串联单元的内阻 值;和
判断单元,用于根据串联单元的内阻值判断串联单元中是否存在断开连接的电芯。
本发明还提出一种充电组合,包括电池包和为其充电的充电器charger,
电池包包括:一个以上彼此之间构成串联的串联单元;
串联单元包括两个以上的电芯,一个串联单元中的多个电芯并联;
充电组合还包括:
电压检测模块,用于分别检测多个串联单元高压端的电压信号;
电池包控制模块,用于接收电压检测模块所检测的电压信号并计算出串联单元的电压值;和
断线检测模块,能根据串联单元的电压值判断串联单元中是否存在断开连接的电芯。
本发明还提出一种包括用电装置和电池包的电动工具,电池包能为用电装置供电,电池包包括一个以上彼此之间构成串联的串联单元;串联单元包括两个以上的电芯,一个串联单元中的多个电芯并联;
电动工具和还包括:
电压检测模块,用于分别检测多个串联单元高压端的电压信号;
电池包控制模块,用于接收电压检测模块所检测的电压信号并计算出串联单元的电压值;和
断线检测模块,能根据串联单元的电压值判断串联单元中是否存在断开连接的电芯。
本发明还提出一种断线检测方法,用于检测电池包中并联的电芯之间的线路是否断开,电池包包括一个以上彼此之间构成串联的串联单元,串联组合包括两个以上并联的电芯;检测方法包括:
检测串联组合高压端的电压信号;
计算串联组合电压值相对时间的斜率值;
根据串联组合的斜率值判断串联单元中是否存在断开连接的电芯。
本发明还提出一种断线检测方法,用于检测电池包中并联的电芯之间的线路是否断开,电池包包括一个以上彼此之间构成串联的串联单元,串联组合包括 两个以上并联的电芯;检测方法包括:
检测串联组合高压端的电压信号;
计算串联组合的内阻值;
根据串联组合的内阻值判断串联单元中是否存在断开连接的电芯。
本发明还提出一种电池包,至少具有56V的输出电压,其包括:
一个以上彼此之间构成串联的串联单元;
电压检测模块,用于分别检测多个串联单元高压端的电压信号;
电池包控制模块,用于接收电压检测模块所检测的电压信号并计算出串联单元的电压值;
其中,串联单元包括一个以上的电芯,一个串联单元中的多个电芯并联;电压检测模块与电芯组构成电连接。
进一步地,电压检测模块包括:
检测电路,一端连接至串联单元的高压端另一端连接至电池包控制模块;
其中,电池包控制模块通过多个检测电路分时检测多个串联单元高压端的电压信号。
进一步地,电压检测模块还包括:
分时模块,用于控制至少两个检测电路;
其中,电池包控制模块通过分时模块使其控制的多个检测电路分时导通。
进一步地,电池包控制模块包括:
第一MCU单元,用于接收其中一部分检测电路的电压信号;
第二MCU单元,用于接收其中另一部分检测电路的电压信号;
电压检测模块包括:
第一分时模块,用于控制电压信号发送到第一MCU单元的多个检测电路分时导通;
第二分时模块,用于控制电压信号发送到第二MCU单元的多个检测电路分时导通;
其中,第一MCU单元控制第一分时模块,第二MCU单元控制第二分时模块,第二MCU单元能将数据传递给第一MCU单元。
进一步地,将电压信号发送到第一MCU单元的检测电路分别连接至相邻的 串联单元的高压端;将电压信号发送到第二MCU单元的检测电路分别连接至相邻的串联单元的高压端。
进一步地,第一MCU单元所控制的检测电路的数目等于第二MCU单元所控制的检测电路的数目。
进一步地,检测电路包括:
通断元件,能被分时模块控制使检测电路导通或断开;
其中,通断元件包括:
两个连接端,用于使通断元件连接至检测电路中;
控制端,用于接收分时模块的信号并控制两个连接端导通或断开;
其中,两个连接端包括:
检测端,连接至串联单元的高压端;
输出端,连接至电池包控制模块。
进一步地,检测电路包括:分压电阻,能使主控接收的电压信号稳定在预设范围内。
本发明的有益之处在于:提供一种至少具有56V的输出电压的电池包以及包含电池包的充电组合和电动工具,它们均通过对电池包进行检测保证该电池包在充电、放电过程中的安全性。
附图说明
图1是本发明电池包一个优选实施例的示意框图;
图2是本发明电池包中用于实现电压检测部分的一个优选实施例的示意框图;
图3是本发明电池包中用于实现电压检测部分的另一个优选实施例的示意框图;
图4本发明充电器一个优选实施例的示意框图;
图5是本发明充电组合一个优选实施例的示意框图;
图6是为串联单元中断线的示意图;
图7是本发明中电池包检测方法具体步骤逻辑框图;
图8是本发明电动工具中的用电装置的一个优选实施例的示意框图。
具体实施方式
以下结合附图和具体实施例对本发明作具体的介绍。
参照图1至图3所示,电池包100主要包括:电芯组11、端子模块12、温度模块13、电压检测模块14、电池包通讯模块15以及控制它们的电池包控制模块16。
电芯组11包括:一个以上的串联单元111。在串联单元111的数目大于等于2时,不同串联单元111之间串联,它们构成的整体为电芯组11。
一个串联单元111包括:一个以上的电芯111a。在同一个串联单元111内的电芯111a的数目大于2时,不同的电芯111a之间并联构成一个串联单元111。
如图2和图3所示,作为一种优选方案,一个串联单元111中包括两个并联的电芯111a。
端子模块12与电芯组11和电池包控制模块16分别构成电连接,其设有用于与外界构成连接以实现电能或信号传递的电池包正极端子B+和电池包负极端子B-。
在电池包100充电时,端子模块12能使电芯组11中的电芯111a处于充电状态,同时也能为电池包100内部其他模块和组件提供电能。
温度模块13包括:测温元件131和温度信号模块132,其中测温元件131用于检测电池包100的内部温度。
测温元件131设置在电池包100的内部,具体而言测温元件131设置电池包100内靠近电芯111a的位置,使其能够检测到电芯111a温度的变化。作为优选方案,测温元件131可以采用热敏电阻,尤其是一NTC热敏电阻。
温度信号模块132分别与测温元件131和电池包控制模块16电连接,其能将测温元件131的检测结果反馈给电池包控制模块16并受到电池包控制模块16的控制。温度信号模块132设有用于与外部温度端子电连接的电池包温度端子T。
