WO2015100931A1 - Oled显示面板及显示装置 - Google Patents

Oled显示面板及显示装置 Download PDF

Info

Publication number
WO2015100931A1
WO2015100931A1 PCT/CN2014/078711 CN2014078711W WO2015100931A1 WO 2015100931 A1 WO2015100931 A1 WO 2015100931A1 CN 2014078711 W CN2014078711 W CN 2014078711W WO 2015100931 A1 WO2015100931 A1 WO 2015100931A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
layer
display panel
oled display
Prior art date
Application number
PCT/CN2014/078711
Other languages
English (en)
French (fr)
Inventor
吴长晏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/429,691 priority Critical patent/US9881976B2/en
Publication of WO2015100931A1 publication Critical patent/WO2015100931A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • Embodiments of the present invention relate to an OLED display panel and a display device. Background technique
  • An Organic Light Emitting Diode (OLED) display is a display device that electrically excites a phosphor or a phosphor organic compound to emit light.
  • the OLED display drives a plurality of organic light emitting diode display images, each OLED includes an anode, an organic functional layer, and a cathode, and the organic functional layer generally includes an emission layer (EML), an electron transport layer (ETL), and a hole.
  • EML emission layer
  • ETL electron transport layer
  • HTL Hole Transport Layer
  • the red (R), green (G), and blue (B) light-emitting layers can be patterned, respectively.
  • a shadow mask can be used in the case of a small molecule OLED, and an ink jet printing method or a laser induced thermal imaging (LITI) method can be used in the case of a polymer OLED.
  • the organic layer can be finely patterned by the LITI method, and the LITI method can be used for a large area, and the LITI method has the advantage of high resolution.
  • the high PPI (Pixels per inch) display device is the main development direction of the current display device, and the high PPI OLED display panel must use the top emission structure.
  • An OLED production technology mainly uses a fine metal mask (FMM) and a side by side method to realize a full color display of an OLED. Summary of the invention
  • the pixel unit of the OLED display panel includes a first sub-pixel displaying a first color, a second sub-pixel displaying a second color, and a third sub-pixel displaying a third color, each pixel unit including an anode layer, a cathode layer, and An organic functional layer disposed between the anode layer and the cathode layer;
  • the functional layer includes: a first luminescent layer covering at least two adjacent sub-pixels including the first sub-pixel; a charge blocking layer covering the second sub-pixel and the third sub-pixel; And covering at least two adjacent sub-pixels including the third sub-pixel; and covering at least two adjacent sub-pixels in a region where the first sub-pixel and the second sub-pixel are located The third luminescent layer of the pixel.
  • At least one embodiment of the present invention also provides a display device comprising the OLED display panel as described above.
  • FIG. 1 is a schematic structural view of an OLED display panel
  • FIG. 2 is a schematic view of fabricating a light-emitting layer using an FMM using a larger opening
  • 3 is a schematic diagram showing the size of LUMO levels of each of the light-emitting layer and the charge blocking layer in the first embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an OLED display panel according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram showing the size of HOMO levels of each of the light-emitting layer and the charge blocking layer in Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of an OLED display panel according to Embodiment 2 of the present invention. detailed description
  • each pixel unit includes a first sub-pixel, a second sub-pixel, and a third sub-pixel having three lights emitting different colors, which are simultaneously fabricated in the first sub-pixel and the second sub-pixel.
  • the light-emitting layer of two colors such as R and G
  • the different thicknesses of the two sub-pixels as shown in FIG. 1 , the thickness of the ITO anode of the first sub-pixel is larger than the thickness of the ITO anode of the second sub-pixel
  • the effect extracts one of the colors (eg, the first sub-pixel extracts red, the second sub-pixel extracts green), and then a third color (eg, B) luminescent layer can be formed throughout the pixel region.
  • the color shift is very serious as the viewing angle is changed, and the luminous efficiency of the two color light-emitting layers produced at the same time is lost.
  • the FMM is used to simultaneously vaporize the light-emitting layers of the same color sub-pixels in different pixels (as shown in FIG. 2, the blue pixel mask with a larger opening is different at the same time) A blue light-emitting layer is evaporated in the pixel).
  • the order of sub-pixels in different pixels may be inconsistent (as in the arrangement order of different color sub-pixels in the first pixel 10 and the second pixel 20 in FIG. 2), resulting in lines when the screen is displayed. Discontinuous sawtooth image.
  • At least one embodiment of the present invention provides an OLED display panel and a display device capable of increasing the pixel density of an OLED display panel without changing the accuracy of the FMM.
  • the pixel unit of the OLED display panel includes a first sub-pixel displaying a first color, a second sub-pixel displaying a second color, and a third sub-pixel displaying a third color.
  • Each of the pixel units includes an anode layer, a cathode layer, and an organic functional layer disposed between the anode layer and the cathode layer.
  • the organic functional layer includes:
  • a first light emitting layer covering at least two adjacent sub-pixels including the first sub-pixel;
  • a charge blocking layer covering the second sub-pixel and the third sub-pixel, the charge blocking layer being used for Blocking charges on adjacent sides thereof from passing through the charge blocking layer;
  • a third luminescent layer covering at least two adjacent sub-pixels including the third sub-pixel.
  • the host material of the charge blocking layer, the main illuminant material of the third luminescent layer, the main illuminant material of the second luminescent layer, and the LUMO of the main illuminant material of the first luminescent layer (The Lowest Unoccupied Molecular Orbital, the track with the lowest energy level of the electrons, ie the lowest unoccupied orbit) has a lower energy level.
  • the optical thickness of the first sub-pixel ⁇ ⁇ , the second subpixel ⁇ 2 and the optical thickness of the optical thickness of the third sub-pixel ⁇ 3 satisfies the following relationship:
  • the optical thickness of each sub-pixel refers to the sum of the thicknesses of the functional layers in each sub-pixel; and, ⁇ 2 , ⁇ 3 represent the first color light, the second color light, and the third color light, respectively.
  • Wavelengths; ⁇ , ⁇ 2 , ⁇ 3 respectively represent refractive indices of the functional layer materials in the respective sub-pixels under the conditions of the first color light, the second color light, and the third color light.
  • the main illuminant material of the first luminescent layer, the main illuminant material of the second luminescent layer, and the main illuminant material of the third luminescent layer and the host material of the charge blocking layer are HOMO (Highest) Occupied Molecular Orbital, which has the highest energy level of the electrons, ie the highest occupied orbit, has a lower energy level.
  • the optical thickness of the first sub-pixel ⁇ ⁇ , the second subpixel ⁇ 2 and the optical thickness of the optical thickness of the third sub-pixel ⁇ 3 satisfies the following relationship:
  • the optical thickness of each sub-pixel refers to the sum of the thicknesses of the functional layers in each sub-pixel; ⁇ 2 and ⁇ 3 represent the wavelengths of the first color light, the second color light, and the third color light, respectively; ⁇ , ⁇ 2 , and ⁇ 3 respectively represent refractive indices of the organic functional layer material in the sub-pixel under the conditions of the first color light, the second color light, and the third color light.
  • the optical thickness of the sub-pixel is the thickness of the organic functional layer of the sub-pixel, such as the first sub-pixel.
  • the optical thickness ⁇ is the thickness of the organic functional layer of the first sub-pixel.
  • Other sub-pixels are similar and will not be described again.
  • an optical thickness of the sub-pixel is a sum of a thickness of the organic functional layer of the sub-pixel and a thickness of the transparent conductive layer (a translucent layer may be referred to) .
  • the optical thickness ⁇ of the first sub-pixel is the sum of the thickness of the organic functional layer of the first sub-pixel and the thickness of the transparent conductive layer.
  • the transparent conductive layer may be a transparent conductive oxide layer (TCO), such as indium tin oxide (ITO), indium oxide (IZO), aluminum oxide (AZO), fluorine doping. Miscellaneous tin oxide (FTO) and so on.
  • TCO transparent conductive oxide layer
  • ITO indium tin oxide
  • IZO indium oxide
  • AZO aluminum oxide
  • FTO fluorine doping.
  • the transparent conductive layer may be used as a cathode electrode layer or a cathode electrode layer, or a part of the electrode layer, or may be used as a thickness adjustment layer.
  • the first luminescent layer, the charge blocking layer, the second luminescent layer, and the third luminescent layer may each cover at least two sub-pixels, so that the FMM is minimized when the luminescent layer is fabricated by using the FMM.
  • the opening may have at least two sub-pixel regions large, so that the pixel density of the OLED display panel can be improved without changing the precision of the FMM. That is, the OLED display panel provided by at least one embodiment of the present invention can evaporate at least twice the luminescent layer by one process, and can cause each sub-pixel to emit light of a specific color, so that a larger opening can be used.
  • the MM display panel is made of FMM with lower precision. If the FMM with the same precision is used, the PPI of the panel can be doubled.
  • the OLED display panel of at least one embodiment of the present invention further optimizes the energy level of the main body luminescent material of each luminescent layer and the thickness of each sub-pixel, so that each sub-pixel emits light of a specific color, further avoiding the occurrence of color Bias, and does not lose luminous efficiency, improving picture quality.
  • the OLED display panel of at least one embodiment of the present invention does not change the order of the sub-pixels, and does not affect the screen display.
  • the values of LUMO and HOMO are generally negative values.
  • the higher the energy level is defined the higher the energy level is from the vacuum level, and the lower the energy level is, the lower the energy level is.
  • the HOMO energy level is lowered in turn, which means that the absolute value of the HOMO energy level is sequentially increased; similarly, the LUMO energy level is "decreased sequentially" means that the absolute value of the LUMO energy level is sequentially increased.
  • only the LUMO energy level of the main illuminant material of each luminescent layer is limited, or the HOMO energy of the main illuminant material of each luminescent layer is simply limited.
