WO2015100965A1 - 一种降膜式蒸发器 - Google Patents

一种降膜式蒸发器 Download PDF

Info

Publication number
WO2015100965A1
WO2015100965A1 PCT/CN2014/080377 CN2014080377W WO2015100965A1 WO 2015100965 A1 WO2015100965 A1 WO 2015100965A1 CN 2014080377 W CN2014080377 W CN 2014080377W WO 2015100965 A1 WO2015100965 A1 WO 2015100965A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
falling film
film evaporator
evaporator according
tube group
Prior art date
Application number
PCT/CN2014/080377
Other languages
English (en)
French (fr)
Inventor
徐峰
张林波
罗毅
马新
朱应求
Original Assignee
麦克维尔空调制冷(武汉)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 麦克维尔空调制冷(武汉)有限公司 filed Critical 麦克维尔空调制冷(武汉)有限公司
Priority to US14/895,075 priority Critical patent/US10060678B2/en
Priority to EP14877120.7A priority patent/EP3091312A4/en
Publication of WO2015100965A1 publication Critical patent/WO2015100965A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation

Definitions

  • the present invention relates to an air conditioning apparatus, and in particular to a falling film evaporator. Background technique
  • the evaporators used in the main units are flooded evaporators and falling film evaporators.
  • the falling film evaporator has a liquid-vapor evaporator.
  • the advantages of high heat exchange efficiency and low refrigerant charge are therefore more promising for falling film evaporators.
  • the falling film evaporator includes a full falling film type and a mixed falling film type.
  • the so-called full falling film type means that all the heat exchange tubes in the evaporator are in a falling film heat exchange state, that is, no heat exchange tubes are submerged by the liquid refrigerant.
  • the refrigerant charging amount can be minimized;
  • the so-called mixed falling film type means that some of the heat exchange tubes in the evaporator are in a falling film heat exchange state, and the other part of the heat exchange tubes is in a full liquid heat exchange state. That is, it is submerged by the liquid refrigerant.
  • the advantage is that the heat exchange tube at the lower end of the evaporator is fully submerged by the liquid refrigerant, and the heat exchange area is fully utilized.
  • the falling film evaporator has the following deficiencies: 1) The refrigerant at the lowermost end of the full falling film evaporator is not enough to drip the refrigerant, and the heat exchange area is not maximized; 2) mixing A high refrigerant liquid level is left at the bottom of the falling film evaporator, and the oil content of the refrigerant at the bottom of the evaporator is high, resulting in a low heat transfer coefficient of the lower heat exchange tube group, and a large amount of refrigerant liquid at the bottom of the evaporator increases the refrigerant charge amount; Due to design limitations, the velocity field of the refrigerant gas inside the evaporator is not reasonable enough. The high flow velocity region is concentrated near the refrigerant outlet, and there is an inhalation and liquid phenomenon, and the high-speed airflow easily disturbs the refrigerant liquid and reduces the heat exchange efficiency. Summary of the invention
  • the object of the present invention is to provide a falling film evaporator which can switch between a full falling film heat exchange mode and a mixed falling film heat exchange mode, thereby avoiding insufficient bottom heat transfer refrigerant dripping or
  • the problem of excessive refrigerant charge is also prevented, and the phenomenon of suction and liquid absorption is also prevented, and the heat transfer coefficient and heat exchange efficiency are improved.
  • a falling film evaporator comprising a cylinder, a tube plate is arranged at both ends of the cylinder, and a liquid refrigerant inlet and a gas refrigerant outlet are arranged at the top of the cylinder a throttle device is disposed on the liquid refrigerant inlet, and an upper distributor is disposed above the cylinder body, and the upper distributor a gas barrier is disposed on each of the two sides of the top portion, and at least one side of the gas barrier plate is provided with a serration, the serration and the inner wall of the cylinder enclose an air passage, and the air passage is connected to the gas refrigerant outlet.
  • the bottom ends of the two side walls of the upper distributor are respectively provided with a spoiler, the upper heat exchanger tube group is arranged below the upper distributor, and the lower heat exchange tube group is arranged below the upper heat exchange tube group.
  • Below the lower heat exchange tube group is an oil-rich area, the oil-rich area is provided with a liquid level sensor, and a signal output end of the liquid level sensor is connected with a signal input end of the throttle device, the oil-rich area There is a return port.
  • the invention uniformly distributes the refrigerant through reasonable design of the distributor structure, realizes a uniform film-like distribution of the refrigerant liquid in the heat exchange tube group in the evaporator shell, forms a falling film heat exchange, and ensures the heat exchange of the refrigerant to the upper part.
  • the tube group realizes the uniform drip supply in the form of column flow, prevents the excessive distribution or insufficient distribution, causes the heat transfer efficiency to decrease, prevents the liquid refrigerant from splashing, and the liquid level sensor can detect the refrigerant level in the rich area at the bottom of the evaporator.
  • the heat transfer coefficient and heat transfer efficiency are improved, and the performance coefficient of the entire chiller is improved.
  • the proper liquid level position determines the performance of the oil return system of the evaporator (heating) system, so the liquid level sensor
  • the oil return system performance is improved, and an oil return solution matching the falling film evaporator is provided; the present invention forms a gas barrier and sets the edge of the gas shield to a zigzag shape to form a refrigerant gas with the inner wall of the cylinder.
  • the gas passage optimizes the velocity field distribution of the refrigerant inside the evaporator, so that the high flow velocity region concentrated near the gas refrigerant outlet is dispersed along the length of the cylinder through the aforementioned air passage, and the originally concentrated high-speed region is sawtooth on the gas shield plate.
  • the flow rate of each divided region is more uniform, avoiding the concentrated high-speed zone, so that the flow rate of the refrigerant gas near the gas refrigerant outlet and close to the upper heat exchange tube group region is reduced from 2.5 m/s to 0.2 to 1.2 m/s.
  • the flow direction of the refrigerant gas is prone to shift Phenomenon, a spoiler is respectively arranged at the bottom ends of the two side walls of the distributor to reduce the gas migration phenomenon.
  • the upper distributor includes a cover plate, and the top of the cover plate is provided with a liquid inlet connected to the liquid refrigerant inlet, and the top edge of the cover plate is provided with a plurality of pressure equalizing holes, and the two blocks are blocked.
  • the plates are symmetrically disposed on two sides of the top of the cover plate, and a distribution box is disposed below the cover plate, the primary distribution box is smaller in size than the cover plate, and a plurality of irregular liquid-passing grooves are opened in the peripheral wall thereof.
  • a water distribution pad is arranged under the primary distribution box, and a secondary distribution box is arranged below the water distribution pad, and a plurality of water distribution holes are opened at the bottom of the secondary distribution box, and the top edge of the secondary distribution box.
  • the bottom edge of the cover plate is matched and sealed, and the two spoilers are symmetrically disposed at the bottom ends of the outer walls of the two sides of the secondary distribution box.
  • the function of the spoiler is to change the trajectory of the refrigerant gas flowing upward in the radial direction of the evaporator. Since the droplets are inevitably present in the refrigerant gas, the existence of the spoiler can cause the droplet to flow with the gas as it flows. The plate collides, so that the possibility of the droplet being carried away by the gas is reduced.
  • the existence of the spoiler changes the velocity field of the refrigerant gas directly below, so that the velocity near the outermost heat exchange tube of the heat exchange tube group.
  • the reduction from 2 m/s to 0.2 to 1.2 m/s reduces the possibility of droplets being carried away by the refrigerant gas, and also ensures the columnar flow direction between the upper and lower heat exchange tubes in the heat exchange tube group.
  • the vertical direction; the function of the primary distribution box is to evenly distribute the refrigerant gas-liquid mixture in the longitudinal direction of the evaporator, first dividing the evaporator into several equal parts along the length direction, and setting a plurality of irregular liquid tanks through the peripheral wall thereof.
  • the mass flow rate of the refrigerant gas-liquid mixture flowing into each of the above-mentioned longitudinal directions is close to achieve the purpose of evenly distributing along the length of the evaporator; the upper water pad utilizes the wire Absorbing the kinetic energy through elastic gas-liquid mixture from the refrigerant ejection out of the tank and allowed to drip at a relatively low speed in the secondary capsule.
  • the gas barrier has an elongated shape, and the edge of the inner wall of the cylinder is provided with the serration, the serration is disposed away from the gas refrigerant outlet region, and the other edge is fixed to the cover on.
  • a flow area of the air passage formed between the serration edge of the air fence and the inner wall of the cylinder is: 0.04 to 0.15 m 2 .
