WO2018090625A1 - 一种管壳式降膜蒸发器和冷水机组 - Google Patents
一种管壳式降膜蒸发器和冷水机组 Download PDFInfo
- Publication number
- WO2018090625A1 WO2018090625A1 PCT/CN2017/089639 CN2017089639W WO2018090625A1 WO 2018090625 A1 WO2018090625 A1 WO 2018090625A1 CN 2017089639 W CN2017089639 W CN 2017089639W WO 2018090625 A1 WO2018090625 A1 WO 2018090625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchange
- shell
- tube
- refrigerant
- area
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/22—Evaporating by bringing a thin layer of the liquid into contact with a heated surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/04—Evaporators with horizontal tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D3/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
- F28D3/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D3/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
- F28D3/04—Distributing arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D5/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
- F28D5/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/0071—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/163—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
Definitions
- the invention relates to the technical field of falling film evaporators, in particular to a shell-and-shell falling film evaporator and a chiller.
- the falling film evaporators in the existing chiller products mainly have the following forms:
- the full falling film evaporator as shown in Fig. 1, the pipe area in the evaporator includes the upper process falling film pipe area 14 and the lower flow falling film pipe area 15, and the heat transfer of the upper process falling film pipe area 14
- the outer diameter of the heat exchange tubes of the tube and the lower flow falling film area 15 are equal; for example, the outer diameter of the heat exchange tube of the upper film falling film area 14 and the outer diameter of the heat exchange tube of the lower flow falling film area 15 are both 25.4. Mm or both are 19.05mm or all other sizes.
- the full falling film evaporator has the following disadvantages: 1 the bottommost heat exchange tube of the falling film pipe area is easy to dry, and the heat exchange area cannot be fully utilized; 2 the chiller has poor suction superheat, and there is a risk of liquid bearing; 3 cold water The heat transfer between the upper and lower parts of the unit evaporator is not balanced, and the overall integrated heat transfer coefficient is poor. 4 The chiller liquid level and refrigerant supply are not well controlled, and the cooling capacity is poorly regulated; 5 chiller evaporator liquid The position and the liquid supply capacity of the refrigerant are not well controlled. The position of the oil returning liquid extraction port cannot be accurately designed and determined, and the oil returning effect is not good. 6 The chiller has poor adaptability under all working conditions, and the adaptability is not under various working conditions. it is good.
- the pipe area in the evaporator comprises an upper process pipe area 16 and a lower process full liquid pipe area 17, a heat exchange pipe of the upper process pipe area 16 and a lower flow full liquid pipe area 17
- the outer diameters of the heat exchange tubes are equal; for example, the outer diameters of the heat exchange tubes of the upper flow tube section 16 and the outer diameters of the heat exchange tubes of the lower flow full liquid supply tube section 17 are both 25.4 mm or 19.05 mm or are other sizes. .
- the mixed falling film evaporator has the following disadvantages: 1 the bottom heat exchange tube of the process piping area 16 on the chiller evaporator is easy to dry, and the heat exchange area cannot be fully utilized; 2 the heat exchange effect of the process piping area 16 on the chiller evaporator It has a great relationship with the uniform distribution of the refrigerant, and also has a certain relationship with the specification of the heat exchange tube, the arrangement of the pipe arrangement and the water velocity control in the pipe; 3 the heat exchange effect of the full liquid distribution pipe section under the evaporator of the chiller and Whether the refrigerant liquid level control height is reasonable and whether the evaporation liquid supply quantity control is reasonable is also very important, and also has a certain relationship with the heat exchanger tube specification selection, the pipe arrangement mode and the pipe water speed control; 4 chiller evaporator The process piping area 16 and the lower flow full liquid distribution area 17 are not uniform in heat exchange, and the overall integrated heat transfer coefficient is poor; 5 the chiller liquid level of the evaporator and the refrig
- the technical problem to be solved by the present invention is to provide a shell-and-shell falling film evaporator and a chiller for the deficiencies of the prior art.
- a shell-and-shell falling film evaporator comprising a casing, the casing is filled with a refrigerant, and a refrigerant distributor, a refrigerant is disposed on an upper side of the casing
- the lower area of the distributor is a heat exchange tube duct area;
- the heat exchange tube duct area includes a first duct area and a second duct area, the second duct area is located below the first duct area, and the first duct area a gap is left between the second duct area;
- the first duct area is provided with a plurality of first heat exchange tubes arranged horizontally, and the second duct area is provided with a plurality of second heat exchange tubes horizontally arranged
- the outer diameter of the first heat exchange tube is smaller than the outer diameter of the second heat exchange tube.
- the invention sets the outer diameter of the first heat exchange tube to be smaller than the outer diameter of the second heat exchange tube, so that the circumferential length of the first heat exchange tube is shorter, and the gap between the tubes is smaller. It is more conducive to the adhesion and molding of the circumferential liquid film on the outer surface of the heat exchange tube, and the film thickness is more uniform and continuous, and the effective heat transfer area of the first tube area can be fully and effectively utilized, and the local dry spot formation of the heat exchange tube is reduced.
