WO2023169539A1 - 车辆用憎水减反玻璃及其制造方法与夹层玻璃 - Google Patents

车辆用憎水减反玻璃及其制造方法与夹层玻璃 Download PDF

Info

Publication number
WO2023169539A1
WO2023169539A1 PCT/CN2023/080656 CN2023080656W WO2023169539A1 WO 2023169539 A1 WO2023169539 A1 WO 2023169539A1 CN 2023080656 W CN2023080656 W CN 2023080656W WO 2023169539 A1 WO2023169539 A1 WO 2023169539A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophobic anti
glass
reflective
hydrophobic
coating
Prior art date
Application number
PCT/CN2023/080656
Other languages
English (en)
French (fr)
Inventor
孙盈盈
郭善济
魏丁强
张灿忠
柯城
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Publication of WO2023169539A1 publication Critical patent/WO2023169539A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/001Double glazing for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/002Windows; Windscreens; Accessories therefor with means for clear vision, e.g. anti-frost or defog panes, rain shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/08Rear-view mirror arrangements involving special optical features, e.g. avoiding blind spots, e.g. convex mirrors; Side-by-side associations of rear-view and other mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/10Front-view mirror arrangements; Periscope arrangements, i.e. optical devices using combinations of mirrors, lenses, prisms or the like ; Other mirror arrangements giving a view from above or under the vehicle
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying

Definitions

  • the present invention relates to the technical field of glass manufacturing, and in particular to a hydrophobic anti-reflective glass for vehicles, a manufacturing method thereof and laminated glass.
  • automotive glass that plays a role in functionality, comfort and aesthetics has emerged one after another, such as heat-insulating UV-insulating glass, hydrophobic glass, solar glass, anti-fog glass, HUD head-up display glass, tinted glass, etc.
  • Hydrophobic glass has been widely used in the field of automotive glass because it can effectively roll away water droplets on rainy days and maintain a good field of vision for drivers.
  • Anti-reflective coatings can effectively reduce the reflection of light and have been used in the optical field and display glass in shopping malls and museums for many years. Later, it was discovered that anti-reflective glass can effectively reduce the reflection in the car glass at night and reduce the driver's fatigue. Visual interference and fatigue have also received increasing attention in the field of automotive glass.
  • the object of the present invention is to provide a hydrophobic anti-reflective glass for vehicles, a manufacturing method thereof and laminated glass.
  • the present invention can make the glass have both hydrophobicity and anti-reflective properties.
  • the present invention provides a hydrophobic anti-reflective glass for vehicles.
  • the hydrophobic anti-reflective glass for vehicles includes a first glass plate and a hydrophobic anti-reflective coating; the hydrophobic anti-reflective coating is coated on One side surface of the first glass plate;
  • the hydrophobic anti-reflective coating is a single-layer structure formed by curing the hydrophobic anti-reflective coating.
  • the raw materials of the hydrophobic anti-reflective coating include silicate, phenylsilane and fluorine-containing surfactant; the hydrophobic anti-reflective coating
  • the water contact angle of the anti-reflective coating is 110°-130°, and the refractive index of the hydrophobic anti-reflective coating is 1.20-1.30.
  • a curved glass plate may be selected as the first glass plate.
  • the first glass plate may be referred to as the first curved glass plate.
  • the first curved glass plate generally has a first concave surface and a first convex surface
  • the hydrophobic antireflection layer is generally coated on the first convex surface or the first concave surface.
  • the thickness of the hydrophobic anti-reflective coating is preferably 10 nm-300 nm, such as 50 nm-250 nm.
  • the water contact angle of the hydrophobic anti-reflective coating is preferably greater than or equal to 120°.
  • the hydrophobic anti-reflective coating preferably has a refractive index of 1.21-1.25.
  • the hydrophobic anti-reflective coating may have a porosity greater than or equal to 40%.
  • the hydrophobic anti-reflective coating has a refractive index of 1.23-1.28.
  • a flat abrasion meter is used to measure, with the hydrophobic anti-reflective coating of the vehicle's hydrophobic anti-reflective glass facing upwards, and a flat abrasion test of 100 revolutions is carried out according to 2.45N ⁇ 100r.
  • the measured contact angle after grinding is greater than or equal to 100°.
  • the hydrophobic anti-reflective coating can be obtained by mixing a first solution and a second solution; based on the total mass of the raw materials of the hydrophobic anti-reflective coating being 100%, the first solution is generally It includes 3%-20% silicate, 2%-10% phenylsilane, 0.01%-0.5% fluorine-containing surfactant and a first organic solvent; the second solution includes 0.5%-5% catalyst and a second Organic solvents.
  • the sum of the mass proportions of the first organic solvent and the second organic solvent in the raw materials of the hydrophobic anti-reflective coating is 65%-90%.
  • the sum of the mass proportions of the fluorine-containing surfactant and the phenylsilane in the raw materials of the hydrophobic anti-reflective coating is generally controlled to be 3% to 9%.
  • the sum of the mass proportions of the silicate ester and the phenylsilane in the raw materials of the hydrophobic anti-reflective coating is generally controlled to be 5%-15%.
  • the silicate may include one or a combination of two or more of methyl orthosilicate, ethyl orthosilicate, propyl orthosilicate, and butyl orthosilicate.
  • the phenylsilane includes phenyltrimethoxysilane, phenyltriethoxysilane, methylphenyldimethoxysilane, diphenyldimethoxysilane, methylbenzene One or two of the diethoxysilane A combination of the above.
  • the fluorosurfactants include nonionic fluorocarbon surfactants.
  • the solid content of the nonionic fluorocarbon surfactant may be greater than or equal to 50%.
  • the fluorinated surfactant includes perfluorooctyl polyether surfactant.
  • the water solubility rate of the perfluorooctyl polyether surfactant may be greater than or equal to 90%.
  • the first organic solvent and/or the second organic solvent includes one or a combination of two or more of methanol, ethanol, propanol, butanol and isopropanol.
  • the catalyst includes a basic catalyst or an acidic catalyst.
  • the alkaline catalyst may include one or a combination of two or more of sodium hydroxide, potassium hydroxide, ammonia, and sodium bicarbonate
  • the acidic catalyst may include one or both of hydrochloric acid, nitric acid, and acetic acid. combinations of more than one species.
  • the present invention also provides a method for manufacturing the above-mentioned hydrophobic anti-reflective glass for vehicles.
  • the manufacturing method includes the following steps:
  • a first solution is obtained.
  • a second solution is obtained; after mixing and stirring the second solution and the first solution, the hydrophobic anti-reflective solution is obtained.
  • Coating Apply the hydrophobic anti-reflective coating to one side surface of the first glass plate, and form a hydrophobic anti-reflective coating on the surface after curing to obtain hydrophobic anti-reflective glass for vehicles.
  • the above-mentioned manufacturing method includes: taking the total mass of the raw materials of the hydrophobic anti-reflective coating as 100%, mixing 3%-20% silicate ester, 2%-10% phenylsilane, 0.01%- 0.5% fluorine-containing surfactant and the first organic solvent are mixed and stirred to obtain a first solution, and 0.5%-5% catalyst and the second organic solvent are mixed and stirred to obtain a second solution.
  • the first organic solvent is reduced in hydrophobicity.
  • the sum of the mass proportion of the raw materials of the anti-reflective coating and the mass proportion of the second organic solvent in the raw materials of the hydrophobic anti-reflective coating is 65%-90%; mix the second solution and the first solution After mixing and stirring, the hydrophobic anti-reflection coating is obtained; the hydrophobic anti-reflection coating is applied to one side surface of the first glass plate, and after curing, a hydrophobic anti-reflection coating is formed on the surface to obtain a vehicle.
  • the hydrophobic anti-reflective coating is usually coated on the first convex surface or the first concave surface of the first curved glass plate, and is cured.
  • a hydrophobic antireflection layer is formed on the first convex surface or the first concave surface.
  • mixing and stirring the second solution and the first solution includes: dropping the second solution into the first solution while the first solution is in a stirring state,
  • the rate of dripping is generally Control it to be 30-120 drops/minute, preferably 50-80 drops/minute.
  • the coating method includes ultrasonic spraying.
  • the ultrasonic frequency is 50kHz-120kHz
  • the liquid output during the spraying process is 0.5mL/min-10mL/min
  • the spraying moving speed is 300mm/s-800mm/s. .
  • the curing process may include sequentially performing first curing and second curing.
  • the temperature of the first curing is 50°C-100°C
  • the temperature of the second curing is 150°C-200°C. °C.
  • the first curing may be cured using an infrared lamp.
  • the first curing time can be controlled to be 10 min-50 min.
  • the second curing may be cured using an air blast drying oven.
  • the second curing time can be controlled from 30 min to 120 min.
  • the present invention also provides a hydrophobic anti-reflective laminated glass for vehicles.
  • the laminated glass includes the above-mentioned hydrophobic anti-reflective glass for vehicles, a second glass plate and a thermoplastic intermediate layer.
  • the thermoplastic intermediate layer is located on the hydrophobic anti-reflective glass for vehicles.
  • the hydrophobic anti-reflection laminated glass for vehicles has an outer surface and an inner surface, and the hydrophobic anti-reflection coating is located on the laminated glass. External or internal surface.
  • the hydrophobic anti-reflective coating is generally located on a side surface of the first glass plate away from the thermoplastic intermediate layer.
  • the first glass plate may be located on the exterior side of the vehicle and the second glass plate may be located on the interior side of the vehicle; or the second glass plate may be located on the exterior side of the vehicle.
  • the first glass panel is located on the interior side of the car.
  • the first convex surface of the first curved glass plate is an outer surface of the laminated glass, or the first concave surface of the first curved glass plate is the inner surface of laminated glass.
  • the present invention can make the glass have both hydrophobic and anti-reflective functions, thereby obtaining a single-layer
  • the hydrophobic anti-reflective glass with hydrophobic anti-reflective coating has a water contact angle of 110°-130° and has good hydrophobicity.
  • the refractive index can be effectively reduced to 1.20-1.30 and has a good anti-reflective effect.
  • the process conditions and technology used in the method of manufacturing hydrophobic and anti-reflective glass for vehicles of the present invention are simple and easy to operate, and are suitable for various applications.
  • Figure 1 is a schematic structural diagram of the hydrophobic anti-reflective glass for vehicles of the present invention.
  • Figure 2 is a schematic structural diagram of a hydrophobic anti-reflection laminated glass for vehicles according to the present invention.
  • Figure 3 is a schematic structural diagram of another hydrophobic anti-reflection laminated glass for vehicles of the present invention.
  • First curved glass sheet 1 hydrophobic anti-reflective coating 2, hydrophobic anti-reflective glass for vehicles 10, second curved glass sheet 30, thermoplastic intermediate layer 20, first convex surface 11 of the first curved glass sheet, first curved glass sheet 1
  • the invention provides a hydrophobic anti-reflective glass for vehicles.
  • the hydrophobic anti-reflective glass for vehicles includes a first glass plate and a hydrophobic anti-reflective coating; the hydrophobic anti-reflective coating is coated on one side of the first glass plate. Surface; the hydrophobic anti-reflection coating is a single-layer structure formed by curing the hydrophobic anti-reflection coating.
  • the raw materials of the hydrophobic anti-reflection coating include silicate, phenyl silane and fluorine-containing surfactant; the hydrophobic anti-reflection coating
  • the water contact angle of the layer is 110°-130°, and the refractive index of the hydrophobic anti-reflective coating is 1.20-1.30.
  • the hydrophobic anti-reflective glass for vehicles of the present invention specifically includes a first curved glass plate 1 and a hydrophobic anti-reflective coating 2; the first curved glass plate 1 has a first convex surface 11 and a first concave surface 12, The hydrophobic anti-reflective coating 2 is coated on the first convex surface 11 or the first concave surface 12; the hydrophobic anti-reflective coating 2 is a single-layer structure formed by curing the hydrophobic anti-reflective coating.
  • the raw materials of the hydrophobic anti-reflective coating include silicon.
  • the water contact angle of the hydrophobic anti-reflective coating 2 is 110°-130°
  • the refractive index of the hydrophobic anti-reflective coating 2 is 1.20-1.30 (such as 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29).
  • a single layer of hydrophobic anti-reflective coating is coated on one side of the first glass plate (for example, the first curved glass plate), and only through the cooperation between the single-layer structure of the coating and the glass plate, Hydrophobic anti-reflective glass that is both hydrophobic and has a low refractive index is available. Moreover, it is difficult to control the refractive index of a single-layer coating below 1.25 with the existing technology.
  • the refractive index can preferably reach 1.21-1.25, specifically 1.21, 1.22, 1.23, 1.24, 1.25, etc., which is close to the refractive index of the ideal anti-reflective coating ( 1.23).
  • the thickness of the hydrophobic anti-reflective coating 2 is preferably 10 nm-300 nm, for example, controlled to 50 nm-250 nm, more preferably 80 nm-200 nm.
  • the water contact angle of the hydrophobic anti-reflective coating 2 is preferably greater than or equal to 120°.
  • the hydrophobic anti-reflective coating has a refractive index of 1.23-1.28.
  • a flat abrasion meter is used to measure, with the hydrophobic anti-reflective coating 2 of the hydrophobic anti-reflective glass for vehicles facing upward, a flat abrasion test of 100 revolutions is carried out according to 2.45N ⁇ 100r, and the contact angle after grinding is measured.
  • the contact angle after grinding can reach greater than or equal to 104°, greater than or equal to 105°, greater than or equal to 106°, greater than or equal to 107°, greater than or equal to 110°, greater than or equal to 111°, greater than or equal to 112°, Greater than or equal to 113°, greater than or equal to 114°, greater than or equal to 115°, greater than or equal to 119°, etc.; furthermore, the contact angle after grinding can reach 104°, 105°, 106°, 107°, 110°, 111°, 112 Specific values such as °, 113°, 114°, 115°, 119°, and a range with any two of the above specific values as endpoints.
  • the porosity of the hydrophobic anti-reflective coating 2 can reach greater than or equal to 40%.
  • the hydrophobic anti-reflective coating can be obtained by mixing a first solution and a second solution; based on the total mass of the raw materials of the hydrophobic anti-reflective coating being 100%, the first solution is generally It includes 3%-20% silicate, 2%-10% phenylsilane, 0.01%-0.5% fluorine-containing surfactant and a first organic solvent; the second solution includes 0.5%-5% catalyst and a second Organic solvent, the sum of the mass proportions of the first organic solvent and the second organic solvent in the raw materials of the hydrophobic anti-reflective coating is 65%-90%.