  • the spoiler has a rectangular shape and is inclined downward, and is at an angle of 30° to 60° with the side wall of the secondary distribution box, and the top long side is fixed at the bottom of the secondary distribution box. end.
  • the spoiler has a width of 30 to 60 mm.
  • a lower distributor is disposed between the upper heat exchange tube group and the lower heat exchange tube group, the lower distributor includes a support rod, and the support rod is provided with a tray, and the support net covers There is a water pad under the cloth.
  • the refrigerant liquid dripping from the upper heat exchange tube group is prone to occur with the suction of the compressor.
  • the flow direction of the body is offset, and the lower distributor can receive the refrigerant liquid dripping from the upper heat exchange tube, so that it is collected and concentrated in the lower distributor, thereby achieving the purpose of re-uniform distribution, and then distributing it from below.
  • the device continues to drip down, and the refrigerant liquid continues to fall vertically at a lower flow rate and covers the lower heat exchange tube group in a liquid film state, and continues to form a falling film heat exchange.
  • the lower water pad is a wire mat composed of a wire having a diameter of 0.8 to 1.0 mm and a thickness of 2 to 20 mm.
  • the upper heat exchange tube group includes a top heat exchange tube group and a bottom heat exchange tube group, and a gap channel is left between the top heat exchange tube group and the bottom heat exchange tube group, and the gap channel height is It is 8 ⁇ 30mm.
  • the gap channel is arranged to keep the refrigerant gas from vaporizing the refrigerant liquid on the heat exchange tube at a low speed, and the size of the gap passage cannot be set too large under the premise of ensuring the low-speed passage of the refrigerant gas, so as not to be from the top heat exchange tube group. The refrigerant liquid dripping down is disturbed by the air flow.
  • the upper heat exchange tube group and the lower heat exchange tube group are horizontally arranged in a row or a staggered manner. This arrangement allows the heat transfer tubes to be placed as much as possible in a limited space.
  • the upper water pad is a wire mat composed of a wire having a diameter of 0.8 to 1.0 mm and a thickness of 9 to 20 mm.
  • the pressure equalization hole is a circular hole having a diameter of 20 to 80 mm, and the number of the pressure equalization holes is 10 to 30.
  • a flow area of the single liquid tank on the peripheral wall of the primary distribution box is 50 to 200 mm 2 .
  • the number of the liquid tanks is 20 to 120.
  • the bottom of the secondary distribution box is provided with one or more partitions along the length direction.
  • the function of the partition plate is to divide the refrigerant liquid in the secondary distribution box into a plurality of regions.
  • the refrigerant liquid can still be formed in each region divided by the partition plate.
  • the liquid level of the refrigerant at a certain height is dripped downward to prevent the liquid heat transfer surface of the lower heat exchange tube group from forming a liquid film.
  • the height of the separator is 5 to 10 mm, and the number is 1 to 5 pieces.
  • the uniform water hole is aligned with the topmost heat exchange pipe of the upper heat exchange tube group below, and the water receiving hole is a circular hole having a diameter of l ⁇ 5 mm.
  • Reasonable design of the uniform water hole can make the refrigerant liquid
  • the heat transfer tube group under the appropriate speed dripping does not form a splash; the purpose of the uniform water hole and the topmost heat exchange tube below it is to form a uniform liquid film on all the heat transfer tubes.
  • the bottom of the oil-rich zone has 1 to 4 oil return ports.
  • the oil return port is disposed at a lowest position of the oil-rich zone. Setting the lowest position of the rich zone in the return port ensures that the return port is always flooded by the rich refrigerant.
  • a gaseous refrigerant passage is left between the upper distributor and the upper heat exchange tube group, and between the upper heat exchange tube group and the lower distributor.
  • the gaseous refrigerant passage is left to allow the refrigerant gas to pass smoothly without affecting or minimizing the trajectory of the vertical dripping of the refrigerant liquid.
  • the bottom of the primary distribution box is sealed, the top is open, and the top circumference is welded to the inner top surface of the cover.
  • the cover plate is a rectangular parallelepiped box body whose bottom is open, and the bottom end of the two side walls of the box body is provided with an outwardly extending edge cover plate, and the pressure equalization hole is disposed on the edge cover plate away from the edge The area of the gas refrigerant outlet.
  • the pressure equalization hole balances the pressure inside the upper distributor with the pressure inside the evaporator, and the reason for placing it on the edge cover is to keep the liquid away from the compressor when it splashes out from the pressure equalization hole.
  • the suction port prevents the splashed liquid from being sucked in by the suction of the compressor.
  • liquid inlet is cylindrical and has a diameter of 40 to 200 mm.
  • the throttle device is an electronic expansion valve.
  • Fig. 1 is a schematic cross-sectional view showing the falling film evaporator in a fully falling film state.
  • Figure 2 is a schematic view showing the structure of the upper dispenser of Figure 1.
  • Figure 3 is a schematic cross-sectional view of the upper dispenser.
  • Figure 4 is an exploded view of Figure 2.
  • Fig. 5 is a structural schematic view of the gas barrier of Fig. 2.
  • Fig. 6 is a schematic cross-sectional view showing the falling film evaporator in a mixed falling film state. detailed description
  • a falling film evaporator includes a cylinder 1 , a tube plate is disposed at two ends of the cylinder 1 , and a liquid refrigerant inlet 2 and a gas refrigerant outlet are disposed at the top of the cylinder 1
  • the liquid refrigerant inlet 2 is provided with a throttle device, and the throttle device may be an electronic expansion valve.
  • the upper portion of the cylinder 1 is provided with an upper distributor 3, and the top of the upper distributor 3 is respectively provided with a gas shield.
  • the edge of the gas barrier 4 is respectively provided with a serration 5, and the serration 5 and the inner wall of the cylinder 1 enclose an air passage, the air passage is communicated with the gas refrigerant outlet, and the upper distributor 3
  • the bottom ends of the two side walls are respectively provided with a spoiler 6, and the upper heat exchanger tube group 7 is disposed below the upper distributor 3, and the upper heat exchange tube group 7 includes a top heat exchange tube group 24 and a bottom heat exchange tube.
  • Group 25 a gap passage 26 is left between the top heat exchange tube group 24 and the bottom heat exchange tube group 25, and the gap passage 26 has a height of 8 to 30 mm.
  • a lower distributor 20 is disposed under the upper heat exchange tube group 7, and the lower distributor 20 includes a support rod 21 for supporting, and the support rod 21 is provided with a steel tray 22, the tray The upper cover 22 is covered with a lower water pad 23, which is a wire pad composed of a wire having a diameter of 0.8 to 1.0 mm and a thickness of 2 to 20 mm.
  • a lower heat exchange tube group 8 is disposed below the lower distributor 20, and the upper heat exchange tube group 7 and the lower heat exchange tube group 8 are arranged in a row (ie, an equilateral triangle arrangement, which refers to When viewed from the cross section of the cylinder, the adjacent three heat exchange tubes are arranged in a horizontally arranged equilateral triangle, as shown in Fig.
  • the arrangement of the equilateral triangle means that the adjacent three heat exchange tubes are arranged in an equilateral triangle rotated 90° counterclockwise from the horizontal position as seen from the cross section of the cylinder. As shown in Fig. 1, the upper heat exchange tube group 7 is changed.
  • the arrangement of the heat pipes is arranged horizontally, and the two ends of the heat exchange tubes of the upper heat exchange tube group 7 and the lower heat exchange tube group 8 respectively form a closed space with the tube sheets, and the lower heat exchange tubes group Below the 8 is an oil-rich zone 9, the oil-rich zone 9 is provided with a liquid level sensor 10, and a signal output end of the liquid level sensor 10 is connected to a signal input end of the throttle device, the oil-rich zone 9
  • the oil return port 11 is opened, and the bottom of the oil-rich zone 9 has 1 to 4 oil return ports 11 , and the oil return port 11 is provided. At the lowest position of the oil-rich zone 9.
  • the upper distributor 3 includes a cover plate 12, and the cover plate 12 is a rectangular parallelepiped box body with an open bottom, and the two side walls of the box body are The end is provided with a rim cover 28 extending outwardly.
  • the top of the cover plate 12 is provided with a liquid inlet 13 communicating with the liquid refrigerant inlet 2, and the liquid inlet 13 is cylindrical and fully welded to the cover 12
  • the diameter of the upper cover plate 28 is away from the gas refrigerant outlet, and a plurality of pressure equalizing holes 14 are formed.
  • the pressure equalizing holes 14 are circular holes having a diameter of 20 to 80 mm.
  • the number of the pressure equalizing holes 14 is 10 to 30, and the two gas barrier plates 4 are symmetrically spot-welded on both sides of the top of the cover plate 12, and a distribution box 15 is disposed under the cover plate 12,
  • the distribution box 15 is smaller in size than the cover plate 12, and has a plurality of irregular liquid tanks 16 in the peripheral wall thereof, and the flow area of the single liquid tank 16 is 50 to 200 mm 2 , and the number of the liquid tanks 16 is 16
