WO2015100640A1 - 一种光发射机和光发射方法 - Google Patents

一种光发射机和光发射方法 Download PDF

Info

Publication number
WO2015100640A1
WO2015100640A1 PCT/CN2013/091171 CN2013091171W WO2015100640A1 WO 2015100640 A1 WO2015100640 A1 WO 2015100640A1 CN 2013091171 W CN2013091171 W CN 2013091171W WO 2015100640 A1 WO2015100640 A1 WO 2015100640A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
circular waveguide
group
optical signal
circular
Prior art date
Application number
PCT/CN2013/091171
Other languages
English (en)
French (fr)
Inventor
王海莉
陈熙
谢拾玉
付生猛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13900773.6A priority Critical patent/EP3076569B1/en
Priority to CN201380002361.3A priority patent/CN105009487B/zh
Priority to PCT/CN2013/091171 priority patent/WO2015100640A1/zh
Publication of WO2015100640A1 publication Critical patent/WO2015100640A1/zh
Priority to US15/199,734 priority patent/US9806820B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/504Laser transmitters using direct modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Definitions

  • the present invention relates to the field of communications, and in particular, to an optical transmitter and a light emitting method.
  • DML Directly Modulated Laser
  • high-speed speed greater than 10Gbps
  • long-distance transmission distance greater than 20Km
  • DML can not be directly used as the emission source.
  • optical networks move toward high-speed and high-capacity, the advantages of low cost and low power consumption are becoming more attractive, while DML has the advantages of low cost and low power consumption.
  • a filter is generally added to the DML of the optical communication system to perform spectrum shaping on the output signal of the DML, thereby achieving the purpose of controlling the ⁇ and extending the transmission distance.
  • Embodiments of the present invention provide an optical transmitter and a light emitting method, which are suitable for multi-channel transmission, and can effectively reduce the volume of an optical transmitter.
  • the present invention provides an optical transmitter, including: a direct modulation laser array and a micro ring array, wherein the direct modulation laser array includes N direct modulation lasers, and the micro ring array includes N circular waveguide groups, N first waveguides and one second waveguide, wherein N direct modulation lasers, N circular waveguide groups, and N first waveguides form N light emitting components, each of which is directly modulated by a laser, one a circular waveguide group and a first waveguide, the circular waveguide group includes at least one circular waveguide, N is greater than or equal to 2;
  • Each of the direct modulation lasers is configured to output an optical signal, wherein the wavelengths of the optical signals output by the respective direct modulation lasers are different;
  • Each first waveguide is coupled to one side of a corresponding circular waveguide group, each first waveguide including a first port And a second port, each of the first waveguides is configured to receive an optical signal of the direct modulation laser output corresponding to the first port through the first port, and couple the received optical signal into the circular waveguide group corresponding thereto;
  • each circular waveguide group is coupled to a first waveguide corresponding thereto, and the other side is coupled to a second waveguide, and each circular waveguide group is used to couple a part of optical signals in an optical signal from the first waveguide corresponding thereto.
  • a second waveguide wherein an extinction ratio of the portion of the optical signal coupled into the second waveguide is greater than an extinction ratio of the optical signal from the first waveguide corresponding thereto;
  • the second waveguide is configured to converge the optical signals from the respective circular waveguide groups and output the concentrated optical signals.
  • the optical transmitter may further include: N control components, each control component corresponding to one light emitting component;
  • Each control component includes a first photodetector, a second photodetector, and a feedback control circuit
  • the circular waveguide set is further configured to couple another portion of the optical signal from the first waveguide corresponding to itself to the second port;
  • Each first photodetector is configured to detect an intensity of an optical signal output by a direct modulation laser in an optical transmitter corresponding thereto, and input the detection result into a corresponding feedback control circuit;
  • Each second photodetector is connected to a second port of the first waveguide corresponding to itself, and the second photodetector is configured to detect the intensity of another portion of the optical signal, and input the detection result into the corresponding feedback control circuit;
  • a feedback control circuit is configured to control the resonant wavelength of the circular waveguide group based on the detection results of the first photodetector and the second photodetector input.
  • each of the circular waveguide groups is provided with a heating electrode
  • the feedback control circuit controls the resonant wavelength of the circular waveguide group according to the detection results of the input of the first photodetector and the second photodetector, and specifically includes:
  • the feedback control circuit controls the resonant wavelength of the circular waveguide group by controlling the current input to the heating electrode on the circular waveguide group corresponding to itself.
  • the feedback control circuit controls the resonance of the circular waveguide group by controlling the current input to the heating electrode on the circular waveguide group corresponding to itself.
  • the wavelength includes: when the intensity ratio is greater than the preset intensity ratio, increase the input a current flowing into the heating electrode on the circular waveguide group corresponding to the feedback control circuit itself, wherein the intensity ratio is the intensity value detected by the first photodetector corresponding to the feedback control circuit and the second photodetector detects The ratio of the intensity values of the optical signals; when the intensity ratio is less than the preset intensity ratio, the current input to the heating electrodes on the circular waveguide group corresponding to the feedback control circuit itself is reduced.
  • the first possible implementation manner of the first aspect, the second possible implementation manner, or the third possible implementation manner, in a fourth possible implementation manner is not limited to the first aspect, the first possible implementation manner of the first aspect, the second possible implementation manner, or the third possible implementation manner, in a fourth possible implementation manner
  • the wavelength of the portion of the optical signal coupled into the second waveguide of each of the circular waveguide groups is within a predetermined range of the resonant wavelength of the circular waveguide group, wherein the resonant wavelengths of the circular waveguides in each of the circular waveguide groups are equal.
  • the present invention provides a light emitting method, including:
  • the first waveguide receives the optical signal of the direct modulation laser output corresponding to the first waveguide through the first port, and couples the received optical signal into the circular waveguide group corresponding thereto, wherein each of the first waveguide and the corresponding circular waveguide group Coupled on one side, each of the first waveguides includes a first port and a second port; wherein, N direct modulation lasers, N circular waveguide groups, and N first waveguides constitute N light emitting components, each of the light emitting components
  • the invention comprises a direct modulation laser, a circular waveguide group and a first waveguide, wherein the circular waveguide group comprises at least one circular waveguide, N is greater than or equal to 2;
  • the circular waveguide group couples a portion of the optical signal from the optical signal of the corresponding first waveguide into the second waveguide, wherein the portion of the optical signal coupled into the second waveguide has an extinction ratio greater than that of the first waveguide from its own An extinction ratio of the signal, wherein one side of each circular waveguide group is coupled to a first waveguide corresponding to itself, and the other side is coupled to the second waveguide;
  • the second waveguide concentrates the optical signals from the respective circular waveguide groups and outputs the converged optical signals.
  • the circular waveguide group couples another part of the optical signal from the optical signal of the corresponding first waveguide to the second port, so that the feedback control circuit according to the second light detection corresponding to itself Detecting the intensity of another portion of the optical signal and detecting the intensity of a portion of the optical signal by the first photodetector to control the resonant wavelength of the circular waveguide group, wherein each circular waveguide group corresponds to a first photodetector and a second photodetector And a feedback control circuit, each second photodetector being connected to a second port of the first waveguide corresponding to itself.
  • the wavelength of a part of the optical signal in the optical signal of the first waveguide corresponding to the circular waveguide group is located in the circular waveguide a predetermined range of resonance wavelengths of the group, wherein the resonant wave of the circular waveguide in each circular waveguide group The length is equal.
  • the embodiments of the present invention have the following advantages:
  • a multi-channel transmission is realized by using a direct modulation laser array.
  • Each direct modulation laser is provided with a circular waveguide group and a first waveguide, and each circular waveguide group can output a part of the light from the corresponding direct modulation laser output.
  • the signals are coupled into the same second waveguide, and the optical signals from the respective circular waveguide groups are collected by the second waveguide and output, which effectively reduces the number of components, reduces the volume of the optical transmitter, and reduces the cost.
  • FIG. 1 is a schematic structural view of an optical transmitter in an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a circular waveguide group in an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a circular waveguide group and a control component in an embodiment of the present invention
  • FIG. 4 is a schematic structural view of one of the microring groups in the microring array according to the embodiment of the present invention. Another structural schematic diagram of one of the microring groups in the array of micro-rings;
  • FIG. 6 is a schematic structural diagram of a micro ring group array according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a filter characteristic curve of a circular waveguide in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of directly modulating a laser output optical signal in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an optical signal of a direct modulation laser outputted light signal coupled into a second waveguide through a circular waveguide in an embodiment of the present invention.
  • FIG. 10 is another schematic structural diagram of an optical transmitter according to an embodiment of the present invention.
  • FIG. 11 is a flow chart of an optical transmitter method in an embodiment of the present invention.
  • the embodiment of the invention provides an optical transmitter, which is suitable for multi-channel transmission, can effectively reduce the volume of the optical transmitter, and reduce the cost.
  • a corresponding light emission method is also provided, please participate in FIG. 1 to FIG. The following is a detailed description: Example 1
  • Embodiments of the present invention provide an optical transmitter that can be applied to an optical communication system that transmits at high speed and long distance. Please refer to FIG. 1.
  • FIG. 1 is a schematic structural diagram of an optical transmitter according to an embodiment of the present invention, which may be specifically: 3 ⁇ 4 under:
  • An optical transmitter comprising: a direct modulation laser array 10 and a microring array 20, wherein the direct modulation laser array 10 comprises N direct modulation lasers 11, and the microring array 20 comprises N circular waveguide groups 21, N a first waveguide 22 and a second waveguide 23, wherein the N direct modulation lasers 11, the N circular waveguide groups 21, and the N first waveguides 22 constitute N light emitting components, each of which is directly modulated by one
  • the direct modulation laser array 10 in this embodiment may include N direct modulation lasers 11
  • DML Directly Modulated Laser
  • N is greater than or equal to 2.
  • DMLs in the direct modulation laser array 10 can output optical signals into the microring array 20, and the wavelengths of the optical signals output by the respective DMLs are different.
  • the microring group array 20 in this embodiment can receive the optical signal directly modulated by the output of the laser array 10. No., and a part of the optical signals received from the respective DMLs are converged, and the converged optical signals are output.
  • the micro-ring group array 20 may include N circular waveguide groups 21, N first waveguides 22, and one second waveguide 23, wherein N is greater than or equal to 2, and at least one circular waveguide 211 may be included in the circular waveguide group 21.
  • the optical transmitter in this embodiment is composed of N direct modulation lasers 11, N circular waveguide groups 21, and N first waveguides 22, wherein N is greater than or equal to 2, in each of the light emitting components. It consists of a direct modulation laser 11, a circular waveguide group 22 and a first waveguide 22. Wherein each of the first waveguides 22 is coupled to one side of the corresponding circular waveguide group 21, and each of the first waveguides 22 includes a first port 221 and a second port 222, one side of each of the circular waveguide groups 21 corresponding to itself The first waveguide 22 is coupled and the other side is coupled to the second waveguide 23.