  • the wear resistance of the layer meets the requirements for automotive glass use.
  • the sum of the mass proportions of the phenylsilane and the fluorine-containing surfactant in the raw materials of the hydrophobic anti-reflective coating is 3%-9%.
  • the sum of the mass proportions of the silicate ester and the phenylsilane in the raw materials of the hydrophobic anti-reflective coating is generally controlled to be 5%-15%. Controlling the addition amount of silicate and phenylsilane within the above range will facilitate the storage of the paint and obtain a coating with a better refractive index.
  • the silicate may include one or a combination of two or more of methyl orthosilicate, ethyl orthosilicate, propyl orthosilicate, and butyl orthosilicate.
  • the molecular chain of the phenylsilane contains more than one phenyl group.
  • the phenyl group is hydrophobic, and its introduction into the coating can significantly improve the hydrophobicity of the coating formed by the coating.
  • the phenylsilane can be phenylsiloxane.
  • siloxane molecular chains are more suitable for hybridization with silicate esters in glass substrates as phenyl carriers, and phenyl siloxane can improve the bond between the coating and the glass. Binding force.
  • the use of phenylsilane with methoxy or ethoxy groups is conducive to the spring-back phenomenon and makes it easier to prepare a coating with a low refractive index. Phenylsilane will inhibit the shrinkage of the coating film during the drying process and improve the Porosity in turn reduces the refractive index.
  • the phenylsilane includes phenyltrimethoxysilane, phenyltriethoxysilane, methyl One or a combination of two or more of phenyldimethoxysilane, diphenyldimethoxysilane, and methylphenyldiethoxysilane.
  • adding fluorine-containing surfactants can not only improve the leveling properties of the coating formed by the paint and increase the leveling speed, but also can reduce the surface energy and further improve the leveling speed without affecting the wear resistance of the coating. Hydrophobicity of the coating.
  • the fluorosurfactant includes nonionic fluorocarbon surfactant, perfluorooctyl polyether surfactant, or nonionic fluorocarbon surfactant and perfluorooctyl polyether surfactant. A combination of ether surfactants.
  • the solid content in the non-ionic fluorocarbon surfactant can be greater than or equal to 50%, and can be exemplified by 55%, 60%, 65%, 70%, 75%, 80%, etc.
  • the water solubility rate of the perfluorooctyl polyether surfactant is preferably greater than or equal to 90%, so that the fluorinated surfactant can be better dispersed in the solvent system of the hydrophobic anti-reflective coating.
  • the first organic solvent and/or the second organic solvent includes one or a combination of two or more of methanol, ethanol, propanol, butanol and isopropanol.
  • controlling the amount of the fluorosurfactant within an appropriate range can avoid adverse effects on the refractive index of the coating while improving the leveling and hydrophobicity of the coating.
  • the mass proportion of the fluorine-containing surfactant in the raw materials of the hydrophobic anti-reflective coating is generally controlled to be 0.01%-0.5%.
  • the fluorine-containing surfactant can be selected from GS-823 (Zicheng International Trading Co., Ltd.), WE-D9053R (Xinnuo Chemical Co., Ltd.), WE-D8950BR (Xinnuo Chemical Co., Ltd.), FCN- 18 (Hangzhou Renshan Technology), etc. One or a combination of two or more.
  • the catalyst includes a basic catalyst or an acidic catalyst.
  • the alkaline catalyst may include one or a combination of two or more of sodium hydroxide, potassium hydroxide, ammonia, and sodium bicarbonate
  • the acidic catalyst may include one or both of hydrochloric acid, nitric acid, and acetic acid. combinations of more than one species.
  • the present invention also provides a method for manufacturing the above-mentioned hydrophobic anti-reflective glass for vehicles.
  • the manufacturing method includes: taking the total mass of the raw materials of the hydrophobic anti-reflective coating as 100%, mixing 3%-20% silicate ester, 2% -10% phenylsilane, 0.01%-0.5% fluorinated surfactant and the first organic solvent are mixed and stirred to obtain the first solution, and 0.5%-5% catalyst and the second organic solvent are mixed and stirred to obtain the second solution.
  • the sum of the mass proportion of the first organic solvent in the raw materials of the hydrophobic anti-reflective coating and the mass proportion of the second organic solvent in the raw materials of the hydrophobic anti-reflective coating is 65%-90%;
  • the second solution and the first solution are mixed and stirred to obtain the hydrophobic anti-reflective coating;
  • the hydrophobic anti-reflective coating is applied to one side surface of the first glass plate, and after curing, a layer of the hydrophobic anti-reflective coating is formed on the surface.
  • a hydrophobic anti-reflective coating is formed to obtain hydrophobic anti-reflective glass for vehicles.
  • the above manufacturing method utilizes the sol-gel method, in which phenylsilane and silicate are added together to undergo hydrolysis and contraction. Polymerization reaction to form a coating with higher hydrophobicity.
  • the above-mentioned manufacturing method usually involves applying a hydrophobic anti-reflection coating to the first convex surface or the first concave surface of the first curved glass plate, and after curing A hydrophobic anti-reflective coating is formed on the first convex surface or the first concave surface to obtain hydrophobic anti-reflective glass for vehicles.
  • mixing and stirring the second solution and the first solution includes: dropping the second solution into the first solution while the first solution is in a stirring state, The dropping speed is generally controlled to be 30-120 drops/minute, preferably 50-80 drops/minute.
  • the coating method includes ultrasonic spraying.
  • a nanometer-thick coating can be prepared more accurately by controlling the parameters of the spraying process, thereby obtaining glass suitable for different curved surface shapes and having great flexibility in preparing convex or concave coatings.
  • the ultrasonic frequency is 50kHz-120kHz
  • the liquid output during the spraying process is 0.5mL/min-10mL/min
  • the spraying moving speed is 300mm/s-800mm/s. .
  • the curing process may include a first curing and a second curing performed in sequence, the temperature of the first curing is 50°C-100°C, and the temperature of the second curing is 150°C-100°C. 200°C.
  • the first curing may be cured using an infrared lamp.
  • the infrared curing method can maintain the porous structure of the coating to the greatest extent, ensuring that the coating has sufficient porosity while also achieving the effect of rapid drying of the coating surface.
  • the first curing time can be controlled to be 10 min-50 min, such as 10 min-30 min.
  • the second curing may be cured using an air blast drying oven.
  • the second curing time can be controlled to be 30min-120min, for example, it can be 30min-90min.
  • the invention also provides a hydrophobic anti-reflective laminated glass for vehicles, which includes the above-mentioned hydrophobic anti-reflective glass for vehicles, a second glass plate and a thermoplastic intermediate layer, the thermoplastic intermediate layer is located between the first glass plate and the Between the second glass plates, the hydrophobic anti-reflection laminated glass for vehicles has an outer surface and an inner surface, and the hydrophobic anti-reflection coating is located on the outer surface or the inner surface of the laminated glass.
  • the hydrophobic anti-reflective laminated glass for vehicles of the present invention may specifically include hydrophobic anti-reflective glass for vehicles 10, a second curved glass plate 30 and a thermoplastic intermediate layer 20.
  • the thermoplastic intermediate layer 20 is located on the vehicle.
  • the hydrophobic anti-reflection laminated glass for vehicles has an outer surface 51 and an inner surface 52, and the first convex surface 11 of the first curved glass plate
  • the outer surface 51 of the laminated glass or the first concave surface 12 of the first curved glass plate is the inner surface 52 of the laminated glass
  • the hydrophobic anti-reflection coating 2 is located on the outer surface 51 or the inner surface 52 of the laminated glass.
  • the second curved glass plate 30 has a second convex surface and a second concave surface.
  • the first curved glass plate 1 serves as the inner glass plate of the laminated glass
  • the second curved glass plate 30 serves as the outer glass plate of the laminated glass
  • the second convex surface of the second curved glass plate 30 serves as the outer surface 51 of the laminated glass
  • the first concave surface of the first curved glass plate 1 serves as the inner surface 52 of the laminated glass
  • the hydrophobic anti-reflective coating 2 is located on the inner surface 52 of the laminated glass.
  • the first curved glass plate 1 serves as the outer glass plate of the laminated glass
  • the second curved glass plate 30 serves as the inner glass plate of the laminated glass
  • the second concave surface of the second curved glass plate 30 serves as the inner surface 52 of the laminated glass.
  • the first convex surface of the first curved glass plate 1 serves as the outer surface 51 of the laminated glass
  • the hydrophobic anti-reflective coating 2 is located on the outer surface 51 of the laminated glass.
  • the silicate used is ethyl orthosilicate
  • the phenylsilane is phenyltriethoxysilane
  • the fluorinated surfactant is GS-823 (produced by Zicheng International Trading Co., Ltd. It is a non-ionic fluorocarbon surfactant)
  • the first organic solvent and the second organic solvent are both anhydrous ethanol
  • the catalyst is ammonia water
  • the first curing is performed using an infrared lamp at a temperature of 50°C-100°C; the second curing is performed using an air blast drying oven at a temperature of 150°C-200°C.
  • This embodiment provides a hydrophobic anti-reflective glass for vehicles.
  • the preparation method of the glass includes:
  • This embodiment provides a hydrophobic anti-reflective glass for vehicles.
  • the preparation method of the glass includes:
  • This embodiment provides a hydrophobic anti-reflective glass for vehicles.
  • the preparation method of the glass includes:
  • This embodiment provides a hydrophobic anti-reflective glass for vehicles.
  • the preparation method of the glass includes:
  • This embodiment provides a hydrophobic anti-reflective glass for vehicles.
  • the preparation method of the glass includes:
  • This embodiment provides a hydrophobic anti-reflective glass for vehicles.
  • the preparation method of the glass includes:
  • This embodiment provides a hydrophobic anti-reflective glass for vehicles.
  • the preparation method of the glass includes:
  • This embodiment provides a hydrophobic anti-reflective glass for vehicles.
  • the preparation method of the glass includes:
  • This embodiment provides a hydrophobic anti-reflective glass for vehicles.
  • the preparation method of the glass includes:
  • This embodiment provides a hydrophobic anti-reflective glass for vehicles.
  • the preparation method of the glass includes:
  • This embodiment provides a hydrophobic anti-reflective glass for vehicles.
  • the preparation method of the glass includes:
  • This comparative example provides a glass with a coating. Compared with the glass prepared in Examples 1-6, no fluorine-containing surfactant is added during the preparation process of the coating of the glass. Specifically, the preparation method of the glass in this comparative example includes:
  • step 3 Apply the coating prepared in step 2 to the first concave surface of the first curved glass plate, perform first curing and second curing in sequence to form a coating, and obtain glass with a coating.
  • This comparative example provides a glass with a coating. Compared with the glass prepared in Examples 1-6, the amount of phenylsilane added during the preparation process of the coating of the glass is less than 1%. Specifically, the preparation method of the glass in this comparative example includes:
  • step 3 Apply the coating prepared in step 2 to the first concave surface of the first curved glass plate, perform first curing and second curing in sequence to form a coating, and obtain glass with a coating.
  • Coating thickness measured using a step meter.
  • Water contact angle Use a contact angle measuring instrument to detect the glass surface coating.
  • Refractive index Use an ellipsometer to measure the refractive index of the film.
  • Porosity Calculate the porosity of the film layer based on the measured refractive index.
  • Visible light transmittance Use a spectrophotometer to measure the transmission spectrum of each sample in the visible light wavelength range of 380-780nm, and obtain the visible light transmittance of the coating with a central wavelength of 550nm.
  • Abrasion resistance measured using a flat abrasion meter. Place the glass sample on the instrument with the coating facing up. According to 2.45N ⁇ 100r conducts a 100-turn flat surface wear test and measures the contact angle after grinding. Among them, the contact angle is the water contact angle of the hydrophobic anti-reflection coating.
  • the refractive index of the hydrophobic anti-reflective coatings of Examples 1 to 11 is 1.23-1.28, and the porosity of the hydrophobic anti-reflective coatings is in the range of 40%-60%. Specifically, it can be 43%-54%; measured using a flat abrasion meter, with the hydrophobic anti-reflective coating of the vehicle's hydrophobic anti-reflective glass facing upwards, and conducting a 100-turn flat abrasion test at 2.45N ⁇ 100r.
  • the measured contact angle after grinding is greater than or Equal to 100°, even greater than or equal to 105°, further greater than or equal to 110°.
  • the obtained coating can have excellent hydrophobic effect, anti-reflection effect and friction resistance.
  • Modulating the amount of phenylsilane added to the coating has a significant impact on the porosity of the coating. Specifically, as the amount of phenylsilane is increased, the wear resistance and hydrophobicity of the coating are significantly improved, but the refractive index of the coating will also increase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Multimedia (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