  • the pressure loss is 15 kPa to 60 kPa
  • the upper distribution box 15 is provided with a water pad 17 .
  • the upper cloth water pad 17 is welded and fixed to the cover plate 12, and the upper cloth water pad 17 is a stainless steel wire pad, which is composed of a stainless steel wire having a diameter of 0.8 to 1.0 mm, and has a thickness of 9 to 20 mm, and the upper water pad 17 is provided.
  • a secondary distribution box 18 is disposed below, and a top edge of the secondary distribution box 18 is sealed with a bottom edge of the cover plate 12, and a plurality of uniform water holes 19 are opened at the bottom of the secondary distribution box 18
  • the uniform water hole 19 is aligned with the topmost heat exchange pipe of the upper heat exchange tube group 7 below, and the water receiving hole 19 is a circular hole having a diameter of l 5 mm, and the bottom of the secondary distribution box 18 is
  • One or more partitions 27 are welded along the length direction, the height of the partitions 27 is 5 to 10 mm, and the number of the partitions 27 is preferably 1 to 5.
  • the two spoilers 6 are symmetrically disposed at the bottom ends of the outer walls of the two sides of the secondary distribution box 18.
  • a gaseous refrigerant passage is left between the upper distributor 3 and the upper heat exchange tube group 24, and between the upper heat exchange tube group 24 and the lower distributor 20.
  • the air baffle 4 is elongated, and a single-sided steel plate is provided with a serration, and the serration 5 is provided along an edge of the inner wall of the cylinder 1, and the serration 5 is provided.
  • the arrangement position is away from the gas refrigerant outlet region, and the other edge is fixed to the cover plate 12.
  • the flow area of the air passage formed between the serration edge of the air fence 4 and the inner wall of the cylinder 1 is 0.04 to 0.15 m 2 .
  • the spoiler 6 has a rectangular shape and is inclined downwardly at an angle of 30° to 60° with the side wall of the secondary distribution box 18, and the top long side thereof is fixed at the bottom of the side wall of the secondary distribution box 18.
  • the spoiler 6 has a width of 30 to 60 mm.
  • the unit of the falling film evaporator When the unit of the falling film evaporator is configured to operate, whether the liquid level in the rich zone needs to be submerged, part of the heat exchange tube can be set in advance. If it is not required to be submerged, the falling film evaporator needs to exchange heat in the full falling film state, then The liquid level in the membrane evaporator is reduced by the opening of the small electronic expansion valve of the unit controller, for example: when the liquid level sensor is inspected It is detected that the oil level in the oil-rich area is too high and has been submerged into the heat exchange tube in the lower heat exchange tube group. The total controller of the unit will close the opening of the small electronic expansion valve.
  • the falling film evaporator When the state is stable, the falling film evaporator will be The surface of all the heat exchange tubes forms a liquid film covering; if it needs to be submerged, that is, the falling film evaporator needs to exchange heat in the mixed falling film state, the liquid level in the falling film evaporator opens the large electronic expansion valve opening through the unit controller. To improve and submerge a number of heat exchange tubes. When the state is stable, the upper heat exchange tubes are completely covered by the refrigerant liquid film, and the lower heat exchange tubes are partially or completely submerged by the refrigerant liquid to exchange heat with the brine. In the case of mixed falling film heat transfer, the lower distributor can also be removed (as shown in Fig. 6).
  • the liquid level in the oil-rich area cannot be unrestrictedly low, because if the liquid level in the rich area is too low, the freezing oil content may be too high (such as more than 50%), which will cause the flow resistance in the return port and the downstream pipeline to be sharp. Increased and difficult to return oil, in order to avoid such a situation, even if the falling film evaporator needs to be in the full falling film heat exchange state heat exchange, if the liquid level sensor detects that the oil level in the rich area is too low, the unit's total controller will The opening of the large throttling device is also opened to dilute the oil containing too much oil.
  • the working process is as follows: the high temperature liquid refrigerant sent from the condenser is throttled and expanded by the electronic expansion valve to become a mixed fluid of the low temperature liquid and the low temperature gas, and then The refrigerant inlet 2 enters the upper distributor 3 in the evaporator through the liquid inlet 13, and after the gas-liquid mixed refrigerant enters the upper distributor 3, it fills the entire distribution box 15 once, and the non-uniform distribution and the difference of the sides of the distribution box 15 are once different.
  • the shape-sized liquid passing tank 16 is uniformly sprayed, impacting the side wall of the cover plate 12, the liquid droplets (liquid flow) are scattered around, and the water pad 17 is discharged upward, and the liquid refrigerant is absorbed by the upper water pad 17 and evenly distributed.
  • the uniform water hole 19 provided at the bottom of the secondary distribution box 18 is continuously dropped into the upper heat exchange tube group 7 under the columnar flow to form a film-like distribution, and the upper heat exchange tube group 7
  • the internal brine is uniformly exchanged, and the pressure of the internal and external gaseous refrigerants on the upper distributor 3 is balanced by the pressure equalizing holes 14 on the cover plate 12; then, the refrigerant liquid that has not evaporated after flowing through the upper heat exchange tube group 7
  • the lower distributor 20 is absorbed by the lower water pad 23 and then uniformly dripped onto the lower heat exchange tube group 8 to form a film-like distribution, and exchange heat with the brine inside the lower heat exchange tube group 8; Then, the remaining rich oil refrigerant evaporated by the lower heat exchange tube group 8 accumulates in the empty space at the bottom of the lower heat exchange tube group 8, and an oil-rich region 9 is formed at the bottom of the evaporator, and a liquid level sensor is disposed in the communication line of the evaporator.
  • the falling film evaporator maintains a certain refrigerant liquid level, which is favorable for returning oil from the oil return port 11 at the bottom of the evaporator, rich in oil and cold
  • the medium can be used to return the refrigerating machine oil to the compressor and then enter the oil separator through the ejector pump; at the same time, all the refrigerant gas evaporated by the heat exchange tube group is zigzag from the gas shield 4 on both sides of the top of the upper distributor 3 After the gas passage exits, it is sucked by the compressor and compressed into the compressor.
  • the zigzag design of the gas barrier 4 prevents the local gaseous refrigerant flow rate at the top of the evaporator cylinder 1 from being too high, resulting in suction and liquid.
  • the patent of the present invention adopts an upper distributor in which the pressure potential energy and the gravity potential energy cooperate with each other, and utilizes the absorption redistribution of the wire mat in the upper distributor and the lower distributor to ensure the columnar flow.
  • the refrigerant liquid is distributed to the upper heat exchange tube group and the lower heat exchange tube group, thereby uniformly distributing the liquid refrigerant to all the heat exchange tubes, and effectively avoiding the decrease of the heat transfer efficiency caused by the excessive distribution or insufficient distribution of the heat exchange tubes by the refrigerant.
  • the refrigerant is completely falling film evaporation, thereby reducing the refrigerant charging amount; when the falling film evaporator is mixed and falling film state heat exchange, the patent of the invention adopts the upper distributor with the pressure potential energy and the gravity potential energy, and utilizes the upper distribution
  • the uniform distribution capacity of the device ensures that the columnar flow refrigerant liquid is distributed to the upper heat exchange tube group, and at the same time, the liquid level of the refrigerant in the falling film evaporator is raised, so that a plurality of heat exchange tubes are submerged therein, thereby realizing a mixed falling film state heat exchange, thereby Make full use of the heat exchange area of this type of heat exchange tube to maximize the utilization of heat exchange area and achieve energy saving and environmental protection effects.
  • the invention is used in a central air conditioning host system for providing cold water (hot water) by a user, such as: a centrifugal cold water (heat pump) unit and a screw type cold water (heat pump) unit, which is mainly composed of a centrifugal compressor or a screw compressor, and evaporates.
  • a centrifugal cold water (heat pump) unit and a screw type cold water (heat pump) unit, which is mainly composed of a centrifugal compressor or a screw compressor, and evaporates.
  • the condenser, the throttle mechanism, and a cooling (heating) system circuit such as: a centrifugal cold water (heat pump) unit and a screw type cold water (heat pump) unit, which is mainly composed of a centrifugal compressor or a screw compressor, and evaporates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种降膜式蒸发器,包括筒体(1),筒体(1)内部上方设有上分配器(3),上分配器(3)的顶部两侧分别设有挡气板(4),至少一侧挡气板(4)边缘设有锯齿(5),锯齿(5)与筒体(1)内壁围成过气通道,过气通道与气体冷媒出口相通,上分配器(3)两侧壁底端分别设有扰流板(6),上分配器(3)的下方设有上部换热管群(7),上部换热管群(7)的下方设有下部换热管群(8),下部换热管群(8)的下方为富油区(9),富油区(9)设有液位传感器(10),液位传感器(10)的信号输出端与节流装置的信号输入端连接,富油区(9)开有回油口(11)。该降膜式蒸发器能在全降膜式换热模式和混合降膜式换热模式之间切换,避免了底部换热冷媒滴淋不充分或冷媒充注量过大的问题,同时也防止了吸气带液现象,提高了传热系数和换热效率。