  • the optical signal is output from the direct modulation laser 11 to the first waveguide 22 corresponding thereto, the first waveguide 22 receives the optical signal through the first port 221, and couples the received optical signal.
  • the circular waveguide group 21 couples a part of the optical signals of the optical signals of the first waveguide 22 into the second waveguide 23, wherein the extinction of this part of the optical signal coupled into the second waveguide 23 The ratio is greater than the extinction ratio of the optical signal received by the first waveguide 22 through the first port 221.
  • the second waveguide 23 can converge the optical signals coupled by the circular waveguide group 21 in the respective light-emitting components, and output the concentrated optical signals to the transmitting port of the optical transmitter.
  • the embodiment of the present invention implements multi-channel transmission by using a direct modulation laser array.
  • Each direct modulation laser is provided with a circular waveguide group and a first waveguide, and each circular waveguide group can directly correspond to a direct modulation laser corresponding thereto.
  • a part of the output optical signal is coupled into the same second waveguide, and the optical signal from each circular waveguide group is concentrated by the second waveguide and outputted, and the micro-ring array is both filtered and multiplexed, thereby effectively reducing the number of components and reducing The size of the optical transmitter is reduced, which reduces the cost.
  • Embodiment 2 Embodiment 2
  • the embodiment of the present invention may further include a control component that can control the resonant wavelength of the circular waveguide group 21.
  • a control component that can control the resonant wavelength of the circular waveguide group 21.
  • FIG. 1 is a schematic structural diagram of an optical transmitter according to an embodiment of the present invention, which may be specifically as follows: Generally, the refractive index of the circular waveguide group 21 varies with temperature. When the temperature of the circular waveguide group 21 changes, its refractive index changes, so that its resonance wavelength also changes. This phenomenon is called a thermo-optic effect.
  • the wavelength of the DML and the resonant wavelength of the circular waveguide group 21 change due to changes in the environment such as the operating temperature, and the circular waveguide group is changed in order to avoid the occurrence of the thermo-optic effect, causing the resonant wavelength of the circular waveguide group 21 to change.
  • 21 can not couple the optical signal outputted by the DML into the second waveguide 23.
  • a control component can be provided to control the resonant wavelength of the circular waveguide group 21 such that the resonant wavelength of the circular waveguide group 21 is at the wavelength of the optical signal output by the DML. In the range.
  • the optical transmitter in the embodiment of the present invention may further include N control components, each control component corresponding to one light emitting component; each control component includes a feedback control circuit 30 and two photodetectors (MPD, Monitor Photo Detector)
  • MPD Monitor Photo Detector
  • the two photodetectors can be respectively described as a first photodetector 40 (MPD1) and a second photodetector 50 (MPD2), which can respectively detect the intensity of the optical signal output by the DML.
  • MPD1 photodetector 40
  • MPD2 second photodetector 50
  • the intensity of the optical signal coupled to the circular waveguide group 21 into the second port 222 can be as follows:
  • Each MPD1 is configured to detect the intensity of the optical signal output by the DML in the optical transmitter corresponding thereto, obtain a detection result, and input the detection result into the corresponding feedback control circuit 30.
  • each DML has two end faces, one end face is used for outputting an optical signal to the MPD1, the MPD1 detects the power of the optical signal output by the one end face, and the other end face is used to output the optical signal to the first end.
  • the first port 221 of the waveguide 22 the output power between the optical signals output by the two end faces in the DML is proportional, and the output power is proportional to the reflectivity of the DML end face.
  • the two end faces have a preset reflectance, the reflectance of one end face is much larger than the reflectance of the other end face, and due to the characteristics of the MPD 1 and the first waveguide 22, the output to the first port 221 The proportion of the optical signal is necessarily much larger than the optical signal output to MPD1.
  • each of the circular waveguide groups 21 can couple a part of the optical signals from the optical signals of the first waveguide 22 corresponding thereto into the second waveguide 23.
  • the circular waveguide group 21 can also correspond to itself.
  • Another portion of the optical signal of the first waveguide 22 is coupled into the second port 222, and each MPD 2 is coupled to the second port 222 of the first waveguide 22 corresponding thereto. That is to say, the optical signal transmitted by the DML can have the following transmission paths:
  • the extinction ratio of the optical signal coupled to the second waveguide by the circular waveguide is greater than the extinction ratio of the optical signal coupled from the first waveguide.
  • the wavelength of the portion of the optical signal coupled into the second waveguide 23 is within a certain range of the resonant wavelength of the circular waveguide group 21, wherein the resonant wavelength of the circular waveguide 211 in each of the circular waveguide groups 21 is equal.
  • the wavelength of the portion of the optical signal coupled into the second waveguide 23 has a predetermined range, which will be described in detail in the following embodiments, and details are not described herein again.
  • Each MPD2 is used to detect the intensity of another part of the optical signal coupled by the circular waveguide group 21 corresponding thereto, to obtain a detection result, and input the detection result into the corresponding feedback control circuit 30.
  • the feedback control circuit 30 is configured to control the resonance wavelength of the circular waveguide group 21 based on the detection results of the MPD1 and MPD2 inputs described above.
  • the feedback control circuit 30 can control the resonant wavelength of the circular waveguide group 21 by: providing the heating electrode 212 on the circular waveguide group 21, see FIG. 2, FIG. 2 is a schematic structural view of the circular waveguide group, and FIG. A schematic diagram of a circular waveguide group and a control member, wherein the circular waveguide group 21 includes a circular waveguide 211. If the circular waveguide group 21 includes two or more circular waveguides 211, a heating electrode may be disposed on the circular waveguide group 21, or a heating electrode may be respectively disposed on each of the circular waveguides 211, and controlled by the same feedback. The circuit simultaneously controls the heating electrodes on each of the circular waveguides 211 to ensure that the magnitudes of the currents input to the circular waveguides 211 in the same circular waveguide group 21 are uniform.
  • the circular waveguide group 21 is provided with a heating electrode 212, and the feedback control circuit 30 can control the temperature of the circular waveguide group 21 by controlling the magnitude of the current input to the heating electrode 212 on the circular waveguide group 21 corresponding thereto, and adjust the effective refractive index thereof. , thereby controlling its resonant wavelength.
  • the feedback control circuit 30 can acquire in advance the magnitudes of the photocurrents input to the feedback control circuit 30 by the MPD1 and MPD2 corresponding thereto, and the magnitude of the current applied to the heating electrodes 212 on the circular waveguide group 21 corresponding thereto, the feedback control circuit 30 may divide the magnitudes of the photocurrents input to the feedback control circuit 30 by the MPD1 and MPD2 obtained above to obtain a ratio.
  • the ratio may be described as a preset intensity ratio. Since the resonant wavelength of the circular waveguide group 21 and the wavelength of the DML output optical signal have a certain distribution, when the external environment changes, the resonant wavelength of the circular waveguide group 21 and the wavelength of the DML output optical signal are shifted, and the deviation is optimally operated.
  • the ratio of the photocurrent input to the feedback control circuit 30 by MPD1 and MPD2 changes, and the feedback control is performed at this time.
  • the path 30 can be informed that the ratio has changed to control the resonant wavelength of the circular waveguide group 21.
  • the details can be as follows:
  • the MPD1 and the MPD2 can detect the intensity of the optical signal and send the detection result to the feedback control circuit 30 as a photocurrent signal.
  • the photocurrent signal is used as a feedback input signal of the feedback control circuit 30, and the feedback control circuit 30 can receive the The photocurrent signal outputs a control signal to control the resonant wavelength of the circular waveguide group 21.
  • the ratio of the intensity value of the optical signal detected by MPD1 to the intensity value of the optical signal detected by MPD2 can be used to determine whether the resonant wavelength of the circular waveguide group 21 and the wavelength of the DML output optical signal are shifted.
  • the ratio of the intensity value of the optical signal detected by the MPD1 corresponding to the feedback control circuit 30 to the intensity value of the optical signal detected by the MPD2 is the intensity ratio S, and when S is greater than the preset intensity ratio, it indicates that the circular waveguide group 21 is coupled to the first
  • S is greater than the preset intensity ratio, it indicates that the circular waveguide group 21 is coupled to the first
  • the optical signal of the second port 222 on the waveguide 22 is too large, and the optical signal of the circular waveguide group 21 coupled to the second waveguide 23 is too small, that is, the resonant wavelength of the circular waveguide group 21 is too small with respect to the output wavelength of the DML.
  • the feedback control circuit 30 increases the current input to the heating electrode 212 on the circular waveguide group 21 corresponding to the feedback control circuit 30 itself, so that the resonant wavelength of the circular waveguide group 21 moves in the long-wave direction, ensuring the most of the circular waveguide group 21. Good working condition.
  • the feedback control circuit 30 reduces the current input to the heating electrode on the circular waveguide group 21 corresponding to the feedback control circuit 30 itself, and causes the resonant wavelength of the circular waveguide group 21 to move in the short wavelength direction. This ensures that the entire optical transmitter is operating at its optimum.
  • the circular waveguide group 21 When S is equal to the preset intensity ratio, the circular waveguide group 21 is in a normal working state, and a part of the optical signals from the optical signals of the first waveguide 22 corresponding thereto may be coupled into the second waveguide 23 to couple another optical signal.
  • the wavelength of this portion of the optical signal is within a predetermined range of the resonant wavelength of the circular waveguide group 21.
  • the embodiment of the present invention implements multi-channel transmission by using a direct modulation laser array.
  • Each direct modulation laser is provided with a circular waveguide group and a first waveguide, and each circular waveguide group can directly correspond to a direct modulation laser corresponding thereto.
  • a part of the output optical signal is coupled into the same second waveguide, and the optical signal from each circular waveguide group is concentrated by the second waveguide and outputted, and the micro-ring array is both filtered and multiplexed, thereby effectively reducing the number of components and reducing Smaller the size of the optical transmitter, reduced the Ben.
  • control component is also used to control the resonant wavelength of the circular waveguide group, thereby ensuring the optimal working state of the circular waveguide group, thereby ensuring that the entire optical transmitter operates in an optimal state, and the heating electrode is disposed on the circular waveguide group.
  • the ring array realizes optoelectronic integration, further reducing the volume of the optical transmitter and effectively reducing the power consumption.
  • the embodiment of the present invention includes four light-emitting components, and each of the circular waveguide groups 21 includes a circular waveguide 211. For details, refer to FIG. 1.
  • FIG. 1 is a schematic structural diagram of an optical transmitter according to an embodiment of the present invention.
  • the microring group array 20 includes four circular waveguide groups 21, four first waveguides 22, and one second waveguide.
  • a circular waveguide group 21 includes a circular waveguide 211 including one DML, one circular waveguide 211 and one first waveguide 22 in each of the light-emitting components.
  • an optical transmitter component when the spacing between the circular waveguide 211 and the first waveguide 22 is small, the optical signal transmitted in the first waveguide 22 is coupled into the circular waveguide 211, and similarly, transmitted in the circular waveguide 211. The optical signal is also coupled into the first waveguide 22.
  • the spacing between the circular waveguide 211 and the second waveguide 23 is small, the optical signal transmitted in the circular waveguide 211 is coupled into the second waveguide 23. Please refer to FIG. 4, FIG. 5 and FIG. 6. FIG.
  • FIG. 4 is a schematic structural diagram of one of the microring groups in the microring array
  • FIG. 5 is another structural diagram of one of the microring groups in the microring array
  • FIG. 5 It is a schematic diagram of the structure of the microring array.
  • the heating electrode 212 is not shown in Fig. 6, and the circular waveguide group 21 may actually be provided with a heating electrode.