  • the LUMO energy level and the HOMO energy level of the main illuminant material of each luminescent layer may be limited by considering the relationship between holes and electrons within a specific sub-pixel.
  • the illuminating layer of a specific color corresponding thereto is recombined to form an exciton, so that the inside of a specific sub-pixel emits light of a specific color.
  • the main illuminant material of the first luminescent layer in the first sub-pixel, the main illuminant material of the first luminescent layer, the second luminescent layer Primary illuminant material and main illuminant material of said third luminescent layer and main body of said charge blocking layer
  • the HOMO energy level of the bulk material is sequentially decreased; and in the second sub-pixel, the host material of the charge blocking layer, the main illuminant material of the third luminescent layer, the main illuminant material of the second luminescent layer, and
  • the LUMO energy level of the main illuminant material of the first luminescent layer is sequentially lowered.
  • the OLED display panel may sequentially include: the first luminescent layer covering the entire pixel unit; and the charge blocking layer covering the second sub-pixel and the third sub-pixel a second luminescent layer covering the first sub-pixel and the second sub-pixel; covering the third luminescent layer of the entire pixel unit.
  • the OLED display panel may include: a first luminescent layer covering the entire pixel unit; the charge blocking layer covering the second sub-pixel and the third sub-pixel; The second sub-pixel and the second illuminating layer of the second sub-pixel; covering the third illuminating layer of the second sub-pixel and the third sub-pixel.
  • the OLED display panel may include: the first illuminating layer covering the first sub-pixel and the second sub-pixel; covering the second sub-pixel and The charge blocking layer of the third sub-pixel; the second light-emitting layer covering the first sub-pixel and the second sub-pixel; covering the third light-emitting layer of the entire pixel unit.
  • the OLED display panel may sequentially include: the first illuminating layer covering the first sub-pixel and the second sub-pixel; covering the second sub-pixel and the The charge blocking layer of the third sub-pixel; the second light-emitting layer covering the first sub-pixel and the second sub-pixel; covering the second sub-pixel and the third sub-pixel The third luminescent layer.
  • the optical thickness of the first sub-pixel, the optical thickness ⁇ 2 of the second sub-pixel, and the optical thickness ⁇ 3 of the third sub-pixel satisfy the following relationship: lJ ⁇ / T ⁇ .O;
  • an OLED display panel may include: a transparent or translucent anode layer; a hole transport layer on the semi-transmissive anode layer; the first on the hole transport layer a light emitting layer; the charge blocking layer on the first light emitting layer; the second light emitting layer on the charge blocking layer; the third light emitting layer on the second light emitting layer; An electron transport layer on the light emitting layer; a metal cathode layer on the electron transport layer.
  • the OLED display panel may include: transparent or half a transparent anode layer; a hole transport layer on the semi-transmissive anode layer; the third light-emitting layer on the hole transport layer; the second light-emitting layer on the third light-emitting layer; The charge blocking layer on the second light emitting layer; the first light emitting layer on the charge blocking layer; the electron transport layer on the first light emitting layer; and the metal cathode layer on the electron transport layer.
  • At least one embodiment of the present invention also provides a display device comprising the OLED display panel as described above.
  • the structure and working principle of the OLED display panel are the same as those of the above embodiment, and will not be described herein.
  • the structure of other parts of the display device can be referred to the prior art, and will not be described in detail herein.
  • the display device can be: a product or a component having any display function such as an electronic paper, a television, a display, a digital photo frame, a mobile phone, a tablet, or the like.
  • the OLED display panel includes a first sub-pixel displaying blue, a second sub-pixel displaying red, and a third sub-pixel displaying green.
  • the OLED display panel includes an anode layer, a cathode layer, and an organic layer.
  • Functional layer includes a layer structure: covering at least two adjacent sub-pixels including a first sub-pixel, and a first light-emitting layer (EML1) for emitting blue light;
  • CBL charge blocking layer
  • EML2 second luminescent layer
  • EML3 green light Light-emitting layer
  • the LUMO levels of the first luminescent layer, the second luminescent layer, the third luminescent layer, and the charge blocking layer are all negative, and the LUMO level of the first luminescent layer is lower than the LUMO level of the second luminescent layer.
  • the LUMO energy level of the second light-emitting layer is lower than the LUMO energy level of the third light-emitting layer, and the LUMO energy level of the third light-emitting layer is lower than the LUMO energy level of the charge-blocking layer; and the optical thickness of the first sub-pixel is The optical thickness T 2 of the second sub-pixel and the optical thickness ⁇ 3 of the third sub-pixel satisfy the following relationship:
  • ⁇ 2 , ⁇ 3 represent wavelengths of the first color light, the second color light, and the third color light, respectively; ⁇ , ⁇ 2 , ⁇ 3 respectively represent the organic functional layer material of the sub-pixel in the first color light, Two colors The refractive index under the conditions of light and third color light.
  • the OLED display panel may include: an anode layer; a hole transport layer on the anode layer; a first light-emitting layer covering the first sub-pixel and the second sub-pixel; and covering the second sub-pixel And a charge blocking layer of the third sub-pixel; a second light-emitting layer covering the first sub-pixel and the second sub-pixel; a third light-emitting layer covering the second sub-pixel and the third sub-pixel; and electron transport on the third light-emitting layer Layer; a transparent or translucent cathode layer on an electron transport layer.
  • the transparent cathode layer can be made of a transparent conducting oxide (TCO), and the semi-transparent cathode layer can be made thin by a metal to achieve a semi-transmissive shape.
  • TCO transparent conducting oxide
  • electrons move from the cathode layer to the anode layer, and electrons easily transition from a light-emitting layer having a higher LUMO level to a light-emitting layer having a lower LUMO level, but are not easily removed from the LUMO level.
  • the lower luminescent layer transitions to the luminescent layer with a higher LUMO level, and the electrons stay in a certain luminescent layer and recombine with the holes to form an exciton and emit light.
  • the LUMO energy level of the EML3 is higher than the LUMO energy level of the EML2
  • the LUMO energy level of the CBL is higher than the LUMO energy level of the EML2, so electrons are easily transmitted from the EML3 to the EML2, and are subjected to the CBL level.
  • the electrons will be limited to EML2 to illuminate EML2 to emit red light, so that the second sub-pixel displays red light.
  • the third sub-pixel region since the LUMO energy level of the EML3 is lower than the LUMO energy level of the CBL, electrons are not easily passed through the CBL, and the electrons are confined to the EML3 excitation EML3 to emit green light, so that the third sub-pixel displays green. Light.
  • the OLED display panel can use a top emission structure, that is, a semi-transparent electrode for the top layer, which can ensure the emitted light, and its light color and efficiency are desired.
  • a top emission structure that is, a semi-transparent electrode for the top layer, which can ensure the emitted light, and its light color and efficiency are desired.
  • the optical behavior of OLEDs with top-emitting structures can be calculated based on wavefront optical standing wave conditions:
  • is the phase difference caused by the mirror; ⁇ is the ambient refractive index, indicating the same material, and different refractive indices are felt under different wavelengths of light; L is the cavity length (optical of each sub-pixel) Thickness); ⁇ is the angle; ⁇ is the wavelength; m is an integer.
  • the first sub-pixel and the second sub-image of different colors are displayed.
  • the optical thickness of the prime and the third sub-pixel are optimized for thickness, and the ratio of the length of the resonant cavity optimized for different light colors is the ratio of ⁇ / ⁇ , namely:
  • ⁇ 1: ⁇ 2 : ⁇ 3 ( j / nj ) : ( ⁇ 2 / ⁇ 2 ): ( ⁇ 3 / ⁇ 3 ) ( II ) .
  • the first sub-pixel displays blue
  • the second sub-pixel displays red
  • the third sub-pixel displays green
  • the red R peak is 600 ⁇ 620nm
  • the green light G peak is 520 ⁇ 530nm
  • the blue light B peak is 450nm ⁇ 465nm.
  • the refractive indices of the different wavelengths of light are different; in the case of the same material, the blue and green light have a refractive index greater than the red light.
  • the optimized thickness design of the OLED display panel in this embodiment can be obtained as follows:
  • the OLED display panel 4 the optical thickness of the first sub-pixel Tl, the second sub-pixel optical thickness ⁇ 2, the optical thickness of the third sub-pixel ⁇ 3, a first light emitting ⁇ ⁇ 1 film thickness of the layer, the film thickness of ⁇ ⁇ 2 second light emitting layer, the relationship between the film thickness also exists ⁇ ⁇ 3 a thickness T c and a charge blocking layer of the third light-emitting layer:
  • T 2 -Ti T E3 +T C (V) ;
  • ⁇ 2 - ⁇ 3 ⁇ ⁇ 1 + ⁇ ⁇ 2 (VI) .
  • the top layer is made of a translucent electrode, the optical effect is very intense, which is called a microcavity effect, and the film thickness has a strong influence on the light color, and the above optimized thickness design can Ensure that there is no color mixing and color shift at a larger viewing angle.
  • each functional layer of the conventional OLED device especially the device having the microcavity effect is particularly obvious
  • the thickness needs to be independently adjusted according to the color requirement of each sub-pixel, and the OLED display panel of the top emission structure provided in this embodiment is provided.
  • the thickness of a functional layer is related to and affects other functional layers and other sub-pixels, so the adjustment of the thickness of each functional layer is complicated.
  • the thickness range of each functional layer is also provided in the embodiment, as described below.
  • each functional layer is, for example:
  • the thickness T E3 of the third luminescent layer ranges from: (OJTrTc) ⁇ T E3 ⁇ ( T Tc ) ; the thickness T c of the charge blocking layer ranges from: (3/13T 2 -T E3 ) ⁇ T c ⁇ (0.5T 2 -T E3 );
  • the thickness T E2 range of the second light emitting layer is: (2 / 13T 2 - ⁇ ⁇ 1 ) ⁇ ⁇ 2 ⁇ (1/4 ⁇ 2 - ⁇ ⁇ 1); ⁇ ⁇ 1 thickness range of the first light-emitting layer: ( 2/11 ⁇ 3 - ⁇ ⁇ 2 ) ⁇ ⁇ 1 ⁇ ( 1/3 ⁇ 3 - ⁇ ⁇ 2 ).
  • one FMM opening corresponds to one sub-pixel region, and the pixel density of the OLED display panel is limited due to the limited precision of the FMM.