- the probability of the same is that the heat transfer tube at the bottom of the first pipe area is not easy to dry, and the overall heat transfer coefficient is larger and higher; in the second pipe area, the effective heat exchange area of the second heat exchange tube is larger, and the control is limited.
- the refrigerant liquid level inundation area, the same number of heat exchange tubes can provide more effective heat exchange area, and the piping gap is larger, which is more conducive to the escape of refrigerant gas generated by the evaporator, and the escape speed Smaller; the first tube area and the second tube area of the invention have relatively uniform heat exchange, and the overall integrated heat transfer coefficient is better.
- the present invention can also be improved as follows.
- the outer diameter of the first heat exchange tube is 9.52 mm to 25.4 mm
- the outer diameter of the second heat exchange tube is 12.7 mm to 28.6 mm.
- a liquid level controller for adjusting a refrigerant level in the housing is further included, the liquid level controller being fixedly coupled to an outer wall of the housing.
- the beneficial effect of adopting the above further solution is that: by setting the liquid level controller, the liquid level of the refrigerant in the evaporator housing and the evaporation liquid supply amount can be effectively and reasonably controlled, and the second heat exchange tube in the upper part of the second piping area is not ensured.
- the main pipe enables the effective heat transfer area of the falling film evaporator to be more effectively utilized, the overall heat transfer coefficient is higher and the heat transfer effect is better, and the liquid level and the refrigerant in the evaporator casing are also available.
- the liquid evaporation amount is effectively controlled, so that according to the dissolution characteristics of the refrigerant and the lubricating oil, the position of the oil returning liquid extraction port can be accurately designed and determined, and the oil returning effect is good, and the heat exchange efficiency is improved, and the unit is also improved. Oil return performance.
- the housing is provided with at least one inlet pipe and at least one exhaust pipe at a position corresponding to the first pipe region.
- the refrigerant covers the second heat exchange tube, and the first heat exchange tube is located above the liquid level of the refrigerant.
- a gap between the first duct area and the second duct area is greater than 10 mm.
- one end of the inlet pipe is fixedly connected to the upper side of the refrigerant distributor, and the other end thereof protrudes from the casing; the exhaust pipe and the inside of the casing are located at the refrigerant The areas on the upper side of the dispenser are connected.
- both ends of the refrigerant distributor are fixedly connected to the inner wall of the casing, a gas barrier is connected between the refrigerant distributor and the casing, and an air outlet is opened on the gas barrier plate.
- a refrigeration unit comprising a shell-and-shell falling film evaporator as described above.
- the invention has the beneficial effects that the integrated heat transfer coefficient of the refrigeration unit of the invention is larger and higher, and the heat transfer effect is better.
- FIG. 1 is a schematic cross-sectional structural view of a full falling film evaporator in the prior art
- FIG. 2 is a schematic cross-sectional structural view of a mixed falling film evaporator in the prior art
- FIG. 3 is a schematic cross-sectional structural view of a mixed falling film evaporator according to an embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view showing another embodiment of a mixed falling film evaporator according to an embodiment of the present invention.
- a shell-and-shell falling film evaporator of the present embodiment includes a casing 1 filled with a refrigerant, and the evaporator shell takes away refrigerant, and the shell side
- the number is 1; the tube is running water, the number of tubes is 2, and the tube-passing partition is provided in the water chamber on the inlet side of the tube.
- a refrigerant distributor 7 is disposed on an upper side of the casing 1, and a lower portion of the refrigerant distributor 7 is a heat exchange pipe pipe area, and a heat exchange pipe of the water pipe in the pipe is disposed in the pipe pipe area of the heat exchange pipe, and a heat exchange pipe area is disposed.
- a first duct region 11 located below the refrigerant distributor and a second duct region 12 located below the first duct region 11 are provided, and a gap is left between the first duct region 11 and the second duct region 12, The gap is greater than 10 mm; the first duct area 11 is provided with a plurality of first heat exchange tubes 2 arranged horizontally, and the second tube area 12 is provided with a plurality of second heat exchange tubes 3 arranged horizontally.
- the outer diameter of the first heat exchange tube 2 is smaller than the outer diameter of the second heat exchange tube 3.
- the gap between the first duct area and the second duct area of the embodiment is actually the second heat exchange of the first heat exchange tube at the lowermost end of the first duct area and the uppermost end of the second duct area The distance between the tubes.
- the circumferential length of the first heat exchange tube is shorter, the gap between the tubes is smaller, and the circumferential liquid is more favorable.
- the film adheres and forms on the outer surface of the heat exchange tube, and the film thickness is more uniform and continuous, and the effective heat transfer area of the first tube area can be fully and effectively utilized, and the probability of local dry spot formation in the heat exchange tube is reduced.
- the heat transfer tube at the bottom of the distribution area is not easy to dry, and the overall heat transfer coefficient is larger and higher; in the second distribution area, the effective heat exchange area of the second heat exchange tube is larger, and the refrigerant level in the limited control In the submerged area, the same number of heat exchange tubes can provide more effective heat exchange area, and the piping gap is larger, which is more favorable for the escape of the refrigerant gas generated by the evaporator, and the escape speed is smaller; the present invention
- the heat transfer between the first pipe area and the second pipe area is relatively balanced, and the overall integrated heat transfer coefficient is better.