电压检测模块14用于检测电芯组11中各个串联单元111的电压值,电压检测模块14分别与电芯组11和电池包控制模块16构成电连接。
电压检测模块14检测电芯组11中的电压信号并将电压信号传送给电池包控制模块16,电池包控制模块16根据电压检测模块14传送的电压信号计算电压值,以实现对电池包100的电压安全的监控。
电池包通讯模块15用于实现数据或信号的交换,其与电池包控制模块16 构成电连接。电池包通讯模块15既可以采用硬件连接实现数据传输也可以采用无线连接实现数据传输。
由于的电池包100具有较高的电压和输出功率,因此在与充电器、用电装置等连接时,对通讯连接的可靠性要求较高。
如图1和图5所示,作为一种优选方案,电池包通讯模块15采用硬件连接的方式实现数据传送。
具体而言,电池包通讯模块15设有一个电池包通讯端子D。在电池包100与外部的充电器和用电装置装配时,该电池包通讯端子D能与充电器和用电装置中对应的端子构成物理连接。
电池包控制模块16主要用于实现逻辑运算、进程控制等功能,其能对电池包100中的各个组件和模块进行控制,保证电池包100充电、放电时的安全。
作为一种优选方案,电池包100还包括与电池包控制模块16电连接的电池包电量显示模块(图未示),该电池包电量显示模块用于显示电池包100的中剩余电量。
电池包100至少具有56V的输出电压,这里所指的输出电压是指电池包100在被充满时所具备输出电压的能力,一般而言,随着放电过程的进行,电池包100输出的电压的能力会下降。当然,这里所指的“电池包100至少具有56V的输出电压”并不排除电池包100在需要时,通过内部电路降低输出电压的情况,“电池包100至少具有56V的输出电压”仅表示电池包100具有输出56V电压的能力。
电池包100的电能容量大于100Wh,作为一种优选方案,电池包100包括14个串联单元111,每个串联单元111包括一个或两个电芯111a,每个电芯111a具有4V的标称电压,这样构成的电芯组11在每个电芯111a处于标称电压时至少具有56V的总电压。
以下主要介绍电池包100中的电压检测模块14。
电压检测模块14用于分别检测串联单元111高压端的电压信号。
作为优选方案,电压检测模块14包括检测电路143。检测电路143一端连接至串联单元111的高压端另一端连接至电池包控制模块16。
电芯组11中一般存在多个串联单元111,为了实现全面的检测,电压检测 模块14设有多个检测电路143。
如果使电池包控制模块16同时接受来自多个检测电路143的电压信号,电池包控制模块16至少需要设置有一个具有多个信号接口的微处理器,或者采用多个微处理器。
采用第一种方案时对处理器要求较高,且微处理器的信号接口的数目必须与需要接入的检测电路143的数目对应,适配性差;采用后一种方案,无疑提高了成本和占用的空间。
一般而言,一个微处理器一般具有一个电压信号的接口,但是微处理器往往具有较高的处理速率。
为了实现对多个串联单元111检测,本发明电压检测模块14还包括分时模块146。
分时模块146的作用在于控制检测电路143,其至少能控制检测电路143使其两端断开或使其两端导通。
参照图2所示,多个检测电路143连接起来,然后通过同一线路接入电池包控制模块16。连接在一起的多个检测电路143作为一个检测组141,
一个检测组141中的多个检测电路143在同一分时模块146的控制下将采集的电压信号通过同一总线发送给电池包控制模块16。
电池包控制模块16通过控制分时模块146使多个检测电路143分时导通。这样相当于电池包控制模块16在瞬时只接收一个检测电路143的电压信号,这样仅需要一个具有单个信号接口的微处理器即可。而且,分时模块146和检测电路143作为电池包控制模块16的外围电路,可以根据串联单元111数目做出具体设置,而不必因为串联单元111数目不同而配置不同的微处理器。
分时模块146与电池包控制模块16电连接,电池包控制模块16能控制分时模块146,进而间接的控制多个检测电路143的分时导通。
优选地,检测电路143中包括一通断元件144,该通断元件144包括两个连接端和一个控制端(图未示),其中两个连接端分为:连接至串联单元111的检测端144a和用于连接至电池包控制模块16的输出端。控制端接收分时模块146的信号并控制通断元件两个连接端导通或断开。
参照图2所示,同一检测组141中的检测电路143中的通断元件144最终 连接至同一处,然后连接至电池包控制模块16。
参照图2所示,检测电路143中还包括一个分压电阻145,分压电阻145既可以如图2所示的那样连接在通断元件144输出端144b一侧,也可以连接在通断元件144检测端144a一侧。
在进行检测时,分时模块146在电池包控制模块16的控制下使一个检测组141中的所有的通断元件144分时导通,在一个检测电路143的通断元件144的两个连接端导通时,其余的检测电路143的通断元件144的两个连接端断开,,保证一个检测组141中每次只有一个通断元件144导通。
分时模块146可以通过控制发送给通断元件144控制端的信号长短控制通断元件144导通的时间以及导通不同通断元件144之间的切换时间间隔。