  • the first luminescent layer, the charge blocking layer, the second luminescent layer, and the third luminescent layer each cover at least two sub-pixels, such that when the luminescent layer is fabricated using FMM, the FMM
  • the minimum opening can have at least two sub-pixel areas large, thereby enabling the pixel density of the OLED display panel to be doubled without changing the FMM.
  • the OLED display panel of at least one embodiment of the present invention does not rely on optical effects to take out a certain color, and does not lose the luminous efficiency of the luminescent layer, and does not cause color shift problems.
  • the OLED display panel of at least one embodiment of the present invention also does not need to change the order of arrangement of sub-pixels, and does not affect the screen display. Moreover, in at least one embodiment of the present invention, the thickness of the sub-pixels of different colors is optimized to further ensure that the color shift problem does not occur under a large viewing angle.
  • the OLED display panel is not limited to the structure shown in FIG.
  • the first illuminating layer may cover only the first sub-pixel and the second sub-pixel in addition to the entire pixel unit;
  • the third illuminating layer may cover the entire sub-pixel and the third sub-pixel, a pixel unit;
  • the second luminescent layer covers only the first sub-pixel and the second sub-pixel;
  • the charge blocking layer covers only the second sub-pixel and the third sub-pixel.
  • the first sub-pixel is not limited to displaying blue
  • the second sub-pixel is not limited to displaying red
  • the third sub-pixel is not limited to displaying green as long as the first sub-pixel, the second sub-pixel, and the third sub-pixel are displayed.
  • Different colors and one of red, green and blue colors can be displayed.
  • the colors displayed by the three sub-pixels are not limited to red, green, and blue, and may be, for example, white, yellow, or the like.
  • an optimized thickness of each sub-pixel may be corresponding to the first luminescent layer, the second luminescent layer, and the third illuminating embodiment 2 according to the present invention.
  • the pixel unit of the OLED display panel of the embodiment includes a first sub-pixel displaying a first color, a second sub-pixel displaying a second color, and a third sub-pixel displaying a third color, wherein the pixel of the OLED display panel
  • the unit includes an anode layer, a cathode layer, and a layer disposed between the anode layer and the cathode layer
  • the functional layer of the machine, the organic functional layer comprises the following layer structure:
  • EML1 first luminescent layer
  • CBL charge blocking layer
  • EML2 second luminescent layer
  • EML3 green light Light-emitting layer
  • the HOMO levels of the first luminescent layer, the second luminescent layer, the third luminescent layer, and the charge blocking layer are all negative, and the HOMO level of the first luminescent layer is higher than the HOMO level of the second luminescent layer.
  • the HOMO level of the second luminescent layer is higher than the HOMO level of the third luminescent layer
  • the HOMO level of the third luminescent layer is higher than the HOMO level of the charge blocking layer
  • the optical thickness T of the first sub-pixel 1 The optical thickness T 2 of the second sub-pixel and the optical thickness ⁇ 3 of the third sub-pixel satisfy the following relationship:
  • ⁇ 2 , ⁇ 3 represent wavelengths of the first color light, the second color light, and the third color light, respectively;
  • ⁇ , ⁇ 2 , ⁇ 3 are ambient refractive indices, respectively representing the organic functional layer material of the sub-pixel region The refractive index under the conditions of the first color light, the second color light, and the third color light.
  • the OLED display panel may include: an anode layer; a hole transport layer on the anode layer; and a second sub-pixel and the first layer on the hole transport layer
  • the transparent cathode layer can be made of a transparent conducting oxide (Transparent conducting oxide,
  • the translucent cathode layer can be made of a thin metal to achieve a semi-transmissive shape.
  • holes move from the anode layer to the cathode layer, and holes are easily transitioned from a light emitting layer having a lower HOMO level to a light emitting layer having a higher HOMO level, but are less likely to have a higher HOMO level.
  • the light-emitting layer transitions to a light-emitting layer having a lower HOMO level, and when the hole stays in a certain light-emitting layer and meets the electron, the light-emitting layer is excited to emit light.
  • the holes cannot pass through the CBL, so the holes will stay in the EML3 excitation EML3 to emit green light, thereby causing the third sub-pixel to be displayed. Green light.
  • the OLED display panel can adopt a top emission structure, that is, the top layer can be used to ensure that the light is emitted, and the color and efficiency are desired.
  • the optical behavior of OLEDs with top-emitting structures can be calculated based on wavefront optical standing wave conditions:
  • the optical thicknesses of the first sub-pixel, the second sub-pixel, and the third sub-pixel of different colors are displayed for thickness optimization, and the ratio of the length of the resonant cavity optimized for different light colors is ⁇ / ⁇ ratio. , which is:
  • ⁇ 1: ⁇ 2 : ⁇ 3 ( j / nj ) : ( ⁇ 2 / ⁇ 2 ): ( ⁇ 3 / ⁇ 3 ) ( II ) .
  • the first sub-pixel displays blue
  • the second sub-pixel displays red
  • the third sub-pixel displays green
  • the red R peak is 600 ⁇ 620nm
  • the green light G peak is 520 ⁇ 530nm
  • the blue light B peak is 450nm ⁇ 465nm.
  • the refractive index of a typical material will have different responses for different wavelengths: blue light is about 1 to 1.5 times that of red light, and green light is about 1 to 1.3 times that of red light.
  • the optimized thickness design of the OLED display panel in this embodiment can be obtained as follows:
  • the light of the first sub-pixel Science thickness Tl, the second sub-pixel optical thickness ⁇ 2, the optical thickness of the third sub-pixel ⁇ 3, the film thickness of the first light-emitting layer ⁇ ⁇ 1 thickness of ⁇ ⁇ 2 second light emitting layer, the light emitting layer of the third film The following relationship exists between the thick tantalum ⁇ 3 and the film thickness T c of the charge blocking layer:
  • T 2 -Ti T E3 +T C ( V ) ;
  • T 2 -T 3 ⁇ ⁇ 1 + ⁇ ⁇ 2 ( VI ).
  • the top layer is made of a translucent electrode, the optical effect is very intense, which is called a microcavity effect.
  • the film thickness has a strong influence on the color of the light, and the optimized thickness design as described above can Ensure that there is no color mixing and color shift at a larger viewing angle.
  • each functional layer of the conventional OLED device since the thickness of each functional layer of the conventional OLED device (especially the device having the microcavity effect is particularly obvious), it is necessary to independently adjust the thickness according to the color requirement of each sub-pixel, and the OLED display panel of the top emission structure provided by the embodiment,
  • the thickness of each functional layer is related to and affects other functional layers and other sub-pixels, so the adjustment of the thickness of each functional layer is complicated.
  • the thickness range of each functional layer is also provided in this embodiment, as described below.
  • each functional layer is, for example:
  • the thickness T E3 of the third luminescent layer ranges from: (OJTrTc ) ⁇ T E3 ⁇ ( T Tc ) ; the thickness T c of the charge blocking layer ranges from: (3/13 T 2 -T E3 ) ⁇ T c ⁇ (0.5T 2 - T E3) ; said thickness T E2 range of the second light emitting layer is: (2 / 13T 2 - ⁇ ⁇ 1 ) ⁇ ⁇ 2 ⁇ (1/4 ⁇ 2 - ⁇ ⁇ 1); the first The thickness of a light-emitting layer ⁇ ⁇ 1 ranges from: ( 2/11 ⁇ 3 - ⁇ ⁇ 2 ) ⁇ ⁇ ⁇ 1 ⁇ ( 1/3 ⁇ 3 - ⁇ ⁇ 2 ).
  • the cathode is transparent or translucent.
  • the optical thickness of the sub-pixel is the sub-pixel.
  • the optical thickness of the first sub-pixel is the sum of the thickness of the organic functional layer of the first sub-pixel region and the thickness of the cathode layer, that is, the optical thickness ⁇ of the first sub-pixel is the thickness of the hole transport layer, The sum of the thickness of the first light-emitting layer, the thickness of the second light-emitting layer, the thickness of the electron transport layer, and the thickness of the cathode layer.
  • the optical thickness ⁇ 2 of the second sub-pixel is the thickness of the hole transport layer, the thickness of the first luminescent layer, the thickness of the charge blocking layer, the thickness of the second luminescent layer, the thickness of the third luminescent layer, and the thickness of the electron transport layer.
  • the optical thickness ⁇ 3 of the third sub-pixel is the sum of the thickness of the hole transport layer, the thickness of the charge blocking layer, the thickness of the third light-emitting layer, the thickness of the electron transport layer, and the thickness of the cathode layer.
  • the first luminescent layer, the charge blocking layer, the second luminescent layer, and the third luminescent layer each cover at least two sub-pixels, such that when the luminescent layer is fabricated using the FMM, the FMM
  • the minimum opening can have at least two sub-pixel areas large, thereby enabling the pixel density of the OLED display panel to be doubled without changing the FMM.
  • the OLED display panel of at least one embodiment of the present invention does not rely on optical effects to take out a certain color, and does not lose the luminous efficiency of the luminescent layer, and does not cause color shift problems.
  • the OLED display panel of at least one embodiment of the present invention also does not change the order of arrangement of sub-pixels, and does not affect the screen display. Moreover, in at least one embodiment of the present invention, the thickness of the sub-pixels of different colors in the OLED display panel is optimized to further ensure that the color mixing and color shift problems do not occur under a large viewing angle.
  • the OLED display panel of at least one embodiment of the present invention is not limited to the structure shown in FIG. 6.
  • the first illuminating layer may cover only the first sub-pixel and the a second sub-pixel; the third illuminating layer may cover the entire pixel unit in addition to the second sub-pixel and the third sub-pixel; the second illuminating layer covers only the first sub-pixel and the second sub-pixel; the charge blocking layer only covers The second sub-pixel and the third sub-pixel.
  • the first sub-pixel is not limited to displaying blue
  • the second sub-pixel is not limited to displaying red
  • the third sub-pixel is not limited to displaying green as long as the first sub-pixel, the second sub-pixel, and the third sub-pixel are displayed. Different colors and one of red, green and blue colors can be displayed.
  • an optimized thickness of each sub-pixel may be according to a specific structure of the first luminescent layer, the second luminescent layer, the third luminescent layer, and the charge blocking layer. Combined with the above formula I, ⁇ calculated.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示面板及显示装置,该OLED显示面板的像素单元包括第一子像素、第二子像素和第三子像素,还包括阳极层、阴极层及有机功能层。该有机功能层包括:覆盖包括该第一子像素在内的至少两个相邻子像素的第一发光层;覆盖该第二子像素和该第三子像素的电荷阻挡层;设置在该第一子像素和该第二子像素所在的区域中,且至少覆盖该第二子像素的第二发光层;覆盖包括该第三子像素在内的至少两个相邻子像素的第三发光层。该OLED显示面板能够提升像素密度。