- the outer diameter of the first heat exchange tube 2 of the present embodiment is 9.52 mm to 25.4 mm, and the outer diameter of the second heat exchange tube 3 is 12.7 mm to 28.6 mm.
- the outer diameter of the first heat exchange tube 2 is 19.05 mm
- the outer diameter of the second heat exchange tube 3 is 25.4 mm
- the outer diameter of the first heat exchange tube 2 is 16 mm
- the outer diameter of the second heat exchange tube 3 The outer diameter is 19.05mm.
- Another embodiment of the shell-and-shell falling film evaporator of the present embodiment further includes a liquid level controller 4 for adjusting the liquid level of the refrigerant in the casing 1, the liquid level controller 4 being fixedly coupled to the shell On the outer wall of the body 1.
- the liquid level controller 4 includes a mounting cylinder 41 and a controller 42 mounted above the mounting cylinder 41; the mounting cylinder 41 is vertically arranged, and the lower end of the mounting cylinder 41 and the second The piping area 12 is in communication, and the upper end of the mounting cylinder 41 is in communication with the first piping area 11.
- the liquid level controller By setting the liquid level controller, the liquid level and the evaporation liquid supply amount of the refrigerant in the evaporator casing can be effectively and reasonably controlled, and the second heat exchange tube in the upper portion of the second distribution pipe area can be prevented from being dry, so that the falling film evaporator is
- the effective heat transfer area can be fully utilized more effectively, the overall heat transfer coefficient will be larger and higher, and the heat transfer effect is better; at the same time, the liquid level in the evaporator housing and the evaporation of the refrigerant supply can be effectively controlled, thereby
- the dissolution characteristics of the refrigerant and the lubricating oil, the position of the oil returning liquid extraction port can be accurately designed and determined, and the oil returning effect is good, and the heat exchange efficiency is improved, and the oil return performance of the unit is also improved.
- the casing 1 of the evaporator of the present embodiment is cylindrical and horizontally placed, and the first heat exchange tube 2 is located at an area above the horizontal plane of the axis of the casing 1,
- the second heat exchange tube 3 is located in a region below the horizontal plane of the axis of the housing 1; or a portion of the first heat exchange tube 2 is also located in a region below the horizontal plane of the axis of the housing 1.
- a gap is left between the first heat exchange tube 2 at the lowermost portion of the first tube region 11 and the second heat exchange tube 3 at the uppermost portion of the second tube region 12, so that the refrigerant vapor in the second tube region can be quickly discharged. It is discharged through the exhaust pipe.
- the casing 1 of the present embodiment is provided with at least one inlet pipe 5 and at least one exhaust pipe 6 at positions corresponding to the first pipe section 11.
- the falling film evaporator of this embodiment is a mixed falling film evaporator
- the second pipe area 12 is filled with a refrigerant
- the refrigerant covers the second heat exchange tube
- the first heat exchange tube 2 Located above the liquid level of the refrigerant, that is, the second tube area 12 is a full liquid distribution area.
- the upper side of the casing 1 of the present embodiment is provided with a horizontally disposed refrigerant distributor 7,
- the first duct region 11 and the second duct region 12 are both located below the refrigerant distributor 7; one end of the inlet pipe 5 is fixedly connected to the upper side of the refrigerant distributor 7, and the other One end projects from the inside of the casing 1; the exhaust pipe 6 communicates with a region of the casing 1 located on the upper side of the refrigerant distributor 7.
- both ends of the refrigerant distributor 7 of the present embodiment are fixedly connected to the inner wall of the casing 1, and the refrigerant distributor 7 is connected to the casing 1.
- a gas barrier 71 is provided with an air outlet hole.
- the shape of the gas barrier is not limited and may be rectangular, circular or elliptical.
- the shell-and-shell falling film evaporator of this embodiment is mainly used for the chiller, the shell is taken away from the refrigerant, and the tube is taken away.
- the outer diameter of the first heat exchange tube is smaller than the outer diameter of the second heat exchange tube, so that the gap between the tube in the first tube area and the tube gap in the second tube area is different, and the heat exchange of the small tube diameter
- the tube inevitably makes the gap between the tubes smaller, and the gap between the tubes in the first tube area is smaller, which is more favorable for the first tube area in the heat exchange process, and the circumferential liquid film of the first heat exchange tube is on the outer surface of the heat exchange tube Adhesion and molding, while the film thickness is more uniform and continuous, the effective heat transfer area of the first pipe area can be fully and effectively utilized, and the probability of local dry spot formation in the heat exchange tube is reduced, and the bottom heat exchange tube of the first pipe area is It is not easy to dry the pipe, the overall heat transfer coefficient is larger and higher, and the heat transfer coefficient and heat transfer
- the second heat exchange tube of the second pipe area is larger than the first heat exchange tube, and the effective heat exchange area of the single second heat exchange tube is larger.
- the same number of second exchanges The heat pipe can provide more effective heat exchange area, and the pipe gap is larger, which is more favorable for the escape of the refrigerant gas generated by the evaporator and the escape speed is smaller.
- the heat transfer between the first pipe area and the second pipe area is relatively balanced, and the overall integrated heat transfer coefficient is better.