提供一种车辆用憎水减反玻璃及其制造方法与夹层玻璃。憎水减反玻璃包括第一玻璃板和涂覆于该玻璃板侧面的憎水减反涂层;憎水减反涂层为由憎水减反涂料固化形成的单层结构,憎水减反涂料的原料包括硅酸酯、苯基硅烷和含氟表面活性剂;憎水减反涂层的折射率为1.20-1.30。憎水减反玻璃兼顾憎水性和减反射性能。

Description

车辆用憎水减反玻璃及其制造方法与夹层玻璃
本申请要求于2022年03月10日提交中国专利局、申请号为202210236924.6、发明名称为“车辆用憎水减反玻璃及其制造方法与夹层玻璃”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及玻璃制造技术领域,尤其涉及一种车辆用憎水减反玻璃及其制造方法与夹层玻璃。
背景技术
随着科学技术的进步,人们对汽车玻璃产品的舒适性与功能性有了新的要求,而不仅限于只是安全与挡风的作用。这几年,起功能化、舒适化和美观化作用的汽车玻璃层出不穷,如隔热隔紫外玻璃、憎水玻璃、太阳能玻璃、防雾玻璃、HUD抬头显示玻璃、着色玻璃等。憎水玻璃因可以在雨天有效地滚走水珠,保持司机良好的视野,在汽车玻璃领域已得到了广泛的应用。减反射涂层因能有效地降低光的反射,在光学领域和商场博物馆等展示玻璃方面已有了多年的应用,后来人们发现减反射玻璃可以有效地减弱夜间汽车玻璃车内倒影,减轻司机的视觉干扰和疲劳,在汽车玻璃领域也得到了越来越大的关注。
在现有技术中,有专利CN110776826A、CN109321131A、CN112094586A、CN111978861A、CN111925525A、CN112080716A、CN111892846A、CN107902918B、CN108027453A、CN108017290A、CN108025962A中公开了憎水涂层或减反射玻璃技术,但大部分专利里憎水功能和减反射功能都是分开的,而CN108025962A和CN108312655A是通过在减反射涂层上额外增加了防指纹涂层来提高涂层的憎水性,尚未有技术能通过一步制作就使玻璃同时具备憎水和减反射的功能。
发明内容
为了解决上述问题,本发明的目的在于提供一种车辆用憎水减反玻璃及其制造方法与夹层玻璃。本发明通过在玻璃表面喷涂单层憎水减反涂料涂层,能够使玻璃兼顾憎水性和减反射性能。
为了达到上述目的,本发明提供一种车辆用憎水减反玻璃,该车辆用憎水减反玻璃包括第一玻璃板和憎水减反涂层;所述憎水减反涂层涂覆于所述第一玻璃板的一侧表面; 所述憎水减反涂层为由憎水减反涂料固化形成的单层结构,所述憎水减反涂料的原料包括硅酸酯、苯基硅烷和含氟表面活性剂;所述憎水减反涂层的水接触角110°-130°,所述憎水减反涂层的折射率为1.20-1.30。
在一些具体实施方案中,可以选用弯曲玻璃板作为第一玻璃板,在这种情况下,第一玻璃板可以称为第一弯曲玻璃板。
在一些具体实施方案中,所述第一弯曲玻璃板一般具有第一凹面和第一凸面,所述憎水减反层一般涂覆于所述第一凸面或者第一凹面上。
在一些具体实施方案中,所述憎水减反涂层的厚度优选为10nm-300nm、例如为50nm-250nm。
在一些具体实施方案中,所述憎水减反涂层的水接触角优选大于或等于120°。
在一些具体实施方案中,所述憎水减反涂层的折射率优选为1.21-1.25。
在一些具体实施方案中,所述憎水减反涂层的孔隙率可以达到大于或等于40%。
在一些具体实施方案中,所述憎水减反涂层的折射率为1.23-1.28。
在一些具体实施方案中,采用平面磨耗仪测得,将车辆用憎水减反玻璃的憎水减反涂层朝上,按照2.45N×100r进行平面磨耗100转测试,测量磨后接触角大于或等于100°。
在一些具体实施方案中,所述憎水减反涂料可以由第一溶液和第二溶液混合得到;以所述憎水减反涂料的原料的总质量为100%计,所述第一溶液一般包括3%-20%硅酸酯、2%-10%苯基硅烷、0.01%-0.5%含氟表面活性剂和第一有机溶剂;所述第二溶液包括0.5%-5%催化剂和第二有机溶剂。
在一些具体实施方案中,所述第一有机溶剂与所述第二有机溶剂在憎水减反涂料的原料中的质量占比之和为65%-90%。
在一些具体实施方案中,所述含氟表面活性剂与所述苯基硅烷在憎水减反涂料的原料中的质量占比之和一般控制为3%-9%。
在一些具体实施方案中,所述硅酸酯与所述苯基硅烷在憎水减反涂料的原料中的质量占比之和一般控制为5%-15%。
在一些具体实施方案中,所述硅酸酯可以包括正硅酸甲酯、正硅酸乙酯、正硅酸丙酯、正硅酸丁酯中的一种或两种以上的组合。
在一些具体实施方案中,所述苯基硅烷包括苯基三甲氧基硅烷、苯基三乙氧基硅烷、甲基苯基二甲氧基硅烷、二苯基二甲氧基硅烷、甲基苯基二乙氧基硅烷中的一种或两种 以上的组合。
在一些具体实施方案中,所述含氟表面活性剂包括非离子型氟碳表面活性剂。
在一些具体实施方案中,所述非离子型氟碳表面活性剂中的固含量可以大于或等于50%。
在一些具体实施方案中,所述含氟表面活性剂为包括全氟辛基聚醚类表面活性剂。
在一些具体实施方案中,所述全氟辛基聚醚类表面活性剂的水溶率可以大于或等于90%。
在一些具体实施方案中,所述第一有机溶剂和/或所述第二有机溶剂包括甲醇、乙醇、丙醇、丁醇和异丙醇中的一种或两种以上的组合。
在一些具体实施方案中,所述催化剂包括碱性催化剂或酸性催化剂。其中,所述碱性催化剂可以包括氢氧化钠、氢氧化钾、氨水、碳酸氢钠中的一种或两种以上的组合,所述酸性催化剂可以包括盐酸、硝酸、醋酸中的一种或两种以上的组合。
本发明还提供了上述车辆用憎水减反玻璃的制造方法,该制造方法包括以下步骤,
以憎水减反涂料的原料的总质量为100%计,将3%-20%硅酸酯、2%-10%苯基硅烷、0.01%-0.5%含氟表面活性剂和第一有机溶剂混合搅拌后得到第一溶液,将0.5%-5%催化剂和第二有机溶剂混合搅拌后得到第二溶液;将所述第二溶液与所述第一溶液混合搅拌后得到所述憎水减反涂料;将所述憎水减反涂料涂覆至第一玻璃板的一侧表面上,经固化后在该表面形成憎水减反涂层,得到车辆用憎水减反玻璃。
在一些具体实施方案中,上述制造方法包括:以憎水减反涂料的原料的总质量为100%计,将3%-20%硅酸酯、2%-10%苯基硅烷、0.01%-0.5%含氟表面活性剂和第一有机溶剂混合搅拌后得到第一溶液,将0.5%-5%催化剂和第二有机溶剂混合搅拌后得到第二溶液,所述第一有机溶剂在憎水减反涂料的原料中的质量占比与所述第二有机溶剂在憎水减反涂料的原料中的质量占比之和为65%-90%;将所述第二溶液与所述第一溶液混合搅拌后得到所述憎水减反涂料;将所述憎水减反涂料涂覆至第一玻璃板的一侧表面上,经固化后在该表面上形成憎水减反涂层,得到车辆用憎水减反玻璃。
在一些具体实施方案中,当所述第一玻璃板为第一弯曲玻璃板时,所述憎水减反涂料通常涂覆与第一弯曲玻璃板的第一凸面或者第一凹面上,经过固化在第一凸面或者第一凹面上形成憎水减反层。
在一些具体实施方案中,将所述第二溶液与所述第一溶液混合搅拌包括:在所述第一溶液处于搅拌状态下,将所述第二溶液滴加进所述第一溶液中,所述滴加的速度一般 控制为30-120滴/分钟、优选为50-80滴/分钟。
在一些具体实施方案中,所述涂覆的方式包括超声喷涂。
在一些具体实施方案中,在超声喷涂过程中,超声波频率为50kHz-120kHz,喷涂过程中的出液量为0.5mL/min-10mL/min,喷涂移动速度为300毫米/秒-800毫米/秒。
在一些具体实施方案中,所述固化的过程可以包括依次进行第一固化和第二固化,所述第一固化的温度为50℃-100℃,所述第二固化的温度为150℃-200℃。
在一些具体实施方案中,所述第一固化可以采用红外灯进行固化。
在一些具体实施方案中,所述第一固化的时间可以控制为10min-50min。
在一些具体实施方案中,所述第二固化可以采用鼓风干燥箱进行固化。
在一些具体实施方案中,所述第二固化的时间可以控制为30min-120min。
本发明还提供了一种车辆用憎水减反夹层玻璃,该夹层玻璃包括上述车辆用憎水减反玻璃、第二玻璃板和热塑性中间层,所述热塑性中间层位于所述车辆用憎水减反玻璃中的第一玻璃板和所述第二玻璃板之间,所述车辆用憎水减反夹层玻璃具有外表面和内表面,所述憎水减反涂层位于所述夹层玻璃的外表面或内表面。
在一些具体实施方案中,所述憎水减反涂层通常位于第一玻璃板远离热塑性中间层的一侧表面。
在一些具体实施方案中,将上述夹层玻璃安装至车辆上后,可以是第一玻璃板位于车外一侧、第二玻璃板位于车内一侧;也可以是第二玻璃板位于车外一侧、第一玻璃板位于车内一侧。
在一些具体实施方案中,当第一玻璃板为第一弯曲玻璃板时,所述第一弯曲玻璃板的第一凸面为夹层玻璃的外表面,或者所述第一弯曲玻璃板的第一凹面为夹层玻璃的内表面。
本发明的有益效果在于:
1、本发明通过在憎水减反涂层中添加苯基硅烷和含氟表面活性剂并利用二者的协同作用,能够使玻璃兼具憎水性和减反射功能,由此获得的具有单层憎水减反涂层的憎水减反玻璃在对水接触角达110°-130°、具有良好疏水性的同时,折射率可以有效降低至1.20-1.30、具有良好的减反效果。
2、相比于单独具有憎水效果和减反效果的两层甚至多层涂层,本发明制造车辆用憎水减反玻璃制造的方法采用的工艺条件和技术简单易操作,适用于各种曲面汽车玻璃的单面或双面喷涂,并可以用于车辆用憎水减反夹层玻璃的制造,在车辆用玻璃领域有 良好的应用前景。
附图说明
图1为本发明的车辆用憎水减反玻璃的结构示意图。
图2为本发明的一车辆用憎水减反夹层玻璃的结构示意图。
图3为本发明的另一车辆用憎水减反夹层玻璃的结构示意图。
主要组件符号说明:
第一弯曲玻璃板1,憎水减反涂层2,车辆用憎水减反玻璃10,第二弯曲玻璃板30,热塑性中间层20,第一弯曲玻璃板的第一凸面11,第一弯曲玻璃板的第一凹面12,夹层玻璃的外表面51,夹层玻璃的内表面52。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
本发明提供一种车辆用憎水减反玻璃,该车辆用憎水减反玻璃包括第一玻璃板和憎水减反涂层;憎水减反涂层涂覆于第一玻璃板的一侧表面;憎水减反涂层为由憎水减反涂料固化形成的单层结构,憎水减反涂料的原料包括硅酸酯、苯基硅烷和含氟表面活性剂;该憎水减反涂层的水接触角110°-130°,所述憎水减反涂层的折射率为1.20-1.30。