Description

OLED显示面板及显示装置 技术领域
本发明的实施例涉及一种 OLED显示面板及显示装置。 背景技术
有机发光二极管 (Organic Light Emitting Diode, OLED )显示器是一种 电激发荧光体或磷光体有机化合物来发光的显示器件。 OLED显示器驱动多 个有机发光二极管显示图像, 每个 OLED包括阳极、 有机功能层和阴极, 有 机功能层通常包括发光层(Emission Layer, EML ) 、 电子传输层(Electron Transport Layer, ETL )和空穴传输层( Hole Transport Layer, HTL ) , 能够 改善注入的电子和空穴之间的平衡, 从而提高发光效率。
在 OLED中, 为了显示全部色域, 例如可分别将红色(R )、 绿色(G ) 和蓝色 (B )发光层图案化。 为了将发光层图案化, 可在小分子 OLED的情 况下使用阴影掩膜 ( shadow mask ) , 可在聚合物 OLED的情况下使用喷墨 打印法或激光诱导热成像( LITI )法。通过 LITI法可将有机层精细地图案化, 对于大面积可使用 LITI法, 并且 LITI法的优势在于高分辨率。
高 PPI ( Pixels per inch, 每英寸所拥有的像素数目)显示器件为目前显 示装置的主要发展方向, 且高 PPI的 OLED显示面板必须使用顶发射结构。 一种 OLED生产技术主要是使用精细金属掩膜 ( fine metal mask, FMM )和 像素并置法( side by side ) 实现 OLED的全彩化显示。 发明内容
本发明的至少一实施例提供一种 OLED显示面板及显示装置, 能够在
FMM精度不变的情况下, 提升 OLED显示面板的像素密度, 且无发光效率 的损失, 也无视角色偏问题。
所述 OLED显示面板的像素单元包括显示第一颜色的第一子像素、显示 第二颜色的第二子像素和显示第三颜色的第三子像素, 每个像素单元包括阳 极层、 阴极层及设置于所述阳极层和所述阴极层之间的有机功能层; 所述有 机功能层包括: 覆盖包括所述第一子像素在内的至少两个相邻子像素的第一 发光层; 覆盖所述第二子像素和所述第三子像素的电荷阻挡层; 设置在所述 第一子像素和所述第二子像素所在的区域中, 且至少覆盖所述第二子像素的 第二发光层; 覆盖包括所述第三子像素在内的至少两个相邻子像素的第三发 光层。
本发明的至少一实施例还提供一种显示装置, 包括如上所述的 OLED显 示面板。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为一种 OLED显示面板的结构示意图;
图 2为一种利用一较大开口使用 FMM制作发光层的示意图;
图 3为本发明实施例一中各发光层以及电荷阻挡层的 LUMO能级的大小 示意图;
图 4为本发明实施例一的 OLED显示面板的结构示意图;
图 5为本发明实施例二中各发光层以及电荷阻挡层的 HOMO能级的大 小示意图;
图 6为本发明实施例二的 OLED显示面板的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
精细金属掩膜 (FMM)技术存在许多难点, 如掩膜板的制作、 清洗等问 题以及制程时 FMM的对位、 膨胀等问题, 这些问题使得显示屏混色现象严 重、生产良率低、制造成本昂贵。 FMM的精度控制困难,使得高 PPI的 OLED 难以实现。 另外, 又由于顶发射结构的光学效应较复杂, 故在结构设计上产 生了更多难点。
为了提高像素的密度, 目前主要釆用以下两种方案:
1、如图 1所示,每个像素单元包括具有三个发射不同颜色的光的第一子 像素、 第二子像素和第三子像素, 先在第一子像素和第二子像素同时制作两 个颜色(如 R和 G )的发光层, 再利用两个子像素的不同厚度(如图 1中所 示第一子像素的 ITO阳极厚度大于第二子像素的 ITO阳极厚度), 以微腔效 应萃取出其中一色 (如第一子像素萃取出红色, 第二子像素萃取出绿色) , 之后可以在整个像素区域都形成第三种颜色(如 B ) 的发光层。 但是此种方 式制作的 OLED显示器件, 随着视角的变换, 色偏情况非常严重, 而且同时 制作的两个颜色的发光层的发光效率也会损失掉一部分。
2、 如图 2所示, 利用一较大开口, 使用 FMM同时蒸镀不同像素中相同 颜色子像素的发光层(如图 2所示, 釆用开口较大的蓝色像素掩膜同时在不 同像素中蒸镀出蓝色发光层) 。 但是, 釆用此种方式会造成不同的像素中子 像素的排列顺序不一致(如图 2中第一像素 10与第二像素 20中不同颜色子 像素的排列顺序不同) , 导致画面显示时产生线条不连续的锯齿图像。
本发明的至少一实施例提供一种 OLED显示面板及显示装置, 能够在 FMM精度不变的情况下, 提升 OLED显示面板的像素密度。
所述 OLED显示面板的像素单元包括显示第一颜色的第一子像素、显示 第二颜色的第二子像素和显示第三颜色的第三子像素。 所述每个像素单元包 括阳极层、 阴极层和设置于阳极层和阴极层之间的有机功能层。 所述有机功 能层包括:
覆盖包括所述第一子像素在内的至少两个相邻子像素的第一发光层; 覆盖所述第二子像素和所述第三子像素的电荷阻挡层, 所述电荷阻挡层 用于阻挡其相邻两侧的电荷通过所述电荷阻挡层;
仅设置在所述第一子像素和所述第二子像素所在的区域中, 且至少覆盖 所述第二子像素的第二发光层;
覆盖包括所述第三子像素在内的至少两个相邻子像素的第三发光层。 所述电荷阻挡层的主体材料、 所述第三发光层的主发光体材料、 所述第 二发光层的主发光体材料和所述第一发光层的主发光体材料的 LUMO ( Lowest Unoccupied Molecular Orbital, 未占有电子的能级最低的轨道, 即最 低未占轨道) 能级依次降低。
进一步地, 所述第一子像素的光学厚度 Ί\、 所述第二子像素的光学厚度 Τ2和所述第三子像素的光学厚度 Τ3满足以下关系:
Tj: T2: Τ3= ( j/nj ) : (λ22): ( λ33),
其中, 各子像素的光学厚度是指, 在每个子像素中的各功能层的厚度之 和; 并且, 、 λ2、 λ3分别表示第一颜色光、 第二颜色光和第三颜色光的波 长; ηι、 η2、 η3分别表示各子像素中的功能层材料在第一颜色光、 第二颜色 光和第三颜色光的条件下的折射率。
或者, 所述第一发光层的主发光体材料、 所述第二发光层的主发光体材 料和所述第三发光层的主发光体材料和所述电荷阻挡层的主体材料的 HOMO ( Highest Occupied Molecular Orbital,已占有电子的能级最高的轨道, 即最高已占轨道) 能级依次降低。
进一步地, 所述第一子像素的光学厚度 Ί\、 所述第二子像素的光学厚度 Τ2和所述第三子像素的光学厚度 Τ3满足以下关系:
Ti: T2: Τ3= ( j/nj ) : (λ22): ( λ33),
其中, 各子像素的光学厚度是指, 在每个子像素中的各功能层的厚度之 和; 、 λ2、 λ3分别表示第一颜色光、 第二颜色光和第三颜色光的波长; ηι、 η2、 η3分别表示子像素中的有机功能层材料在第一颜色光、 第二颜色光和第 三颜色光的条件下的折射率。
本发明的至少一实施例中, 需要注意的是, 当所述 OLED显示面板不包 括透明导电层时, 子像素的光学厚度为所述子像素的有机功能层的厚度, 例 如第一子像素的光学厚度 Ί\为所述第一子像素的有机功能层的厚度。其他子 像素也类似, 不再赘述。
或者, 当所述 OLED显示面板包括透明导电层时, 子像素的光学厚度为 所述子像素的所述有机功能层的厚度与所述透明导电层的厚度之和(半透明 层可以参照如此)。例如第一子像素的光学厚度 Ί\为所述第一子像素的有机 功能层的厚度与透明导电层的厚度之和。 其他子像素也类似, 不再赘述。 该 透明导电层可以为透明导电氧化物层( Transparent Conducting Oxides, TCO ), 例如铟锡氧化物( ITO ) 、 铟辞氧化物( IZO ) 、 铝辞氧化物 ( AZO )、 氟掺 杂的氧化锡(FTO )等等。 该透明导电层可以作为阴极电极层或者阴极电极 层, 或者电极层的一部分, 也可以作为厚度调节层。
本发明的至少一实施例的 OLED显示面板, 第一发光层、 电荷阻挡层、 第二发光层和第三发光层均可以覆盖至少两个子像素, 这样在利用 FMM制 作发光层时, FMM 的最小开口可以至少有两个子像素区域大, 从而能够在 不改变 FMM的精度的前提下,提升 OLED显示面板的像素密度。也就是说, 本发明至少一个实施例所提供的 OLED显示面板能通过一次制程至少蒸镀两 倍大的发光层,且可以使得每一子像素发出特定颜色的光, 这样就能用较大 开口、 精度较低的 FMM制作 OLED显示面板, 如果用相同精度的 FMM, 能将面板的 PPI提升两倍。
本发明的至少一实施例的 OLED显示面板,还对各发光层的主体发光材 料的能级以及各子像素的厚度进行优化, 使每一子像素发出特定颜色的光, 进一步避免不会出现色偏, 并且不会损失发光效率, 提升了画面质量。
此外, 本发明的至少一实施例的 OLED显示面板也没有改变子像素的排 列顺序, 不会对画面显示造成影响。 需要说明的是, LUMO和 HOMO的数 值通常是负值,在本发明的实施例中,定义离真空能级距离越近的能级越高, 离真空能级距离越远的能级越低, 如图 3和图 5所示。 HOMO能级"依次降 低,,是指 HOMO能级的数值的绝对值的依次变大; 同样地, LUMO能级"依 次降低 "是指 LUMO能级的数值的绝对值的依次变大。
此外, 还需说明的是, 在本发明的至少一个实施例中, 仅单纯限制各发 光层的主发光体材料的 LUMO能级的关系,或者单纯限制各发光层的主发光 体材料的 HOMO 能级的关系, 使某一个特定子像素的内部只发出一种特定 颜色的光。
应当理解的是, 在实际应用中, 也可以通过综合考虑限制各发光层的主 发光体材料的 LUMO能级、 HOMO能级的关系, 使在某一特定的子像素的 内部, 空穴和电子在与之对应的特定颜色的发光层再结合形成激发子, 从而 使某一特定的子像素的内部发出特定颜色的光。