  • FIG. 5 is another structural diagram of one of the microring groups in the microring array.
  • a phase shift will occur. It is assumed that the first waveguide 22 receives the optical signal output from the direct modulation laser 11 corresponding thereto through the first port 221, and the wavelength of the optical signal in the vacuum is ⁇ , the optical signal of the wavelength ⁇ is coupled into the circular waveguide 211, and the optical waveguide 211 is transmitted in the circular waveguide 211.
  • the phase change after ⁇ is as shown in equation (1):
  • is the wavelength of the optical signal in vacuum
  • the effective refractive index is a function of the wavelength, which is the propagation constant of the optical signal as it travels in the circular waveguide 211, the magnitude of which is equal to the propagation of the light as it propagates in a vacuum
  • the constant 2 is multiplied by the effective refractive index f.
  • the optical signal bypasses the circular waveguide 211 and returns to the coupling region with the first waveguide 22.
  • the total phase change experienced by the bypass is ( 2 + 1 ), and then, when the optical signal is bypassed and returned to the coupling zone Z1, it is received from the DML from the first port 221.
  • the optical signal undergoes destructive interference such that the optical signal after the bypass is mostly coupled back into the circular waveguide 211, and so on.
  • the circular waveguide 211 couples a part of the optical signals from the optical signals of the first waveguide 22 corresponding thereto into the second waveguide 23 and outputs them.
  • FIG. 7 is a schematic diagram of a filter characteristic curve of the circular waveguide.
  • the solid line in FIG. 7 indicates the optical signal assigned to the second port, and the broken line indicates the light distributed to the second waveguide. signal.
  • the wavelength in ?r is called the resonant wavelength, and only the optical signal having a wavelength near the resonant wavelength can be coupled into the second waveguide 23 and output.
  • the optical signal having a wavelength near the resonant wavelength is an optical signal within a preset range.
  • FIG. 6 is a schematic structural diagram of a micro ring group array.
  • the first waveguide 22 receives its own optical signal corresponding to the DML output through the first port 221, and is all coupled into its corresponding circular waveguide 211, wherein
  • the circular waveguide 211 from left to right is described as a first circular waveguide, a second circular waveguide, a third circular waveguide, and a fourth circular waveguide. If the first waveguide 22 receives the optical signal of wavelength 4 of its own corresponding DML output through the first port 221, and the wavelength is!
  • the optical signal is all coupled into the first circular waveguide, and if the resonant wavelength of the first circular waveguide is, the first circular waveguide can couple the optical signal of the wavelength into the second waveguide 23.
  • the first waveguide 22 couples all optical signals of wavelength ⁇ into the second circular waveguide
  • the resonant wavelength of the first circular waveguide is 4, the second circular waveguide can wavelength
  • the optical signal of wavelength 4 is coupled into the second waveguide 23, and so on, the third circular waveguide can couple the optical signal of wavelength ⁇ into the second waveguide 23, and the fourth circular waveguide can An optical signal of wavelength is coupled into the second waveguide 23.
  • the wavelength is; when the optical signal passes through the coupling region of the second circular waveguide and the second waveguide 23, it is not interfered by the second circular waveguide, and can directly
  • the output of the second waveguide 23 is similar.
  • the wavelength of the optical signal is 4
  • the optical signal passes through the coupling region of the third circular waveguide and the second waveguide 23, and is not interfered by the third circular waveguide, and can be directly output from the second waveguide 23, and so on.
  • the second waveguide 23 can couple the wavelengths of the first circular waveguide, the second circular waveguide, the third circular waveguide, and the fourth circular waveguide into! ;, ' 2 , and the optical signal output.
  • the circular waveguide group 21 may be disposed to couple the optical signal within a preset range of its resonant wavelength to the second waveguide 23, for example, the first The circular waveguide, the second circular waveguide, the third circular waveguide, and the fourth circular waveguide can have wavelengths! ; +C, X 2 + C . A; The optical signals of +C and +C are coupled into the second waveguide 23, where C is a constant and C has a smaller range.
  • the circular waveguide group 21 Since only the optical signal having a wavelength near the resonant wavelength can be coupled into the second waveguide 23, the circular waveguide group 21 has a good filtering function. In the embodiment of the present invention, one side of the different circular waveguide group 21 is the same as the second. The waveguide 23 is coupled. Since the resonant wavelengths of the respective circular waveguide groups 21 in the optical transmitter are different, the wavelengths of the optical signals coupled into the second waveguide 23 will be different, and the second waveguide 23 can converge the respective circular waveguide groups 21 to be coupled together. The optical signals with different wavelengths realize the multiplexing function, reduce the number of devices, and realize the miniaturization of the device.
  • the extinction ratio of the portion of the optical signal coupled to the second waveguide 23 by the circular waveguide 211 is greater than the extinction ratio of the optical signal coupled from the first waveguide 22 corresponding thereto.
  • FIG. 9 is a schematic diagram of an optical signal outputted by the DML through a circular waveguide into the second waveguide 23.
  • the wavelength of the DML output optical signal and the circular waveguide group 21 The resonant wavelength changes.
  • the magnitude of the current of the heating electrode changes, and the MPD2 can detect the intensity of the optical signal coupled by the circular waveguide group 21 corresponding thereto, MPD1.
  • the intensity of the optical signal output by the DML in the optical transmitter corresponding to the optical transmitter can be detected.
  • the two strengths have a preset intensity ratio. When the ratio of the two intensities is greater than the preset intensity ratio, the feedback control circuit is detected.
  • the feedback control circuit 30 reduces the current input to the heating electrode on the circular waveguide group 21 corresponding to the feedback control circuit 30 itself, and causes the resonance wavelength of the circular waveguide group 21 to move in the short wavelength direction.
  • each of the circular waveguide groups 21 includes a circular waveguide 211, and in practice, two or more circular waveguides 211 may be employed in the circular waveguide group 21 to achieve a better filtering effect.
  • two circular waveguides 211 may be disposed in each of the circular waveguide groups 21.
  • FIG. 10 is another schematic structural diagram of an optical transmitter according to an embodiment of the present invention.
  • the microring group array in the embodiment of the invention not only realizes filtering but also multiplexes, effectively reduces the number of components, reduces the volume of the optical transmitter, and reduces the cost.
  • the present invention also uses the control component to control the circular waveguide group.
  • the resonant wavelength ensures the optimal working state of the circular waveguide group, thus ensuring that the entire optical transmitter works in an optimal state, and a heating electrode is arranged on the circular waveguide group, and the micro ring array realizes photoelectric integration, further reducing The volume of the optical transmitter effectively reduces power consumption.
  • the embodiment of the present invention further provides an optical transmitter method, which may be specifically as follows:
  • a light emitting method includes: receiving, by a first waveguide, a light signal output by a direct modulation laser corresponding to the first waveguide, and coupling the received optical signal into a circular waveguide group corresponding thereto, wherein each first The waveguide is coupled to one side of the corresponding circular waveguide group, each first waveguide including a first port and a second port; wherein, N direct modulation lasers, N circular waveguide groups, and N first waveguides constitute N light emission a component, each of the light emitting components being composed of a direct modulation laser, a circular waveguide group and a first waveguide, wherein the circular waveguide group includes at least one circular waveguide, N is greater than or equal to 2; the circular waveguide group will be from its own corresponding a portion of the optical signal of a waveguide is coupled into the second waveguide, Wherein the extinction ratio of the portion of the optical signal coupled into the second waveguide is greater than the extinction ratio of the optical signal from the corresponding first waveguide, wherein one side of each circular waveguide
  • FIG. 11 is a flowchart of an optical transmitter method according to an embodiment of the present invention, and the specific steps may be: 3 ⁇ 4:
  • the first waveguide receives the optical signal output by the direct modulation laser corresponding to the first waveguide, and couples the received optical signal into the circular waveguide group corresponding to the first waveguide.
  • each of the first waveguides is coupled to one side of the corresponding circular waveguide group, each of the first waveguides includes a first port and a second port; wherein, one of the direct modulation lasers, one of the circular waveguide groups, and the first one
  • the waveguide constitutes one light emitting component, each light emitting component is composed of a direct modulation laser, a circular waveguide group and a first waveguide, and the circular waveguide group includes at least one circular waveguide, and ⁇ is greater than or equal to 2.
  • the microring group array may include four circular waveguide groups, four first waveguides, and one second waveguide 23, one circular waveguide group including one circular waveguide, including one DML and one circle in each light emitting part.
  • the optical signal transmitted in the first waveguide is coupled into the circular waveguide.
  • the optical signal transmitted in the circular waveguide is also coupled. Enter the first waveguide.
  • the spacing between the circular waveguide and the second waveguide is small, the optical signal transmitted in the circular waveguide is coupled into the second waveguide.
  • the circular waveguide group couples a part of the optical signals from the optical signals of the first waveguides corresponding thereto into the second waveguide, wherein an extinction ratio of the part of the optical signals coupled into the second waveguide is greater than a first waveguide from the corresponding one. Extinction ratio of the optical signal;
  • each circular waveguide group is coupled to its own first waveguide and the other side is coupled to the second waveguide.
  • the wavelength of a portion of the optical signals in the optical signal of the first waveguide corresponding to the circular waveguide group is within a predetermined range of the resonant wavelength of the circular waveguide group, wherein the resonant wavelengths of the circular waveguides in each of the circular waveguide groups are equal.
  • the second waveguide aggregates optical signals from the respective circular waveguide groups, and outputs the concentrated optical signals.
  • the circular waveguide group couples another part of the optical signal from the optical signal of the first waveguide corresponding to itself to the second port, for example, as follows:
  • the circular waveguide group couples another part of the optical signal from the optical signal of the first waveguide corresponding to itself to the second port, so that the feedback control circuit detects the intensity and the other part of the optical signal according to the second light detection corresponding to itself.
  • a photodetector detects the intensity of a portion of the optical signal to control the resonant wavelength of the circular waveguide group, wherein each circular waveguide group corresponds to a first photodetector, a second photodetector, and a feedback control circuit, each of which The two photodetectors are connected to the second port of the first waveguide corresponding to itself.
  • the first waveguide of the present invention receives the optical signal output by the direct modulation laser corresponding to the first waveguide through the first port, and couples the received optical signal into the circular waveguide group corresponding thereto, and the circular waveguide group A portion of the optical signal from the first waveguide of the corresponding first waveguide is coupled into the second waveguide, wherein an extinction ratio of the portion of the optical signal coupled into the second waveguide is greater than an extinction ratio of the optical signal from the corresponding first waveguide
  • the second waveguide converges the optical signals from the respective circular waveguide groups, and outputs the concentrated optical signals, thereby achieving both filtering and multiplexing, effectively reducing the number of components, reducing the volume of the optical transmitter, and reducing the volume. cost.
  • optical transmitter and the light emitting method provided by the present invention are described in detail above, and are only used to help understand the method and core idea of the present invention. Meanwhile, for those skilled in the art, the idea according to the embodiment of the present invention is The details of the present invention and the scope of application are subject to change, and the contents of the present specification should not be construed as limiting the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种光发射机和光发射方法。本发明实施例包括:直接调制激光器阵列和微环组阵列,直接调制激光器阵列可以输出多通道光信号,每个直接调制激光器对应设有一个圆波导组和一个第一波导,每一个圆波导组可以将来自自身对应的直接调制激光器输出的一部分光信号耦合进同一个第二波导,由第二波导汇聚来自各个圆波导组的光信号并输出,微环组阵列既实现了滤波还可以复用,有效的减少了元件数量、减小了光发射机的体积,降低了成本。