如图2所示,电池包控制模块16控制分时模块146可使通断元件144依次导通然后关断,切换从位于低压端侧的检测电路143开始(图2中的右侧),每次切换都使总分压电阻142与不同的分压电阻145串联并与不同数目的串联单元111构成回路,以图2所示为例,位于最右侧的通断元件144导通时,位于最右侧的串联单元111将自身电压加载在总分压电阻142和最右侧的分压电阻145上,此时电池包控制模块16可以通过采集总分压电阻142上的电压值计算出最右侧的串联单元111上的电压值(因为总分压电阻142、分压电阻145阻值均是固定值),完成检测动作后,电池包控制模块16控制分时模块146进行切换动作,断开最右侧的通断元件144而使右侧第二个通断元件144导通,此时总分压电阻142与右侧第二个通断元件144串联,最右侧的串联单元111和右侧第二个串联单元111将各自的电压加载在总分压电阻142以及右侧第二个分压电阻145上,此时电池包控制模块16再次通过采集总分压电阻142上的电压值计算出最右侧以及右侧第二个串联单元111的电压之和,再减去之前测得最右侧串联单元111的电压值即可得出右侧第二个串联单元111的电压值。按照以上的方法依次切换各检测电路143中的通断元件144并进行相应的计算,这样一来就能对所有的串联单元111进行监测。通过为不同的分压电阻145分配不同电阻值,使在不同数目的串联单元111加载时,总分压电阻142上分担的电压值尽可能恒定在一定范围内,这样一来输入到电池包控制模块16上的电压信号相对稳定,不会造成不必要的干扰。
作为优选方案,电池包控制模块通断元件144可以是三极管、场效应管等元件。
如前所介绍的电池包100中为了实现较高的输出电压和具有较大的电能容量,其包含较多的串联单元111。
如果仅在电池包控制模块16中仅设置一个检测组141以及一个微处理器的话,微处理器需要具有较高的时钟频率和处理能力,这样无疑增大了能耗,而且检测周期较长。
如图3所示,作为一种优选方案,电压检测模块14包括:第一检测组147和第二检测组148,电池包控制模块16包括:能分别对第一检测组147和第二检测组148进行检测并与之构成电连接的第一MCU单元161和第二MCU单元162。
第一检测组147检测相邻的多个串联单元,第二检测组148检测另外的相邻的串联单元。即将电压信号发送到第一MCU单元161的检测电路分别连接至相邻的串联单元;将电压信号发送到第二MCU162单元的检测电路分别连接至另外的相邻的串联单元。
其中,第一MCU单元161可以采用运算能力较强,运行时钟频率较高的MCU芯片,而相对而言,由于第二MCU单元162可以只实现检测并将检测结果传送给第一MCU单元161处理,所以其可采用运算能力一般的MCU芯片,这样一来即能实现快速的检测,又不会造成主要负责控制的第一MCU单元161需要处理过多的数据。
作为进一步的优选,串联单元111的数目为偶数,它们分为两部分:能分别被第一检测组147和第二检测组148检测的第一检测段112和第二检测段113,第一检测段112、第二检测段113分别包括N/2个连续的串联单元111;电芯组11的低压端为第一检测段112的低压端112a,电芯组11的高压端为第二检测段113的高压端113a。
这样一来就多个串联单元111分为等分的两组,使第一MCU单元161和第二MCU单元162分别对它们进行检测,需要说明的是,对于第一MCU单元161和第二MCU单元162而言,它们在进行电压采集时,各自MCU芯片的零电位点应该分别与各自负责检测的串联单元111中最低电位处112a、113b电连接。
作为一种优选方案,可以将如上介绍的电压检测模块和电池包控制模块设 置在为电池包充电的充电器和使用电池包的用电装置中,通过电池包与充电器、电池包与用电装置直接的连接端子以及设置在电池包中内部线路实现如上所介绍的电路结构和检测功能。
参照图4所示,充电器200包括:整流模块21、充电器检测模块22、充电模块23、温控模块24、充电器通讯模块25以及控制它们并与它们构成电连接的充电器控制模块26。
其中,整流模块21设有用于连接外部电能来源的电源端子L、N,它们用于接入交流电作为充电器的能量来源,整流模块21能将接入的交流电转化为充电器200中各部分适于使用的电能,比如整流模块21将交流电转化为直流电供充电器控制模块26以及充电模块23使用。作为优选方案,整流模块21包括:EMC电路和LLC电路。
充电器检测模块22分别与整流模块21和充电模块23电连接,充电器检测模块22整流模块21能通过充电器检测模块22将电能传递给充电模块23并同时对充电模块23的电能参数加以检测以反馈给充电器控制模块26。
充电模块23设有用于输出充电电能的充电器正极C+、充电器负极C-。在充电时,它们可以分别与电池包100的电池包正极端子B+和电池包负极端子B-连接。
温控模块24与充电模块23电连接,其能对充电模块23和对连接在充电器200上的电池包100进行温度检测。具体而言,温控模块24设有一个充电器温度端子T’,在电池包100的电池包正极端子B+和电池包负极端子B-构成连接时,充电器温度端子T’也与电池包温度端子T连接,这样一来,温控模块24就可以通过电池包100内部的测温元件131获得电池包100内部温度的数据或信号,进而将数据或信号传送给充电器控制模块26充电器控制模块。
作为一种优选方案,充电器200还包括:与充电器控制模块26电连接的散热装置27和充电器电量显示模块28,该充电器电量显示模块28用于显示电池包100已被充电器200充满多少电量。
散热装置27用于在充电器200温度较高时或正在充电的电池包100温度较高时,通过气流流动对充电器200或电池包100进行强制散热,具体而言,作为优选散热装置27为一个电风扇,其包括:电机和风扇(图中均未示出),其中电 机驱动风扇转动,充电器控制模块26可以通过调节驱动电机的占空比来调节电机的转速,从而控制散热的强度。也可以由电池包100通过通讯间接的控制充电器200中的风扇。
充电器通讯模块25设有一个充电器通讯端子D’,在充电时,电池包100的电池包通讯端子D与之构成连接,从而使充电器200中的充电器控制模块26与电池包100的电池包控制模块16构成数据或信号的交互。
参照图5所示,作为一种优选方案的充电组合300包括以上介绍的电池包100和充电器200。
由于充电器200具有较高的输出电压,为了保证安全,需要充电器200没有连接电池包100时不输出电能。
在充电组合300中,将充电保护的功能设置在充电器200中。
作为一种优选方案,充电器200还包括:充电保护模块(图未示)。
充电保护模块与充电器温度端子T’电连接,其能通过检测充电器温度端子T’是否已经连接了电池包100的电池包温度端子T,从而检测充电器200是否已经连接了电池包100,如果没有连接电池包100,则控制充电模块23使其不输出电能。