Description

一种降膜式蒸发器 技术领域
本发明涉及空调设备, 具体地指一种降膜式蒸发器。 背景技术
制冷空调行业中高效冷水 (热泵) 机组中使用的蒸发器主要有满液式蒸发器 和降膜式蒸发器这两类蒸发器, 其中, 相比满液式蒸发器, 降膜式蒸发器具有换 热效率高、 制冷剂充注量少等优势, 因此, 降膜式蒸发器应用前景更为广泛。 其 中降膜式蒸发器包括全降膜式和混合降膜式, 所谓全降膜式指的是蒸发器中所有 换热管均处于降膜式换热状态, 即无换热管被液态冷媒淹没, 其优点在于可以最 大限度地减少冷媒充注量; 所谓混合降膜式指的是蒸发器中一部分换热管处于降 膜式换热状态, 另一部分换热管处于满液式换热状态, 即被液态冷媒淹没, 其优 点在于蒸发器内最下端的换热管因为被液态冷媒淹没, 换热面积会得到充分的利 用。 目前降膜式蒸发器存在以下不足之处: 1 ) 全降膜式蒸发器内最下端的换热管 被滴淋到的冷媒不够充分, 换热面积得不到最大化的利用; 2 ) 混合降膜式蒸发器 底部留有较高的冷媒液位, 蒸发器底部冷媒含油量高, 导致下部换热管群换热系 数低, 而且蒸发器底部大量的冷媒液体增加了冷媒充注量; 3 ) 因设计局限, 蒸发 器内部冷媒气体速度场不够合理, 高流速区域集中在冷媒出口附近, 时有吸气带 液现象出现, 而且高速气流容易对冷媒液体形成扰动, 降低换热效率。 发明内容
本发明的目的就是要提供一种降膜式蒸发器, 该蒸发器能在全降膜式换热模 式和混合降膜式换热模式之间切换, 避免了底部换热冷媒滴淋不充分或冷媒充注 量过大的问题, 同时也防止了吸气带液现象, 提高了传热系数和换热效率。
为实现上述目的, 本发明采用的技术方案是: 一种降膜式蒸发器, 包括筒体, 所述筒体两端设有管板, 所述筒体顶部设有液体冷媒入口和气体冷媒出口, 所述 液体冷媒入口上设有节流装置, 所述筒体内部上方设有上分配器, 所述上分配器 的顶部两侧分别设有挡气板, 至少一侧挡气板边缘设有锯齿, 所述锯齿与所述筒 体内壁围成过气通道, 所述过气通道与所述气体冷媒出口相通, 所述上分配器两 侧壁底端分别设有扰流板, 所述上分配器的下方设有上部换热管群, 所述上部换 热管群的下方设有下部换热管群, 所述下部换热管群的下方为富油区, 所述富油 区设有液位传感器, 所述液位传感器的信号输出端与所述节流装置的信号输入端 连接, 所述富油区开有回油口。
本发明通过合理设计上分配器结构, 对冷媒均匀分配, 实现了冷媒液体在蒸 发器壳体内换热管群上形成均匀膜状分布, 形成降膜式换热, 同时保证了冷媒对 上部换热管群实现柱状流形式的均匀滴淋供应, 防止过度分配或分配不足造成传 热效率的下降, 防止了液体冷媒飞溅, 另外, 设置的液位传感器能够检测蒸发器 底部富油区冷媒液位, 进而控制节流装置的关小或开大, 使蒸发器底部富油区冷 媒液位低于下部换热管群或淹没下部换热管群中的若干换热管, 以使降膜蒸发器 处于全降膜或混合降膜的换热状态运行, 通过制冷剂分配机构与液位传感器配合, 使得蒸发器能在全降膜式换热模式和混合降膜式换热模式之间切换, 从而可视实 际情况选用, 避免了底部换热冷媒滴淋不充分或冷媒充注量过大的问题, 充分利 用了换热管的换热面积, 提高了传热系数和换热效率, 提升了整个冷水机组性能 系数, 另外, 合适的液位位置将决定采用该蒸发器制冷 (制热) 系统的回油系统 性能好坏, 因此该液位传感器提升了回油系统性能, 提供了一种匹配降膜式蒸发 器的回油解决方案; 本发明通过设置挡气板, 并将挡气板边缘设置为锯齿形状, 与筒体内壁形成冷媒气体过气通道, 优化了蒸发器内部冷媒速度场分布, 使集中 在气体冷媒出口附近的高流速区域通过前述过气通道沿筒体长度方向分散, 原本 比较集中的高速区被挡气板上的锯齿一一分割后的各区域流速更加均匀, 避免出 现集中的高速区, 使得靠近气体冷媒出口且靠近上部换热管群区域中的制冷剂气 体流速由 2.5m/s以上降至 0.2〜1.2m/s, 从而大大降低出现压缩机吸气带液的可能 性, 延长了压缩机寿命, 提高了从压缩机排气端排出的制冷剂气体的过热度, 从 而避免了因过热度低引起制冷系统中油分离器分离冷冻机油能力的降低, 保证供 油系统能正常工作。
进一步提高了传热系数和换热效率; 针对冷媒气体流动方向容易发生偏移的 现象, 在分配器两侧壁底端分别设置扰流板, 减少了气体偏移现象。
进一步地, 所述上分配器包括盖板, 所述盖板顶部设有与所述液体冷媒入口 相通的进液口, 所述盖板顶部边沿开有若干均压孔, 所述两块挡气板对称设置在 所述盖板顶部两侧, 所述盖板下方设有一次分配盒, 所述一次分配盒尺寸较所述 盖板小, 且其周壁开有若干不规则过液槽, 所述一次分配盒下方设有上布水垫, 所述上布水垫下方设有二次分配盒, 所述二次分配盒底部开有若干匀水孔, 所述 二次分配盒的顶沿与所述盖板的底沿配合密封, 所述两块扰流板对称设置在所述 二次分配盒两侧外壁底端。 所述扰流板的作用是改变冷媒气体沿蒸发器径向向上 流动的轨迹, 因冷媒气体中不可避免存在液滴, 扰流板的存在可使液滴在随着气 体流动的时候与扰流板发生碰撞, 从而使液滴被气体带走的可能性降低, 同时, 扰流板的存在会使其正下方冷媒气体的速度场发生改变, 使得换热管群最外侧换 热管附近的速度由 2m/s 以上降低到 0.2〜1.2m/s之间, 不仅使液滴被冷媒气体带 走的可能性降低, 而且也能确保换热管群中的上下换热管之间的柱状流动方向为 垂直方向; 一次分配盒的作用是在蒸发器长度方向上均匀分配制冷剂气液混合物, 先将蒸发器沿长度方向分为若干等份, 通过其周壁上设置若干不规则的过液槽使 流到上述长度方向上各等份中的冷媒气液混合物质量流量接近, 以此来达到沿蒸 发器长度方向上均匀分配的目的; 上布水垫利用金属丝垫的弹性吸收从过液槽中 喷射而出的冷媒气液混合物的动能, 使其以相对较低的速度滴落到二次分配盒中。
进一步地, 所述挡气板呈长条形, 其靠近筒体内壁的一沿设有所述锯齿, 所 述锯齿布置位置远离所述气体冷媒出口区域, 其另一沿固定在所述盖板上。
进一步地, 所述挡气板的锯齿边沿与所述筒体内壁间形成的过气通道的流通 面积为: 0.04〜0.15m2
进一步地, 所述扰流板呈长方形, 往下倾斜设置, 与所述二次分配盒的侧壁 呈 30°〜60°夹角, 其顶部长边固定在所述二次分配盒侧壁底端。
进一步地, 所述扰流板的宽度为 30〜60mm。