Description

一种光发射机和光发射方法
技术领域
本发明涉及通信领域, 尤其涉及一种光发射机和光发射方法。
背景技术
受限制于直接调制激光器(DML, Directly Modulated Laser )的啁啾特性, 在高速(速度大于 10Gbps )、 长距离传输(距离大于 20Km )的光通信系统中, 无法直接采用 DML作为发射光源。 随着光网络向着高速大容量方向发展, 低 成本和低功耗的优势越来越有吸引力, 而 DML具有成本低、 功耗低的优势。
现有的技术方案中, 一般在光通信系统的 DML后加一个滤波器对 DML 的输出信号进行频谱整形, 达到控制啁啾并延长传输距离的目的。
但现有技术中大多采用分离元件的方法实现,将单一功能的光元件通过自 由空间光学耦合, 例如, 在 DML后加入一个多腔滤波器, 实现调频信号到调 幅信号的转换, 达到增大信号消光比、 控制啁啾、 并实现长距离传输的目的。 这种实现方法采用分离的元件, 使得光学模块的体积较大, 且不便于集成, 多 个分离元件会增加耦合封装的难度,增加耦合封装的成本。若要将该方案用于 多通道发射机上,还需要额外增加一个波分复用的功能元件,将进一步增大光 学模块的尺寸。
发明内容
本发明实施例提供了一种光发射机和光发射方法,适用于多通道发射, 可 以有效减小光发射机的体积。
第一方面, 本发明提供了一种光发射机, 包括: 直接调制激光器阵列和微 环组阵列, 其中, 直接调制激光器阵列包括 N个直接调制激光器, 微环组阵 列包括 N个圓波导组、 N个第一波导和一个第二波导, 其中, N个直接调制 激光器、 N个圓波导组、 N个第一波导构成 N个光发射部件, 每个光发射部 件中由一个直接调制激光器、一个圓波导组和一个第一波导组成, 圓波导组中 至少包括一个圓波导, N大于或等于 2;
每个直接调制激光器, 用于输出光信号, 其中各个直接调制激光器输出的 光信号的波长各不相同;
每个第一波导与对应的圓波导组的一侧耦合,每个第一波导包括第一端口 和第二端口,每个第一波导用于通过第一端口接收自身对应的直接调制激光器 输出的光信号, 并将接收到的光信号耦合到自身对应的圓波导组中;
每个圓波导组的一侧与自身对应的第一波导耦合, 另一侧与第二波导耦 合,每个圓波导组用于将来自自身对应的第一波导的光信号中的一部分光信号 耦合进第二波导, 其中,耦合进第二波导的这一部分光信号的消光比大于来自 自身对应的第一波导的光信号的消光比;
第二波导,用于汇聚来自各个圓波导组的光信号,并输出汇聚后的光信号。 在第一种可能的实现方式中, 光发射机还可以包括: N个控制部件, 每个 控制部件对应一个光发射部件;
每个控制部件包括一个第一光探测器、一个第二光探测器和一个反馈控制 电路;
圓波导组还用于将来自自身对应的第一波导的光信号中的另一部分光信 号耦合到第二端口;
每个第一光探测器,用于检测自身所对应的光发射机中的直接调制激光器 所输出的光信号的强度, 并将检测结果输入对应的反馈控制电路中;
每个第二光探测器与自身所对应的第一波导的第二端口连接,第二光探测 器用于检测另一部分光信号的强度, 并将检测结果输入对应的反馈控制电路 中;
反馈控制电路,用于根据第一光探测器和第二光探测器输入的检测结果控 制圓波导组的谐振波长。
根据第一方面的第一种可能的实现方式,在第二种可能的实现方式中,每 个圓波导组上设有加热电极;
反馈控制电路根据第一光探测器和第二光探测器输入的检测结果控制圓 波导组的谐振波长, 具体包括:
反馈控制电路通过控制输入到与自身对应的圓波导组上的加热电极的电 流来控制圓波导组的谐振波长。
根据第一方面的第二种可能的实现方式,在第三种可能的实现方式中,反 馈控制电路通过控制输入到与自身对应的圓波导组上的加热电极的电流来控 制圓波导组的谐振波长, 具体包括: 当强度比值大于预设强度比值时, 增大输 入到与反馈控制电路自身对应的圓波导组上的加热电极的电流, 其中, 强度比 值为与反馈控制电路对应的第一光探测器探测到光信号的强度值与第二光探 测器探测到光信号的强度值的比值; 当强度比值小于预设强度比值时, 减小输 入到与反馈控制电路自身对应的圓波导组上的加热电极的电流。
根据第一方面、第一方面的第一种可能的实现方式、第二种可能实现方式 或第三种可能的实现方式, 在第四种可能的实现方式中,
每个圓波导组耦合进第二波导的这一部分光信号的波长位于圓波导组的 谐振波长的预设范围内, 其中, 每个圓波导组中的圓波导的谐振波长相等。
第二方面, 本发明提供了一种光发射方法, 包括:
第一波导通过第一端口接收自身对应的直接调制激光器输出的光信号,并 将接收到的光信号耦合到自身对应的圓波导组中, 其中,每个第一波导与对应 的圓波导组的一侧耦合, 每个第一波导包括第一端口和第二端口; 其中, N个 直接调制激光器、 N个圓波导组、 N个第一波导构成 N个光发射部件, 每个 光发射部件中由一个直接调制激光器、一个圓波导组和一个第一波导组成, 圓 波导组中至少包括一个圓波导, N大于或等于 2;
圓波导组将来自自身对应的第一波导的光信号中的一部分光信号耦合进 第二波导, 其中,耦合进第二波导的这一部分光信号的消光比大于来自自身对 应的第一波导的光信号的消光比, 其中,每个圓波导组的一侧与自身对应的第 一波导耦合, 另一侧与第二波导耦合;
第二波导汇聚来自各个圓波导组的光信号, 并输出汇聚后的光信号。 在第一种可能的实现方式中,圓波导组将来自自身对应的第一波导的光信 号中的另一部分光信号耦合到第二端口,以使得反馈控制电路根据与自身对应 的第二光探测检测到另一部分光信号的强度和第一光探测器检测到一部分光 信号的强度来控制圓波导组的谐振波长, 其中,每个圓波导组对应一个第一光 探测器、一个第二光探测器和一个反馈控制电路,每个第二光探测器与自身所 对应的第一波导的第二端口连接。
根据第二方面, 或第二方面的第一种可能的实现方式,在第二种可能的实 现方式中,与圓波导组对应的第一波导的光信号中的一部分光信号的波长位于 圓波导组的谐振波长的预设范围内, 其中,每个圓波导组中的圓波导的谐振波 长相等。
从以上技术方案可以看出, 本发明实施例具有以下优点:
本发明实施例采用直接调制激光器阵列实现多通道发射,每个直接调制激 光器对应设有一个圓波导组和一个第一波导,每一个圓波导组可以将来自自身 对应的直接调制激光器输出的一部分光信号耦合进同一个第二波导,由第二波 导汇聚来自各个圓波导组的光信号并输出,有效的减少了元件数量、减小了光 发射机的体积, 降低了成本。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需 要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例, 对于本领域技术人员来讲, 在不付出创造性劳动的前提下, 还可 以根据这些附图获得其他的附图。
图 1是本发明实施例中光发射机的一个结构示意图;
图 2是本发明实施例中圓波导组的结构示意图;
图 3是本发明实施例中一个圓波导组和一个控制部件的结构示意图; 图 4是本发明实施例中微环组阵列中其中一个微环组的一个结构示意图; 图 5 是本发明实施例中微环组阵列中其中一个微环组的另一个结构示意 图;
图 6是本发明实施例中微环组阵列的结构示意图;
图 7是本发明实施例中圓波导的滤波特性曲线示意图;
图 8是本发明实施例中直接调制激光器输出光信号的示意图;
图 9 是本发明实施例中直接调制激光器输出的光信号经过圓波导耦合进 入第二波导的光信号的示意图;
图 10是本发明实施例中光发射机的另一个结构示意图;
图 11是本发明实施例中光发射机方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
本发明实施例提供了一种光发射机,适用于多通道发射, 可以有效减小光 发射机的体积, 降低成本, 此外, 还提供了相应的光发射方法, 请参与图 1 至图 11 , 以下分別进行详细说明: 实施例一
本发明实施例提供了一种光发射机, 可以适用于高速、长距离传输的光通 信系统中。 请参阅图 1 , 图 1是本发明实施例中光发射机的结构示意图, 具体 可以: ¾口下:
一种光发射机, 包括: 直接调制激光器阵列 10和微环组阵列 20, 其中, 直接调制激光器阵列 10包括 N个直接调制激光器 11 , 微环组阵列 20包括 N 个圓波导组 21、 N个第一波导 22和一个第二波导 23 , 其中, N个直接调制激 光器 11、 N个圓波导组 21、 N个第一波导 22构成 N个光发射部件, 每个光 发射部件中由一个直接调制激光器 11、 一个圓波导组 21 和一个第一波导 11 组成, 圓波导组 21中至少包括一个圓波导 211 , N大于或等于 2; 每个直接调 制激光器 11 , 用于输出光信号, 其中各个直接调制激光器 11输出的光信号的 波长各不相同; 每个第一波导 22与对应的圓波导组 21的一侧耦合,每个第一 波导 22包括第一端口 221和第二端口 222, 每个第一波导 22用于通过第一端 口 221接收自身对应的直接调制激光器 11输出的光信号, 并将接收到的光信 号耦合到自身对应的圓波导组 21中;每个圓波导组 21的一侧与自身对应的第 一波导 22耦合, 另一侧与第二波导 23耦合, 每个圓波导组 21用于将来自自 身对应的第一波导 22的光信号中的一部分光信号耦合进第二波导 23 , 其中, 耦合进第二波导 23的这一部分光信号的消光比大于来自自身对应的第一波导 22的光信号的消光比;第二波导 23 ,用于汇聚来自各个圓波导组 21的光信号, 并输出汇聚后的光信号。
本实施例中的直接调制激光器阵列 10 可包括 N 个直接调制激光器 11
( DML, Directly Modulated Laser ), 其中, N大于或等于 2。 直接调制激光器 阵列 10中的每一个 DML可以输出光信号到微环组阵列 20中,并且各个 DML 输出的光信号的波长各不相同。
本实施例中的微环组阵列 20可接收直接调制激光器阵列 10输出的光信 号, 并将从各个 DML接收到的光信号中的一部分光信号汇聚, 输出汇聚后的 光信号。 其中, 微环组阵列 20可包括 N个圓波导组 21、 N个第一波导 22和 一个第二波导 23 , 其中, N大于或等于 2, 圓波导组 21中至少可包括一个圓 波导 211。
本实施例中的光发射机由 N个直接调制激光器 11、 N个圓波导组 21、 N 个第一波导 22构成 N个光发射部件, 其中, N大于或等于 2, 每个光发射部 件中由一个直接调制激光器 11、 一个圓波导组 22和一个第一波导 22组成。 其中, 每个第一波导 22与对应的圓波导组 21的一侧耦合, 每个第一波导 22 包括第一端口 221和第二端口 222, 每个圓波导组 21的一侧与自身对应的第 一波导 22耦合, 另一侧与第二波导 23耦合。
在每一个光发射机部件中, 由直接调制激光器 11输出光信号到与其自身 对应的第一波导 22中, 第一波导 22通过第一端口 221接收该光信号, 并将接 收到的光信号耦合到自身对应的圓波导组 21 中, 圓波导组 21将该第一波导 22的光信号中的一部分光信号耦合进第二波导 23 , 其中, 耦合进第二波导 23 的这一部分光信号的消光比大于该第一波导 22通过第一端口 221接收到的光 信号的消光比。
第二波导 23可以汇聚各个光发射部件中圓波导组 21耦合进来的光信号, 并将汇聚后的光信号输出到光发射机的发射端口。
由上可知, 本发明实施例采用直接调制激光器阵列实现多通道发射,每个 直接调制激光器对应设有一个圓波导组和一个第一波导,每一个圓波导组可以 将来自自身对应的直接调制激光器输出的一部分光信号耦合进同一个第二波 导, 由第二波导汇聚来自各个圓波导组的光信号并输出,微环组阵列既实现了 滤波还可以复用, 有效的减少了元件数量、 减小了光发射机的体积, 降低了成 本。 实施例二
在实施例一的基础上, 本发明实施例还可以包括控制部件, 该控制部件可 以控制圓波导组 21的谐振波长。 请参阅图 1 , 图 1是本发明实施例中光发射 机的结构示意图, 具体可以如下: 通常圓波导组 21的折射率会随着温度变化,当圓波导组 21的温度发生变 化时, 其折射率发生变化, 从而使得其谐振波长也会发生变化, 该现象称为热 光效应。 在实际应用中, 由于工作温度等环境发生变化, DML的波长和圓波 导组 21的谐振波长都会发生变化, 为了避免热光效应的发生导致圓波导组 21 的谐振波长发生变化, 使得圓波导组 21无法将 DML输出的光信号耦合进入 第二波导 23 , 本发明实施例中可以设置控制部件来控制圓波导组 21的谐振波 长, 使得圓波导组 21的谐振波长在 DML输出的光信号的波长的范围内。 例 ^口, H"5f以: ¾口下:
本发明实施例中的光发射机上还可以包括 N个控制部件, 每个控制部件 对应一个光发射部件; 每个控制部件包括一个反馈控制电路 30和两个光探测 器(MPD, Monitor Photo Detector ), 为了描述方便, 可以将这两个光探测器 分別描述为第一光探测器 40 ( MPD1 )和第二光探测器 50 ( MPD2 ), 这两个 MPD可分別探测 DML输出的光信号的强度和圓波导组 21耦合进第二端口 222的光信号的强度。 例如, 具体可以如下:
每个 MPD1 , 用于检测自身所对应的光发射机中的 DML所输出的光信号 的强度, 得到检测结果, 并将检测结果输入对应的反馈控制电路 30中。 需说 明的是, 每个 DML具有两个端面, 一个端面用于将光信号输出到 MPD1 , 由 该 MPD1 检测这一个端面输出的光信号的功率, 另一个端面用于将光信号输 出到第一波导 22的第一端口 221。 其中, DML中的这两个端面输出的光信号 之间的输出功率是成比例关系的, 而输出功率与 DML端面的反射率成正比。 在每个 DML中, 这两个端面有预设的反射率, 一个端面的反射率远远大于另 一个端面的反射率, 并且由于 MPD1和第一波导 22的特性, 输出到第一端口 221的光信号的比例必然远远大于输出到 MPD1的光信号。
由实施例一可知, 每个圓波导组 21 可以将来自自身对应的第一波导 22 的光信号中的一部分光信号耦合进第二波导 23 , 此外, 圓波导组 21还可以将 来自自身对应的第一波导 22 的光信号中的另一部分光信号耦合进第二端口 222, 而每个 MPD2与自身所对应的第一波导 22的第二端口 222连接。 也就 是说, 由 DML发射的光信号可以有如下传输路径:
DML→第一波导→圓波导→第二端口; DML→第一波导→圓波导→第二波导。
其中,圓波导耦合到第二波导的光信号的消光比大于从第一波导耦合进来 的光信号的消光比。 需说明的是, 耦合进第二波导 23的这一部分光信号的波 长位于圓波导组 21的谐振波长的一定范围内, 其中,每个圓波导组 21中的圓 波导 211的谐振波长相等。 其中, 耦合进第二波导 23的这一部分光信号的波 长有一个预设范围, 具体将在下面实施例中进行详细说明, 此处不再赘述。
每个 MPD2, 用于检测自身所对应的圓波导组 21耦合进来的另一部分光 信号的强度, 得到检测结果, 并将检测结果输入对应的反馈控制电路 30中。
反馈控制电路 30, 用于根据上述 MPD1和 MPD2输入的检测结果控制圓 波导组 21的谐振波长。
具体的,反馈控制电路 30可以通过以下方式控制圓波导组 21的谐振波长: 可以在圓波导组 21上设置加热电极 212,请参阅图 2, 图 2是圓波导组的 结构示意图, 图 3是一个圓波导组和一个控制部件的结构示意图, 其中, 该圓 波导组 21包括一个圓波导 211。 若圓波导组 21包括两个或两个以上的圓波导 211 , 可以在该圓波导组 21上设置一个加热电极, 或者是在每一个圓波导 211 上分別设置一个加热电极, 通过同一个反馈控制电路同时控制每一个圓波导 211上的加热电极, 以确保输入到同一个圓波导组 21 中的圓波导 211的电流 大小一致。
圓波导组 21上设置有加热电极 212, 反馈控制电路 30可以通过控制输入 到与自身对应的圓波导组 21上的加热电极 212的电流大小来控制圓波导组 21 的温度, 调节其有效折射率, 从而控制其谐振波长。
反馈控制电路 30可以预先获取与自身对应的 MPD1和 MPD2输入到反馈 控制电路 30的光电流的大小,以及加载在与自身对应的圓波导组 21上的加热 电极 212上的电流大小,反馈控制电路 30可以将上述获取到的 MPD1和 MPD2 输入到反馈控制电路 30的光电流的大小相除, 得到一个比值, 本实施例可以 将该比值描述预设强度比值。 由于圓波导组 21 的谐振波长以及 DML输出光 信号的波长都存在一定的分布, 当外界环境变化导致圓波导组 21的谐振波长 和 DML输出光信号的波长发生了偏移, 当偏离最佳工作状态时, MPD1 和 MPD2输入到反馈控制电路 30的光电流的比值会发生变化, 此时反馈控制电 路 30可以获知该比值发生了变化, 从而控制圓波导组 21的谐振波长。 例如, 具体可以如下:
MPD1和 MPD2可以通过检测光信号的强度,并将检测结果以光电流信号 发送给反馈控制电路 30, 上述光电流信号作为反馈控制电路 30的反馈输入信 号, 反馈控制电路 30可以根据接收到的该光电流信号输出控制信号来控制圓 波导组 21的谐振波长。 那么, 通过 MPD1探测到光信号的强度值与 MPD2探 测到光信号的强度值的比值可以获知圓波导组 21 的谐振波长和 DML输出光 信号的波长是否发生了偏移。
假设与反馈控制电路 30对应的 MPD1探测到光信号的强度值与 MPD2探 测到光信号的强度值的比值为强度比值 S, 当 S大于预设强度比值时, 表明圓 波导组 21耦合到第一波导 22上的第二端口 222的光信号过大, 圓波导组 21 耦合到第二波导 23的光信号过小, 亦即相对于 DML的输出波长, 圓波导组 21 的谐振波长过小, 此时, 反馈控制电路 30增大输入到与反馈控制电路 30 自身对应的圓波导组 21上的加热电极 212的电流,使得圓波导组 21的谐振波 长向长波方向移动, 保证圓波导组 21的最佳工作状态。
当 S小于预设强度比值时, 反馈控制电路 30减小输入到与反馈控制电路 30 自身对应的圓波导组 21上的加热电极的电流, 使圓波导组 21的谐振波长 向短波长方向移动, 从而确保整个光发射机工作在最佳状态。
当 S等于预设强度比值时, 说明圓波导组 21处于正常工作状态中, 可以 来自自身对应的第一波导 22的光信号中的一部分光信号耦合进第二波导 23 , 将另一部分光信号耦合进第一波导 22的第二端口 222, 其中, 耦合进第二波 导 23的这一部分光信号消光比大于来自自身对应的第一波导 22的光信号的消 光比, 并且, 耦合进第二波导 23 的这一部分光信号的波长位于圓波导组 21 的谐振波长的预设范围内。
由上可知, 本发明实施例采用直接调制激光器阵列实现多通道发射,每个 直接调制激光器对应设有一个圓波导组和一个第一波导,每一个圓波导组可以 将来自自身对应的直接调制激光器输出的一部分光信号耦合进同一个第二波 导, 由第二波导汇聚来自各个圓波导组的光信号并输出,微环组阵列既实现了 滤波还可以复用, 有效的减少了元件数量、 减小了光发射机的体积, 降低了成 本。 进一步的, 还采用控制部件控制圓波导组的谐振波长, 保证了圓波导组的 最佳工作状态,从而确保整个光发射机工作在最佳状态,在圓波导组上设有加 热电极, 该微环组阵列实现了光电集成, 进一步减小了光发射机的体积, 有效 的降氏了功耗。 实施例三 射机包括 4个光发射部件, 每个圓波导组 21 中包括一个圓波导 211 , 具体可 参阅图 1 , 图 1是本发明实施例中光发射机的结构示意图。
微环组阵列 20包括 4个圓波导组 21、 4个第一波导 22和一个第二波导
23 , 一个圓波导组 21 包括一个圓波导 211 , 在每一个光发射部件中包括 1个 DML, 1个圓波导 211和 1个第一波导 22。 在一个光发射机部件中, 当圓波 导 211与第一波导 22之间的间距较小时,在第一波导 22中传输的光信号会耦 合进入圓波导 211 , 同理, 圓波导 211中传输的光信号也会耦合进入第一波导 22。 同理, 当圓波导 211与第二波导 23之间的间距较小时, 圓波导 211中传 输的光信号会耦合进入第二波导 23。 请参阅图 4、 图 5和图 6, 图 4是微环组 阵列中其中一个微环组的一个结构示意图,图 5是微环组阵列中其中一个微环 组的另一个结构示意图, 图 6是微环组阵列的结构示意图。 需说明的是, 图 6 中未标示加热电极 212 , 圓波导组 21上实际上可设有加热电极。 如图 5所示, 图 5是微环组阵列中其中一个微环组的另一个结构示意图。 每一个微环组中有两个耦合区, 分別为 Z1和 Z2, 光信号在耦合区进行耦合时 π
会发生 相移。 假设第一波导 22通过第一端口 221接收自身对应的直接调制 激光器 11输出的光信号在真空中的波长为 λ, 波长为 λ的光信号耦合到圓波 导 211中, 在圓波导 211中传输一圏后相位变化如式(1 )所示:
Figure imgf000012_0001
其中, λ为光信号在真空中的波长, 有效折射率 是波长的函数, 为光 信号在圓波导 211中传输时的传播常数,其大小等于光在真空中传播时的传播 常数 2 乘以有效折射率 f。
当 = 2m;r (其中, 为整数)时, 加上在两个耦合区 Z1和 Z2发生的相移, 光信号在圓波导 211中绕行一圏又回到与第一波导 22的耦合区 Z1中,其绕行 一圏所经历的总相位变化为(2 + 1) , 于是, 当光信号绕行一圏后回到耦合区 Z1时,会与从第一端口 221从 DML接收到的光信号发生相消干涉,使得绕行 一圏后的光信号大部分耦合回圓波导 211中, 以此类推。 在耦合区 Z2中, 圓 波导 211将来自自身对应的第一波导 22的光信号中的一部分光信号耦合进入 第二波导 23并输出。
由 (1 )式可知, Θ跟 λ有关, 因此不同波长的光在耦合区 Z1相消干涉的 程度不同, 导致不同波长的光信号分配到第二端口 222和第二波导 23的光能 量不同, 呈现如图 7所示的滤波特性曲线, 图 7为圓波导的滤波特性曲线示意 图, 图 7中实线表示的是分配到第二端口的光信号,虚线表示的是分配到第二 波导的光信号。
由图 7 可知, 圓波导 211 的滤波特性曲线呈现周期性分布, 这是因为 θ = 2ηιπ ^ ^ , 为整数)中 取不同的值相应的会有不同的波长, 我们可以将 满足 S = 2m;r中的波长称为谐振波长, 只有波长在谐振波长附近的光信号才能 耦合进入第二波导 23并输出。 其中, 波长在谐振波长附近的光信号即为预设 范围内的光信号。
如图 6所示, 图 6是微环组阵列的结构示意图。 在微环组阵列 20中, 在 每一个光发射机部件中,第一波导 22通过第一端口 221接收自身对应的 DML 输出的光信号, 并全部耦合进入与其对应的圓波导 211 , 其中, 为了描述方便, 将从左到右的圓波导 211描述为第一圓波导、 第二圓波导、 第三圓波导和第四 圓波导。 假若第一波导 22通过第一端口 221接收自身对应的 DML输出的波 长为 4的光信号, 并将波长为! ^ 光信号全部耦合进入第一圓波导, 假若第一 圓波导的谐振波长为 , 第一圓波导可以将波长为 ;的光信号耦合进入第二 波导 23。 同理, 在另一个光发射机部件中, 假若第一波导 22将波长为 ^的光 信号全部耦合进入第二圓波导,假若第一圓波导的谐振波长为 4 , 第二圓波导 可以将波长为 4中的波长为^的光信号耦合进入第二波导 23 , 以此类推, 第 三圓波导可以将波长为 ^的光信号耦合进入第二波导 23 , 第四圓波导可以将 波长为 的光信号耦合进入第二波导 23。 由于第一圓波导和第二圓波导的谐 振波长不同,因此波长为 ;光信号经过第二圓波导与第二波导 23的耦合区时, 不会受到第二圓波导的干扰,可以直接从第二波导 23输出, 同理,波长为 4光 信号经过第三圓波导与第二波导 23的耦合区时,不会受到第三圓波导的干扰, 可以直接从第二波导 23输出, 以此类推, 第二波导 23可以将第一圓波导、 第 二圓波导、 第三圓波导和第四圓波导耦合进来的波长为!;、 '2、 和 的光信 号输出。
在实际应用中, 为了避免因不可避免的情况导致圓波导的谐振波长的误 差, 可以设置圓波导组 21将位于其谐振波长预设范围内的光信号耦合到第二 波导 23 , 例如, 第一圓波导、 第二圓波导、 第三圓波导和第四圓波导可以将 波长为!;+C、 X2+C . A; +C和 +C的光信号耦合进入第二波导 23 , 其中, C 为常数, 并且 C具有较小的范围。
由于只有波长在谐振波长附近的光信号才能耦合进入第二波导 23 , 圓波 导组 21具有 4艮好的滤波功能,本发明实施例中将不同圓波导组 21的一侧均与 同一个第二波导 23耦合,由于光发射机中各个圓波导组 21的谐振波长各不相 同,耦合到第二波导 23中的光信号的波长将不一样, 第二波导 23可以汇聚各 个圓波导组 21耦合进来的波长不同的光信号, 实现了复用功能, 减少了器件 的个数, 实现器件的小型化。
其中, 圓波导 211耦合进第二波导 23的这一部分光信号的消光比大于从 自身对应的第一波导 22耦合进来的光信号的消光比。
其中, 在直调情况下, DML的啁湫特性导致不同注入电流下 DML的波 长会有差异, 通常 " 1 " 信号下 DML的出射波长比 "0" 信号下 DML的出射 波长稍短一些。 具体可参阅图 8 , 图 8是 DML输出光信号的示意图。 当 DML 输出的光信号的波长位于圓波导 211的下降沿处, 大部分 " 1 " 信号都不会被 滤掉, 而大部分 "0" 信号都会被滤掉。 因此从第一端口 221接收到的光信号 经圓波导 211后, " 1 " 信号同 "0" 信号的能量比值变大, 亦即消光比增大。 具体可参阅图 9 , 图 9是 DML输出的光信号经过圓波导耦合进入第二波导 23 的光信号的示意图。
当工作温度等环境发生变化时, DML输出光信号的波长和圓波导组 21的 谐振波长都会发生变化, 当圓波导组 21的谐振波长发生变化时, 其上的加热 电极的电流大小发生改变, 而 MPD2可检测自身所对应的圓波导组 21耦合进 来的光信号的强度, MPD1可检测自身所对应的光发射机中的 DML所输出的 光信号的强度, 上述两个强度有一个预设强度比值, 当检测到上述两个强度的 比值大于预设强度比值时, 反馈控制电路 30 增大输入到与反馈控制电路 30 自身对应的圓波导组 21上的加热电极的电流,使得圓波导组 21的谐振波长向 长波方向移动; 当上述两个强度的比值小于预设强度比值时, 反馈控制电路 30减小输入到与反馈控制电路 30 自身对应的圓波导组 21上的加热电极的电 流, 使圓波导组 21的谐振波长向短波长方向移动。
上述应用例中每个圓波导组 21 中包括一个圓波导 211 , 而在实际应用中 可以在圓波导组 21中采用 2个甚至多个圓波导 211 , 以达到更好的滤波效果。 例如, 可以在每个圓波导组 21中设有两个圓波导 211 , 具体可参阅图 10, 图 10是本发明实施例中光发射机的另一个结构示意图。
本发明实施例中的微环组阵列既实现了滤波还可以复用,有效的减少了元 件数量、 减小了光发射机的体积, 降低了成本, 本发明还采用控制部件控制圓 波导组的谐振波长,保证了圓波导组的最佳工作状态,从而确保整个光发射机 工作在最佳状态,在圓波导组上设有加热电极,该微环组阵列实现了光电集成, 进一步减小了光发射机的体积, 有效的降低了功耗。 实施例四
为了更好的理解上述方案, 本发明实施例还提供了一种光发射机方法, 具 体可以如下:
一种光发射方法, 包括: 第一波导通过第一端口接收自身对应的直接调制 激光器输出的光信号, 并将接收到的光信号耦合到自身对应的圓波导组中, 其 中,每个第一波导与对应的圓波导组的一侧耦合,每个第一波导包括第一端口 和第二端口; 其中, N个直接调制激光器、 N个圓波导组、 N个第一波导构成 N个光发射部件,每个光发射部件中由一个直接调制激光器、一个圓波导组和 一个第一波导组成, 圓波导组中至少包括一个圓波导, N大于或等于 2; 圓波 导组将来自自身对应的第一波导的光信号中的一部分光信号耦合进第二波导, 其中 ,耦合进第二波导的这一部分光信号的消光比大于来自自身对应的第一波 导的光信号的消光比,其中,每个圓波导组的一侧与自身对应的第一波导耦合, 另一侧与第二波导耦合; 第二波导汇聚来自各个圓波导组的光信号, 并输出汇 聚后的光信号。
请参阅图 11 , 图 11是本发明实施例中光发射机方法的流程图, 具体步骤 可以: ¾口下:
401、 第一波导通过第一端口接收自身对应的直接调制激光器输出的光信 号, 并将接收到的光信号耦合到自身对应的圓波导组中;
其中,每个第一波导与对应的圓波导组的一侧耦合,每个第一波导包括第 一端口和第二端口; 其中, Ν个直接调制激光器、 Ν个圓波导组、 Ν个第一波 导构成 Ν个光发射部件, 每个光发射部件中由一个直接调制激光器、 一个圓 波导组和一个第一波导组成, 圓波导组中至少包括一个圓波导, Ν大于或等于 2。
例如,微环组阵列可包括 4个圓波导组、 4个第一波导和一个第二波导 23 , 一个圓波导组包括一个圓波导, 在每一个光发射部件中包括 1个 DML, 1个 圓波导和 1个第一波导。在一个光发射机部件中, 当圓波导与第一波导之间的 间距较小时, 在第一波导中传输的光信号会耦合进入圓波导, 同理, 圓波导中 传输的光信号也会耦合进入第一波导。 同理, 当圓波导与第二波导之间的间距 较小时,圓波导中传输的光信号会耦合进入第二波导。具体可参见上述实施例, 此处不再赘述。
402、 圓波导组将来自自身对应的第一波导的光信号中的一部分光信号耦 合进第二波导, 其中,耦合进第二波导的这一部分光信号的消光比大于来自自 身对应的第一波导的光信号的消光比;
其中,每个圓波导组的一侧与自身对应的第一波导耦合, 另一侧与第二波 导耦合。
与圓波导组对应的第一波导的光信号中的一部分光信号的波长位于圓波 导组的谐振波长的预设范围内, 其中,每个圓波导组中的圓波导的谐振波长相 等。
403、第二波导汇聚来自各个圓波导组的光信号, 并输出汇聚后的光信号。 此外,还可以包括以下步骤: 圓波导组将来自自身对应的第一波导的光信 号中的另一部分光信号耦合到第二端口, 例如, 可以如下:
圓波导组将来自自身对应的第一波导的光信号中的另一部分光信号耦合 到第二端口,可以使得反馈控制电路根据与自身对应的第二光探测检测到另一 部分光信号的强度和第一光探测器检测到一部分光信号的强度来控制圓波导 组的谐振波长, 其中, 每个圓波导组对应一个第一光探测器、 一个第二光探测 器和一个反馈控制电路,每个第二光探测器与自身所对应的第一波导的第二端 口连接。
需说明的是, 本发明实施例中的具体实施可参见上述实施例, 此处不再赘 述。
由上可知,本发明实施例采用第一波导通过第一端口接收自身对应的直接 调制激光器输出的光信号, 并将接收到的光信号耦合到自身对应的圓波导组 中,由圓波导组将来自自身对应的第一波导的光信号中的一部分光信号耦合进 第二波导, 其中,耦合进第二波导的这一部分光信号的消光比大于来自自身对 应的第一波导的光信号的消光比,并且第二波导汇聚来自各个圓波导组的光信 号, 并输出汇聚后的光信号, 既实现了滤波还可以复用, 有效的减少了元件数 量、 减小了光发射机的体积, 降低了成本。 以上对本发明所提供的一种光发射机和光发射方法进行了详细介绍,本文 只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员, 依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处, 综 上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种光发射机, 其特征在于:
所述光发射机包括直接调制激光器阵列和微环组阵列, 其中, 所述直接调 制激光器阵列包括 N个直接调制激光器,所述微环组阵列包括 N个圓波导组、 N个第一波导和一个第二波导, 其中, N个直接调制激光器、 N个圓波导组、 N个第一波导构成 N个光发射部件, 每个光发射部件中由一个直接调制激光 器、一个圓波导组和一个第一波导组成,所述圓波导组中至少包括一个圓波导, 所述 N大于或等于 2;
所述每个直接调制激光器, 用于输出光信号, 其中各个直接调制激光器输 出的光信号的波长各不相同;
每个第一波导与对应的圓波导组的一侧耦合,每个第一波导包括第一端口 和第二端口,每个第一波导用于通过所述第一端口接收自身对应的直接调制激 光器输出的光信号, 并将接收到的光信号耦合到自身对应的圓波导组中;
每个圓波导组的一侧与自身对应的第一波导耦合,另一侧与所述第二波导 耦合,每个圓波导组用于将来自自身对应的第一波导的光信号中的一部分光信 号耦合进所述第二波导, 其中, 所述耦合进所述第二波导的这一部分光信号的 消光比大于所述来自自身对应的第一波导的光信号的消光比;
所述第二波导, 用于汇聚来自各个圓波导组的光信号, 并输出汇聚后的光 信号。
2、 根据权利要求 1所述的光发射机, 其特征在于:
所述光发射机还包括 N个控制部件, 每个控制部件对应一个光发射部件; 每个控制部件包括一个第一光探测器、一个第二光探测器和一个反馈控制 电路;
所述圓波导组还用于将来自自身对应的第一波导的光信号中的另一部分 光信号耦合到所述第二端口;
每个第一光探测器,用于检测自身所对应的光发射机中的直接调制激光器 所输出的光信号的强度, 并将检测结果输入对应的反馈控制电路中;
每个第二光探测器与自身所对应的第一波导的第二端口连接,所述第二光 探测器用于检测所述另一部分光信号的强度,并将检测结果输入对应的反馈控 制电路中;
所述反馈控制电路,用于根据所述第一光探测器和第二光探测器输入的检 测结果控制所述圓波导组的谐振波长。
3、 根据权利要求 2所述的光发射机, 其特征在于,
每个圓波导组上设有加热电极;
所述反馈控制电路根据所述第一光探测器和第二光探测器输入的检测结 果控制所述圓波导组的谐振波长, 具体包括:
所述反馈控制电路通过控制输入到与自身对应的圓波导组上的加热电极 的电流来控制圓波导组的谐振波长。
4、 根据权利要求 3所述的光发射机, 其特征在于, 所述反馈控制电路通 过控制输入到与自身对应的圓波导组上的加热电极的电流来控制圓波导组的 谐振波长, 具体包括:
当强度比值大于预设强度比值时,增大输入到与反馈控制电路自身对应的 圓波导组上的加热电极的电流, 其中, 所述强度比值为与反馈控制电路对应的 第一光探测器探测到的光信号的强度值与第二光探测器探测到的光信号的强 度值的比值;
当强度比值小于预设强度比值时,减小输入到与反馈控制电路自身对应的 圓波导组上的加热电极的电流。
5、 根据权利要求 1-3任一所述的光发射机, 其特征在于,
每个圓波导组耦合进所述第二波导的这一部分光信号的波长位于所述圓 波导组的谐振波长的预设范围内, 其中,每个圓波导组中的圓波导的谐振波长 相等。
6、 一种光发射方法, 其特征在于, 包括:
第一波导通过第一端口接收自身对应的直接调制激光器输出的光信号,并 将接收到的光信号耦合到自身对应的圓波导组中, 其中,每个第一波导与对应 的圓波导组的一侧耦合, 每个第一波导包括第一端口和第二端口; 其中, N个 直接调制激光器、 N个圓波导组、 N个第一波导构成 N个光发射部件, 每个 光发射部件中由一个直接调制激光器、一个圓波导组和一个第一波导组成, 所 述圓波导组中至少包括一个圓波导, 所述 N大于或等于 2; 圓波导组将来自自身对应的第一波导的光信号中的一部分光信号耦合进 第二波导, 其中, 所述耦合进所述第二波导的这一部分光信号的消光比大于所 述来自自身对应的第一波导的光信号的消光比, 其中,每个圓波导组的一侧与 自身对应的第一波导耦合, 另一侧与所述第二波导耦合;
第二波导汇聚来自各个圓波导组的光信号, 并输出汇聚后的光信号。
7、 根据权利要求 6所述的光发射方法, 其特征在于, 还包括: 所述圓波导组将来自自身对应的第一波导的光信号中的另一部分光信号 耦合到所述第二端口,以使得反馈控制电路根据与自身对应的第二光探测检测 到所述另一部分光信号的强度和第一光探测器检测到所述一部分光信号的强 度来控制所述圓波导组的谐振波长, 其中,每个圓波导组对应一个第一光探测 器、一个第二光探测器和一个反馈控制电路,每个第二光探测器与自身所对应 的第一波导的第二端口连接。
8、 根据权利要求 6或 7所述的光发射方法, 其特征在于, 还包括: 与圓波导组对应的第一波导的光信号中的所述一部分光信号的波长位于 所述圓波导组的谐振波长的预设范围内, 其中,每个圓波导组中的圓波导的谐 振波长相等。
PCT/CN2013/091171 2013-12-31 2013-12-31 一种光发射机和光发射方法 WO2015100640A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13900773.6A EP3076569B1 (en) 2013-12-31 2013-12-31 Optical transmitter and optical transmitting method
CN201380002361.3A CN105009487B (zh) 2013-12-31 2013-12-31 一种光发射机和光发射方法
PCT/CN2013/091171 WO2015100640A1 (zh) 2013-12-31 2013-12-31 一种光发射机和光发射方法
US15/199,734 US9806820B2 (en) 2013-12-31 2016-06-30 Optical transmitter and optical transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/091171 WO2015100640A1 (zh) 2013-12-31 2013-12-31 一种光发射机和光发射方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/199,734 Continuation US9806820B2 (en) 2013-12-31 2016-06-30 Optical transmitter and optical transmission method

Publications (1)

Publication Number Publication Date
WO2015100640A1 true WO2015100640A1 (zh) 2015-07-09

Family

ID=53492983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091171 WO2015100640A1 (zh) 2013-12-31 2013-12-31 一种光发射机和光发射方法

Country Status (4)

Country Link
US (1) US9806820B2 (zh)
EP (1) EP3076569B1 (zh)
CN (1) CN105009487B (zh)
WO (1) WO2015100640A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106998230B (zh) 2017-03-07 2019-07-09 武汉光迅科技股份有限公司 内置信号校准电路的双速率dml器件、模块及信号校准方法
CN109991700A (zh) * 2019-03-26 2019-07-09 昆明理工大学 一种微环集成的阵列波导光栅波分复用器
CN114665968B (zh) * 2020-12-23 2023-10-10 中国科学院半导体研究所 片上光电收发引擎
CN113608370A (zh) * 2021-08-17 2021-11-05 吴弟书 一种波长复用的微环调制器及波长锁定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101427494A (zh) * 2006-10-02 2009-05-06 华为技术有限公司 用于集成dwdm发射器的方法和系统
CN101449491A (zh) * 2006-10-20 2009-06-03 华为技术有限公司 用于混合集成1xn dwdm发射机的方法和系统
CN201408300Y (zh) * 2009-04-23 2010-02-17 中国计量学院 光控耦合谐振腔结构太赫兹波调制装置
CN102405570A (zh) * 2009-12-02 2012-04-04 华为技术有限公司 无色密集波分复用发射器的波长稳定及锁定

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285809B1 (en) * 1999-11-19 2001-09-04 Lynx Photonic Networks, Inc. Wraparound optical switch matrix
US7263291B2 (en) * 2002-07-09 2007-08-28 Azna Llc Wavelength division multiplexing source using multifunctional filters
US7280721B2 (en) 2002-11-06 2007-10-09 Azna Llc Multi-ring resonator implementation of optical spectrum reshaper for chirp managed laser technology
US7286620B2 (en) 2003-09-17 2007-10-23 International Business Machines Corporation Equalizer for reduced intersymbol interference via partial clock switching
EP1709758A4 (en) 2003-12-16 2007-07-18 California Inst Of Techn GALER EQUALIZER DETERMINISTIC
US7242712B1 (en) 2004-03-08 2007-07-10 Pmc-Sierra, Inc. Decision feedback equalizer (DFE) for jitter reduction
JP4774761B2 (ja) * 2005-03-03 2011-09-14 日本電気株式会社 波長可変共振器、波長可変レーザ、光モジュール及びそれらの制御方法
JP4505403B2 (ja) * 2005-11-15 2010-07-21 富士通株式会社 光送信装置
US8095010B2 (en) * 2005-12-28 2012-01-10 Mosaid Technologies Incorporated Method and device for tunable optical filtering
US8050525B2 (en) 2006-10-11 2011-11-01 Futurewei Technologies, Inc. Method and system for grating taps for monitoring a DWDM transmitter array integrated on a PLC platform
EP2103012B1 (en) * 2006-12-27 2013-06-12 Google, Inc. Optical transmission system with optical chromatic dispersion compensator
US8027593B2 (en) * 2007-02-08 2011-09-27 Finisar Corporation Slow chirp compensation for enhanced signal bandwidth and transmission performances in directly modulated lasers
CN101046531A (zh) * 2007-04-26 2007-10-03 北京航空航天大学 基于环形谐振腔的可调光学滤波器
US8027587B1 (en) * 2007-08-21 2011-09-27 Sandia Corporation Integrated optic vector-matrix multiplier
US8160455B2 (en) * 2008-01-22 2012-04-17 Finisar Corporation Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter
US8260150B2 (en) * 2008-04-25 2012-09-04 Finisar Corporation Passive wave division multiplexed transmitter having a directly modulated laser array
US8611747B1 (en) * 2009-05-18 2013-12-17 Cirrex Systems, Llc Method and system for multiplexing optical communication signals
US8768170B2 (en) * 2009-06-29 2014-07-01 Oracle International Corporation Optical device with reduced thermal tuning energy
US9008515B2 (en) * 2010-10-07 2015-04-14 Alcatel Lucent Direct laser modulation
US8847598B2 (en) * 2011-07-08 2014-09-30 General Electric Company Photonic system and method for optical data transmission in medical imaging systems
EP2581730A1 (en) * 2011-10-10 2013-04-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung Optical Resonator for Sensor Arrangement and Measuring Method
CN202309723U (zh) * 2011-10-13 2012-07-04 苏州旭创科技有限公司 用于40G40km长距离传输的波分复用解复用光组件
KR20130093839A (ko) 2012-01-26 2013-08-23 삼성전자주식회사 열결합된 공진형 변조기를 이용하는 광송신기와 광통신 시스템
US9170371B2 (en) * 2012-04-24 2015-10-27 Hewlett-Packard Development Company, L.P. Micro-ring optical resonators
US9823539B2 (en) * 2013-06-26 2017-11-21 Empire Technology Development Llc Methods and systems for forming optical modulators using micro-contact lithography
WO2015100629A1 (zh) * 2013-12-31 2015-07-09 华为技术有限公司 一种环形光移位器及光信号的移位方法
WO2015176764A1 (en) * 2014-05-23 2015-11-26 Telefonaktiebolaget L M Ericsson (Publ) An optical switch, an optical switching apparatus, an optical communications network node and an optical communications network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101427494A (zh) * 2006-10-02 2009-05-06 华为技术有限公司 用于集成dwdm发射器的方法和系统
CN101449491A (zh) * 2006-10-20 2009-06-03 华为技术有限公司 用于混合集成1xn dwdm发射机的方法和系统
CN201408300Y (zh) * 2009-04-23 2010-02-17 中国计量学院 光控耦合谐振腔结构太赫兹波调制装置
CN102405570A (zh) * 2009-12-02 2012-04-04 华为技术有限公司 无色密集波分复用发射器的波长稳定及锁定

Also Published As

Publication number Publication date
EP3076569A4 (en) 2016-11-23
US9806820B2 (en) 2017-10-31
CN105009487A (zh) 2015-10-28
US20170099108A1 (en) 2017-04-06
EP3076569A1 (en) 2016-10-05
EP3076569B1 (en) 2018-02-14
CN105009487B (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
US10935820B2 (en) Method and system for integrated power combiners
US9668037B2 (en) Detector remodulator and optoelectronic switch
CN102882601B (zh) 硅光子集成高速光通信收发模块
CN111711064A (zh) 集成相干光学收发器、光引擎
CN109981180A (zh) 一种波长锁定光模块、装置和波长锁定方法
CN104218998A (zh) 光源模块和光收发器
CN202872791U (zh) 硅光子集成高速光通信收发模块
CN107395316A (zh) 波分多路复用光接收器及其驱动方法
WO2015100640A1 (zh) 一种光发射机和光发射方法
Chen et al. A WDM silicon photonic transmitter based on carrier-injection microring modulators
CN111458908A (zh) 基于铌酸锂单晶薄膜的微环电光调制器及使用方法和应用
JP2011039117A (ja) 双方向光通信モジュール
US20230007370A1 (en) Optical module, data center system, and data transmission method
WO2023060412A1 (zh) 一种面向高速光通信的6.4Tbps硅基光引擎收发芯片组件
CN214626994U (zh) 25g cwdm光模块
CN207968495U (zh) 一种远距离传输的100g小型化光模块
CN114665968B (zh) 片上光电收发引擎
CN114362829B (zh) 基于ppln的偏振无关频率转换方法、器件及单光子探测器
CN107171182A (zh) 基于plc的多波长集成可调激光器组件
CN204631288U (zh) 一种光源锁模器
CN114665967A (zh) 基于波分复用的片上光电收发引擎
CN113745964A (zh) 外调激光器阵列单片光子集成芯片
TWM412368U (en) Fiber connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013900773

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900773

Country of ref document: EP