例如, 在本发明的至少一个实施例中, 在制作各发光层的主体发光材料 时, 在第一子像素中, 使得所述第一发光层的主发光体材料、 所述第二发光 层的主发光体材料和所述第三发光层的主发光体材料和所述电荷阻挡层的主 体材料的 HOMO 能级依次降低; 而在第二子像素中, 所述电荷阻挡层的主 体材料、 所述第三发光层的主发光体材料、 所述第二发光层的主发光体材料 和所述第一发光层的主发光体材料的 LUMO能级依次降低。
例如, 本发明的至少一实施例中, OLED显示面板可以依次包括: 覆盖 整个像素单元的所述第一发光层; 覆盖所述第二子像素和所述第三子像素的 所述电荷阻挡层;覆盖所述第一子像素和所述第二子像素的所述第二发光层; 覆盖整个像素单元的所述第三发光层。
例如, 本发明的至少一实施例中, OLED显示面板可以依次包括: 覆盖 整个像素单元的第一发光层; 覆盖所述第二子像素和所述第三子像素的所述 电荷阻挡层; 覆盖所述第一子像素和所述第二子像素的所述第二发光层; 覆 盖所述第二子像素和所述第三子像素的所述第三发光层。 例如, 本发明的至 少一实施例中, 所述 OLED显示面板可以依次包括: 覆盖所述第一子像素和 所述第二子像素的所述第一发光层; 覆盖所述第二子像素和所述第三子像素 的所述电荷阻挡层; 覆盖所述第一子像素和所述第二子像素的所述第二发光 层; 覆盖整个像素单元的所述第三发光层。
例如, 本发明的至少一实施例中, OLED显示面板可以依次包括: 覆盖 所述第一子像素和所述第二子像素的所述第一发光层; 覆盖所述第二子像素 和所述第三子像素的所述电荷阻挡层; 覆盖所述第一子像素和所述第二子像 素的所述第二发光层; 覆盖所述第二子像素和所述第三子像素的所述第三发 光层。
例如, 本发明的至少一实施例中, 所述第一子像素的光学厚度 、 所述 第二子像素的光学厚度 τ2和所述第三子像素的光学厚度 τ3满足以下关系: lJ^/ T^.O;
Figure imgf000008_0001
例如, 本发明的至少一实施例中, OLED显示面板可以包括: 透明或半 透明阳极层; 所述半透光阳极层上的空穴传输层; 所述空穴传输层上的所述 第一发光层; 所述第一发光层上的所述电荷阻挡层; 所述电荷阻挡层上的所 述第二发光层; 所述第二发光层上的所述第三发光层; 所述第三发光层上的 电子传输层; 所述电子传输层上的金属阴极层。
例如, 本发明的至少一实施例中, OLED显示面板可以包括: 透明或半 透明阳极层; 所述半透光阳极层上的空穴传输层; 所述空穴传输层上的所述 第三发光层; 所述第三发光层上的所述第二发光层; 所述第二发光层上的所 述电荷阻挡层; 所述电荷阻挡层上的所述第一发光层; 所述第一发光层上的 电子传输层; 所述电子传输层上的金属阴极层。
本发明的至少一实施例还提供了一种显示装置, 包括如上所述的 OLED 显示面板。 OLED显示面板的结构以及工作原理同上述实施例, 在此不再赘 述。 另外, 显示装置其他部分的结构可以参考现有技术, 对此本文不再详细 描述。 该显示装置可以为: 电子纸、 电视、 显示器、 数码相框、 手机、 平板 电脑等具有任何显示功能的产品或部件。 实施例一
本实施例的 OLED显示面板中, OLED显示面板包括有显示蓝色的第一 子像素、 显示红色的第二子像素和显示绿色的第三子像素, OLED显示面板 包括阳极层、 阴极层和有机功能层。 所述有机功能层包括如下的层结构: 覆盖包括第一子像素在内的至少两个相邻子像素、 用以发出蓝光的第一 发光层(EML1 ) ;
覆盖第二子像素和第三子像素的电荷阻挡层 (carrier blocking layer, CBL ) ;
覆盖第一子像素和第二子像素、用以发出红光的第二发光层( EML2 ); 覆盖包括第三子像素在内的至少两个相邻子像素、 用以发出绿光的第三 发光层( EML3 ) 。
如图 3 所示, 第一发光层、 第二发光层、 第三发光层和电荷阻挡层的 LUMO能级均为负数, 第一发光层的 LUMO能级低于第二发光层的 LUMO 能级, 第二发光层的 LUMO能级低于第三发光层的 LUMO能级, 第三发光 层的 LUMO能级低于电荷阻挡层的 LUMO能级; 且所述第一子像素的光学 厚度 所述第二子像素的光学厚度 T2和所述第三子像素的光学厚度 Τ3满 足以下关系:
Ti: T2: Τ3= ( j/nj ) : (λ22): ( λ33),
其中, 、 λ2、 λ3分别表示第一颜色光、 第二颜色光和第三颜色光的波 长; ηι、 η2、 η3分别表示子像素的有机功能层材料在第一颜色光、 第二颜色 光和第三颜色光的条件下的折射率。
本实施例中, 如图 4所示, OLED显示面板可以包括: 阳极层; 阳极层 上的空穴传输层; 覆盖第一子像素和第二子像素的第一发光层; 覆盖第二子 像素和第三子像素的电荷阻挡层; 覆盖第一子像素和第二子像素的第二发光 层; 覆盖第二子像素和第三子像素的第三发光层; 第三发光层上的电子传输 层; 电子传输层上的透明或半透明阴极层。
透明阴极层可以釆用透明导电氧化物 (Transparent conducting oxide, TCO)制成, 半透明阴极层可以釆用金属制成很薄, 达到半透光状。
在本实施例的 OLED显示面板中, 电子由阴极层向阳极层的方向移动, 电子容易从 LUMO能级较高的发光层跃迁到 LUMO能级较低的发光层, 但 不容易从 LUMO能级较低的发光层跃迁到 LUMO能级较高的发光层, 当电 子停留在某一发光层与空穴再结合, 形成激发子后放光。
在如图 4所示的 OLED显示面板中, 对于第一子像素区域来说, 电子从 阴极层注入, 因为 EML2的 LUMO能级高于 EML1的 LUMO能级, 因此电 子容易由 EML2传输到 EML1,电子将被局限在 EML1激发 EML1发出蓝光, 从而使第一子像素显示蓝光。对于第二子像素区域来说,因为 EML3的 LUMO 能级高于 EML2的 LUMO能级, CBL的 LUMO能级高于 EML2的 LUMO 能级, 因此电子容易由 EML3传输到 EML2, 受到 CBL能级的限制, 电子将 被局限在 EML2激发 EML2发出红光, 从而使第二子像素显示红光。 对于第 三子像素区域来说, 因为 EML3的 LUMO能级低于 CBL的 LUMO能级, 因 此电子不易穿过 CBL, 电子将被局限在 EML3激发 EML3发出绿光,从而使 第三子像素显示绿光。
此外, 本实施例中, OLED显示面板可以釆用顶发射结构, 即顶层釆用 半透明电极, 能保证射出来光, 其光色及效率是想要的。 釆用顶发射结构的 OLED的光学行为可以利用波动光学驻波条件为基础进行计算:
Ψι + Ψ2 + 2— Λ nL cos θ = 2ηιπ ( I ) ;
其中, φ为反射镜造成的相位差; η为环境折射率, 表示相同的材料,在 不同波长的光的条件下, 会感受到不一样的折射率; L为腔长(各子像素的 光学厚度) ; Θ为角度; λ为波长; m为整数。
基于上述公式 I, 本实施例中, 显示不同颜色的第一子像素、 第二子像 素和第三子像素的光学厚度进行厚度优化, 不同光色优化共振腔长比例即为 λ/η的比值, 即:
Τ1: Τ2: Τ3= ( j/nj ) : (λ22): ( λ33) ( II ) 。
本实施例中, 第一子像素显示蓝色, 第二子像素显示红色, 第三子像素 显示绿色。 一般红光 R波峰为 600匪〜 620nm; 绿光 G波峰为 520~530nm, 蓝光 B波峰为 450nm~465nm。 对于一种材料而言, 不同波长的光照射进去 时光的折射率是不同的; 在相同材料情况下, 蓝光和绿光对应的折射率大于 红光的折射率。
由此, 结合上述公式 I、 II可得到本实施例中 OLED显示面板的优化的 厚度设计如下:
lJ^/T^.O (III) ;
Figure imgf000011_0001
(IV) 。
此外, 如图 4所示, 在本实施例的 OLED显示面板中, 第一子像素的光 学厚度 Tl、 第二子像素的光学厚度 Τ2、 第三子像素的光学厚度 Τ3、 第一发 光层的膜厚 ΤΕ1、 第二发光层的膜厚 ΤΕ2、 第三发光层的膜厚 ΤΕ3以及电荷阻 挡层的膜厚 Tc之间还存在以下关系:
T2-Ti= TE3+TC (V) ;
τ23= ΤΕ1+ ΤΕ2 (VI) 。
在顶发射结构的 OLED器件中, 由于顶层釆用半透明电极, 光学效应会 非常剧烈, 称为微腔效应, 膜厚对于光色的影响很强烈, 而釆用上述的优化 的厚度设计, 能够保证在较大的视角下没有混色和色偏。
此外, 由于常规 OLED器件的各功能层厚度(尤其是有微腔效应的器件 特别明显) , 需要根据每个子像素的颜色需求独立调整厚度, 本实施例所提 供顶发射结构的 OLED显示面板,每一功能层的厚度与其他功能层以及其他 子像素相关并互相影响, 因此各功能层的厚度的调整较复杂。 有鉴于此, 本 实施例中还提供了各功能层的厚度范围, 如下所述。
结合上述公式(III) 、 (IV) 、 (V) 以及(VI) , 各功能层厚度例如 为:
所述第三发光层的厚度 TE3范围为: (OJTrTc) <TE3< ( T Tc ) ; 所述电荷阻挡层的厚度 Tc范围为: (3/13T2-TE3)≤Tc≤(0.5T2-TE3); 所述第二发光层的厚度 TE2范围为: ( 2/13T2Ε1 ) <ΤΕ2< ( 1/4 Τ2- ΤΕ1 ); 所述第一发光层的厚度 ΤΕ1范围为: ( 2/11 Τ3- ΤΕ2 )<ΤΕ1<( 1/3 Τ3- ΤΕ2 )。 目前利用 FMM制作 OLED显示面板时, 一般一个 FMM开口对应一个 子像素区域, 由于 FMM的精度有限, 因此限制了 OLED显示面板的像素密 度。
但是, 本发明至少一实施例的 OLED显示面板中, 第一发光层、 电荷阻 挡层、 第二发光层和第三发光层均覆盖至少两个子像素, 这样在利用 FMM 制作发光层时, FMM 的最小开口可以至少有两个子像素区域大, 从而能够 在不改变 FMM的前提下, 将 OLED显示面板的像素密度提升两倍。
另外, 本发明至少一实施例的 OLED显示面板不依靠光学效应将某一光 色取出, 不会损失发光层的发光效率, 也不会出现色偏问题。
本发明至少一实施例的 OLED显示面板也没用改变子像素的排列顺序, 不会对画面显示造成影响。 并且, 本发明至少一实施例中, 对于不同颜色的 子像素的厚度进行了优化, 进一步保证在较大的视角下不会出现色偏问题。