进一步地, 所述上部换热管群和所述下部换热管群之间设有下分配器, 所述 下分配器包括支撑拉杆, 所述支撑拉杆上设有托网, 所述托网上覆盖有下布水垫。 从上部换热管群滴淋而下的制冷剂液体在压缩机吸力的作用下很容易出现随着气 体流动方向偏移, 而下分配器能承接从上部换热管滴淋而下的制冷剂液体, 使之 在下分配器中被收集而汇聚, 实现重新均匀分配的目的, 然后使其从下分配器中 继续滴淋而下, 制冷剂液体以较低流速继续垂直降落并以液膜状态覆盖在下部换 热管群上, 继续形成降膜式换热。
进一步地, 所述下布水垫为金属丝垫, 由直径为 0.8〜1.0mm的金属丝构成, 其厚度为 2〜20mm。
进一步地, 所述上部换热管群包括顶部换热管群和底部换热管群, 所述顶部 换热管群与所述底部换热管群之间留有间隙通道,所述间隙通道高度为 8〜30mm。 设置间隙通道是为了使换热管上的冷媒液体汽化而来的冷媒气体能保持低速通 过, 间隙通道的尺寸在保证冷媒气体低速通过的前提下不能设置过大, 以免从顶 部换热管群上滴淋而下的冷媒液体受到气流扰动。
进一步地, 所述上部换热管群及所述下部换热管群以顺排或错排方式水平排 列。 此排布方式能使得在有限的空间内可尽量多布置换热管。
进一步地, 所述上布水垫为金属丝垫, 由直径为 0.8〜1.0mm的金属丝构成, 其厚度为 9〜20mm。
进一步地, 所述均压孔为圆形孔, 其直径为 20〜80mm, 所述均压孔的数量为 10〜30个。
进一步地, 所述一次分配盒周壁上单个所述过液槽的流通面积为 50〜200 mm2
进一步地, 所述过液槽的数量为 20〜120个。
进一步地, 所述二次分配盒内底部沿长度方向设有一块或多块隔板。 所述隔 板的作用是将二次分配盒中的冷媒液体分割为若干个区域, 当上分配器乃至整个 机组在长度方向发生倾斜时, 冷媒液体仍然可以从被隔板分割的各区域中形成一 定高度的冷媒液位, 从而向下滴淋, 以避免下部的换热管群的部分换热面不能形 成液膜。
进一步地, 所述隔板的高度为 5〜10mm, 数量为 1〜5块。
进一步地, 所述匀水孔与其下方的上部换热管群的最顶层换热管道一一对齐 排列, 所述匀水孔为直径 l〜5mm 的圆形孔。 合理设计匀水孔可使冷媒液体以较 合适的速度滴淋下方的换热管群不会形成飞溅; 匀水孔与其下方最顶层换热管道 一一对齐的目的是使所有换热管上都能形成均匀液膜。
进一步地, 所述富油区的底部开有 1〜4个回油口。
进一步地, 所述回油口设置在所述富油区的最低位置处。 回油口设置富油区 的最低位置处可确保回油口一直被富油冷媒淹没。
进一步地, 所述上分配器与所述上部换热管群之间, 及所述上部换热管群与 所述下分配器之间均留有气态冷媒通道。 留有气态冷媒通道是为了在不影响或较 小影响冷媒液体垂直滴落的轨迹的情况下, 使冷媒气体顺利通过。
进一步地, 所述一次分配盒底部密闭, 顶部敞开, 其顶周焊接在所述盖板内 侧顶面上。
进一步地, 所述盖板为底部敞开的长方体状盒体, 所述盒体两侧壁底端设有 往外延伸的边沿盖板, 所述均压孔设置在所述边沿盖板上远离所述气体冷媒出口 的区域。 所述均压孔可使上分配器内部的压力与蒸发器内部的压力平衡, 而将其 设置在边沿盖板上的原因是当有液体从均压孔中飞溅而出时使之远离压缩机吸气 口, 避免飞溅的液体被压缩机的吸力吸入。
进一步地, 所述进液口呈圆筒状, 其直径为 40〜200mm。
进一步地, 所述节流装置为电子膨胀阀。 附图说明
图 1为降膜式蒸发器处于全降膜式状态下的断面结构示意图。
图 2为图 1中上分配器的结构示意图。
图 3为上分配器的断面结构示意图。
图 4为图 2的爆炸图。
图 5为图 2中挡气板的结构示意图。
图 6为降膜式蒸发器处于混合降膜式状态下的断面结构示意图。 具体实施方式
下面结合附图对本发明作进一步的详细说明, 便于更清楚地了解本发明, 但 它们不对本发明构成限定。
如图 1所示, 一种降膜式蒸发器, 包括筒体 1, 所述筒体 1两端设有管板, 所 述筒体 1顶部设有液体冷媒入口 2和气体冷媒出口, 所述液体冷媒入口 2上设有 节流装置, 该节流装置可为电子膨胀阀, 所述筒体 1 内部上方设有上分配器 3, 所 述上分配器 3的顶部两侧分别设有挡气板 4, 挡气板 4边缘分别设有锯齿 5, 所述 锯齿 5与所述筒体 1 内壁围成过气通道, 所述过气通道与所述气体冷媒出口相通, 所述上分配器 3两侧壁底端分别设有扰流板 6,所述上分配器 3的下方设有上部换 热管群 7, 所述上部换热管群 7包括顶部换热管群 24和底部换热管群 25, 所述顶 部换热管群 24与所述底部换热管群 25之间留有间隙通道 26, 所述间隙通道 26 高度为 8〜30mm。所述上部换热管群 7的下方设有下分配器 20, 所述下分配器 20 包括起支撑作用的支撑拉杆 21, 所述支撑拉杆 21上设有钢质托网 22, 所述托网 22上覆盖有下布水垫 23, 所述下布水垫 23为金属丝垫, 由直径为 0.8〜1.0mm的 金属丝构成, 其厚度为 2〜20mm。所述下分配器 20的下方设有设有下部换热管群 8, 所述上部换热管群 7及所述下部换热管群 8以顺排方式 (即正三角形排列, 指 的是从筒体的横截面上看, 相邻的三根换热管呈水平放置的正三角形分布, 如图 1 中, 下部换热管群 8 中换热管的排布方式) 或错排方式 (即转角正三角形排列, 指的是从筒体的横截面上看,相邻的三根换热管呈从水平位置逆时针旋转 90°的正 三角形分布, 如图 1 中, 上部换热管群 7中换热管的排布方式) 水平排列, 所述 上部换热管群 7和下部换热管群 8各自的换热管两端分别与管板胀接后形成封闭 空间, 所述下部换热管群 8的下方为富油区 9, 所述富油区 9设有液位传感器 10, 所述液位传感器 10的信号输出端与所述节流装置的信号输入端连接, 所述富油区 9开有回油口 11, 所述富油区 9的底部开有 1〜4个回油口 11, 所述回油口 11设 置在所述富油区 9 的最低位置处。 其中, 在富油区中, 虽然大部分物质是制冷剂 液体, 但是根据不同的工况和负荷也存在有质量分数 2%~20%的冷冻机油, 在的 冷冻机油含量偏高 (如高于 10% ) 的情况下, 若换热管被其淹没则会让这些换热 管的换热性能得不到充分发挥, 若是冷冻机油含量偏低 (如低于 4% ) 的情况下淹 没换热管, 对换热可以起到增强作用, 因此, 设置一个检测富油区液位的液位传 感器则充分利用这种现象。 