- a refrigeration unit of the present embodiment includes the shell-and-shell falling film evaporator as described in Embodiment 1.
- the refrigerant absorbs heat to become refrigerant vapor, and then discharges the evaporator through the exhaust pipe 6.
- heat exchange with the water in the heat exchange tube during the phase change of the refrigerant causes the temperature of the water to decrease, thereby preparing cold water.
- the refrigerant has a uniform liquid film on each of the first heat exchange tubes in the optimum state of the first piping area, and there is a continuous liquid film in both the circumferential direction and the axial direction. And the liquid film is not too thick or too thin. If the liquid film is too thick, the thermal resistance of the heat transfer will increase, and the evaporation of the refrigerant liquid at the gas-liquid interface will also be affected, thereby reducing the overall heat transfer coefficient; if the liquid film is too thin, the probability of local dry spot formation will be increased, thereby Reduce the effective heat transfer area and deteriorate the heat transfer effect.
- the liquid film on the first heat exchange tube of the first tube area is uniformly laid, and the refrigerant of the second tube area is also made.
- the gas escapes smoothly and smoothly, and does not stay in the second pipe area to affect the heat transfer of the heat exchange tube, and the flow rate of the refrigerant does not be too large to cause the suction and liquid.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
- the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
- the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
- the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
- the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
- the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
- the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
一种管壳式降膜蒸发器和冷水机组,蒸发器包括壳体(1),壳体(1)内填充有制冷剂,内部上侧设置有制冷剂分配器(7),制冷剂分配器(7)的下方区域为换热管布管区;换热管布管区包括第一布管区(11)和第二布管区(12),第二布管区(12)位于第一布管区(11)下方,且第一布管区(11)和第二布管区(12)之间留有间隙;第一布管区(11)内设有水平布置的多根第一换热管(2),第二布管区(12)内设有水平布置的多根第二换热管(3),第一换热管(2)的外径小于第二换热管(3)的外径。
Description
本发明涉及降膜蒸发器技术领域,具体涉及一种管壳式降膜蒸发器和冷水机组。
现有的冷水机组产品中的降膜式蒸发器主要有以下几种形式:
一、全降膜式蒸发器,如图1所示,该蒸发器中的布管区域包括上流程降膜布管区14和下流程降膜布管区15,上流程降膜布管区14的换热管和下流程降膜布管区15的换热管的外径相等;例如,上流程降膜布管区14的换热管外径和下流程降膜布管区15的换热管外径均为25.4mm或均为19.05mm或均为其它规格尺寸。
该全降膜式蒸发器具有以下缺点:①降膜布管区最底层换热管容易干管,换热面积无法充分利用;②冷水机组吸气过热度不好控制,有带液风险;③冷水机组蒸发器上、下两流程换热不均衡,整体综合换热系数较差;④冷水机组蒸发器液位及冷媒供液量不好控制,制冷量调节性较差;⑤冷水机组蒸发器液位及冷媒供液量不好控制,回油引射取液口位置无法精确设计和确定位置,回油效果不好;⑥冷水机组全工况运行适应性差,各种工况条件下适应性不好。
二、混合降膜式蒸发器,该蒸发器中的布管区域包括上流程布管区16和下流程满液布管区17,上流程布管区16的换热管和下流程满液布管区17的换热管的外径相等;例如,上流程布管区16的换热管外径和下流程满液布管区17的换热管外径均为25.4mm或均为19.05mm或均为其它规格尺寸。