需要说明的是, 在本发明的至少一实施例中, OLED显示面板并不局限 于如图 4所示的结构。 例如, 第一发光层除覆盖整个像素单元之外, 还可以 仅覆盖第一子像素和第二子像素; 第三发光层除覆盖第二子像素和第三子像 素之外, 还可以覆盖整个像素单元; 第二发光层仅覆盖第一子像素和第二子 像素; 电荷阻挡层仅覆盖第二子像素和第三子像素。 第一子像素也不局限于 显示蓝色, 第二子像素也不局限于显示红色, 第三子像素也不局限于显示绿 色,只要第一子像素、第二子像素和第三子像素显示不同的颜色且显示红色、 绿色和蓝色中的其中一种颜色即可。 当然, 这三种子像素显示的颜色也不限 于红、 绿和蓝色, 例如, 还可以为白色、 黄色等。
相应地, 本发明的至少一实施例中 OLED显示面板, 各子像素的优化厚 度可相应地根据本发明中所述第一发光层、 所述第二发光层、 所述第三发光 实施例二
本实施例的 OLED显示面板的像素单元包括显示第一颜色的第一子像素、 显示第二颜色的第二子像素和显示第三颜色的第三子像素,其中,所述 OLED 显示面板的像素单元包括阳极层、 阴极层和设置于阳极层和阴极层之间的有 机功能层, 所述有机功能层包括下述层结构:
覆盖包括第一子像素在内的至少两个相邻子像素、 用以发出蓝光的第一 发光层(EML1 ) ;
覆盖第二子像素和第三子像素的电荷阻挡层(CBL ) ;
覆盖第一子像素和第二子像素、用以发出红光的第二发光层(EML2 ) ; 覆盖包括第三子像素在内的至少两个相邻子像素、 用以发出绿光的第三 发光层( EML3 ) 。
如图 5 所示, 第一发光层、 第二发光层、 第三发光层和电荷阻挡层的 HOMO能级均为负数,第一发光层的 HOMO能级高于第二发光层的 HOMO 能级, 第二发光层的 HOMO能级高于第三发光层的 HOMO能级, 第三发光 层的 HOMO能级高于电荷阻挡层的 HOMO能级, 并且, 所述第一子像素的 光学厚度 T1 所述第二子像素的光学厚度 T2和所述第三子像素的光学厚度 Τ3满足以下关系:
Ti: T2: Τ3= ( j/nj ) : (λ22): ( λ33),
其中, 、 λ2、 λ3分别表示第一颜色光、 第二颜色光和第三颜色光的波 长; ηι、 η2、 η3为环境折射率, 分别表示子像素区的有机功能层材料在第一 颜色光、 第二颜色光和第三颜色光的条件下的折射率。
例如, 本实施例中, 如图 6所示, OLED显示面板可以包括: 阳极层; 所述阳极层上的空穴传输层; 所述空穴传输层上, 覆盖第二子像素和所述第 三子像素的所述第三发光层; 所述第三发光层上, 覆盖所述第一子像素和所 述第二子像素的所述第二发光层; 所述第二发光层上, 覆盖所述第二子像素 和所述第三子像素的所述电荷阻挡层; 所述电荷阻挡层上, 覆盖所述第一子 像素和所述第二子像素的所述第一发光层;所述第一发光层上的电子传输层; 所述电子传输层上的透明或半透明阴极层。
透明阴极层可以釆用透明导电氧化物 (Transparent conducting oxide,
TCO)制成, 半透明阴极层可以釆用金属制成很薄, 达到半透光状。
在该 OLED显示面板中, 空穴由阳极层向阴极层的方向移动, 空穴容易 从 HOMO 能级较低的发光层跃迁到 HOMO 能级较高的发光层, 但不易从 HOMO能级较高的发光层跃迁到 HOMO能级较低的发光层, 当空穴停留在 某一发光层与电子相遇后, 将激发该发光层发光。 在如图 6所示的 OLED显示面板中, 对于第一子像素区域来说, 空穴从 阳极层出发, 因为 EML2的 HOMO能级低于 EML1的 HOMO能级, 因此空 穴容易穿过 EML2到达 EML1, 但不容易穿过 ETL, 空穴将停留在 EML1激 发 EML1发出蓝光,从而使第一子像素显示蓝光。对于第二子像素区域来说, 因为 EML3的 HOMO能级低于 EML2的 HOMO能级, CBL的 HOMO能级 低于 EML2的 HOMO能级, 因此空穴能够穿过 EML3到达 EML2, 但不能 穿过 CBL, 空穴将停留在 EML2激发 EML2发出红光,从而使第二子像素显 示红光。 对于第三子像素区域来说, 因为 EML3的 HOMO能级高于 CBL的 HOMO能级, 空穴不能穿过 CBL, 因此空穴将停留在 EML3激发 EML3发 出绿光, 从而使第三子像素显示绿光。
此外, 本实施例中, OLED显示面板可以釆用顶发射结构, 即顶层釆用 半透明电极能保证射出来光, 光色及效率是我们想要的。 釆用顶发射结构的 OLED的光学行为可以利用波动光学驻波条件为基础进行计算:
Ψι + Ψ2 + 2— Λ nL cos θ = 2ηιπ ( I ) ;
其中, φ为反射镜造成的相位差; η为环境折射率, 表示相同的材料,在 不同波长的光的条件下, 会有不同的折射率; L为腔长(各子像素的光学厚 度) ; Θ为角度; λ为波长; m为整数。
基于上述公式 I, 本实施例中, 显示不同颜色的第一子像素、 第二子像 素和第三子像素的光学厚度进行厚度优化, 不同光色优化共振腔长比例即为 λ/η的比值, 即:
Τ1: Τ2: Τ3= ( j/nj ) : (λ22): ( λ33) ( II ) 。
本实施例中, 第一子像素显示蓝色, 第二子像素显示红色, 第三子像素 显示绿色。 一般红光 R波峰为 600匪〜 620nm; 绿光 G波峰为 520~530nm, 蓝光 B波峰为 450nm~465nm。 一般材料折射率对于不同的波长会有不同的 响应: 蓝光约为红光的 1 ~ 1.5倍, 绿光约为红光的 1 ~ 1.3倍。
由此, 结合上述公式 I、 II可得到本实施例中 OLED显示面板的优化厚 度设计如下:
lJ^/ T^.O ( III ) ;
1.1< T3/ T1<1.5 ( IV ) 。
此外, 如图 6所示, 在本实施例的 OLED显示面板中, 第一子像素的光 学厚度 Tl、 第二子像素的光学厚度 τ2、 第三子像素的光学厚度 τ3、 第一发 光层的膜厚 ΤΕ1、 第二发光层的膜厚 ΤΕ2、 第三发光层的膜厚 ΤΕ3以及电荷阻 挡层的膜厚 Tc之间还存在以下关系:
T2-Ti= TE3+TC ( V ) ;
T2-T3= ΤΕ1+ ΤΕ2 ( VI ) 。
在顶发射结构的 OLED器件中, 由于顶层釆用半透明电极, 光学效应会 非常剧烈, 称为微腔效应, 膜厚对于光色的影响很强烈, 而釆用如上述的优 化厚度设计, 能够保证在较大的视角下没有混色和色偏。
此外, 由于常规 OLED器件的各功能层厚度(尤其是有微腔效应的器件 特别明显) , 需要根据每个子像素的颜色需求独立调整厚度, 本实施例所提 供的顶发射结构的 OLED显示面板,每一功能层的厚度与其他功能层以及其 他子像素相关并互相影响, 因此各功能层的厚度的调整较复杂。 有鉴于此, 本实施例中还提供了各功能层的厚度范围, 如下所述。
结合上述公式(III ) 、 (IV ) 、 ( V ) 以及(VI ) , 各功能层厚度例如 为:
所述第三发光层的厚度 TE3范围为: (OJTrTc ) <TE3< ( T Tc ) ; 所述电荷阻挡层的厚度 Tc范围为: (3/13 T2 -TE3 )≤Tc≤( 0.5T2- TE3 ); 所述第二发光层的厚度 TE2范围为: ( 2/13T2Ε1 ) <ΤΕ2< ( 1/4 Τ2- ΤΕ1 ); 所述第一发光层的厚度 ΤΕ1范围为: ( 2/11 Τ3- ΤΕ2 ) <ΤΕ1< ( 1/3 Τ3- ΤΕ2 )。 本发明的至少一实施例中 (例如如图 4或图 6所示) , 阴极为透明或者 半透明, 根据前面所述, 当 OLED显示面板包括透明导电层, 子像素的光学 厚度为所述子像素区的所述有机功能层的厚度与所述透明导电层的厚度之和 (半透明层可以参照如此)。 此时, 第一子像素的光学厚度^为第一子像素 区的有机功能层的厚度与该阴极层的厚度之和, 即第一子像素的光学厚度 Ί\ 为空穴传输层的厚度、 第一发光层的厚度、 第二发光层的厚度、 电子传输层 的厚度与阴极层的厚度之和。第二子像素的光学厚度 Τ2为空穴传输层的厚度、 第一发光层的厚度、 电荷阻挡层的厚度、 第二发光层的厚度、 第三发光层的 厚度、 电子传输层的厚度与阴极层的厚度之和。 第三子像素的光学厚度 Τ3 为空穴传输层的厚度、 电荷阻挡层的厚度、 第三发光层的厚度、 电子传输层 的厚度与阴极层的厚度之和。 在前述技术中, 利用 FMM制作 OLED显示面板时, 一般一个 FMM开 口对应一个子像素区域, 由于 FMM的精度有限, 因此限制了 OLED显示面 板的像素密度。
但是, 本发明的至少一实施例的 OLED显示面板中, 第一发光层、 电荷 阻挡层、第二发光层和第三发光层均覆盖至少两个子像素,这样在利用 FMM 制作发光层时, FMM 的最小开口可以至少有两个子像素区域大, 从而能够 在不改变 FMM的前提下, 将 OLED显示面板的像素密度提升两倍。
另外, 本发明的至少一实施例的 OLED显示面板不依靠光学效应将某一 光色取出, 不会损失发光层的发光效率, 也不会出现色偏问题。
本发明的至少一实施例的 OLED显示面板也没用改变子像素的排列顺序, 不会对画面显示造成影响。 并且, 本发明的至少一实施例中, 针对 OLED显 示面板中对于不同颜色的子像素的厚度进行了优化, 可以进一步保证在较大 的视角下也不会出现混色和色偏问题。
需要说明的是, 本发明的至少一实施例的 OLED显示面板并不局限于如 图 6所示的结构, 第一发光层除覆盖整个像素单元之外, 还可以仅覆盖第一 子像素和第二子像素; 第三发光层除覆盖第二子像素和第三子像素之外, 还 可以覆盖整个像素单元; 第二发光层仅覆盖第一子像素和第二子像素; 电荷 阻挡层仅覆盖第二子像素和第三子像素。 第一子像素也不局限于显示蓝色, 第二子像素也不局限于显示红色, 第三子像素也不局限于显示绿色, 只要第 一子像素、 第二子像素和第三子像素显示不同的颜色且显示红色、 绿色和蓝 色中的其中一种颜色即可。
本发明的至少一实施例中 OLED显示面板,各子像素的优化厚度可根据 所述第一发光层、 所述第二发光层、 所述第三发光层以及所述电荷阻挡层的 具体结构并结合上述公式 I、 Π计算得到。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。
本申请要求于 2014年 1月 06日递交的中国专利申请第 201410005179.X 号的优先权, 在此全文引用上述中国专利申请公开的内容以作为本申请的一 部分。