上述方案中, 结合图 2, 图 3, 及图 4所示, 所述上分配器 3包括盖板 12, 所 述盖板 12为底部敞开的长方体状盒体, 所述盒体两侧壁底端设有往外延伸的边沿 盖板 28, 所述盖板 12顶部设有与所述液体冷媒入口 2相通的进液口 13, 所述进 液口 13呈圆筒状, 满焊在盖板 12上, 其直径为 40〜200mm, 在所述边沿盖板 28 上远离所述气体冷媒出口的区域开有若干均压孔 14, 所述均压孔 14为圆形孔, 其 直径为 20〜80mm, 所述均压孔 14的数量为 10〜30个, 所述两块挡气板 4对称点 焊在所述盖板 12顶部两侧, 所述盖板 12下方设有一次分配盒 15, 所述一次分配 盒 15尺寸较所述盖板 12小, 且其周壁开有若干不规则过液槽 16, 单个过液槽 16 的流通面积为 50〜200 mm2, 所述过液槽 16的数量优选 20〜 120个, 优选控制一 次分配盒 15 的压力损失为 15kPa~60kPa, 所述一次分配盒 15下方设有上布水垫 17, 上布水垫 17与盖板 12焊接固定, 所述上布水垫 17为不锈钢丝垫, 由直径为 0.8〜1.0mm的不锈钢丝构成, 其厚度为 9〜20mm, 所述上布水垫 17下方设有二 次分配盒 18, 所述二次分配盒 18的顶沿与所述盖板 12的底沿满焊配合密封, 所 述二次分配盒 18底部开有若干匀水孔 19, 所述匀水孔 19与其下方的上部换热管 群 7的最顶层换热管道一一对齐排列, 所述匀水孔 19为直径 l〜5mm的圆形孔, 所述二次分配盒 18内底部沿长度方向焊接有一块或多块隔板 27, 所述隔板 27的 高度为 5〜10mm, 隔板 27数量优选 1〜5块。 所述两块扰流板 6对称设置在所述 二次分配盒 18两侧外壁底端。 其中, 所述上分配器 3与所述上部换热管群 24之 间, 及所述上部换热管群 24与所述下分配器 20之间均留有气态冷媒通道。
上述方案中, 结合图 5所示, 所述挡气板 4为长条形, 单边设有锯齿的薄钢 板, 其靠近筒体 1 内壁的一沿设有所述锯齿 5, 所述锯齿 5布置位置远离所述气体 冷媒出口区域, 其另一沿固定在所述盖板 12上。 所述挡气板 4的锯齿边沿与所述 筒体 1 内壁间形成的过气通道的流通面积为: 0.04〜0.15m2。 所述扰流板 6呈长方 形, 往下倾斜设置, 与所述二次分配盒 18的侧壁呈 30°〜60°夹角, 其顶部长边固 定在所述二次分配盒 18侧壁底端, 所述扰流板 6的宽度为 30〜60mm。
配置本降膜蒸发器的机组在运行时, 富油区液位是否需要淹没部分换热管可 提前设定, 若不需要淹没, 即降膜蒸发器需要在全降膜状态换热, 则降膜蒸发器 中的液位通过机组控制器关小电子膨胀阀的开度来降低, 比如: 当液位传感器检 测到富油区液位过高已经淹没到下部换热管群中的换热管, 机组的总控制器就会 关小电子膨胀阀的开度, 稳定状态时, 会使降膜蒸发器中的所有换热管表面均形 成液膜覆盖; 若需要淹没, 即降膜蒸发器需要在混合降膜状态换热, 则降膜蒸发 器中的液位通过机组控制器开大电子膨胀阀开度来提高, 淹没若干换热管, 稳定 状态时, 会使上部换热管被冷媒液膜完全覆盖, 下部换热管部分或全部被冷媒液 体淹没的情况下与载冷剂进行换热, 在采用混合降膜状态换热时, 也可以去掉所 述下分配器 (如图 6所示)。 同时, 富油区液位不能无限制的低, 因为若是富油区 液位过低, 可能发生冷冻机油含量过高 (如超过 50% ) 会使回油口以及下游的管 路中流动阻力急剧增大而使回油困难, 为了避免这样的情况, 即使降膜蒸发器需 要处于全降膜换热状态换热, 若液位传感器检测到富油区液位过低, 机组的总控 制器就也会开大节流装置的开度以稀释含油量过高冷媒。
上述降膜式蒸发器处于全降膜换热状态时, 其工作过程如下: 从冷凝器输送 过来的高温液态冷媒通过电子膨胀阀节流膨胀后变为低温液体和低温气体的混合 流体, 然后从冷媒入口 2经进液口 13进入本蒸发器中的上分配器 3中, 气液混合 冷媒进入上分配器 3后, 充满整个一次分配盒 15, 通过一次分配盒 15侧面的非均 匀分布且不同形状尺寸的过液槽 16均匀喷射出, 冲击盖板 12的侧壁, 液滴 (液 流) 四周散开, 落向上布水垫 17, 液态冷媒被上布水垫 17吸收后均匀分配滴落在 二次分配盒 18中, 通过二次分配盒 18底部设置的匀水孔 19连续以柱状流均匀坠 落到其下方的上部换热管群 7上, 形成膜状分布, 与上部换热管群 7 内部的载冷 剂均匀换热, 上分配器 3 内外气态冷媒的压力通过盖板 12上的均压孔 14平衡; 然后, 流经上部换热管群 7后剩余未被蒸发的冷媒液体坠落到下分配器 20, 被其 下布水垫 23吸收后重新均匀滴淋在下部换热管群 8上, 再次形成膜状分布, 与下 部换热管群 8 内部的载冷剂进行换热; 接着, 经过下部换热管群 8蒸发后的剩余 富油冷媒积聚在下部换热管群 8底部空余空间, 在蒸发器底部形成富油区 9, 蒸发 器的连通管路中设置有液位传感器 10, 以检测蒸发器底部冷媒液位, 然后反馈给 电子膨胀阀以控制从冷媒入口 2进入降膜蒸发器的冷媒流量, 使蒸发器底部富油 区 9的冷媒液位低于下部换热管群 8, 避免造成下部换热管群 8被富油冷媒淹没, 降膜蒸发器维持一定的冷媒液位, 有利于从蒸发器底部的回油口 11回油, 富油冷 媒可通过引射泵实现冷冻机油回到压缩机再进入油分离器; 同时, 所有经过换热 管群蒸发的冷媒气体则从上分配器 3顶部两侧的挡气板 4上的锯齿形过气通道流 出后被压缩机吸入, 进入压缩机被压缩, 该挡气板 4 的锯齿形设计可以防止蒸发 器筒体 1 顶部局部气态冷媒流速过高导致吸气带液。 其中, 通过合理控制整个一 次分配盒 15 的压降以及沿长度方向各过液槽 16的数量、 大小和形状, 有利于保 证冷媒流量沿长度均匀分配。
实现降膜蒸发器全降膜状态换热时, 本发明专利采用压力势能和重力势能相 互配合的上分配器, 并利用上分配器和下部分配器中金属丝垫的吸收再分配, 保 证柱状流冷媒液体分别分配到上部换热管群和下部换热管群上, 从而均匀分配液 态冷媒到所有换热管, 并有效避免了冷媒对换热管过度分配或分配不足造成的传 热效率的下降, 实现了冷媒全降膜式蒸发, 从而减少了冷媒充注量; 实现降膜蒸 发器混合降膜状态换热时, 本发明专利采用压力势能和重力势能相互配合的上分 配器, 利用上分配器的均匀分配能力, 保证柱状流冷媒液体分配到上部换热管群, 同时提升降膜蒸发器中的冷媒液位, 使若干换热管被淹没在其中, 实现混合降膜 状态换热, 从而充分利用该类换热管的换热面积, 使换热面积利用率达到最大化, 达到了节能环保的效果。
本发明用于用户提供冷水 (热水) 的中央空调主机系统中, 如: 离心式冷水 (热泵) 机组、 螺杆式冷水 (热泵) 机组, 此类机组主要由离心压缩机或者螺杆 压缩机, 蒸发器, 冷凝器, 节流机构组成, 并形成一个制冷 (制热) 系统回路。