具体而言,充电保护模块通过采集充电器温度端子T’上的电压值判断充电器200是否连接了电池包100。这可以通过设置电池包100的电池包温度端子T使其具有一定的电压来实现,在充电器温度端子T’没有与电池包温度端子T连接时,充电器温度端子T’悬空,而在在充电器温度端子T’与电池包温度端子T连接时,充电器温度端子T’带有一定的电压。
充电器保护电路通过充电器温度端子T’在连接到测温元件131和未连接到测温元件131时不同电压信号直接控制充电模块23。这样的好处在于,在没有插装电池包100时,充电器200由于有硬件的保证,所以不会使充电器正极C+、充电器负极C-带电,保证了使用安全,同时该功能实现没有设置额外的连接端子,而基于已有充电器温度端子T’简化了连接端子的设置,节约成本。
在充电器200中,充电器控制模块26也能检测到充电器温度端子T’的电压信号。在插装电池包100时,充电器控制模块26能检测到充电器温度端子T’的电压信号,进而触发充电器控制模块26的充电程序,在没有检测充电器温度 端子T’时,充电器控制模块26启用软件保护程序。
如上所述,充电器200在充电时通过硬件和软件两方面对充电安全进行保证。
以下介绍一种充电控制方法,基于以上的电池包100、充电器200以及它们所组成的充电组合300。
总的来说,该控制方法保护两方面内容,其中一方面为充电保护:
充电器控制模块26在检测到已连接电池包100时启动充电保护程序对充电模块23进行控制,充电器温度端子T’电连接至充电模块23构成硬件保护,当充电器温度端子T’与电池包温度端子T断开连接时,充电模块23关闭充电器正极C+、充电器负极C-的电能输出。
另一方面,该控制方法包括充电器200对处于过度放电状态下的电池包100的激活方法。
电池包100放电过度放电后,电芯组111的电量不足以支持电池包控制模块16与充电器200的充电器控制模块26建立有效的连接实现控制和数据交互。
由于电池包100和充电器200具有大电压、大功率的特性,所以在电池包控制模块16关闭状态进行充电是十分危险的,所以在电池包100过度放电的情况下对其激活是十分必要的,具体而言,该激活方法如下:
充电器200充电器控制模块检测充电器温度端子T’。
充电器200根据充电器温度端子T’的电压信号判断充电器200是否连接有电池包100;如果已经连接了电池包100则继续进行下一步。
充电器200判断是否接收到电池包100发送的数据信息,如果没有接收到电池包100发送的数据信息,对电池包100进行激活。
具体而言,充电器通讯模块25在没有接收到电池包通讯模块15的通讯信息时,充电器控制模块26控制充电模块23对电池包100进行激活充电直至电池包100的电池包控制模块16和电池包通讯模块15恢复正常使充电器通讯模块25接收到电池包通讯模块15的通讯信息或者到达激活时间上限。
在激活时,并不是在没有接收到通讯信息后马上进行激活充电,而是可以设置一个时间范围,如果在该时间范围内始终没有检测到通讯信息的话,则进行激活充电。
激活充电时可以采用电流较小的恒流充电,作为优选该电流在0.01C至0.1C之间。当然,也可以采用小电流的脉冲充电,作为优选,该脉冲宽度为10ms周期为1s。
另外,停止激活充电应当考虑如下两个方面,首先经过激活充电电池包100已经可以正常工作,在此时,仍应将激活充电继续进行一段时间,以保证电池包100的电量是足以过渡到正式的充电阶段,因此作为优选,当电池包100的电池包控制模块16和电池包通讯模块15恢复正常使充电器通讯模块25接收到电池包通讯模块15的通讯信息后,充电器控制模块26仍在预设时间内控制充电模块23持续的激活充电。这个预设时长优选为10至30秒,当然,我们也可以采用以电池包100的电压值作为停止激活的触发信号。
其次,在电池包100发生故障时,即使经过激活充电其也不可能恢复正常工作,所以不能无限制进行激活充电,作为优选方案,充电器的充电器控制模块26在每次检测出已连接有电池包100后仅进行一次的激活充电,并且每次激活充电具有一个激活时间上限,比如2至5分钟。
参照图6所示,在的电池包100中,如果一个串联单元111具有多个并联的电芯111a时,其中一个电芯111a断开连接时,是无法通过检测电压值来判断出是否出现了断线故障和发生故障的是哪一个串联单元111的。这样一来,在发生断线时,仍按照原有的充电程序进行充电会存在安全隐患。
为了解决这个问题,电池包100中还包括一个断线检测模块(图未示),其能根据串联单元的电压值判断串联单元中是否存在断开连接的电芯。
断线检测模块既可以作为电池包控制模块16的一部分也可以作为独立于电池包控制模块之外的独立功能模块。
为了实现对电芯的断线检测,断线检测模块既可以通过串联单元111的电压值与时间的相对关系,也可以通过串联单元111的内阻值的变化进行检测。
作为一种方案,断线检测模块包括:计时单元,用于提供时间数据;斜率计算单元,用于计算串联单元的电压值相对时间的斜率值;和判断单元,用于根据串联单元的斜率值判断串联单元中是否存在断开连接的电芯。
作为另一种方案,断线检测模块包括:电流检测单元,用于检测串联单元的电流值;内阻计算单元,于根据串联单元的电压值和电流值计算串联单元的内 阻值;和判断单元,用于根据串联单元的内阻值判断串联单元中是否存在断开连接的电芯。
另外,在电池包100与一个充电器构成一个充电组合时,如上方案中的断线检测模块可以设置在充电器中,断线检测模块可以在电池包100与充电器构成连接时获得所需的数据或信号。
另外,在电池包100与一个用电装置构成一个电动工具时,如上方案中的断线检测模块可以设置在电动工具中,断线检测模块可以在电池包100与用电装置构成连接时获得所需的数据或信号。用电装置既可以是一种具有电机的用电设备也可以是诸如激光测距仪的测量设备。
当然充电器和用电装置也应具有控制该断线检测电路的控制模块(图未示出)。
在通过串联单元111的电压值与时间的相对关系进行检测时,断线检测方法包括:检测所述串联单元高压端的电压信号;计算所述串联单元电压值相对时间的斜率值;根据所述串联单元的斜率值判断所述串联单元中是否存在断开连接的所述电芯。
如图6所示,在一个串联单元111中的出现断开连接的电芯11a时,该串联单元111因与其余串联单元111串联,所以通过它们的电量是相同的,但是由于出现了断开的电芯11a,其电压与时间相比的斜率必然与其他正常的串联单元111不同。
在实际检测中,既可以将每个串联单元111的斜率值与所有串联单元的斜率值的平均值相比较,也可以与预设的斜率值的区间范围相比较。
作为一种优选方案,对于一个串联单元111中包括两个并联的电芯111a的实施例而言,该方法具体而言,该方法包括如下步骤:
S1:开始;
S2:检测或读取所有串联单元的初始电压值;
S3:等待预设时长;
S4:检测所有串联单元的终止电压值;
S5:以两次检测所获得电压值分别计算出串联单元111的电压相对时间的斜率;
S6:找出最大和最小的检测斜率;
S7:判断最大检测斜率是否大于等于2倍的最小检测斜率,若是则进行步骤S8,若否则返回步骤S2;
S8:标记最大检测斜率的串联单元111、系统报错,停止充电进程,转入步骤S9;
S9:结束。
需要说明的是,在步骤S7中具体判断条件要依据串联单元111中具体情况而定,比如在串联单元111具有三个并联的电芯111a时,对于断线一个和断线两个的情况而言,其斜率的判据需要进一步细化。
另外,在步骤S7返回步骤S2,将步骤S4测得终止电压值作为S2步骤下次获取的初始电压值。这样可以减少一次检测电压动作,降低了能耗。
电池包控制模块在通过串联单元111的内阻值进行检测时,断线检测方法包括:
检测串联单元111高压端的电压信号;计算串联单元111的内阻值;根据串联单元111的内阻值判断串联单元中是否存在断开连接的电芯。
在一个串联单元111中的出现断开连接的电芯11a时,该串联单元111能被反应出的内阻值是与其余正常的串联单元111不同的。
在串联单元111没有电流通过时,检测串联单元111高压端的电压值U1,此时由于电流很小,几乎为零,串联单元111中内阻没有产生影响,此时检测出的电压值U1几乎等于电芯111a实际的电压值。
使串联单元111充电或放电,使大小为I的电流经过串联单元111,此时检测串联单元111高压端的电压值U2,此时由于有电流经过,串联单元111中内阻上的电压值为IR,假设U2小于U1,那么此时U1=U2+IR,根据该公式即能算出串联单元111中的内阻值R,如果串联单元111中出现了断线的电芯,比如图6中串联单元111中两个并联的电芯111a断开了一个,那么此时算出的内阻值R大约应当是其余正常的串联单元111的2倍。
根据以上原理,可以通过检测电压值和电流值,然后经过计算串联单元111中即时的内阻值,并比较判断内阻值是否异常的方法来实现断线检测。
比较判断内阻值时既可以在所有串联单元111中进行内阻值比较,将内阻 值与内阻值的平均值进行比较,从数值波动的幅度判断是否出现异常。
也可以将检测出内阻值与预设的数值范围进行比较,如果超出预设的数值范围的阈值则认为发生断线。
这两种比较方法中,前者好处在于动态检测中可以随着温度和实际情况变化来进行判断,后者在于数据运算量较小,但在内阻变化较大时,可能存在不准确的情况。
电池包控制模块以下介绍一种能由以上介绍的电池包100作为电能来源的电动工具。
该电动工具除了包括电池包100还包括用电装置400。
用电装置400(图8所示)包括:装置通讯模块401、装置控制模块402、供电模块403、放电保护电路404和断线检测模块405。
装置通讯模块401具有一个装置通讯端子D",用于与电池包100中的电池包通讯端子D构成通讯连接。
装置控制模块402控制装置通讯模块401,供电模块403连接有装置正极P+、装置负极P-,用于分别与电池包100的正极端子B+和电池包负极端子B-连接以实现电能输送。
放电保护电路404用于保护电芯组在放电时的安全,其连接有一个装置温度端子T",装置温度端子T"用于与电池包温度端子T连接。放电保护电路404在检测到装置温度端子T"与电池包温度端子T断开连接时,或检测到电池包100温度过高时,用电装置400使电池包100停止放电。具体而言,由放电保护电路404产生一个控制信号发送给装置控制模块402,装置控制模块402切断用电装置400中的部分电路,使用电装置400中诸如电机一类的用电元件与电池包100的正极端子B+和电池包负极端子B-之间电流回路断开,从而使电池包100停止放电。
装置控制模块402在收到电池包100通过电池包通讯模块15发送的数据后,通过CRC循环校验单个数据包正确性;如果校验数据出错,自动放弃当前数据包,等待接收下一数据包;如果预设时间内没有收到有效数据包后,装置控制模块402进入保护等待程序,停止用电装置400运行。
装置控制模块402在接收到有效数据包后会向电池包控制模块反馈数据,在 电池包控制模块未接收到装置控制模块402的反馈的数据时,电池包控制模块继续发送数据包,并检测电池包与用电装置400是否断开连接。
装置控制模块402在判断接收到电池包控制模块16的发出数据包为无效数据后开始计时,如果在计时的过程中装置控制模块402接收到电池包控制模块16的发出的有效数据包,则装置控制模块402的计时清零。
装置控制模块402在接收到有效的数据包后进入正常的运行程序。
同样,充电器200的充电器控制模块26也可以与电池包100的电池包控制模块16采用同样的数据传递、校验以及容错方法。
另外,电池包100在与用电装置400连接供电时,为了使装置控制模块402能够尽快判断出电池包100是否欠压,电池包100的电池包控制模块16可以将相邻的串联单元111的电压和进行比较,先将它们中较小的一个选出,将所有从两个相邻串联单元111之间选出的较小的电压值作为比较对象,再将它们中最小的电压发送给装置控制模块作为其判断欠压的依据。这样大大降低了数据传输量,提高了效率。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (20)

  1. 一种电池包,包括:
    一个以上彼此之间构成串联的串联单元;
    电压检测模块,用于分别检测多个所述串联单元高压端的电压信号;和
    电池包控制模块,用于接收所述电压检测模块所检测的电压信号并计算出所述串联单元的电压值;
    其中,所述串联单元包括两个以上的电芯,一个所述串联单元中的多个所述电芯并联;
    所述电池包控制模块能根据所述串联单元的电压值判断所述串联单元中是否存在断开连接的所述电芯。
  2. 根据权利要求1所述的电池包,其特征在于,所述电池包控制模块中包括:
    断线检测模块,能根据所述串联单元的电压值和时间的相对关系判断所述串联单元中是否存在断开连接的所述电芯。
  3. 根据权利要求1所述的电池包,其特征在于,所述断线检测模块包括:
    计时单元,用于提供时间数据;
    斜率计算单元,用于计算所述串联单元的电压值相对时间的斜率值;和
    判断单元,用于根据所述串联单元的斜率值判断所述串联单元中是否存在断开连接的所述电芯。
  4. 根据权利要求1所述的电池包,其特征在于,所述电池包控制模块中包括:
    断线检测模块,能根据计算出所述串联单元的内阻值判断所述串联单元中是否存在断开连接的所述电芯。
  5. 根据权利要求4所述的电池包,其特征在于,所述断线检测模块包括:
    电流检测单元,用于检测所述串联单元的电流值;
    内阻计算单元,用于根据所述串联单元的电压值和电流值计算所述串联单元的内阻值;和
    判断单元,用于根据所述串联单元的内阻值判断所述串联单元中是否存在断开连接的所述电芯。
  6. 一种电池包,至少具有56V的输出电压,其包括:
    一个以上彼此之间构成串联的串联单元;
    电压检测模块,用于分别检测多个所述串联单元高压端的电压信号;和
    电池包控制模块,用于接收所述电压检测模块所检测的电压信号并计算出所述串联单元的电压值;
    其中所述串联单元包括两个以上的电芯,一个所述串联单元中的多个所述电芯并联;
    所述电池包还包括:
    断线检测模块,能根据所述串联单元的电压值判断所述串联单元中是否存在断开连接的所述电芯。
  7. 根据权利要求6所述的电池包,其特征在于,所述断线检测模块包括:
    计时单元,用于提供时间数据;
    斜率计算单元,用于计算所述串联单元的电压值相对时间的斜率值;和
    判断单元,用于根据所述串联单元的斜率值判断所述串联单元中是否存在断开连接的所述电芯。
  8. 根据权利要求6所述的电池包,其特征在于,所述断线检测模块包括:
    电流检测单元,用于检测所述串联单元的电流值;
    内阻计算单元,用于根据所述串联单元的电压值和电流值计算所述串联单元的内阻值;和
    判断单元,用于根据所述串联单元的内阻值判断所述串联单元中是否存在断开连接的所述电芯。
  9. 一种充电组合,包括电池包和为其充电的充电器,
    所述电池包包括:一个以上彼此之间构成串联的串联单元;
    所述串联单元包括两个以上的电芯,一个所述串联单元中的多个所述电芯并联;
    所述充电组合还包括:
    电压检测模块,用于分别检测多个所述串联单元高压端的电压信号;
    电池包控制模块,用于接收所述电压检测模块所检测的电压信号并计算出所述串联单元的电压值;和
    断线检测模块,能根据所述串联单元的电压值判断所述串联单元中是否存在 断开连接的所述电芯。
  10. 一种包括用电装置和电池包的电动工具,所述电池包能为所述用电装置供电,所述电池包包括一个以上彼此之间构成串联的串联单元;所述串联单元包括两个以上的电芯,一个所述串联单元中的多个所述电芯并联;
    所述电动工具和还包括:
    电压检测模块,用于分别检测多个所述串联单元高压端的电压信号;
    电池包控制模块,用于接收所述电压检测模块所检测的电压信号并计算出所述串联单元的电压值;和
    断线检测模块,能根据所述串联单元的电压值判断所述串联单元中是否存在断开连接的所述电芯。
  11. 一种断线检测方法,用于检测电池包中并联的电芯之间的线路是否断开,所述电池包包括一个以上彼此之间构成串联的串联单元,所述串联组合包括两个以上并联的电芯;所述检测方法包括:
    检测所述串联组合高压端的电压信号;
    计算所述串联组合电压值相对时间的斜率值;
    根据所述串联组合的斜率值判断所述串联单元中是否存在断开连接的所述电芯。
  12. 一种断线检测方法,用于检测电池包中并联的电芯之间的线路是否断开,所述电池包包括一个以上彼此之间构成串联的串联单元,所述串联组合包括两个以上并联的电芯;所述检测方法包括:
    检测所述串联组合高压端的电压信号;
    计算所述串联组合的内阻值;
    根据所述串联组合的内阻值判断所述串联单元中是否存在断开连接的所述电芯。
  13. 一种电池包,包括:
    一个以上彼此之间构成串联的串联单元;
    电压检测模块,用于分别检测多个所述串联单元高压端的电压信号;
    电池包控制模块,用于接收所述电压检测模块所检测的电压信号并计算出所述串联单元的电压值;
    其中,所述串联单元包括一个以上的电芯,一个所述串联单元中的多个所述电芯并联;所述电压检测模块与所述电芯组构成电连接。
  14. 根据权利要求13所述的电池包,其特征在于,所述电压检测模块包括:
    检测电路,一端连接至所述串联单元的高压端另一端连接至所述电池包控制模块;
    其中,所述电池包控制模块通过多个所述检测电路分时检测多个所述串联单元高压端的电压信号。
  15. 根据权利要求14所述的电池包,其特征在于,所述电压检测模块还包括:
    分时模块,用于控制至少两个所述检测电路;
    其中,所述电池包控制模块通过所述分时模块使其控制的多个所述检测电路分时导通。
  16. 根据权利要求15所述的电池包,其特征在于,所述电池包控制模块包括:
    第一MCU单元,用于接收其中一部分所述检测电路的电压信号;
    第二MCU单元,用于接收其中另一部分所述检测电路的电压信号;
    所述电压检测模块包括:
    第一分时模块,用于控制电压信号发送到所述第一MCU单元的多个所述检测电路分时导通;
    第二分时模块,用于控制电压信号发送到所述第二MCU单元的多个所述检测电路分时导通;
    其中,所述第一MCU单元控制所述第一分时模块,所述第二MCU单元控制所述第二分时模块,所述第二MCU单元能将数据传递给所述第一MCU单元。
  17. 根据权利要求16所述的电池包,其特征在于,将电压信号发送到所述第一MCU单元的所述检测电路分别连接至相邻的所述串联单元的高压端;将电压信号发送到所述第二MCU单元的所述检测电路分别连接至相邻的所述串联单元的高压端。
  18. 根据权利要求17所述的电池包,其特征在于,所述第一MCU单元所控制的所述检测电路的数目等于所述第二MCU单元所控制的所述检测电路的数目。
  19. 根据权利要求15所述的电池包,其特征在于,所述检测电路包括:
    通断元件,能被所述分时模块控制使所述检测电路导通或断开;
    其中,所述通断元件包括:
    两个连接端,用于使通断元件连接至所述检测电路中;
    控制端,用于接收所述分时模块的信号并控制两个所述连接端导通或断开;
    其中,两个所述连接端包括:
    检测端,连接至所述串联单元的高压端;
    输出端,连接至所述电池包控制模块。
  20. 根据权利要求14所述的电池包,其特征在于,所述检测电路包括:分压电阻,能使所述主控接收的电压信号稳定在预设范围内。
PCT/CN2014/095537 2013-12-31 2014-12-30 电池包、充电组合、电动工具以及断线检测方法 WO2015101284A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2935503A CA2935503C (en) 2013-12-31 2014-12-30 Battery pack, charging assembly, electric tool and disconnection detecting method
EP14876444.2A EP3079220B1 (en) 2013-12-31 2014-12-30 Battery pack, charging combination, electric tool and disconnection detection method
NZ722133A NZ722133A (en) 2013-12-31 2014-12-30 Battery pack, charging assembly, electric tool and disconnection detection method
AU2014375491A AU2014375491B2 (en) 2013-12-31 2014-12-30 Battery pack, charging combination, electric tool and disconnection detection method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201310752233.2 2013-12-31
CN201310752233 2013-12-31
CN201410521086.2 2014-09-30
CN201410523174 2014-09-30
CN201410521089.6 2014-09-30
CN201410521089 2014-09-30
CN201410521086 2014-09-30
CN201410523174.6 2014-09-30

Publications (1)

Publication Number Publication Date
WO2015101284A1 true WO2015101284A1 (zh) 2015-07-09

Family

ID=52471632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095537 WO2015101284A1 (zh) 2013-12-31 2014-12-30 电池包、充电组合、电动工具以及断线检测方法

Country Status (7)

Country Link
US (1) US9726731B2 (zh)
EP (1) EP3079220B1 (zh)
AU (1) AU2014375491B2 (zh)
CA (1) CA2935503C (zh)
GB (1) GB2524363B (zh)
NZ (1) NZ722133A (zh)
WO (1) WO2015101284A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356941A (zh) * 2016-09-30 2017-01-25 郑州云海信息技术有限公司 一种可热配置维护的模块化电池组管理系统

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749430B2 (en) 2015-03-13 2020-08-18 Positec Power Tools (Suzhou) Co., Ltd. Power transmission apparatus and control method therefor, and power supply system
WO2017000216A1 (zh) * 2015-06-30 2017-01-05 深圳市大疆创新科技有限公司 充电控制电路、充电装置、充电系统及充电控制方法
CN105182243A (zh) * 2015-08-28 2015-12-23 陈宇星 一种智能蓄电池
AU201615158S (en) 2016-03-17 2016-12-09 Tti Macao Commercial Offshore Ltd Battery pack
AU201615153S (en) 2016-03-17 2016-12-09 Tti Macao Commercial Offshore Ltd Battery pack
AU201615156S (en) 2016-03-17 2016-12-09 Tti Macao Commercial Offshore Ltd Battery pack
KR20180056088A (ko) 2016-11-18 2018-05-28 삼성전자주식회사 센싱 장치 및 이를 포함하는 배터리 관리 시스템
CN106712167A (zh) * 2016-12-13 2017-05-24 北京奇虎科技有限公司 一种充电电源保护设备
TWD200631S (zh) 2017-01-17 2019-11-01 澳門商創科(澳門離岸商業服務)有限公司 電池組之部分
USD926674S1 (en) 2017-01-17 2021-08-03 Tti (Macao Commercial Offshore) Limited Battery pack with communication terminal
USD853216S1 (en) 2017-01-17 2019-07-09 Tti (Macao Commercial Offshore) Limited Power tool
USD853813S1 (en) 2017-01-17 2019-07-16 Tti (Macao Commercial Offshore) Limited Power tool
CN115911614A (zh) 2017-06-16 2023-04-04 工机控股株式会社 电池组、第一电气设备本体以及第二电气设备本体
KR102137759B1 (ko) * 2017-07-06 2020-07-24 주식회사 엘지화학 배터리 팩 관리 장치
US11300624B2 (en) 2017-07-28 2022-04-12 Northstar Battery Company, Llc System for utilizing battery operating data
US11029941B2 (en) 2017-11-30 2021-06-08 Nanjing Chervon Industry Co., Ltd. Electrical device and program update method thereof
CN110177454A (zh) 2017-11-30 2019-08-27 南京德朔实业有限公司 电动工具系统及用于该系统的升级方法
CN109946532B (zh) * 2017-12-21 2024-03-19 南京泉峰科技有限公司 适用于工具系统部件的诊断装置和诊断方法
JP7020108B2 (ja) * 2017-12-25 2022-02-16 トヨタ自動車株式会社 二次電池システムおよび組電池の異常診断方法
CN108321904B (zh) * 2018-03-14 2024-08-16 汉宇集团股份有限公司 一种汽车电池保护系统
CN108306400A (zh) * 2018-03-22 2018-07-20 广州云阳电子科技有限公司 一种可检测过放保护电池组连接并自动启动充电的智能充电器及其实现方法
DE102018214612A1 (de) * 2018-08-29 2020-03-05 Robert Bosch Gmbh Verfahren zum Erkennen von Kontaktierungsfehlern in einem Akkupack und System zum Durchführen des Verfahrens
CN110970673B (zh) 2018-10-01 2023-08-18 株式会社牧田 电池组、电池系统
JP7231416B2 (ja) * 2018-10-01 2023-03-01 株式会社マキタ バッテリパック、バッテリシステム
JP7077204B2 (ja) * 2018-10-31 2022-05-30 株式会社豊田中央研究所 電源装置
CN109239609B (zh) * 2018-11-02 2024-04-12 西安航远数字技术有限公司 一种无人机并联多电池的在位检测系统
CN109660006A (zh) * 2019-01-23 2019-04-19 珠海市微半导体有限公司 一种检测充电电池是否接入的方法及机器人的充电方法
CN112952224B (zh) * 2019-12-11 2022-12-20 南京泉峰科技有限公司 一种电池包的充电平衡方法、系统和电池包
FR3115607B1 (fr) * 2020-10-22 2022-10-07 Psa Automobiles Sa Procede de detection d’un defaut d’un groupe de modules d’une batterie
CN112928794A (zh) * 2021-02-02 2021-06-08 邵琪 一种锂电池管理系统及该锂电池管理系统的控制方法
CN115208019A (zh) * 2022-07-22 2022-10-18 珠海冠宇电源有限公司 电池激活方法、装置、电子设备及存储介质
DE102023107407A1 (de) * 2023-03-24 2024-09-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Erkennung einer Beeinträchtigung des Zellkontaktiersystems einer Zelleinheit einer Batterie

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043143A (zh) * 2006-03-24 2007-09-26 株式会社日立制作所 电源控制装置
JP2010067536A (ja) * 2008-09-12 2010-03-25 Toshiba Corp 電池パック
CN103168406A (zh) * 2010-10-20 2013-06-19 索尼公司 电池组、用于对电池组充电/放电的方法以及功耗装置
CN103262384A (zh) * 2011-01-28 2013-08-21 日立麦克赛尔株式会社 电池单元

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840154B1 (zh) * 1970-04-03 1973-11-29
FR2694660B1 (fr) * 1992-08-05 1994-10-07 Merlin Gerin Dispositif de détection de défaillance d'éléments de batterie.
JP2003235178A (ja) * 2002-02-05 2003-08-22 Yamaha Corp 電池出力制御装置
JP4500121B2 (ja) * 2004-07-14 2010-07-14 株式会社ルネサステクノロジ 電池電圧監視システム
JP5097365B2 (ja) * 2006-07-19 2012-12-12 パナソニック株式会社 電池パックおよびその断線検知方法
JP4945206B2 (ja) * 2006-09-13 2012-06-06 パナソニック株式会社 電池パックおよびその断線検知方法
JP4840154B2 (ja) * 2007-01-23 2011-12-21 パナソニック株式会社 電源機器
JP5474438B2 (ja) * 2009-07-31 2014-04-16 三洋電機株式会社 二次電池装置
EP2325919A3 (en) * 2009-10-30 2011-11-30 Sanyo Electric Co., Ltd. Battery system and electric vehicle including the same
DE102010040721A1 (de) * 2010-09-14 2012-03-15 Sb Limotive Company Ltd. Batteriesystem mit Zellspannungserfassungseinheiten
JP5796289B2 (ja) * 2010-11-26 2015-10-21 ソニー株式会社 二次電池セル、電池パック及び電力消費機器
WO2012132246A1 (ja) * 2011-03-31 2012-10-04 パナソニック株式会社 電池電源装置、及び電池電源システム
JP2012235611A (ja) * 2011-04-28 2012-11-29 Sanyo Electric Co Ltd 異常判定方法、異常判定回路及びパック電池
US8571738B1 (en) * 2012-06-13 2013-10-29 Jtt Electronics Ltd Automotive vehicle battery power system monitoring systems, apparatus and methods
JP5843051B2 (ja) * 2013-05-17 2016-01-13 三洋電機株式会社 パック電池、及び、二次電池の放電制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043143A (zh) * 2006-03-24 2007-09-26 株式会社日立制作所 电源控制装置
JP2010067536A (ja) * 2008-09-12 2010-03-25 Toshiba Corp 電池パック
CN103168406A (zh) * 2010-10-20 2013-06-19 索尼公司 电池组、用于对电池组充电/放电的方法以及功耗装置
CN103262384A (zh) * 2011-01-28 2013-08-21 日立麦克赛尔株式会社 电池单元

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3079220A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356941A (zh) * 2016-09-30 2017-01-25 郑州云海信息技术有限公司 一种可热配置维护的模块化电池组管理系统

Also Published As

Publication number Publication date
GB201423351D0 (en) 2015-02-11
GB2524363B (en) 2020-12-30
NZ722133A (en) 2017-09-29
EP3079220A1 (en) 2016-10-12
EP3079220A4 (en) 2017-02-08
AU2014375491A1 (en) 2016-07-28
US20150185289A1 (en) 2015-07-02
CA2935503A1 (en) 2015-07-09
US9726731B2 (en) 2017-08-08
EP3079220B1 (en) 2021-10-20
AU2014375491B2 (en) 2018-04-26
CA2935503C (en) 2022-03-22
GB2524363A (en) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2015101284A1 (zh) 电池包、充电组合、电动工具以及断线检测方法
CN104753129B (zh) 电池包、充电组合、电动工具以及断线检测方法
CN110138046B (zh) 电池管理系统、电池管理方法、电源模块及无人机
US9608461B2 (en) Battery pack cooling and charging device and method
US20180354375A1 (en) Golf cart battery system
CN201464873U (zh) 一种混合动力汽车用动力电池组管理系统
EP3151360A1 (en) Battery system
WO2019192302A1 (zh) 电池包以及充电组合
CN101834457A (zh) 一种锂电池管理系统
JPH0898414A (ja) インテリジェントバッテリー装置及びその操作方法と電気装置
WO2020249099A1 (zh) 一种电池包
TW201315090A (zh) 控制器、電池管理系統及其控制方法
JP2012090474A (ja) 電池システム
JP2014117052A (ja) 充電装置
US20210075243A1 (en) Battery pack, charging system, and method for controlling charging of battery pack
CN201805242U (zh) 一种车用锂电池管理系统
US9372666B2 (en) Random number generating device
CN104467040A (zh) 车载式不间断电源蓄电池控制管理装置
EP4140010B1 (en) Electrical system for an aerosol generating device
CN103424711B (zh) 一种蓄电池冲击性综合检测方法
CN103595099B (zh) 一种智能数字充电监测表
CN113682480A (zh) 一种无人直升机用应急电源系统
CN110556788A (zh) 同步降压转换电路的保护方法及新型同步降压转换电路
CN218768083U (zh) 一种具有不间断供电功能的一体机电脑供电装置
CN219457772U (zh) 一种分流器散热模组及电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2935503

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014876444

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014876444

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014375491

Country of ref document: AU

Date of ref document: 20141230

Kind code of ref document: A