如图1所示,本发明的车辆用憎水减反玻璃具体包括第一弯曲玻璃板1和憎水减反涂层2;第一弯曲玻璃板1具有第一凸面11和第一凹面12,憎水减反涂层2涂覆于第一凸面11或第一凹面12;憎水减反涂层2为由憎水减反涂料固化形成的单层结构,憎水减反涂料的原料包括硅酸酯、苯基硅烷和含氟表面活性剂;憎水减反涂层2的水接触角110°-130°,憎水减反涂层2的折射率为1.20-1.30(例如1.21、1.22、1.23、1.24、1.25、1.26、1.27、1.28、1.29)。
在本发明中,在第一玻璃板(例如第一弯曲玻璃板)的一侧表面涂覆单层的憎水减反涂层,仅通过单层结构的涂层与玻璃板之间的配合即可获得兼具疏水和低折射率的憎水减反玻璃。并且,现有技术很难将单层涂层的折射率控制在1.25以下,如果要同时获得疏水和较低折射率,通常需要多层涂层实现;而在本发明的一些具体实施方案中,单层的憎水减反涂层在具有良好疏水性的同时,折射率较佳可以达到1.21-1.25,具体可以达到1.21、1.22、1.23、1.24、1.25等,接近理想减反膜的折射率(1.23)。
在一些具体实施方案中,所述憎水减反涂层2的厚度优选为10nm-300nm、例如控制为50nm-250nm,更优选80nm-200nm。
在一些具体实施方案中,所述憎水减反涂层2的水接触角优选大于或等于120°。
在一些具体实施方案中,所述憎水减反涂层的折射率为1.23-1.28。
在一些具体实施方案中,采用平面磨耗仪测得,将车辆用憎水减反玻璃的憎水减反涂层2朝上,按照2.45N×100r进行平面磨耗100转测试,测量磨后接触角大于或等于100°;进一步地,磨后接触角可以达到大于等于104°、大于等于105°、大于等于106°、大于等于107°、大于等于110°、大于等于111°、大于等于112°、大于等于113°、大于等于114°、大于等于115°、大于等于119°等;更进一步地,磨后接触角可以达到104°、105°、106°、107°、110°、111°、112°、113°、114°、115°、119°等具体值以及以上述具体值中的任意两个为端点的范围。
在一些具体实施方案中,所述憎水减反涂层2的孔隙率可以达到大于或等于40%。
在一些具体实施方案中,所述憎水减反涂料可以由第一溶液和第二溶液混合得到;以所述憎水减反涂料的原料的总质量为100%计,所述第一溶液一般包括3%-20%硅酸酯、2%-10%苯基硅烷、0.01%-0.5%含氟表面活性剂和第一有机溶剂;所述第二溶液包括0.5%-5%催化剂和第二有机溶剂,所述第一有机溶剂与所述第二有机溶剂在憎水减反涂料的原料中的质量占比之和为65%-90%。通过控制涂料中含氟表面活性剂和苯基硅烷的添加量,可以在获得憎水效果和减反效果均优异的单层憎水减反涂层的基础上,使单层憎水减反涂层的耐磨性满足汽车玻璃使用要求。优选地,所述苯基硅烷与所述含氟表面活性剂在憎水减反涂料的原料中的质量占比之和为3%-9%。
在一些具体实施方案中,所述硅酸酯与所述苯基硅烷在憎水减反涂料的原料中的质量占比之和一般控制为5%-15%。将硅酸酯和苯基硅烷的添加量控制在上述范围内利于涂料存放,并能获得折射率较佳的涂层。
在一些具体实施方案中,所述硅酸酯可以包括正硅酸甲酯、正硅酸乙酯、正硅酸丙酯、正硅酸丁酯中的一种或两种以上的组合。
在本发明中,所述苯基硅烷的分子链含有一个以上的苯基,苯基具有憎水性,将其引入涂料后能够显著提升涂料形成的涂层的憎水性。具体地,所述苯基硅烷可以选用苯基硅氧烷。相比于其他类型的分子链,硅氧烷的分子链作为苯基的载体更适用于在玻璃基材中与硅酸酯杂化,并且苯基硅氧烷可以提高涂层与玻璃之间的结合力。进一步地,选用具有甲氧基或乙氧基的苯基硅烷,有利于产生spring-back现象,更容易制备折射率低的涂层,苯基硅烷在干燥过程中会抑制涂膜的收缩,提高孔隙率进而降低折射率。在一些具体实施方案中,所述苯基硅烷包括苯基三甲氧基硅烷、苯基三乙氧基硅烷、甲基 苯基二甲氧基硅烷、二苯基二甲氧基硅烷、甲基苯基二乙氧基硅烷中的一种或两种以上的组合。
在本发明中,加入含氟表面活性剂不仅可以改善涂料形成的涂层流平性、提高流平速度,并且在不会影响涂层的耐磨性的基础上还能够降低表面能、进一步提高涂层的憎水性。在一些具体实施方案中,所述含氟表面活性剂包括非离子型氟碳表面活性剂、全氟辛基聚醚类表面活性剂、或者非离子型氟碳表面活性剂和全氟辛基聚醚类表面活性剂的组合。
在一些具体实施方案中,所述非离子型氟碳表面活性剂中的固含量可以大于或等于50%,可以举例为55%、60%、65%、70%、75%、80%等。
在一些具体实施方案中,所述全氟辛基聚醚类表面活性剂的水溶率优选大于或等于90%,以便使含氟表面活性剂更好分散在憎水减反涂料的溶剂体系中。
在一些具体实施方案中,所述第一有机溶剂和/或所述第二有机溶剂包括甲醇、乙醇、丙醇、丁醇和异丙醇中的一种或两种以上的组合。
根据本发明的具体实施方案,将所述含氟表面活性剂用量控制在合适的范围内,可以在提高涂层的流平性和憎水性的前提下避免对涂层的折射率产生不利影响。在一些具体实施方案中,所述含氟表面活性剂在所述憎水减反涂料的原料中的质量占比一般控制为0.01%-0.5%。在一些具体实施方案中,所述含氟表面活性剂可以选用GS-823(子成国际贸易有限公司)、WE-D9053R(信诺化工生产)、WE-D8950BR(信诺化工生产)、FCN-18(杭州仁杉科技)等中的一种或两种以上的组合。
在一些具体实施方案中,所述催化剂包括碱性催化剂或酸性催化剂。其中,所述碱性催化剂可以包括氢氧化钠、氢氧化钾、氨水、碳酸氢钠中的一种或两种以上的组合,所述酸性催化剂可以包括盐酸、硝酸、醋酸中的一种或两种以上的组合。
本发明还提供了上述车辆用憎水减反玻璃的制造方法,该制造方法包括:以憎水减反涂料的原料的总质量为100%计,将3%-20%硅酸酯、2%-10%苯基硅烷、0.01%-0.5%含氟表面活性剂和第一有机溶剂混合搅拌后得到第一溶液,将0.5%-5%催化剂和第二有机溶剂混合搅拌后得到第二溶液,所述第一有机溶剂在憎水减反涂料的原料中的质量占比与所述第二有机溶剂在憎水减反涂料的原料中的质量占比之和为65%-90%;将所述第二溶液与所述第一溶液混合搅拌后得到所述憎水减反涂料;将所述憎水减反涂料涂覆至第一玻璃板的一侧表面上,经固化后在该表面上形成憎水减反涂层,得到车辆用憎水减反玻璃。上述制造方法利用了溶胶凝胶法,通过加入苯基硅烷与硅酸酯一同发生水解缩 聚反应,形成具有较高憎水性的涂层。
在本发明中,当第一玻璃板为第一弯曲玻璃板时,上述制造方法通常是将憎水减反涂料涂覆至第一弯曲玻璃板的第一凸面或第一凹面上,经固化后在第一凸面或第一凹面上形成憎水减反涂层,得到车辆用憎水减反玻璃。
在本发明中,通过将含有催化剂的第二溶液加入含有硅酸酯的第一溶液,可以有效避免因局部浓度过高导致的硅酸酯快速水解缩聚生成沉淀的问题。在一些具体实施方案中,将所述第二溶液与所述第一溶液混合搅拌包括:在所述第一溶液处于搅拌状态下,将所述第二溶液滴加进所述第一溶液中,所述滴加的速度一般控制为30-120滴/分钟、优选为50-80滴/分钟。
在一些具体实施方案中,所述涂覆的方式包括超声喷涂。
在本发明中,通过控制喷涂过程的参数能够较精确地制备出纳米级厚度的涂层,从而获得适用于不同曲面形状的玻璃,在制备凸面涂层或凹面涂层时具有很大的灵活性。在一些具体实施方案中,在超声喷涂过程中,超声波频率为50kHz-120kHz,喷涂过程中的出液量为0.5mL/min-10mL/min,喷涂移动速度为300毫米/秒-800毫米/秒。
在一些具体实施方案中,所述固化的过程可以包括依次进行的第一固化和第二固化,所述第一固化的温度为50℃-100℃,所述第二固化的温度为150℃-200℃。
在一些具体实施方案中,所述第一固化可以采用红外灯进行固化。红外固化的方式能够最大限度地保持涂层的孔洞结构,在保证涂层具有足够孔隙率的同时还能达到使涂层表面快速干燥的效果。
在一些具体实施方案中,所述第一固化的时间可以控制为10min-50min、例如10min-30min。
在一些具体实施方案中,所述第二固化可以采用鼓风干燥箱进行固化。
在一些具体实施方案中,所述第二固化的时间可以控制为30min-120min、例如可以是30min-90min。
本发明还提供了一种车辆用憎水减反夹层玻璃,该夹层玻璃包括上述车辆用憎水减反玻璃、第二玻璃板和热塑性中间层,所述热塑性中间层位于第一玻璃板和所述第二玻璃板之间,所述车辆用憎水减反夹层玻璃具有外表面和内表面,所述憎水减反涂层位于所述夹层玻璃的外表面或内表面上。
如图2和图3所示,本发明的车辆用憎水减反夹层玻璃具体可以包括车辆用憎水减反玻璃10、第二弯曲玻璃板30和热塑性中间层20,热塑性中间层20位于车辆用憎水 减反玻璃中10的第一弯曲玻璃板1和第二弯曲玻璃板30之间,该车辆用憎水减反夹层玻璃具有外表面51和内表面52,第一弯曲玻璃板的第一凸面11为夹层玻璃的外表面51或第一弯曲玻璃板的第一凹面12为夹层玻璃的内表面52,憎水减反涂层2位于夹层玻璃的外表面51或内表面52。
第二弯曲玻璃板30具有第二凸面和第二凹面。
在图2中,第一弯曲玻璃板1作为夹层玻璃的内玻璃板,第二弯曲玻璃板30作为夹层玻璃的外玻璃板,第二弯曲玻璃板30的第二凸面为夹层玻璃的外表面51,第一弯曲玻璃板1的第一凹面作为夹层玻璃的内表面52,憎水减反涂层2位于夹层玻璃的内表面52。
在图3中,第一弯曲玻璃板1作为夹层玻璃的外玻璃板,第二弯曲玻璃板30作为夹层玻璃的内玻璃板,第二弯曲玻璃板30的第二凹面为夹层玻璃的内表面52,第一弯曲玻璃板1的第一凸面作为夹层玻璃的外表面51,憎水减反涂层2位于夹层玻璃的外表面51。
以下实施例和对比例中,所用的硅酸酯为正硅酸乙酯,苯基硅烷为苯基三乙氧基硅烷,含氟表面活性剂为GS-823(子成国际贸易有限公司生产,属于非离子型氟碳表面活性剂),第一有机溶剂和第二有机溶剂均采用无水乙醇,催化剂为氨水,所用的弯曲玻璃板为普通玻璃板通过经过560℃以上的高温热处理和弯曲成型获得的,普通玻璃板的TL=90%。
以下实施例和对比例中,第一固化采用红外灯以50℃-100℃的温度进行固化;第二固化采用鼓风干燥箱以150℃-200℃的温度进行固化。
实施例1
本实施例提供了一种车辆用憎水减反玻璃,该玻璃的制备方法包括:
1、以憎水减反涂料的原料总质量为100%计,将8%硅酸酯、3%苯基硅烷、0.03%含氟表面活性剂和46.00%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和40.97%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到憎水减反涂料;