该混合降膜式蒸发器具有以下缺点:①冷水机组蒸发器上流程布管区16最底层换热管容易干管,换热面积无法充分利用;②冷水机组蒸发器上流程布管区16换热效果和制冷剂是否均匀分配关系很大,同时也和换热管的规格选择、布管排布方式以及管内水速控制也有一定关系;③冷水机组蒸发器下流程满液布管区17换热效果和制冷剂液位控制高度是否合理以及蒸发供液量控制是否合理关系很大,同时也和换热管的规格选择、布管排布方式以及管内水速控制也有一定关系;④冷水机组蒸发器上流程布管区16、下流程满液布管区17换热不均衡,整体综合换热系数较差;⑤冷水机组蒸发器液位及冷媒供液量不好控制,制冷量调节性较差;⑥制冷机组蒸发器液位及冷媒供液量不好控制,回油引射取液口位置无法精确的设计和确定位置,回油效果不好;⑦制冷机组全工况运行适应性差,各种工况条件下适应性不好。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种管壳式降膜蒸发器和冷水机组。
本发明解决上述技术问题的技术方案如下:一种管壳式降膜蒸发器,包括壳体,所述壳体内填充有制冷剂,所述壳体内部上侧设置有制冷剂分配器,制冷剂分配器的下方区域为换热管布管区;所述换热管布管区包括第一布管区和第二布管区,所述第二布管区位于所述第一布管区下方,且第一布管区和第二布管区之间留有间隙;所述第一布管区内设有水平布置的多根第一换热管,所述第二布管区内设有水平布置的多根第二换热管,所述第一换热管的外径小于所述第二换热管的外径。
本发明的有益效果是:本发明通过将第一换热管的外径设置成小于第二换热管的外径,使得第一换热管的周向长度更短,布管间隙更小,更有利于周向液膜在换热管外表面的附着和成型,同时成膜厚度更加均匀连续,可以完全充分有效的利用第一布管区的有效传热面积,减少换热管局部干斑形成的几率,同时第一布管区最底层的换热管不容易干管,综合传热系数更大更高;第二布管区中,第二换热管的有效换热面积更大,在有限控制的制冷剂液位淹没区,相同数量的换热管,可以提供更多有效的换热面积,同时布管间隙更大,更有利于蒸发器产生的制冷剂气体的逸出,且逸出速度更小;本发明的第一布管区和第二布管区换热比较均衡,整体综合换热系数较好。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述第一换热管的外径为9.52mm~25.4mm,所述第二换热管的外径为12.7mm~28.6mm。
进一步,还包括用于调节壳体内制冷剂液位的液位控制器,所述液位控制器固定连接在所述壳体的外壁上。
采用上述进一步方案的有益效果是:通过设置液位控制器,可有效合理控制制冷剂在蒸发器壳体内的液位和蒸发供液量,保证第二布管区上部的第二换热管不会干管,使得降膜蒸发器的有效传热面积能够更加有效的充分利用,综合传热系数就会更大更高,传热效果更好;同时也可对蒸发器壳体内液位和冷媒供液蒸发量进行有效控制,从而依据冷媒和润滑油的溶解特性,回油引射取液口位置可以精确的设计和确定位置,回油效果好,在提高换热效率的同时,也提高了机组回油性能。
进一步,所述壳体与所述第一布管区相对应的位置设有至少一根进液管和至少一根排气管。
进一步,所述制冷剂将所述第二换热管覆盖住,所述第一换热管位于所述制冷剂液面以上。
进一步,所述第一布管区和第二布管区之间的间隙大于10mm。
进一步,所述进液管的一端固定连接在所述制冷剂分配器的上侧面上,其另一端从所述壳体内伸出;所述排气管与所述壳体内部位于所述制冷剂分配器上侧的区域相连通。
进一步,所述制冷剂分配器的两端与所述壳体的内壁固定连接,所述制冷剂分配器与所述壳体之间连接一挡气板,所述挡气板上开设有出气孔。
一种制冷机组,包括如上所述的管壳式降膜蒸发器。
本发明的有益效果是:本发明的制冷机组的综合传热系数更大更高,传热效果更好。
图1为现有技术中全降膜式蒸发器的剖面结构示意图;
图2为现有技术中混合降膜式蒸发器的剖面结构示意图;
图3为本发明实施例混合降膜式蒸发器的剖面结构示意图;
图4为本发明实施例混合降膜式蒸发器另一种实施方式的剖面结构示意图。
附图中,各标号所代表的部件列表如下:
1、壳体;11、第一布管区;12、第二布管区;14、上流程降膜布管区;15、下流程降膜布管区;16、上流程布管区;17、下流程满液布管区;2、第一换热管;3、第二换热管;4、液位控制器;41、安装筒;42、控制器;5、进液管;6、排气管;7、制冷剂分配器;71、挡气板。
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
如图3和图4所示,本实施例的一种管壳式降膜蒸发器,包括壳体1,所述壳体1内填充有制冷剂,该蒸发器壳程走制冷剂,壳程数为1;管程走水,管程数为2,管程进水侧的水室内设置有管程分程隔板。壳体1内部上侧设置有制冷剂分配器7,制冷剂分配器7下方区域为换热管布管区,所述换热管布管区布置有管内走水的换热管,换热管布管区包括位于制冷剂分配器的下方的第一布管区11和位于第一布管区域11下方的第二布管区12,所述第一布管区11和第二布管区12之间留有间隙,所述间隙大于10mm;所述第一布管区11内设有水平布置的多根第一换热管2,所述第二布管区12内设有水平布置的多根第二换热管3,所述第一换热管2的外径小于所述第二换热管3的外径。本实施例的所述第一布管区和第二布管区之间的间隙实际为第一布管区最下端的第一换热管和第二布管区最上端的第二换热
管之间的距离。本实施例通过将第一换热管的外径设置成小于第二换热管的外径,使得第一换热管的周向长度更短,布管间隙更小,更有利于周向液膜在换热管管外表面的附着和成型,同时成膜厚度更加均匀连续,可以完全充分有效的利用第一布管区的有效传热面积,减少换热管局部干斑形成的几率,同时第一布管区最底层的换热管不容易干管,综合传热系数更大更高;第二布管区中,第二换热管的有效换热面积更大,在有限控制的制冷剂液位淹没区,相同数量的换热管,可以提供更多有效的换热面积,同时布管间隙更大,更有利于蒸发器产生的制冷剂气体的逸出,且逸出速度更小;本发明的第一布管区和第二布管区换热比较均衡,整体综合换热系数较好。
本实施例的所述第一换热管2的外径为9.52mm~25.4mm,所述第二换热管3的外径为12.7mm~28.6mm。例如,第一换热管2的外径为19.05mm,第二换热管3的外径为25.4mm;或者第一换热管2的外径为16mm,所述第二换热管3的外径为19.05mm。
本实施例的管壳式降膜蒸发器的另一实施方式,还包括用于调节壳体1内制冷剂液位的液位控制器4,所述液位控制器4固定连接在所述壳体1的外壁上。液位控制器4包括安装筒41和控制器42,所述控制器42安装在所述安装筒41的上方;所述安装筒41竖直布置,所述安装筒41的下端与所述第二布管区12相连通,所述安装筒41的上端与所述第一布管区11相连通。通过设置液位控制器,可有效合理控制制冷剂在蒸发器壳体内的液位和蒸发供液量,保证第二布管区上部的第二换热管不会干管,使得降膜蒸发器的有效传热面积能够更加有效的充分利用,综合传热系数就会更大更高,传热效果更好;同时也可对蒸发器壳体内液位和冷媒供液蒸发量进行有效控制,从而依据冷媒和润滑油的溶解特性,回油引射取液口位置可以精确的设计和确定位置,回油效果好,在提高换热效率的同时,也提高了机组回油性能。
如图3和图4所示,本实施例的蒸发器的壳体1呈圆筒状且水平放置,所述第一换热管2位于所述壳体1轴线所在水平面以上的区域,所述第二换热管3位于所述壳体1轴线所在水平面以下的区域;或者所述第一换热管2的一部分也位于所述壳体1轴线所在水平面以下的区域。第一布管区11最下部的第一换热管2和第二布管区12最上部的第二换热管3之间留有间隙,可使第二布管区内的制冷剂蒸汽快速排出,进而通过排气管排出。
如图3和图4所示,本实施例的所述壳体1与所述第一布管区11相对应的位置设有至少一根进液管5和至少一根排气管6。
本实施例的降膜蒸发器为混合降膜蒸发器,所述第二布管区12填充有制冷剂,所述制冷剂将所述第二换热管覆盖住,所述第一换热管2位于所述制冷剂液面以上,即第二布管区12为满液布管区。
如图3和图4所示,本实施例的所述壳体1内部上侧设有水平布置的制冷剂分配器7,
所述第一布管区11和第二布管区12均位于所述制冷剂分配器7的下方;所述进液管5的一端固定连接在所述制冷剂分配器7的上侧面上,其另一端从所述壳体1内伸出;所述排气管6与所述壳体1内位于所述制冷剂分配器7上侧的区域相连通。
如图3和图4所示,本实施例的所述制冷剂分配器7的两端与所述壳体1的内壁固定连接,所述制冷剂分配器7与所述壳体1之间连接一挡气板71,所述挡气板71上开设有出气孔。挡气板的形状不受限制,可以是矩形、圆形或椭圆形。
本实施例的管壳式降膜蒸发器主要用于冷水机组,壳程走制冷剂,管程走水。本实施例采用第一换热管的外径小于第二换热管的外径,使得第一布管区内的布管间隙和第二布管区的布管间隙不相同,小管径的换热管必然使得布管间隙较小,第一布管区的布管间隙更小,更有利于第一布管区在换热过程中,第一换热管的周向液膜在换热管管外表面的附着和成型,同时成膜厚度更加均匀连续,可以完全充分有效的利用第一布管区的有效传热面积,减少换热管局部干斑形成的几率,同时第一布管区最底层换热管不容易干管,综合传热系数更大更高,提高传热系数和传热效果。第二布管区的第二换热管相比第一换热管,单根第二换热管的有效换热面积更大,在有限控制的制冷剂液位淹没区,相同数量的第二换热管,可以提供更多有效的换热面积,同时布管间隙更大,更有利于蒸发器产生的制冷剂气体的逸出,且逸出速度更小。第一布管区和第二布管区的换热比较均衡,整体综合换热系数较好。
实施例2
本实施例的一种制冷机组,包括如实施例1所述的管壳式降膜蒸发器。本实施例的制冷机组,使得节流后的制冷剂从蒸发器顶部的进液管5进入到蒸发器壳程后,制冷剂吸热变成制冷剂蒸汽,再通过排气管6排出蒸发器进入压缩机吸气口,制冷剂相变过程中和换热管内的水发生热交换,使水的温度降低,从而制取冷水。
在制冷机组工作过程中,制冷剂在第一布管区的最佳状态时每根第一换热管上都有均匀铺设的液膜,无论是周向还是轴向都有连续的液膜存在,且液膜又不至于太厚或者太薄。液膜太厚,其导热热阻会增加,另外也会影响气液界面的制冷剂液体蒸发,从而降低综合传热系数;如果液膜太薄,则会加大局部干斑形成的几率,从而减少有效传热面积,恶化传热效果。本实施例通过合理设计第一换热管和第二换热管的外径大小,使得第一布管区的第一换热管上的液膜铺设均匀,同时也使第二布管区的制冷剂气体顺利快速逸出,不会滞留在第二布管区影响换热管传热,且制冷剂的逸出流速不会太大而产生吸气带液。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或
元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (9)
- 一种管壳式降膜蒸发器,包括壳体(1),所述壳体(1)内填充有制冷剂,所述壳体(1)内部上侧设置有制冷剂分配器(7),制冷剂分配器(7)的下方区域为换热管布管区;所述换热管布管区包括第一布管区(11)和第二布管区(12),所述第二布管区(12)位于所述第一布管区(11)下方,且第一布管区(11)和第二布管区(12)之间留有间隙;所述第一布管区(11)内设有水平布置的多根第一换热管(2),所述第二布管区(12)内设有水平布置的多根第二换热管(3),其特征在于,所述第一换热管(2)的外径小于所述第二换热管(3)的外径。
- 根据权利要求1所述一种管壳式降膜蒸发器,其特征在于,所述第一换热管(2)的外径为9.52mm~25.4mm,所述第二换热管(3)的外径为12.7mm~28.6mm。
- 根据权利要求1或2所述一种管壳式降膜蒸发器,其特征在于,还包括用于调节壳体(1)内制冷剂液位的液位控制器(4),所述液位控制器(4)固定连接在所述壳体(1)的外壁上。
- 根据权利要求1至3任一项所述一种管壳式降膜蒸发器,其特征在于,所述壳体(1)与所述第一布管区(11)相对应的位置设有至少一根进液管(5)和至少一根排气管(6)。
- 根据权利要求4所述一种管壳式降膜蒸发器,其特征在于,所述制冷剂将所述第二换热管(3)覆盖住,所述第一换热管(2)位于所述制冷剂液面以上。
- 根据权利要求5所述一种管壳式降膜蒸发器,其特征在于,所述第一布管区(11)和第二布管区(12)之间的间隙大于10mm。
- 根据权利要求6所述一种管壳式降膜蒸发器,其特征在于,所述进液管(5)的一端固定连接在所述制冷剂分配器(7)的上侧面上,其另一端从所述壳体(1)内伸出;所述排气管(6)与所述壳体(1)内部位于所述制冷剂分配器(7)上侧的区域相连通。
- 根据权利要求7所述一种管壳式降膜蒸发器,其特征在于,所述制冷剂分配器(7)的两端与所述壳体(1)的内壁固定连接,所述制冷剂分配器(7)与所述壳体(1)之间连接一挡气板(71),所述挡气板(71)上开设有出气孔。
- 一种制冷机组,其特征在于,包括如权利要求1至8任一项所述的管壳式降膜蒸发器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17871907.6A EP3542881A4 (en) | 2016-11-18 | 2017-06-22 | CASE FILM EVAPORATOR FROM TUBE TYPE AND WATER COOLING UNIT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611018863.7A CN106512454B (zh) | 2016-11-18 | 2016-11-18 | 一种管壳式降膜蒸发器和冷水机组 |
CN201611018863.7 | 2016-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018090625A1 true WO2018090625A1 (zh) | 2018-05-24 |
Family
ID=58353384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/089639 WO2018090625A1 (zh) | 2016-11-18 | 2017-06-22 | 一种管壳式降膜蒸发器和冷水机组 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3542881A4 (zh) |
CN (1) | CN106512454B (zh) |
WO (1) | WO2018090625A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112755557A (zh) * | 2021-02-07 | 2021-05-07 | 中国海洋石油集团有限公司 | 一种降膜蒸发装置及其分离方法 |
CN112944745A (zh) * | 2019-12-10 | 2021-06-11 | 珠海格力电器股份有限公司 | 布液器、降膜式换热器和空调器 |
CN113227697A (zh) * | 2018-12-19 | 2021-08-06 | 大金应用美国股份有限公司 | 热交换器 |
JP2021162282A (ja) * | 2020-04-03 | 2021-10-11 | 三菱重工サーマルシステムズ株式会社 | 蒸発器 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106512454B (zh) * | 2016-11-18 | 2018-11-23 | 重庆美的通用制冷设备有限公司 | 一种管壳式降膜蒸发器和冷水机组 |
CN108844260B (zh) * | 2018-07-25 | 2019-09-06 | 珠海格力电器股份有限公司 | 蒸发器及空调机组 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3635040A (en) * | 1970-03-13 | 1972-01-18 | William F Morris Jr | Ingredient water chiller apparatus |
CN201983533U (zh) * | 2010-09-03 | 2011-09-21 | 广东工业大学 | 气液分离式降膜蒸发器 |
CN202928212U (zh) * | 2012-11-05 | 2013-05-08 | 重庆美的通用制冷设备有限公司 | 全降膜式蒸发器及冷水机组 |
CN103900292A (zh) * | 2012-12-27 | 2014-07-02 | 麦克维尔空调制冷(武汉)有限公司 | 混合管降膜式蒸发器 |
CN103925749A (zh) * | 2013-12-30 | 2014-07-16 | 麦克维尔空调制冷(武汉)有限公司 | 一种降膜式蒸发器 |
CN106512454A (zh) * | 2016-11-18 | 2017-03-22 | 重庆美的通用制冷设备有限公司 | 一种管壳式降膜蒸发器和冷水机组 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH386394A (de) * | 1959-07-18 | 1965-01-15 | Unipektin Ag | Verdampfungskörper für Verdampfer |
US6293112B1 (en) * | 1999-12-17 | 2001-09-25 | American Standard International Inc. | Falling film evaporator for a vapor compression refrigeration chiller |
US6868695B1 (en) * | 2004-04-13 | 2005-03-22 | American Standard International Inc. | Flow distributor and baffle system for a falling film evaporator |
EP2457051A2 (en) * | 2009-07-22 | 2012-05-30 | Johnson Controls Technology Company | Compact evaporator for chillers |
CN102914097A (zh) * | 2012-11-05 | 2013-02-06 | 重庆美的通用制冷设备有限公司 | 全降膜式蒸发器及冷水机组 |
CN203798227U (zh) * | 2014-03-26 | 2014-08-27 | 广州市心德实业有限公司 | 一种水平管降膜蒸发器用换热管及换热结构 |
CN204787445U (zh) * | 2015-07-02 | 2015-11-18 | 重庆美的通用制冷设备有限公司 | 蒸发器和具有其的冷水机组 |
CN105387653B (zh) * | 2015-12-21 | 2018-02-06 | 重庆美的通用制冷设备有限公司 | 蒸发器及具有其的冷水机组 |
-
2016
- 2016-11-18 CN CN201611018863.7A patent/CN106512454B/zh active Active
-
2017
- 2017-06-22 WO PCT/CN2017/089639 patent/WO2018090625A1/zh unknown
- 2017-06-22 EP EP17871907.6A patent/EP3542881A4/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3635040A (en) * | 1970-03-13 | 1972-01-18 | William F Morris Jr | Ingredient water chiller apparatus |
CN201983533U (zh) * | 2010-09-03 | 2011-09-21 | 广东工业大学 | 气液分离式降膜蒸发器 |
CN202928212U (zh) * | 2012-11-05 | 2013-05-08 | 重庆美的通用制冷设备有限公司 | 全降膜式蒸发器及冷水机组 |
CN103900292A (zh) * | 2012-12-27 | 2014-07-02 | 麦克维尔空调制冷(武汉)有限公司 | 混合管降膜式蒸发器 |
CN103925749A (zh) * | 2013-12-30 | 2014-07-16 | 麦克维尔空调制冷(武汉)有限公司 | 一种降膜式蒸发器 |
CN106512454A (zh) * | 2016-11-18 | 2017-03-22 | 重庆美的通用制冷设备有限公司 | 一种管壳式降膜蒸发器和冷水机组 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3542881A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113227697A (zh) * | 2018-12-19 | 2021-08-06 | 大金应用美国股份有限公司 | 热交换器 |
CN112944745A (zh) * | 2019-12-10 | 2021-06-11 | 珠海格力电器股份有限公司 | 布液器、降膜式换热器和空调器 |
JP2021162282A (ja) * | 2020-04-03 | 2021-10-11 | 三菱重工サーマルシステムズ株式会社 | 蒸発器 |
CN112755557A (zh) * | 2021-02-07 | 2021-05-07 | 中国海洋石油集团有限公司 | 一种降膜蒸发装置及其分离方法 |
CN112755557B (zh) * | 2021-02-07 | 2024-05-24 | 中国海洋石油集团有限公司 | 一种降膜蒸发装置及其分离方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106512454A (zh) | 2017-03-22 |
EP3542881A1 (en) | 2019-09-25 |
EP3542881A4 (en) | 2019-10-23 |
CN106512454B (zh) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018090625A1 (zh) | 一种管壳式降膜蒸发器和冷水机组 | |
CN211120739U (zh) | 一种压缩气体冷冻式干燥机换热除水的结构 | |
WO2020125749A1 (zh) | 换热装置和具有该换热装置的热泵系统 | |
CN203083209U (zh) | 干式蒸发器 | |
CN207515281U (zh) | 一种蒸发器及制冷系统 | |
CN206207784U (zh) | 吸收式制冷单元内部换热组件、吸收式制冷单元及矩阵 | |
CN216159166U (zh) | 换热器和空调室内机 | |
CN207778874U (zh) | 冷凝器及换热系统 | |
JP2003314947A (ja) | 熱交換器ユニットおよび冷蔵庫 | |
CN205897640U (zh) | 片冰机蒸发器及片冰机 | |
CN217275709U (zh) | 一种液槽滴淋式降膜换热器 | |
CN108106090A (zh) | 热泵空调扰流蒸发器 | |
CN108120059A (zh) | 热泵机组扰流蒸发器 | |
CN108120082A (zh) | 热泵空调管壳蒸发器 | |
CN108106167A (zh) | 热泵空调扰流双系统管壳蒸发器 | |
CN108120077A (zh) | 热泵机组扰流单系统蒸发器 | |
CN108106093A (zh) | 热泵空调扰流管壳蒸发器 | |
CN108106163A (zh) | 热泵机组双系统蒸发器 | |
CN108106128A (zh) | 热泵机组扰流管壳蒸发器 | |
CN108106088A (zh) | 热泵机组管壳干式换热器 | |
CN108120115A (zh) | 热泵机组扰流双系统管壳蒸发器 | |
CN108106164A (zh) | 热泵机组管壳蒸发器 | |
CN108106462A (zh) | 热泵空调扰流单系统蒸发器 | |
CN116772461A (zh) | 一种用于分布器的分配板、蓄液式分布器和降膜式蒸发器 | |
CN108954933A (zh) | 热泵空调干式换热器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17871907 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017871907 Country of ref document: EP Effective date: 20190618 |