Claims

权利要求书
1. 一种 OLED显示面板, 所述 0LED显示面板的像素单元包括显示第 一颜色的第一子像素、 显示第二颜色的第二子像素和显示第三颜色的第三子 像素, 还包括阳极层、 阴极层及设置于所述阳极层和所述阴极层之间的有机 功能层;
其中, 所述有机功能层包括:
覆盖包括所述第一子像素在内的至少两个相邻子像素的第一发光层; 覆盖所述第二子像素和所述第三子像素的电荷阻挡层;
设置在所述第一子像素和所述第二子像素所在的区域中, 且至少覆盖所 述第二子像素的第二发光层;
覆盖包括所述第三子像素在内的至少两个相邻子像素的第三发光层。
2. 根据权利要求 1所述的 OLED显示面板, 其中,
所述第一发光层、 所述电荷阻挡层、 所述第二发光层和所述第三发光层 自靠近所述阳极层一侧至靠近所述阴极层一侧依次设置, 且所述电荷阻挡层 的主体材料、 所述第三发光层的主发光体材料、 所述第二发光层的主发光体 材料和所述第一发光层的主发光体材料的最低未占轨道(LUMO ) 能级依次 降低。
3. 根据权利要求 2所述的 OLED显示面板,其中,所述有机功能层还包 括:
位于所述阳极层和所述第一发光层之间的空穴传输层;
位于所述第三发光层和所述阴极层之间的电子传输层; 且
所述阴极层为透明或半透明。
4. 根据权利要求 1所述的 OLED显示面板, 其中,
所述第一发光层、 所述电荷阻挡层、 所述第二发光层和所述第三发光层 自靠近所述阴极层一侧至靠近所述阳极层一侧依次设置, 且所述第一发光层 的主发光体材料、 所述第二发光层的主发光体材料和所述第三发光层的主发 光体材料和所述电荷阻挡层的主体材料的最高已占轨道(HOMO )能级依次 降低。
5. 根据权利要求 4所述的 OLED显示面板, 其中, 所述有机功能层还 包括:
位于所述阳极层和所述第三发光层之间的空穴传输层;
位于所述第一发光层和所述阴极层之间的电子传输层; 且
所述阴极层为透明或半透明。
6. 根据权利要求 1至 5任一项所述的 OLED显示面板包括:
覆盖整个像素单元的所述第一发光层;
覆盖所述第二子像素和所述第三子像素的所述电荷阻挡层;
覆盖所述第一子像素和所述第二子像素的所述第二发光层;
覆盖整个像素单元的所述第三发光层。
7. 根据权利要求 1至 5任一项所述的 OLED显示面板包括:
覆盖整个像素单元的第一发光层;
覆盖所述第二子像素和所述第三子像素的所述电荷阻挡层;
覆盖所述第一子像素和所述第二子像素的所述第二发光层;
覆盖所述第二子像素和所述第三子像素的所述第三发光层。
8. 根据权利要求 1至 5任一项所述的 OLED显示面板包括:
覆盖所述第一子像素和所述第二子像素的所述第一发光层;
覆盖所述第二子像素和所述第三子像素的所述电荷阻挡层;
覆盖所述第一子像素和所述第二子像素的所述第二发光层;
覆盖整个像素单元的所述第三发光层。
9. 根据权利要求 1至 5任一项所述的 OLED显示面板包括:
覆盖所述第一子像素和所述第二子像素的所述第一发光层;
覆盖所述第二子像素和所述第三子像素的所述电荷阻挡层;
覆盖所述第一子像素和所述第二子像素的所述第二发光层;
覆盖所述第二子像素和所述第三子像素的所述第三发光层。
10.根据权利要求 1至 9任一项所述的 OLED显示面板, 其中, 所述第一子像素的光学厚度 Ί\、 所述第二子像素的光学厚度 Τ2和所述 第三子像素的光学厚度 Τ3满足以下关系:
Ti: T2: Τ3= ( j/nj ) : (λ22): ( λ33),
其中, 、 λ2、 λ3分别表示第一颜色光、 第二颜色光和第三颜色光的波 ni、 n2、 n3分别表示子像素区的功能层材料在第一颜色光、 第二颜色光 和第三颜色光条件下的折射率;
其中,
当所述 OLED显示面板不包括透明导电层时, 所述子像素的光学厚度为 所述子像素区的所述有机功能层的厚度; 或者,
当所述 OLED显示面板包括透明导电层时, 所述子像素的光学厚度为所 述子像素区的所述有机功能层的厚度与所述透明导电层的厚度之和。
11. 根据权利要求 1至 9任一项所述的 OLED显示面板, 其中, 所述第 一子像素的光学厚度 T1 所述第二子像素的光学厚度 τ2和所述第三子像素 的光学厚度 τ3满足以下关系:
lJ^/ T^.O;
l. Ts/ T^l.S;
其中,
当所述 OLED显示面板不包括透明导电层时, 所述子像素的光学厚度为 所述子像素区的所述有机功能层的厚度; 或者,
当所述 OLED显示面板包括透明导电层时, 所述子像素的光学厚度为所 述子像素区的所述有机功能层的厚度与所述透明导电层的厚度之和。
12.根据权利要求 1至 11任一项所述的 OLED显示面板, 其中, 所述第三发光层的厚度 TE3范围为: (OJTVTc ) < TE3< ( T Tc ) ; 所述电荷阻挡层的厚度 Tc范围为: ( 3/13 T2 -TE3 ) <TC< ( 0.5T2- ΤΕ3 ) 所述第二发光层的厚度 ΤΕ2范围为: ( 2/13Τ2Ε1 ) <ΤΕ2< ( 1/4 Τ2- ΤΕ1 ) 所述第一发光层的厚度 ΤΕ1范围为: ( 2/11 Τ3- ΤΕ2 ) <ΤΕ1< ( 1/3 Τ3- ΤΕ2 ) 其中,
Tj 、 τ2、 τ3分别表示所述第一子像素的光学厚度、 所述第二子像素的 光学厚度和所述第三子像素的光学厚度;
当所述 OLED显示面板不包括透明导电层时, 所述子像素的光学厚度为 所述子像素区的所述有机功能层的厚度; 或者,
当所述 OLED显示面板包括透明导电层时, 所述子像素的光学厚度为所 述子像素区的所述有机功能层的厚度与所述透明导电层的厚度之和。
13. 一种显示装置, 包括如权利要求 1至 12中任一项所述的 OLED显 示面板。
PCT/CN2014/078711 2014-01-06 2014-05-28 Oled显示面板及显示装置 WO2015100931A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/429,691 US9881976B2 (en) 2014-01-06 2014-05-28 Organic light-emitting diode (OLED) display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410005179.XA CN103779387B (zh) 2014-01-06 2014-01-06 Oled显示面板及显示装置
CN201410005179.X 2014-01-06