3、将所述憎水减反涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成憎水减反涂层,得到车辆用憎水减反玻璃。
实施例2
本实施例提供了一种车辆用憎水减反玻璃,该玻璃的制备方法包括:
1、以憎水减反涂料的原料总质量为100%计,将8%硅酸酯、3%苯基硅烷、0.13%含氟表面活性剂和46.00%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和40.87%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到憎水减反涂料;
3、将所述憎水减反涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成憎水减反涂层,得到车辆用憎水减反玻璃。
实施例3
本实施例提供了一种车辆用憎水减反玻璃,该玻璃的制备方法包括:
1、以憎水减反涂料的原料总质量为100%计,将8%硅酸酯、3%苯基硅烷、0.40%含氟表面活性剂和46.00%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和40.60%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到憎水减反涂料;
3、将所述憎水减反涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成憎水减反涂层,得到车辆用憎水减反玻璃。
实施例4
本实施例提供了一种车辆用憎水减反玻璃,该玻璃的制备方法包括:
1、以憎水减反涂料的原料总质量为100%计,将6%硅酸酯、5.60%苯基硅烷、0.03%含氟表面活性剂和46.00%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和40.37%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到憎水减反涂料;
3、将所述憎水减反涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成憎水减反涂层,得到车辆用憎水减反玻璃。
实施例5
本实施例提供了一种车辆用憎水减反玻璃,该玻璃的制备方法包括:
1、以憎水减反涂料的原料总质量为100%计,将6%硅酸酯、5.60%苯基硅烷、0.13%含氟表面活性剂和46.00%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和40.27% 第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到憎水减反涂料;
3、将所述憎水减反涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成憎水减反涂层,得到车辆用憎水减反玻璃。
实施例6
本实施例提供了一种车辆用憎水减反玻璃,该玻璃的制备方法包括:
1、以憎水减反涂料的原料总质量为100%计,将6%硅酸酯、5.60%苯基硅烷、0.40%含氟表面活性剂和46.00%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和40.00%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到憎水减反涂料;
3、将所述憎水减反涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成憎水减反涂层,得到车辆用憎水减反玻璃。
实施例7
本实施例提供了一种车辆用憎水减反玻璃,该玻璃的制备方法包括:
1、以憎水减反涂料的原料总质量为100%计,将4%硅酸酯、8%苯基硅烷、0.03%含氟表面活性剂和46.00%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和39.97%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到憎水减反涂料;
3、将所述憎水减反涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成憎水减反涂层,得到车辆用憎水减反玻璃。
实施例8
本实施例提供了一种车辆用憎水减反玻璃,该玻璃的制备方法包括:
1、以憎水减反涂料的原料总质量为100%计,将4%硅酸酯、8%苯基硅烷、0.13%含氟表面活性剂和46.00%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和39.70%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到憎水减反涂料;
3、将所述憎水减反涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成憎水减反涂层,得到车辆用憎水减反玻璃。
实施例9
本实施例提供了一种车辆用憎水减反玻璃,该玻璃的制备方法包括:
1、以憎水减反涂料的原料总质量为100%计,将4%硅酸酯、8%苯基硅烷、0.40%含氟表面活性剂和46.00%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和41.60%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到憎水减反涂料;
3、将所述憎水减反涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成憎水减反涂层,得到车辆用憎水减反玻璃。
实施例10
本实施例提供了一种车辆用憎水减反玻璃,该玻璃的制备方法包括:
1、以憎水减反涂料的原料总质量为100%计,将10%硅酸酯、3%苯基硅烷、0.13%含氟表面活性剂和46.00%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和38.87%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到憎水减反涂料;
3、将所述憎水减反涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成憎水减反涂层,得到车辆用憎水减反玻璃。
实施例11
本实施例提供了一种车辆用憎水减反玻璃,该玻璃的制备方法包括:
1、以憎水减反涂料的原料总质量为100%计,将12%硅酸酯、3%苯基硅烷、0.13%含氟表面活性剂和46.00%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和36.87%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到憎水减反涂料;
3、将所述憎水减反涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成憎水减反涂层,得到车辆用憎水减反玻璃。
对比例1
本对比例提供了一种具有涂层的玻璃,与实施例1-6制备的玻璃相比,该玻璃的涂层的制备过程中不添加含氟表面活性剂。具体地,本对比例的玻璃的制备方法包括:
1、以涂料的原料总质量为100%计,将10%硅酸酯、1%苯基硅烷和43.50%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和43.50%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到涂料;
3、将步骤2制备的涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成涂层,得到具有涂层的玻璃。
对比例2
本对比例提供了一种具有涂层的玻璃,与实施例1-6制备的玻璃相比,该玻璃的涂层的制备过程中苯基硅烷的添加量不足1%。具体地,本对比例的玻璃的制备方法包括:
1、以涂料的原料总质量为100%计,将10%硅酸酯、0.7%苯基硅烷、0.03%含氟表面活性剂和43.50%第一有机溶剂混合搅拌后得到第一溶液,将2%催化剂和43.77%第二有机溶剂混合搅拌后得到第二溶液;
2、在第一溶液处于搅拌状态下,将所述第二溶液以30-120滴/分钟的速度滴加进所述第一溶液中,得到涂料;
3、将步骤2制备的涂料涂覆至第一弯曲玻璃板的第一凹面上,依次进行第一固化和第二固化,形成涂层,得到具有涂层的玻璃。
测试例1
将对比例1、对比例2得到的具有涂层的玻璃和实施例1至实施例9得到的车辆用憎水减反玻璃分别进行涂层厚度、水接触角、折射率、孔隙率、可见光透过率(中心波长550nm)、耐摩擦性能测试,将测试结果计入表1中。
涂层厚度:采用台阶仪测得。
水接触角:采用接触角测量仪,对玻璃表面涂层进行检测。
折射率:使用椭偏仪测量膜层折射率。
孔隙率:根据所测折射率计算膜层孔隙率。
可见光透过率:采用分光光度计测量各样品在380-780nm可见光波长范围的透射图谱,并得到中心波长在550nm处涂层的可见光透过率。
耐磨耗性:采用平面磨耗仪测得,将玻璃样品放置在仪器上,涂层朝上,按照2.45N ×100r进行平面磨耗100转测试,测量磨后接触角。其中,接触角为憎水减反涂层的水接触角。
表1
在表1中,实施例1至实施例11的憎水减反涂层的折射率为1.23-1.28,所述憎水减反涂层的孔隙率在40%-60%范围内,具体可以为43%-54%;采用平面磨耗仪测得,将车辆用憎水减反玻璃的憎水减反涂层朝上,按照2.45N×100r进行平面磨耗100转测试,测量磨后接触角大于或等于100°,甚至大于或等于105°,进一步大于或等于110°。
从表1结果可以看出:
1、通过控制苯基硅烷和含氟表面活性剂的添加总量在合理范围内(3%-9%),可以使获得的涂层具有优异的憎水效果、减反效果和耐摩擦性能。
2、调变涂料中苯基硅烷的添加量对涂层的孔隙率有明显影响。具体表现为苯基硅烷的添加量提高,涂层的耐磨性和疏水性有明显提高,但涂层的折射率也会随之升高。
3、调变涂料中含氟表面活性剂的添加量也会影响孔隙率,但对耐磨性无影响。具体表现为,含氟表面活性剂的添加量越高,由此获得的涂层和玻璃水接触角越高,但涂层的孔隙率降低、折射率增加。

Claims (20)

  1. 车辆用憎水减反玻璃,其特征在于:该车辆用憎水减反玻璃包括第一玻璃板和憎水减反涂层;所述憎水减反涂层涂覆于所述第一玻璃板的一侧表面;
    所述憎水减反涂层为由憎水减反涂料固化形成的单层结构,所述憎水减反涂料的原料包括硅酸酯、苯基硅烷和含氟表面活性剂;
    所述憎水减反涂层的水接触角110°-130°,所述憎水减反涂层的折射率为1.20-1.30。
  2. 根据权利要求1所述的车辆用憎水减反玻璃,其特征在于:所述憎水减反涂层的厚度为10nm-300nm。
  3. 根据权利要求1所述的车辆用憎水减反玻璃,其特征在于:所述憎水减反涂层的厚度为50nm-250nm,所述憎水减反涂层的折射率为1.21-1.25。
  4. 根据权利要求1所述的车辆用憎水减反玻璃,其特征在于:所述憎水减反涂层的折射率为1.23-1.28。
  5. 根据权利要求1所述的车辆用憎水减反玻璃,其特征在于:所述憎水减反涂层的孔隙率大于或等于40%。
  6. 根据权利要求1所述的车辆用憎水减反玻璃,其特征在于:所述憎水减反涂料由第一溶液和第二溶液混合得到,以所述憎水减反涂料的原料的总质量为100%计,所述第一溶液包括3%-20%硅酸酯、2%-10%苯基硅烷、0.01%-0.5%含氟表面活性剂和第一有机溶剂,第二溶液包括0.5%-5%催化剂和第二有机溶剂。
  7. 根据权利要求6所述的车辆用憎水减反玻璃,其特征在于:所述第一有机溶剂与所述第二有机溶剂在憎水减反涂料的原料中的质量占比之和为65%-90%。
  8. 根据权利要求1-6任意一项所述的车辆用憎水减反玻璃,其特征在于:所述含氟表面活性剂与所述苯基硅烷在憎水减反涂料的原料中的质量占比之和为3%-9%。
  9. 根据权利要求1-6任意一项所述的车辆用憎水减反玻璃,其特征在于:所述硅酸酯与所述苯基硅烷在憎水减反涂料的原料中的质量占比之和为5%-15%。
  10. 根据权利要求1-6任意一项所述的车辆用憎水减反玻璃,其特征在于:所述硅酸酯包括正硅酸甲酯、正硅酸乙酯、正硅酸丙酯、正硅酸丁酯中的一种或两种以上的组合。
  11. 根据权利要求1-6任意一项所述的车辆用憎水减反玻璃,其特征在于:所述苯基硅烷包括苯基三甲氧基硅烷、苯基三乙氧基硅烷、甲基苯基二甲氧基硅烷、二苯基二甲氧基硅烷、甲基苯基二乙氧基硅烷中的一种或两种以上的组合。
  12. 根据权利要求1-6任意一项所述的车辆用憎水减反玻璃,其特征在于:所述含氟表面活性剂包括非离子型氟碳表面活性剂,所述非离子型氟碳表面活性剂中的固含量大于或等于50%。
  13. 根据权利要求1-6任意一项所述的车辆用憎水减反玻璃,其特征在于:所述含氟表面活性剂包括全氟辛基聚醚类表面活性剂,所述全氟辛基聚醚类表面活性剂的水溶率大于或等于90%。
  14. 根据权利要求6所述的车辆用憎水减反玻璃,其特征在于:所述第一有机溶剂和/或所述第二有机溶剂包括甲醇、乙醇、丙醇、丁醇和异丙醇中的一种或两种以上的组合;所述催化剂包括碱性催化剂或酸性催化剂,所述碱性催化剂优选包括氢氧化钠、氢氧化钾、氨水、碳酸氢钠中的一种或两种以上的组合,所述酸性催化剂优选包括盐酸、硝酸、醋酸中的一种或两种以上的组合。
  15. 权利要求1-14任一项所述的车辆用憎水减反玻璃的制造方法,其特征在于:该制造方法包括以下步骤,
    以憎水减反涂料的原料的总质量为100%计,将3%-20%硅酸酯、2%-10%苯基硅烷、0.01%-0.5%含氟表面活性剂和第一有机溶剂混合搅拌后得到第一溶液,将0.5%-5%催化剂和第二有机溶剂混合搅拌后得到第二溶液;
    将所述第二溶液与所述第一溶液混合搅拌后得到所述憎水减反涂料;
    将所述憎水减反涂料涂覆至第一玻璃板的一侧表面上,经固化后在该表面形成憎水减反涂层,得到车辆用憎水减反玻璃。
  16. 根据权利要求15所述的车辆用憎水减反玻璃的制造方法,其特征在于:将所述第二溶液与所述第一溶液混合搅拌包括以下步骤:
    在所述第一溶液处于搅拌状态下,将所述第二溶液滴加进所述第一溶液中,所述滴加的速度为30-120滴/分钟。
  17. 根据权利要求15所述的车辆用憎水减反玻璃的制造方法,其特征在于:所述涂覆的方式包括超声喷涂;在超声喷涂过程中,超声波频率为50kHz-120kHz,喷涂过程中的出液量为0.5mL/min-10mL/min,喷涂移动速度为300毫米/秒-800毫米/秒。
  18. 根据权利要求15所述的车辆用憎水减反玻璃的制造方法,其特征在于:所述固化的过程包括依次进行第一固化和第二固化,所述第一固化的温度为50℃-100℃,所述第二固化的温度为150℃-200℃。
  19. 根据权利要求18所述的车辆用憎水减反玻璃的制造方法,其特征在于:所述第 一固化采用红外灯进行固化,所述第一固化的时间优选为10min-50min,所述第二固化采用鼓风干燥箱进行固化,所述第二固化的时间优选为30min-120min。
  20. 车辆用憎水减反夹层玻璃,其特征在于:该夹层玻璃包括权利要求1-14任一项所述的车辆用憎水减反玻璃、第二玻璃板和热塑性中间层,所述热塑性中间层位于第一玻璃板和所述第二玻璃板之间,所述车辆用憎水减反夹层玻璃具有外表面和内表面,所述憎水减反涂层位于所述夹层玻璃的外表面或内表面上。
PCT/CN2023/080656 2022-03-10 2023-03-10 车辆用憎水减反玻璃及其制造方法与夹层玻璃 WO2023169539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210236924.6 2022-03-10
CN202210236924.6A CN114620947B (zh) 2022-03-10 2022-03-10 车辆用憎水减反玻璃及其制造方法与夹层玻璃

