WO2015100567A1 - 一种具有光学特性和防污特性的镀膜玻璃及其制备方法 - Google Patents

一种具有光学特性和防污特性的镀膜玻璃及其制备方法 Download PDF

Info

Publication number
WO2015100567A1
WO2015100567A1 PCT/CN2013/090976 CN2013090976W WO2015100567A1 WO 2015100567 A1 WO2015100567 A1 WO 2015100567A1 CN 2013090976 W CN2013090976 W CN 2013090976W WO 2015100567 A1 WO2015100567 A1 WO 2015100567A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
nanolayer
glass
coated glass
antifouling
Prior art date
Application number
PCT/CN2013/090976
Other languages
English (en)
French (fr)
Inventor
胡伟
陈鹏
常瑞荆
Original Assignee
深圳市东丽华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市东丽华科技有限公司 filed Critical 深圳市东丽华科技有限公司
Priority to PCT/CN2013/090976 priority Critical patent/WO2015100567A1/zh
Publication of WO2015100567A1 publication Critical patent/WO2015100567A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/754Self-cleaning
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer

Definitions

  • the invention relates to the field of coated glass, in particular to a coated glass having optical properties and antifouling properties and a preparation method thereof.
  • Glass materials have a wide range of applications. In the fields of electronics, construction, energy, automotive, etc., the transmittance of ordinary colorless glass is below 92%, and the reflectivity of each surface is about 4%, due to the inherent high presence of glass. The reflectivity reduces the light transmission efficiency, resulting in a significant decrease in display efficiency and efficiency when applied to a display module, thereby increasing power consumption and reducing device life; resulting in reduced power generation efficiency when applied to a solar module. .
  • the surface activity of glass is relatively high. Generally speaking, it does not have "water repellency” and “oil repellency”, or is not “slippery”. Therefore, the glass applied to the touch screen is not good in touch, and the current practice is also through vacuum coating.
  • the method is to coat the surface of the glass with a layer of fluorine-containing low surface active energy. Similarly, this practice is too costly and inefficient, and this practice is limited by the size of the vacuum coater and cannot be implemented for slightly larger sizes of glass. In the field of solar energy, when there is dirt attached to the uncoated glass surface, it will affect the power generation efficiency. Especially for large solar power generators placed in the field, the maintenance and cleaning work is very large.
  • the technical solution adopted by the present invention to achieve the above object is to provide a coated glass having optical properties and antifouling properties, the coated glass comprising a glass substrate, and the optical nano layer and the antifouling nano layer are sequentially attached to the glass substrate;
  • the anti-staining nanolayer is chemically bonded to the optical nano-layer;
  • the optical nano-layer comprises an anti-reflective nano-layer and/or an anti-glare optical nano-layer.
  • the invention also provides A method for preparing a coated glass having optical properties and antifouling properties, comprising the steps of: providing a glass substrate; forming an optical nanolayer on the glass substrate; and forming an optical nanolayer by chemical reaction on the optical nanolayer a cryptographically bonded antifouling nanolayer; the optical nanolayer comprising an antireflective nanolayer and/or an antiglare optical nanolayer.
  • the beneficial effects of the invention are as follows: 1) the coated glass produced by the invention has a composite coating structure and has optical properties and antifouling properties; 2) the antireflection nano film and the antifouling nano film provided by the invention are all applicable It is completed by relatively simple wet coating; 3)
  • the main component of the antifouling property of the present invention is a low surface active energy polyfluorosiloxane, which is well suited to the present invention.
  • the provided optical nano-film is chemically reacted on the surface of the silicon-oxygen group to form a chemical valence bond, thereby providing superior film adhesion.
  • 1 is a graph showing transmittance of a coated glass of the present invention in a wavelength range of 355 nm to 1035 nm;
  • Figure 2 is a graph showing the reflectance of the coated glass of the present invention in the wavelength range of 355 nm to 1035 nm;
  • Fig. 3 is a graph showing the attenuation curve of the antifouling property of the coated glass of the present invention during the anti-friction test.
  • the technical solution adopted by the present invention to achieve the above object is to provide a coated glass having optical properties and antifouling properties, the coated glass comprising a glass substrate, and the optical nano layer and the antifouling nano layer are sequentially attached to the glass substrate;
  • the anti-staining nanolayer is chemically bonded to the optical nano-layer;
  • the optical nano-layer comprises an anti-reflective nano-layer and/or an anti-glare optical nano-layer.
  • the antifouling nanolayer comprises a polyfluorosilicone; the optical nanolayer comprises a weight ratio of at least 50 % of silicon oxide.
  • the invention also provides A method for preparing a coated glass having optical properties and antifouling properties, comprising the steps of: providing a glass substrate; forming an optical nanolayer on the glass substrate; and forming an optical nanolayer by chemical reaction on the optical nanolayer a cryptographically bonded antifouling nanolayer; the optical nanolayer comprising an antireflective nanolayer and/or an antiglare optical nanolayer.
  • the forming the optical nanolayer is formed by curing after coating at least one polysiloxane metal alkoxide.
  • the manner of forming an antifouling nanolayer bonded to the optical nanolayer by chemical reaction is followed by wet coating of a material comprising a polyfluorosiloxane on the optical nanolayer.
  • the curing is one or both of heat curing or ultraviolet curing.
  • the anti-reflection nano film and the anti-fouling nano film provided by the invention can be completed by relatively simple wet coating, and the production efficiency is high, the cost is low, and the size of the vacuum coating machine is not limited.
  • the main component of the antifouling property of the present invention is a low surface active energy polyfluorosiloxane, which can be well adhered to the surface of the antireflective nanofilm provided by the present invention.
  • the silicon-oxygen group undergoes a chemical reaction to produce a chemical valence bond to provide superior film adhesion.
  • the coated glass produced by the present invention has a composite coating structure and is excellent in improving the light transmittance of the glass. Anti-fouling performance, a wide range of applications. When the coated glass is applied to the display module, the display effect and efficiency can be improved, thereby reducing energy consumption and prolonging the life of the device; when applied to the solar module, the power generation efficiency can be improved, and the maintenance and cleaning cost can be reduced.
  • the glass substrate to be coated is cleaned and dried; the anti-reflective nano-layer material is prepared; the anti-reflective nano-layer material is coated on the glass substrate by wet method, and is catalyzed by ammonia gas for 20-120 min, after 350-700 ° C, 30-60 min.
  • Thermal curing to obtain a glass substrate with an anti-reflection nano-layer; heat-curing the polyfluorosiloxane material on the glass substrate coated with the anti-reflection nano-layer to obtain optical properties and antifouling properties Coated Glass.
  • the glass substrate to be coated is cleaned and dried; an anti-reflective nano-layer material is prepared; an anti-reflective nano-layer material is wet-coated on the glass substrate, and UV-cured to obtain a coated glass with an anti-reflection nano-layer.
  • the glass substrate to be coated is cleaned and dried; the anti-reflective nano-layer material is prepared; the anti-glare nano-layer material is prepared; the anti-reflective nano-layer material and the anti-glare nano-layer material are wet-coated on the glass substrate, and the ultraviolet curing is obtained. Coated glass with anti-reflective and anti-glare nanolayers.
  • the glass substrate to be coated is cleaned and dried; 15 wt% aluminum isopropoxide, 15 wt% butyl titanate, 50 wt% ethyl orthosilicate, 5 wt% zirconium oxychloride, 14 wt% ethanol, 1 wt% hydrochloric acid, after 48 h,
  • the anti-reflection nano-layer coating material is cured at a constant temperature of 25 ° C; the anti-reflective nano-layer material is wet-coated on the glass substrate, catalyzed by ammonia gas for 20-120 min, and heat-cured at 350-700 ° C for 30-60 min.
  • the film is thermally cured at a temperature of 100 to 150 ° C for 10 to 30 minutes to obtain a coated glass having optical characteristics and antifouling properties.
  • the ordinary glass and the coated glass prepared in Examples 1 and 2 of the present invention were used to measure the transmittance and reflectance of light of a wavelength of 355 nm to 1035 nm.
  • the light transmittance of the coated glass produced by the inventive examples 1 and 2 is greater than that of the ordinary glass; as shown in FIG. 2, at different wavelengths, the first and second embodiments of the present invention The light reflectance of the coated glass is smaller than that of ordinary glass.
  • Ordinary glass has a light transmission rate of 92 Below %, the reflectance of each of the faces is about 4%, and the light transmittance of the anti-reflective and anti-fouling coated glass of the present invention is on average 93. %, when applied to the display module, can improve the display effect and efficiency, thereby reducing energy consumption and extending the life of the device; when applied to a solar module, the power generation efficiency can be improved.
  • Example 1 of the present invention Taking the coated glass prepared in Example 1 of the present invention, the contact angle of the glass was measured by using deionized water (DI water) and tetradecane as the wetting liquid, and the test results are shown in FIG. 3, and the coating film produced by the present invention is obtained.
  • DI water deionized water
  • tetradecane tetradecane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明公开了一种具有光学特性和防污特性的镀膜玻璃及其制备方法,该镀膜玻璃包括玻璃基体,所述玻璃基体上依次附有光学纳米层和防污纳米层;所述防污纳米层与所述光学纳米层之间为化学价键连接;所述光学纳米层包括防反射纳米层和/或防眩光学纳米层。本发明镀膜玻璃制备方法不受真空镀膜机的尺寸限制,且生产效率高、生产成本低;所制得镀膜玻璃有效提升了玻璃的光透过率及防污防眩光能力,可广泛应用于电子、建筑、能源、汽车等领域,尤其适用于显示器表面的触摸屏玻璃和太阳能玻璃。

Description

一种具有光学特性和防污特性的镀膜玻璃及其制备方法 技术领域
本发明涉及镀膜玻璃领域,尤其涉及一种具有光学特性和防污特性的镀膜玻璃及其制备方法。
背景技术
玻璃材料的应用范围很广,电子、建筑、能源、汽车等领域,普通的无色玻璃的透过率在92%以下,其每个面的反射率大约为4%,由于玻璃固有存在的高反射率降低了光的透过效率,导致了在应用于显示模组上时显示效果和效率的大幅下降,从而能耗提升、器件寿命下降;导致了在应用于太阳能模组上时发电效率降低。
目前为了提升玻璃的透过率,通常的做法是通过真空镀膜的方式在玻璃表面镀上多层光学防反射镀层。这种做法成本太高、生产效率低,同时这种做法受到真空镀膜机的尺寸限制,对于稍大尺寸的玻璃来说,无法实施。
玻璃的表面活性能比较高,通俗的来说,不具备“泼水性”和“拨油性”,或者说不够“滑”,因此应用于触摸屏的玻璃的触感不好,目前的做法也是通过真空镀膜的方式在玻璃表面镀上一层含氟低表面活性能的材料。同样的,这种做法成本太高、生产效率低,同时这种做法受到真空镀膜机的尺寸限制,对于稍大尺寸的玻璃来说,无法实施。对于太阳能领域来说,当有脏污附着在没有镀膜的玻璃表面之后,会影响发电效率,特别对于安放在野外的大型太阳能发电机组来说,维护、保洁的工程量很大。
技术问题
本发明的目的在于提供一种具有光学特性和防污特性的镀膜玻璃及其制备方法,以解决上述现有技术中的不足。
技术解决方案
本发明实现上述目的所采用的技术方案是提供一种具有光学特性和防污特性的镀膜玻璃,所述镀膜玻璃包括玻璃基体,所述玻璃基体上依次附有光学纳米层和防污纳米层;所述防污纳米层与所述光学纳米层之间为化学价键连接;所述光学纳米层包括防反射纳米层和/或防眩光学纳米层。
本发明还提供 一种具有光学特性和防污特性的镀膜玻璃的制备方法,包括以下步骤:提供玻璃基体;在所述玻璃基体上形成光学纳米层;在所述光学纳米层上通过化学反应形成与光学纳米层价键连接的防污纳米层;所述光学纳米层包括防反射纳米层和/或防眩光学纳米层。
有益效果
本发明的有益效果在于:1)本发明所制得镀膜玻璃具有复合镀膜结构,同时具备光学特性和防污特性;2)本发明提供的防反射纳米薄膜和防污特性纳米薄膜,都是可以通过相对简易的湿法涂布来完成;3)本发明提供的防污特性的材料的主要成分是低表面活性能的聚氟硅氧烷,该聚氟硅氧烷可以很好的与本发明提供的光学纳米薄膜固化后表面的硅-氧基团进行化学反应,产生化学价键绑定,从而具备优越的膜层结合力。
附图说明
图1是本发明镀膜玻璃在波长355nm到1035nm范围内的透过率曲线图;
图2是本发明镀膜玻璃在波长355nm到1035nm范围内的反射率曲线图;
图3是本发明镀膜玻璃在耐摩擦测试过程中防污特性的衰减曲线。
本发明的实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实现上述目的所采用的技术方案是提供一种具有光学特性和防污特性的镀膜玻璃,所述镀膜玻璃包括玻璃基体,所述玻璃基体上依次附有光学纳米层和防污纳米层;所述防污纳米层与所述光学纳米层之间为化学价键连接;所述光学纳米层包括防反射纳米层和/或防眩光学纳米层。
作为本发明的进一步改进,所述防污纳米层包括聚氟硅氧烷;所述光学纳米层包括重量比至少50 %的氧化硅。
本发明还提供 一种具有光学特性和防污特性的镀膜玻璃的制备方法,包括以下步骤:提供玻璃基体;在所述玻璃基体上形成光学纳米层;在所述光学纳米层上通过化学反应形成与光学纳米层价键连接的防污纳米层;所述光学纳米层包括防反射纳米层和/或防眩光学纳米层。
作为本发明的进一步改进,所述形成光学纳米层所述光学纳米层由通过涂布至少一种聚硅氧烷金属醇盐后,固化形成。
作为本发明的进一步改进,所述通过化学反应形成与光学纳米层价键连接的防污纳米层的方式为在光学纳米层上湿法涂布包括聚氟硅氧烷的材料后固化。
作为本发明的进一步改进,所述固化为热固化或紫外固化的一种或两种。
首先,本发明提供的防反射纳米薄膜和防污特性纳米薄膜,都是可以通过相对简易的湿法涂布来完成,生产效率高、成本较低、且不受限于真空镀膜机的尺寸大小;其次,本发明提供的防污特性的材料的主要成分是低表面活性能的聚氟硅氧烷,该聚氟硅氧烷可以很好的与本发明提供的防反射纳米薄膜固化后表面的硅-氧基团进行化学反应,产生化学价键绑定,从而具备优越的膜层结合力;最后,本发明所制得镀膜玻璃具有复合镀膜结构,在提高玻璃光透过率的同时具有优良的防污性能,应用范围广泛。该镀膜玻璃应用于显示模组上时可提高显示效果和效率,从而降低能耗、延长器件寿命;应用于太阳能模组上时,可提高发电效率,降低维护保洁成本。
以下结合具体工艺参数进一步说明。
实施例1
将待镀膜玻璃基体进行清洁干燥;配制防反射纳米层材料;在玻璃基体上通过湿法涂布有防反射纳米层材料,通入氨气催化20-120min,经过350-700℃,30-60min热固化,得到附有防反射纳米层的玻璃基体;在所得涂布有防反射纳米层的玻璃基体上再湿法涂布聚氟硅氧烷材料热固化,得到具有光学特性和防污特性的镀膜玻璃。
实施例2
将待镀膜玻璃基体进行清洁干燥;配制防反射纳米层材料;在玻璃基体上通过湿法涂布有防反射纳米层材料,紫外固化,得到附有防反射纳米层的镀膜玻璃。
实施例3
将待镀膜玻璃基体进行清洁干燥;配制防反射纳米层材料;配制防眩光纳米层材料;在玻璃基体上通过湿法涂布有防反射纳米层材料和防眩光纳米层材料,紫外固化,得到附有防反射和防眩光纳米层的镀膜玻璃。
实施例4
本实施例所列举组分及参数仅用以进一步理解本发明。将待镀膜玻璃基体进行清洁干燥;取15wt%异丙醇铝、15wt%钛酸丁酯、50wt%正硅酸乙酯、5wt%氧氯化锆、14wt%乙醇、1wt%盐酸,经过48h,25℃恒温熟化得防反射纳米层涂膜材料;在玻璃基体上通过湿法涂布有防反射纳米层材料,通入氨气催化20-120min,经过350-700℃,30-60min热固化,得到附有防反射纳米层的玻璃基体;在所得涂布有防反射纳米层的玻璃基体上再湿法涂布含聚氟硅氧烷材料,其包括聚十九氟代壬基-三乙烷氧基硅烷0.5-3‰(深圳市东丽华科技有限公司提供的ECC738)、全氟乙基丁基醚98-99%(深圳市东丽华科技有限公司提供的C20)、催化剂0.5-1%,100-150℃温度下热固化10-30min,得到具有光学特性和防污特性的镀膜玻璃。
实施例5 光学性能测试
取普通玻璃及本发明实施例1和2所制得镀膜玻璃测量355nm~1035nm波长光的透过率和反射率。
如图1所示,不同波长下,本发明实施例1和2所制得镀膜玻璃的光透过率均大于普通玻璃;如图2所示,不同波长下,本发明实施例1和2所制得镀膜玻璃的光反射率小于普通玻璃。
普通玻璃的光透过率在92 %以下,其每个面的反射率大约是4%,而本发明所制得防反射和防污镀膜玻璃的光透过率平均可达93 %,在应用于显示模组上时可提高显示效果和效率,从而降低能耗、延长器件寿命;应用于太阳能模组上时,可提高发电效率。
实施例5 接触角测量
取本发明实施例1所制得镀膜玻璃,以去离子水(DI水)和十四烷为润湿液体,分别测量玻璃的接触角,试验结果如图3所示,本发明所制得镀膜玻璃在耐摩擦测试过程中,防污特性变化小,体现了产品的高信耐性;膜层耐久性,耐磨性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种具有光学特性和防污特性的镀膜玻璃,其特征在于,所述镀膜玻璃包括玻璃基体,所述玻璃基体上依次附有光学纳米层和防污纳米层;所述防污纳米层与所述光学纳米层之间为化学价键连接;所述光学纳米层包括防反射纳米层和/或防眩光学纳米层。
  2. 根据权利要求1所述的镀膜玻璃,其特征在于,所述防污纳米层包括聚氟硅氧烷;所述光学纳米层包括重量比至少50 %的氧化硅。
  3. 一种具有光学特性和防污特性的镀膜玻璃的制备方法,其特征在于,包括以下步骤:提供玻璃基体;在所述玻璃基体上形成光学纳米层;在所述光学纳米层上通过化学反应形成与光学纳米层价键连接的防污纳米层;所述光学纳米层包括防反射纳米层和/或防眩光学纳米层。
  4. 根据权利要求3所述的制备方法,其特征在于,所述光学纳米层由通过涂布至少一种聚硅氧烷金属醇盐后,固化形成。
  5. 根据权利要求3所述的制备方法,其特征在于,所述通过化学反应形成与光学纳米层价键连接的防污纳米层的方式为在光学纳米层上湿法涂布包括聚氟硅氧烷的材料后固化。
  6. 根据权利要求4或5所述的制备方法,其特征在于:所述固化为热固化或紫外固化的一种或两种。
PCT/CN2013/090976 2013-12-30 2013-12-30 一种具有光学特性和防污特性的镀膜玻璃及其制备方法 WO2015100567A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090976 WO2015100567A1 (zh) 2013-12-30 2013-12-30 一种具有光学特性和防污特性的镀膜玻璃及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090976 WO2015100567A1 (zh) 2013-12-30 2013-12-30 一种具有光学特性和防污特性的镀膜玻璃及其制备方法

Publications (1)

Publication Number Publication Date
WO2015100567A1 true WO2015100567A1 (zh) 2015-07-09

Family

ID=53492925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090976 WO2015100567A1 (zh) 2013-12-30 2013-12-30 一种具有光学特性和防污特性的镀膜玻璃及其制备方法

Country Status (1)

Country Link
WO (1) WO2015100567A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559874A (zh) * 2020-06-23 2020-08-21 佛山市德俊太阳能玻璃有限公司 一种玻璃生产真空镀膜工艺
CN115259686A (zh) * 2022-08-11 2022-11-01 咸宁南玻节能玻璃有限公司 一种易洁玻璃及其制备方法
CN115403275A (zh) * 2022-09-26 2022-11-29 咸宁南玻节能玻璃有限公司 玻璃保护液、玻璃保护液制备方法、玻璃保护液成膜方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319628A (zh) * 2000-03-31 2001-10-31 松下电器产业株式会社 防污性覆膜及其制造方法,及其用于汽车用玻璃和汽车
CN102901036A (zh) * 2012-10-19 2013-01-30 南通恺誉照明科技有限公司 防眩光高透过率led灯具用玻璃涂层及其制备方法
CN102906044A (zh) * 2010-05-25 2013-01-30 3M创新有限公司 抗微生物涂层
CN102950843A (zh) * 2012-11-29 2013-03-06 大连创达技术交易市场有限公司 一种具有防雾和自洁功能的汽车玻璃
CN103722817A (zh) * 2013-12-30 2014-04-16 深圳市东丽华科技有限公司 一种具有光学特性和防污特性的镀膜玻璃及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319628A (zh) * 2000-03-31 2001-10-31 松下电器产业株式会社 防污性覆膜及其制造方法,及其用于汽车用玻璃和汽车
CN102906044A (zh) * 2010-05-25 2013-01-30 3M创新有限公司 抗微生物涂层
CN102901036A (zh) * 2012-10-19 2013-01-30 南通恺誉照明科技有限公司 防眩光高透过率led灯具用玻璃涂层及其制备方法
CN102950843A (zh) * 2012-11-29 2013-03-06 大连创达技术交易市场有限公司 一种具有防雾和自洁功能的汽车玻璃
CN103722817A (zh) * 2013-12-30 2014-04-16 深圳市东丽华科技有限公司 一种具有光学特性和防污特性的镀膜玻璃及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG, JIJUM ET AL.: "Fabrication and Character of Optically Transparent Self-cleaning Coatings", JOURNAL OF JIANGSU UNIVERSITY OF SCIENCE AND TECHNOLOGY, vol. 23, no. 2, 30 April 2009 (2009-04-30), pages 125 - 126 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559874A (zh) * 2020-06-23 2020-08-21 佛山市德俊太阳能玻璃有限公司 一种玻璃生产真空镀膜工艺
CN115259686A (zh) * 2022-08-11 2022-11-01 咸宁南玻节能玻璃有限公司 一种易洁玻璃及其制备方法
CN115403275A (zh) * 2022-09-26 2022-11-29 咸宁南玻节能玻璃有限公司 玻璃保护液、玻璃保护液制备方法、玻璃保护液成膜方法

Similar Documents

Publication Publication Date Title
Sarkın et al. A review of anti-reflection and self-cleaning coatings on photovoltaic panels
Adak et al. A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices
JP3628692B2 (ja) 高屈折率を有する複合材料、該複合材料の製造方法及び該複合材料を含む光学活性材料
CN103770404B (zh) 一种耐候性太阳能玻璃表面减反膜及其制备方法
CN103524049B (zh) 一种单层SiO2增透膜的制备方法
Xin et al. A novel route to prepare weather resistant, durable antireflective films for solar glass
WO2015100567A1 (zh) 一种具有光学特性和防污特性的镀膜玻璃及其制备方法
CN104230178A (zh) 一种改性多孔性二氧化硅减反膜的制备方法
WO2021000564A1 (zh) 一种太阳能组件封装用减反射镀膜玻璃及其制造方法
Yao et al. Long-lived multilayer coatings for smart windows: integration of energy-saving, antifogging, and self-healing functions
JP2011107359A5 (ja) 光学物品および光学物品の製造方法
CN113105765A (zh) 一种具有高可见光透过率的智能隔热复合涂层及其制法
CN103524048A (zh) 一种多层SiO2无机增透膜的制备方法
CN114105490B (zh) 低辐射镀膜玻璃
CN103722817B (zh) 一种具有光学特性和防污特性的镀膜玻璃及其制备方法
WO2023169539A1 (zh) 车辆用憎水减反玻璃及其制造方法与夹层玻璃
CN101783369B (zh) 高氟合晶涂层太阳能光伏电池背膜及其制造方法
CN102674705B (zh) 高温真空集热管表面耐磨、自洁减反膜制备方法
KR20130114483A (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
TWI487625B (zh) 紅外光阻隔之金屬氧化物多層膜結構
JP3408578B2 (ja) 熱線遮蔽ガラス板の製造方法
WO2015072109A1 (ja) 断熱積層体および当該断熱積層体形成用組成物
CN108977065A (zh) 一种超疏水自洁光伏玻璃镀膜液及其涂镀工艺
A Mathews et al. Sol-gel functional coatings for solar thermal applications: a review of recent patent literature
CN112147722A (zh) 一种光伏玻璃用的增透膜及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13900724

Country of ref document: EP

Kind code of ref document: A1