Claims

权 利 要 求 书
1、 一种降膜式蒸发器, 包括筒体 (1), 所述筒体 (1) 两端设有管板, 所述 筒体 (1) 顶部设有液体冷媒入口 (2) 和气体冷媒出口, 所述液体冷媒入口 (2) 上设有节流装置, 其特征在于: 所述筒体 (1) 内部上方设有上分配器 (3), 所述 上分配器 (3) 的顶部两侧分别设有挡气板 (4), 至少一侧挡气板 (4) 边缘设有 锯齿 (5), 所述锯齿 (5) 与所述筒体 (1) 内壁围成过气通道, 所述过气通道与 所述气体冷媒出口相通, 所述上分配器 (3) 两侧壁底端分别设有扰流板 (6), 所 述上分配器 (3) 的下方设有上部换热管群 (7), 所述上部换热管群 (7) 的下方 设有下部换热管群 (8) 和富油区 (9), 所述富油区 (9) 设有液位传感器 (10), 所述液位传感器 (10) 的信号输出端与所述节流装置的信号输入端连接, 所述富 油区 (9) 开有回油口 (11)。
2、根据权利要求 1所述的一种降膜式蒸发器,其特征在于:所述上分配器(3) 包括盖板 (12), 所述盖板 (12) 顶部设有与所述液体冷媒入口 (2) 相通的进液 口 (13), 所述盖板 (12) 顶部边沿开有若干均压孔 (14), 所述两块挡气板 (4) 对称设置在所述盖板(12)顶部两侧, 所述盖板 (12)下方设有一次分配盒 (15), 所述一次分配盒 (15) 尺寸较所述盖板 (12) 小, 且其周壁开有若干不规则过液 槽 (16), 所述一次分配盒 (15) 下方设有上布水垫 (17), 所述上布水垫 (17) 下方设有二次分配盒 (18), 所述二次分配盒 (18) 底部开有若干匀水孔 (19), 所述二次分配盒 (18) 的顶沿与所述盖板 (12) 的底沿配合密封, 所述两块扰流 板 (6) 对称设置在所述二次分配盒 (18) 两侧外壁底端。
3、 根据权利要求 1或 2所述的一种降膜式蒸发器, 其特征在于: 所述挡气板 (4) 呈长条形, 其靠近筒体 (1) 内壁的一沿设有所述锯齿 (5), 所述锯齿 (5) 布置位置远离所述气体冷媒出口区域, 其另一沿固定在所述盖板 (12) 上。
4、 根据权利要求 1或 2所述的一种降膜式蒸发器, 其特征在于: 所述挡气板 (4) 的锯齿边沿与所述筒体 (1) 内壁间形成的过气通道的流通面积为: 0.04〜 0.15m2
5、 根据权利要求 1或 2所述的一种降膜式蒸发器, 其特征在于: 所述扰流板 (6)呈长方形, 往下倾斜设置, 与所述二次分配盒(18) 的侧壁呈 30°〜60°夹角, 其顶部长边固定在所述二次分配盒 (18) 侧壁底端。
6、 根据权利要求 1或 2所述的一种降膜式蒸发器, 其特征在于: 所述扰流板 (6) 的宽度为 30〜60mm。
7、 根据权利要求 1所述的一种降膜式蒸发器, 其特征在于: 所述上部换热管 群 (7) 和所述下部换热管群 (8) 之间设有下分配器 (20), 所述下分配器 (20) 包括支撑拉杆 (21), 所述支撑拉杆 (21) 上设有托网 (22), 所述托网 (22) 上 覆盖有下布水垫 (23)。
8、 根据权利要求 1或 7所述的一种降膜式蒸发器, 其特征在于: 所述下布水 垫 (23) 为金属丝垫, 由直径为 0.8〜1.0mm的金属丝构成, 其厚度为 2〜20mm。
9、 根据权利要求 1所述的一种降膜式蒸发器, 其特征在于: 所述上部换热管 群 (7) 包括顶部换热管群 (24) 和底部换热管群 (25), 所述顶部换热管群 (24) 与所述底部换热管群 (25) 之间留有间隙通道 (26), 所述间隙通道 (26) 高度为 8〜30mm。
10、 根据权利要求 1 所述的一种降膜式蒸发器, 其特征在于: 所述上部换热 管群 (7) 及所述下部换热管群 (8) 以顺排或错排方式水平排列。
11、 根据权利要求 1 所述的一种降膜式蒸发器, 其特征在于: 所述上布水垫 (17) 为金属丝垫, 由直径为 0.8〜1.0mm的金属丝构成, 其厚度为 9〜20mm。
12、根据权利要求 2所述的一种降膜式蒸发器,其特征在于:所述均压孔(14) 为圆形孔, 其直径为 20〜80mm, 所述均压孔 (14) 的数量为 10〜30个。
13、 根据权利要求 2所述的一种降膜式蒸发器, 其特征在于: 所述一次分配 盒 (15) 周壁上单个所述过液槽 (16) 的流通面积为 50〜200 mm2
14、 根据权利要求 2或 13所述的一种降膜式蒸发器, 其特征在于: 所述过液 槽 (16) 的数量为 20〜120个。
15、 根据权利要求 2所述的一种降膜式蒸发器, 其特征在于: 所述二次分配 盒 (18) 内底部沿长度方向设有一块或多块隔板 (27)。
16、 根据权利要求 2或 15所述的一种降膜式蒸发器, 其特征在于: 所述隔板 (27) 的高度为 5〜10mm, 数量为 1〜5块。
17、根据权利要求 2所述的一种降膜式蒸发器,其特征在于:所述匀水孔(19) 与其下方的上部换热管群(7) 的最顶层换热管道一一对齐排列, 所述匀水孔(19) 为直径 l〜5mm的圆形孔。
18、 根据权利要求 1所述的一种降膜式蒸发器, 其特征在于: 所述富油区(9) 的底部开有 1〜4个回油口 (11)。
19、 根据权利要求 1或 18所述的一种降膜式蒸发器, 其特征在于: 所述回油 口 (11) 设置在所述富油区 (9) 的最低位置处。
20、 根据权利要求 7 所述的一种降膜式蒸发器, 其特征在于: 所述上分配器 (3) 与所述上部换热管群 (24) 之间, 及所述上部换热管群 (24) 与所述下分配 器 (20) 之间均留有气态冷媒通道。
21、 根据权利要求 2 所述的一种降膜式蒸发器, 其特征在于: 所述一次分配 盒 (15) 底部密闭, 顶部敞开, 其顶周焊接在所述盖板 (12) 内侧顶面上。
22、 根据权利要求 2所述的一种降膜式蒸发器, 其特征在于: 所述盖板 (12) 为底部敞开的长方体状盒体,所述盒体两侧壁底端设有往外延伸的边沿盖板(28), 所述均压孔 (14) 设置在所述边沿盖板 (28) 上远离所述气体冷媒出口的区域。
23、根据权利要求 1所述的一种降膜式蒸发器,其特征在于:所述进液口( 13) 呈圆筒状, 其直径为 40〜200mm。
24、 根据权利要求 1 所述的一种降膜式蒸发器, 其特征在于: 所述节流装置 为电子膨胀阀。
PCT/CN2014/080377 2013-12-30 2014-06-20 一种降膜式蒸发器 WO2015100965A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/895,075 US10060678B2 (en) 2013-12-30 2014-06-20 Falling film evaporator
EP14877120.7A EP3091312A4 (en) 2013-12-30 2014-06-20 Falling film evaporator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310750441.9A CN103727707A (zh) 2013-12-30 2013-12-30 具有二重冷媒分配装置的全降膜式蒸发器
CN201310750441.9 2013-12-30
CN201410138717.2A CN103925749B (zh) 2013-12-30 2014-04-04 一种降膜式蒸发器
CN201410138717.2 2014-04-04

Publications (1)

Publication Number Publication Date
WO2015100965A1 true WO2015100965A1 (zh) 2015-07-09

Family

ID=50451893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080377 WO2015100965A1 (zh) 2013-12-30 2014-06-20 一种降膜式蒸发器

Country Status (5)

Country Link
US (1) US10060678B2 (zh)
EP (1) EP3091312A4 (zh)
CN (3) CN103727707A (zh)
MY (1) MY176823A (zh)
WO (1) WO2015100965A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631421A (zh) * 2019-01-14 2019-04-16 珠海格力电器股份有限公司 空调机组及其控制方法
CN109682127A (zh) * 2019-01-28 2019-04-26 江苏一万节能科技股份有限公司 一种高效节能多回路蒸发器
CN110375574A (zh) * 2019-08-19 2019-10-25 江苏建筑职业技术学院 一种可提高布膜和排气性能的降膜均布装置
CN112856862A (zh) * 2021-02-02 2021-05-28 哈尔滨商业大学 一种新型空调设备制冷用蒸发器制冷剂分配成膜机构