Publications (1)

Publication Number Publication Date
WO2023169539A1 true WO2023169539A1 (zh) 2023-09-14

Family

ID=81901949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080656 WO2023169539A1 (zh) 2022-03-10 2023-03-10 车辆用憎水减反玻璃及其制造方法与夹层玻璃

Country Status (2)

Country Link
CN (1) CN114620947B (zh)
WO (1) WO2023169539A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620947B (zh) * 2022-03-10 2023-03-17 福耀玻璃工业集团股份有限公司 车辆用憎水减反玻璃及其制造方法与夹层玻璃

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064932A (ja) * 2008-09-12 2010-03-25 Mitsubishi Chemicals Corp シリカ系多孔質膜の製造方法
WO2014035742A2 (en) * 2012-08-30 2014-03-06 The Trustees Of The University Of Pennsylvania Sprayable superhydrophobic coatings
JP2014161766A (ja) * 2013-02-22 2014-09-08 Asahi Glass Co Ltd 被膜付き基板の製造方法
US20150037570A1 (en) * 2009-04-30 2015-02-05 Enki Technology, Inc. Anti-reflective and anti-soiling coatings for self-cleaning properties
CN107540241A (zh) * 2017-08-24 2018-01-05 福建农林大学 一种用苯基三乙氧基硅烷制备折射率可控的疏水二氧化硅增透膜的方法
US20180149774A1 (en) * 2015-05-01 2018-05-31 AZ Electronic Materials (Luxebourg) S.a.r.l Optical functional film and method for producing the same
CN110002767A (zh) * 2019-04-28 2019-07-12 湖南邦弗特新材料技术有限公司 一种用于光伏玻璃的高透光率疏水涂膜的制备方法
CN114620947A (zh) * 2022-03-10 2022-06-14 福耀玻璃工业集团股份有限公司 车辆用憎水减反玻璃及其制造方法与夹层玻璃

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726871B (zh) * 2015-03-17 2021-05-11 德商巴斯夫歐洲公司 混成有機-無機材料的組成物及其製造方法與使用方法
FR3070388B1 (fr) * 2017-08-24 2019-08-16 Psa Automobiles Sa Revetement protecteur transparent et son procede de depot pour vitrages automobiles
CN110128858A (zh) * 2019-05-23 2019-08-16 日照职业技术学院 一种纳米银杀菌减反射疏水溶液、疏水易清洁杀菌玻璃

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064932A (ja) * 2008-09-12 2010-03-25 Mitsubishi Chemicals Corp シリカ系多孔質膜の製造方法
US20150037570A1 (en) * 2009-04-30 2015-02-05 Enki Technology, Inc. Anti-reflective and anti-soiling coatings for self-cleaning properties
WO2014035742A2 (en) * 2012-08-30 2014-03-06 The Trustees Of The University Of Pennsylvania Sprayable superhydrophobic coatings
JP2014161766A (ja) * 2013-02-22 2014-09-08 Asahi Glass Co Ltd 被膜付き基板の製造方法
US20180149774A1 (en) * 2015-05-01 2018-05-31 AZ Electronic Materials (Luxebourg) S.a.r.l Optical functional film and method for producing the same
CN107540241A (zh) * 2017-08-24 2018-01-05 福建农林大学 一种用苯基三乙氧基硅烷制备折射率可控的疏水二氧化硅增透膜的方法
CN110002767A (zh) * 2019-04-28 2019-07-12 湖南邦弗特新材料技术有限公司 一种用于光伏玻璃的高透光率疏水涂膜的制备方法
CN114620947A (zh) * 2022-03-10 2022-06-14 福耀玻璃工业集团股份有限公司 车辆用憎水减反玻璃及其制造方法与夹层玻璃

Also Published As

Publication number Publication date
CN114620947B (zh) 2023-03-17
CN114620947A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
TWI579341B (zh) 低折射率膜形成用組成物及使用此之低折射率膜之形成方法
TWI476166B (zh) Method for manufacturing anti - reflective tempered glass
JP6118012B2 (ja) 防曇性膜被覆物品
JP6986339B2 (ja) 反射防止膜形成用組成物、反射防止膜およびその形成方法
CN109321050B (zh) 一种耐候涂液、耐候性汽车玻璃及其制造方法
WO2011027827A1 (ja) 基材の表面に低反射膜を有する物品
WO2010018852A1 (ja) 塗料組成物および塗膜が形成された物品
JP6586897B2 (ja) 防眩膜付き基材、膜形成用塗布液およびその製造方法
TW201231289A (en) Article having low reflection film
WO2014061605A1 (ja) シリカ系多孔質膜、シリカ系多孔質膜付き物品およびその製造方法
WO2014061606A1 (ja) 防汚性反射防止膜、物品およびその製造方法
WO2023169539A1 (zh) 车辆用憎水减反玻璃及其制造方法与夹层玻璃
JP6820354B2 (ja) 塗布組成物、反射防止膜及びその製造方法、積層体、並びに、太陽電池モジュール
JP2015049319A (ja) 透明基材と防汚性反射防止膜とを備える物品およびその製造方法
JP2014079920A (ja) 物品およびその製造方法
JP2016041481A (ja) 防眩性反射防止膜付き透明基材および物品
JP2020122809A (ja) 可視光散乱性被膜形成用塗布液、及び可視光散乱性被膜形成基材
KR20110041747A (ko) 태양전지용 반사 방지막 수용성 코팅 조성물 및 코팅시스템
JP2012246440A (ja) 無機コーティング組成物
JP2014214063A (ja) シリカ系多孔質膜、シリカ系多孔質膜付き物品およびその製造方法
JP6847243B2 (ja) 塗布組成物、積層体及び太陽電池モジュール、並びに積層体の製造方法
JP2015075707A (ja) 透明基材と防汚性反射防止膜とを備える物品およびその製造方法
JP2017101135A (ja) 親水性被膜、親水性被膜形成物品、親水性被膜形成用塗布液及び親水性被膜形成物品の製造方法
JP2013107995A (ja) コーティング用組成物とそれを用いた反射防止フィルム
JPWO2015170647A1 (ja) ガラス物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766116

Country of ref document: EP

Kind code of ref document: A1