Publications (1)

Publication Number Publication Date
WO2015100931A1 true WO2015100931A1 (zh) 2015-07-09

Family

ID=50571444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078711 WO2015100931A1 (zh) 2014-01-06 2014-05-28 Oled显示面板及显示装置

Country Status (3)

Country Link
US (1) US9881976B2 (zh)
CN (1) CN103779387B (zh)
WO (1) WO2015100931A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824875B (zh) * 2013-12-10 2015-07-08 京东方科技集团股份有限公司 Oled显示面板及其制作方法、显示装置
CN103779387B (zh) 2014-01-06 2018-11-02 京东方科技集团股份有限公司 Oled显示面板及显示装置
CN104659067B (zh) * 2015-02-06 2018-12-18 京东方科技集团股份有限公司 一种显示基板及其制备方法和一种显示设备
CN104617130A (zh) * 2015-02-06 2015-05-13 京东方科技集团股份有限公司 一种oled像素单元、oled显示面板及显示装置
CN104733506B (zh) 2015-04-01 2017-10-24 京东方科技集团股份有限公司 一种电致发光显示器件及显示装置
CN107464825A (zh) * 2016-06-03 2017-12-12 上海和辉光电有限公司 一种oled显示面板及其制备方法
JP6637601B2 (ja) * 2016-07-28 2020-01-29 シャープ株式会社 表示装置の製造方法および表示装置
US10461132B2 (en) * 2016-09-30 2019-10-29 Sharp Kabushiki Kaisha Display apparatus and method for manufacturing same
CN107994125B (zh) * 2017-11-29 2019-10-22 京东方科技集团股份有限公司 显示背板及其制作方法、显示装置
CN110634933B (zh) * 2019-09-29 2023-10-20 合肥京东方卓印科技有限公司 一种oled显示面板、显示装置及制备方法
CN113785409B (zh) * 2020-04-09 2024-04-26 京东方科技集团股份有限公司 Oled显示基板及显示装置
CN111785744A (zh) * 2020-08-27 2020-10-16 京东方科技集团股份有限公司 一种oled显示面板及其制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070046195A1 (en) * 2005-08-31 2007-03-01 Univision Technology Inc. Organic light-emitting display and fabricating method thereof
US20070075312A1 (en) * 2005-09-30 2007-04-05 Univision Technology Inc. Full-Color OLED Display Apparatus with Improved Color Saturation and a Method of Manufacturing the Same
US20100090241A1 (en) * 2008-10-14 2010-04-15 Universal Display Corporation Emissive layer patterning for oled
CN102163615A (zh) * 2010-01-27 2011-08-24 三星移动显示器株式会社 有机发光器件显示器及其制造方法
CN103779387A (zh) * 2014-01-06 2014-05-07 京东方科技集团股份有限公司 Oled显示面板及显示装置
CN103824875A (zh) * 2013-12-10 2014-05-28 京东方科技集团股份有限公司 Oled显示面板及其制作方法、显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875097B1 (ko) * 2002-09-18 2008-12-19 삼성모바일디스플레이주식회사 광학 공진 효과를 이용한 유기 전계발광 소자
US7436113B2 (en) * 2005-04-25 2008-10-14 Eastman Kodak Company Multicolor OLED displays
KR101884199B1 (ko) * 2011-06-29 2018-08-02 삼성디스플레이 주식회사 발광 구조물, 발광 구조물을 포함하는 표시 장치 및 표시 장치의 제조 방법
TW201324761A (zh) * 2011-12-08 2013-06-16 Au Optronics Corp 電激發光顯示面板之畫素結構
KR101895616B1 (ko) * 2012-02-14 2018-09-06 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
WO2014014288A1 (ko) * 2012-07-18 2014-01-23 주식회사 엘지화학 유기발광소자
KR102083985B1 (ko) * 2013-07-01 2020-03-04 삼성디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070046195A1 (en) * 2005-08-31 2007-03-01 Univision Technology Inc. Organic light-emitting display and fabricating method thereof
US20070075312A1 (en) * 2005-09-30 2007-04-05 Univision Technology Inc. Full-Color OLED Display Apparatus with Improved Color Saturation and a Method of Manufacturing the Same
US20100090241A1 (en) * 2008-10-14 2010-04-15 Universal Display Corporation Emissive layer patterning for oled
CN102163615A (zh) * 2010-01-27 2011-08-24 三星移动显示器株式会社 有机发光器件显示器及其制造方法
CN103824875A (zh) * 2013-12-10 2014-05-28 京东方科技集团股份有限公司 Oled显示面板及其制作方法、显示装置
CN103779387A (zh) * 2014-01-06 2014-05-07 京东方科技集团股份有限公司 Oled显示面板及显示装置

Also Published As

Publication number Publication date
US20160163772A1 (en) 2016-06-09
US9881976B2 (en) 2018-01-30
CN103779387B (zh) 2018-11-02
CN103779387A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2015100931A1 (zh) Oled显示面板及显示装置
US20200258959A1 (en) Display Panel, Fabrication Method Therefor, and Display Device
KR101376427B1 (ko) 표시 소자 및 표시 장치
KR100754127B1 (ko) 유기 전계 발광표시장치 및 그 제조방법
TWI332807B (en) Electroluminescence device, method of manufacturing electroluminescence device
TWI380738B (en) Organic el display and method of manufacturing the same
TWI552332B (zh) 有機發光裝置、以及包含其之影像顯示系統
JP4431125B2 (ja) 平板ディスプレイ装置及びその製造方法
JP4631490B2 (ja) 発光装置
US8227978B2 (en) White organic light emitting device and color display apparatus employing the same
CN108029175A (zh) 显示装置以及用于制造其的方法
JP2010080423A (ja) カラー表示装置及びその製造方法
WO2016093009A1 (ja) 表示装置および電子機器
CN109273621A (zh) 一种有机发光显示面板、其制备方法及显示装置
JP2008225179A (ja) 表示装置、表示装置の駆動方法、および電子機器
JP2012238544A (ja) 表示素子および表示装置ならびに電子機器
WO2016155182A1 (zh) 一种电致发光显示器件及显示装置
TWI580014B (zh) Display devices and electronic machines
TW201442226A (zh) 顯示裝置及其製造方法、以及電子機器
US10205126B2 (en) Light emission device including light extraction plane and a plurality of reflection interfaces, display apparatus including the light emission device, and illumination apparatus including the light emission device
JP2010056015A (ja) 表示装置及びその製造方法
US10333107B2 (en) Electroluminescent display device
WO2015085681A1 (zh) Oled显示面板及其制作方法、显示装置、电子产品
TW201351632A (zh) 有機電激發光顯示面板及其製造方法
WO2016052152A1 (ja) 表示装置および電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14429691

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/12/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14876852

Country of ref document: EP

Kind code of ref document: A1