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727707A (zh) * 2013-12-30 2014-04-16 麦克维尔空调制冷(武汉)有限公司 具有二重冷媒分配装置的全降膜式蒸发器
CN103994609B (zh) * 2014-04-28 2016-09-07 杭州赛富特设备有限公司 一种用于水冷离心机组的蒸发器
CN105509371A (zh) * 2014-09-23 2016-04-20 博世热力技术(山东)有限公司 用于冷水机组的集成单元以及冷水机组
CN104457040B (zh) * 2014-11-13 2017-09-22 广东申菱环境系统股份有限公司 一种喷淋降膜式蒸发器及其液位控制方法
CN104406334B (zh) * 2014-11-13 2017-08-11 广东申菱环境系统股份有限公司 一种喷淋降膜式蒸发器及其液位控制方法
CN104633978B (zh) * 2014-12-22 2017-03-29 珠海格力电器股份有限公司 蒸发器、制冷机组和空调器
CN106322848B (zh) * 2015-06-30 2019-02-15 合肥海尔空调电子有限公司 满液式蒸发器
CN105387653B (zh) * 2015-12-21 2018-02-06 重庆美的通用制冷设备有限公司 蒸发器及具有其的冷水机组
CN105387654A (zh) * 2015-12-24 2016-03-09 珠海格力电器股份有限公司 降膜式蒸发器及空调设备
CN105641962B (zh) * 2016-03-15 2018-03-23 山东科灵节能装备股份有限公司 降膜蒸发器及利用该降膜蒸发器的有机朗肯循环发电系统
FR3054651B1 (fr) * 2016-07-29 2018-08-31 Technip France Echangeur de chaleur a tubes verticaux et procede d'echange de chaleur
CN106247693B (zh) * 2016-08-25 2019-05-03 珠海格力电器股份有限公司 蒸发器及具有其的空调器
WO2018039532A1 (en) * 2016-08-26 2018-03-01 Carrier Corporation Refrigerant distributor for falling film evaporator
CN106512454B (zh) * 2016-11-18 2018-11-23 重庆美的通用制冷设备有限公司 一种管壳式降膜蒸发器和冷水机组
CN106766391A (zh) * 2017-03-06 2017-05-31 上海悠太节能科技中心(有限合伙) 用于热泵系统的罐式换热器
CN108954986B (zh) * 2017-05-19 2022-11-15 开利公司 制冷系统及降膜式蒸发器
CN107372195B (zh) * 2017-09-08 2023-11-14 殷文斐 一种多功能养鸡饮水系统
US20190086152A1 (en) * 2017-09-18 2019-03-21 Ingersoll-Rand Company Evaporative cooling of a heat exchanger in a compressor system
CN107726886A (zh) * 2017-10-12 2018-02-23 江苏万节能科技股份有限公司 一种换热器
CN111919075A (zh) 2018-04-06 2020-11-10 开利公司 一体式分离器和分配器
US10697674B2 (en) 2018-07-10 2020-06-30 Johnson Controls Technology Company Bypass line for refrigerant
CN111174465A (zh) * 2018-11-12 2020-05-19 麦克维尔空调制冷(武汉)有限公司 蒸发器以及包含该蒸发器的换热系统
CN109269158A (zh) * 2018-11-28 2019-01-25 珠海格力电器股份有限公司 降膜式蒸发器和空调系统
FR3097313B1 (fr) * 2019-06-17 2021-10-01 Naval Energies Évaporateur d’un fluide de travail pour une centrale ETM, comportant notamment un système d’amortissement
CN110270118A (zh) * 2019-07-12 2019-09-24 东华大学 一种水平降膜布液器
CN112344604A (zh) * 2019-08-08 2021-02-09 青岛海尔空调电子有限公司 均液装置和空调
CN110701834B (zh) * 2019-10-12 2021-12-28 兰溪兴业压力容器制造有限公司 一种高效节能冷凝器
CN112944748A (zh) * 2019-12-10 2021-06-11 珠海格力电器股份有限公司 布液器、降膜式换热器及空调器
CN112944746A (zh) * 2019-12-10 2021-06-11 珠海格力电器股份有限公司 布液器、降膜式换热器和空调器
KR102292396B1 (ko) 2020-02-13 2021-08-20 엘지전자 주식회사 증발기
KR102292397B1 (ko) 2020-02-13 2021-08-20 엘지전자 주식회사 증발기
KR102292395B1 (ko) * 2020-02-13 2021-08-20 엘지전자 주식회사 증발기
CN113639487A (zh) * 2020-04-27 2021-11-12 青岛海尔空调电子有限公司 降膜式换热器
CN111854233B (zh) * 2020-06-24 2021-05-18 宁波方太厨具有限公司 一种降膜式蒸发器及采用该降膜式蒸发器的制冷系统
CN112033047A (zh) * 2020-08-27 2020-12-04 昆山高鑫峰机械有限公司 一种高效散热的工业冷水机用蒸发器
CN114543395B (zh) * 2020-11-26 2024-02-23 青岛海尔空调电子有限公司 用于制冷系统的降膜蒸发器及制冷系统
CN112856861B (zh) * 2021-02-02 2023-08-08 浙江国祥股份有限公司 一种降膜式蒸发器的布液器及其制造方法
CN115265002B (zh) * 2021-04-29 2023-10-13 约克广州空调冷冻设备有限公司 热泵系统
CN113790614A (zh) * 2021-10-22 2021-12-14 广东美的暖通设备有限公司 一种罐式换热器及热泵系统
CN113970198B (zh) * 2021-12-27 2022-03-18 顿汉布什(中国)工业有限公司 一种用于低压制冷系统降膜蒸发器的分配器
WO2024091678A1 (en) * 2022-10-28 2024-05-02 Johnson Controls Tyco IP Holdings LLP Hydrogen gas filling station system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1185202A (zh) * 1995-05-25 1998-06-17 美国标准公司 带有蒸汽-液体分离器的坠落液膜蒸发器
CN101382359A (zh) * 2008-10-07 2009-03-11 上海环球制冷设备有限公司 滴淋降膜式蒸发器装置及使用方法
CN102000437A (zh) * 2010-09-03 2011-04-06 广东工业大学 一种带气液分离布膜功能的降膜蒸发器
CN102166420A (zh) * 2011-03-15 2011-08-31 中国科学院广州能源研究所 一种组合式蒸发器
CN203083207U (zh) * 2012-12-27 2013-07-24 麦克维尔空调制冷(武汉)有限公司 气液分离降膜式蒸发器
CN103727707A (zh) * 2013-12-30 2014-04-16 麦克维尔空调制冷(武汉)有限公司 具有二重冷媒分配装置的全降膜式蒸发器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1918005A (en) * 1932-02-02 1933-07-11 Kenneth M Urquhart Bubble cap
US2055048A (en) * 1932-06-30 1936-09-22 Texas Co Entrainment separator for fractionating towers
US5588596A (en) * 1995-05-25 1996-12-31 American Standard Inc. Falling film evaporator with refrigerant distribution system
US6868695B1 (en) * 2004-04-13 2005-03-22 American Standard International Inc. Flow distributor and baffle system for a falling film evaporator
US20060169111A1 (en) * 2005-02-02 2006-08-03 Kozlowski Kevin M Saw blade for drywall, saw apparatus utilizing saw blade and method
TWI320094B (en) * 2006-12-21 2010-02-01 Spray type heat exchang device
EP2232166B1 (en) * 2008-01-11 2012-04-18 Johnson Controls Technology Company Vapor compression system
WO2011011421A2 (en) * 2009-07-22 2011-01-27 Johnson Controls Technology Company Compact evaporator for chillers
CN102252468B (zh) * 2011-06-27 2013-03-27 四川同达博尔置业有限公司 降膜式蒸发器的制冷剂分配器
CN203224070U (zh) * 2013-04-15 2013-10-02 美意(浙江)空调设备有限公司 一种淋液式换热器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1185202A (zh) * 1995-05-25 1998-06-17 美国标准公司 带有蒸汽-液体分离器的坠落液膜蒸发器
CN101382359A (zh) * 2008-10-07 2009-03-11 上海环球制冷设备有限公司 滴淋降膜式蒸发器装置及使用方法
CN102000437A (zh) * 2010-09-03 2011-04-06 广东工业大学 一种带气液分离布膜功能的降膜蒸发器
CN102166420A (zh) * 2011-03-15 2011-08-31 中国科学院广州能源研究所 一种组合式蒸发器
CN203083207U (zh) * 2012-12-27 2013-07-24 麦克维尔空调制冷(武汉)有限公司 气液分离降膜式蒸发器
CN103727707A (zh) * 2013-12-30 2014-04-16 麦克维尔空调制冷(武汉)有限公司 具有二重冷媒分配装置的全降膜式蒸发器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3091312A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631421A (zh) * 2019-01-14 2019-04-16 珠海格力电器股份有限公司 空调机组及其控制方法
CN109682127A (zh) * 2019-01-28 2019-04-26 江苏一万节能科技股份有限公司 一种高效节能多回路蒸发器
CN109682127B (zh) * 2019-01-28 2024-05-14 江苏一万节能科技股份有限公司 一种高效节能多回路蒸发器
CN110375574A (zh) * 2019-08-19 2019-10-25 江苏建筑职业技术学院 一种可提高布膜和排气性能的降膜均布装置
CN110375574B (zh) * 2019-08-19 2023-12-15 江苏建筑职业技术学院 一种可提高布膜和排气性能的降膜均布装置
CN112856862A (zh) * 2021-02-02 2021-05-28 哈尔滨商业大学 一种新型空调设备制冷用蒸发器制冷剂分配成膜机构
CN112856862B (zh) * 2021-02-02 2022-04-29 哈尔滨商业大学 一种空调设备制冷用蒸发器制冷剂分配成膜机构

Also Published As

Publication number Publication date
MY176823A (en) 2020-08-24
CN103925749A (zh) 2014-07-16
CN103925749B (zh) 2016-08-17
EP3091312A4 (en) 2017-08-23
CN103727707A (zh) 2014-04-16
US20160109182A1 (en) 2016-04-21
CN204027084U (zh) 2014-12-17
EP3091312A1 (en) 2016-11-09
US10060678B2 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2015100965A1 (zh) 一种降膜式蒸发器
CN101936627B (zh) 用于蒸发器的集气分配器
CN205425941U (zh) 一种卧式降膜蒸发器的布液器
CN100451496C (zh) 压缩制冷降膜式蒸发器的制冷剂分配器
CN103398512B (zh) 一种内置油分离器的冷凝器
CN102954628A (zh) 一种降膜式蒸发器用布液器
US20210285701A1 (en) Refrigerant distributor and evaporator comprising the refrigerant distributor
CN107667265A (zh) 用于蒸发器的多级分配系统
CN202304118U (zh) 一种降膜式蒸发器
CN105264322B (zh) 用于降膜式蒸发器的制冷剂分配器
WO2015108902A1 (en) Refrigerant distributor for falling film evaporator
FI120893B (fi) Järjestely ja menetelmä pisaroiden erottamiseksi höyrystyneestä kylmäaineesta
CN210663986U (zh) 一种气体干燥机的换热结构
CN108373930A (zh) 一种组合式液化分离器
CN100451495C (zh) 压缩制冷降膜式蒸发器的制冷剂均匀分配器
CN102252468B (zh) 降膜式蒸发器的制冷剂分配器
CN203687461U (zh) 具有二重冷媒分配装置的全降膜式蒸发器
CN215063028U (zh) 一种分配器及包含该分配器的降膜蒸发器
JP2568769B2 (ja) 吸収冷凍機
CN114001498A (zh) 挡液结构、换热器及空调
CN208720576U (zh) 换热器及具有其的空调器
CN207527879U (zh) 立式蒸发器、制冷系统及空调
CN113357850B (zh) 蒸发器及冷水机组
CN216432163U (zh) 挡液结构、换热器及空调
CN104344607A (zh) 一种换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877120

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014877120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014877120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14895075

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE