WO2015100509A1 - Sistema, combinado de amplificación de deformaciones y disipación de energía en estructuras de edificaciones - Google Patents

Sistema, combinado de amplificación de deformaciones y disipación de energía en estructuras de edificaciones Download PDF

Info

Publication number
WO2015100509A1
WO2015100509A1 PCT/CL2014/000081 CL2014000081W WO2015100509A1 WO 2015100509 A1 WO2015100509 A1 WO 2015100509A1 CL 2014000081 W CL2014000081 W CL 2014000081W WO 2015100509 A1 WO2015100509 A1 WO 2015100509A1
Authority
WO
WIPO (PCT)
Prior art keywords
bar
bars
energy dissipation
central
deformation amplification
Prior art date
Application number
PCT/CL2014/000081
Other languages
English (en)
French (fr)
Inventor
José Luis ALMAZÁN CAMPILLA
Original Assignee
Pontificia Universidad Catolica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Catolica De Chile filed Critical Pontificia Universidad Catolica De Chile
Priority to MX2016008470A priority Critical patent/MX2016008470A/es
Publication of WO2015100509A1 publication Critical patent/WO2015100509A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices

Definitions

  • the present invention relates to devices and systems of protection against the effects of external influences, such as earthquake and wind, on the structures of buildings, especially buildings with low deformability of mezzanine, such as buildings constructed with reinforced concrete walls. STATE OF THE TECHNIQUE
  • viscoelastic, metallic, frictional energy dissipators or combination of these are used, which have proven to be of great efficiency to dissipate large amounts of energy, especially in flexible structures
  • rigid structures such as, for example, rigid frames (stiff frames) or shear walls
  • heatsinks of energy like these is more difficult and expensive.
  • JP2006132311 discloses a power dissipation device with strain amplification that is formed by: (1) a central pivot; (2) a lever; (3) a cable system; and an energy sink, all within a column-beam outer frame.
  • the lever is attached to the central pivot by means of a flat ball joint and its ends are linked to the power dissipator and the cables, respectively.
  • the JP2006132311 device There are basically two configurations (or variations) of the JP2006132311 device.
  • the first which could be called asymmetric or unbalanced, in which two wires are used for each lever; and the second, which could be called symmetric or balanced, in which four cables are used for each lever.
  • the device allows to reach amplification factors significantly greater than those of the TBD system, however it has some limitations that are important to detail.
  • the first of these is that amplification occurs only at the end of the lever, so it is only possible to place one or two power sinks for each amplifying device, at the end of the lever.
  • the second is related to the asymmetric variant, which produces shear forces on the beams or columns of the resistant plane, which are of the same order of magnitude as the forces generated in the cables, which are generally of great magnitude.
  • deformations thus induced in the resistant plane significantly reduce the efficiency of the amplification mechanism.
  • Such deficiencies are corrected by using the symmetric version of the device, although only when the ends of the frame are directly connected and coincide with the structural framework. However, even in this case, the central pivot could produce stress concentration in the resistant plane.
  • document KR20120093644 discloses an energy dissipation device with deformation amplification mounted in a structural framework of a building, in which the device is formed by: (1) two vertical levers; (2) a horizontal bar that connects in an articulated manner with the lower ends of the levers; (3) an internal framework rigid open formed by a horizontal beam and two vertical columns; (4) power heatsinks; and (5) an outer frame to which the free ends of the levers, the free ends of the columns of the inner frame, and the energy sinks are connected.
  • This external framework is responsible for transferring efforts to the nodes of the structural framework.
  • the KR20120093644 device is capable of achieving amplifications similar to the JP2006132311 device, it has two major disadvantages.
  • the first is that the path followed by the forces from the energy sinks to the nodes of the structural framework is excessively long, making the device large and its construction complex and expensive.
  • the second disadvantage is that the columns of the inner frame, which receive the amplified forces of the levers and transfer them to the outer frame, essentially work in bending so they are relatively flexible, which considerably decreases the efficiency of the system.
  • the outer frame is removed ( Figure 13 of KR20120093644), which partly resolves the first of the disadvantages mentioned above.
  • a combined system of deformation amplification and energy dissipation has been developed that can be mounted within a resistant plane of the main structure of a construction, in which in said resistant plane two halves are distinguished or portions, each with one or more rigid areas.
  • the dimensions and orientation of the components of the system, in particular of the deformation amplification mechanism, are adapted to the structural typology of the construction, for example, structures based on frames or based on cutting walls.
  • the deformation amplification mechanism consists of three articulated bars and two cables or tension bars.
  • the three articulated bars comprise a first sidebar, a second sidebar and a central bar in between the two sidebars thus forming three of the four sides of a quadrilateral.
  • the side bars have a free end that joins in a rotating manner with a rigid zone located in one half or portion of the resistant plane, while the other end is rotatably joined with the center bar. All joints are flat ball joints.
  • the central bar is parallel to one side of the resistant plane contained in the other half thereof and is connected with at least one energy dissipating device, in which the energy dissipator (s) are fixed to said side of the resistant plane which is parallel to the center bar.
  • this bar allows you to connect a large number of energy dissipation devices (distributed dissipation).
  • the type of connection (articulated or rigid) of the heatsinks with the central bar and with the structural plane depends on the type of heatsink, due to the way it works. For example, viscous heatsinks have an articulated connection while metal heatsinks have a rigid connection.
  • the two tension cables constitute the means of transmitting the force to the main structure.
  • One of the ends of the first tensioning cable is rotatably connected to the first sidebar, while the other end is rotatably connected to a rigid area of said other half of the resistant plane.
  • one end of the second tension cable is rotatably connected to the second side bar, while the other end is also rotatably connected to a rigid area of said other half of the resistant plane.
  • the tension cables join the side bars at a point the length of these predefined by the desired strain amplification.
  • tension cables do not work simultaneously, but alternately one at a time and, by their nature, always in tension.
  • the side bars, together with the tension cables, fulfill the function of mechanical amplification of the deformation of the resistant plane, while the central bar transmits the amplified movement to the energy dissipator (s).
  • Figure 1 shows a first exemplary configuration of combined energy dissipation system and deformation amplification according to the invention, applied to a resistant frame ⁇ frame), that is, formed by two beams and two columns, in which the central bar is horizontal and there is a single energy dissipation device connected to the beam bottom of the frame.
  • Figure 2 shows a configuration similar to that shown in Figure 1, but in which the only power dissipator is connected to the upper beam of the frame.
  • Figure 3 shows the same exemplary configuration shown in Figure 1, but with more than one energy dissipating device (distributed dissipation).
  • Figure 4 shows the same exemplary configuration shown in Figure 3, but mounted inside a building whose resistant elements are formed by shear walls, so it is convenient to rotate the amplification system by 90 degrees, that is to say , with the central bar in an upright position, placing the energy sinks on either wall.
  • Figure 5 shows the free body diagram of a sidebar corresponding to a configuration of the combined energy dissipation and motion amplification system of the invention in which the second central bar is in a horizontal position.
  • Figure 6 shows the free body diagram of a sidebar corresponding to a configuration of the combined energy dissipation and deformation amplification system of the invention in which the central bar is in an upright position.
  • Figure 1 a mezzanine of a resistant plane of a frame-like structure formed by two columns (6 and 7), a lower beam (8), and an upper beam (9), where an exemplary design is arranged, can be seen of the combined system of energy dissipation and strain amplification according to the invention.
  • this structural typology there are four rigid zones (A, B, C and D), which in this case correspond to the intersections of the beams and the columns of the frame, commonly called nodes.
  • the constituent elements of the deformation amplification mechanism that is part of the invention are the side bars (1 and 3) that are rotatably joined each at one end to the nodes A and B, corresponding to the intersection of the columns ( 6 and 7) with the upper beam (9), and at the other end they are connected to the ends of the central bar (2), by means of flat ball joints (E and F).
  • the side bars (1 and 3) there are also flat labeled joints (G and H) for the two tension cables (4 and 5), which at their other end are rotatably fixed to the nodes (C and D) respectively.
  • the central bar (2) which in this example is parallel to the lower beam (8), is connected by means of a rotary connection (I) to at least one energy dissipation device (10) (the figure shows a single viscous type heatsink) and it is fixed by means of a labeled connection (J) to the lower beam (8).
  • the tensioners (4 and 5) pass through the interior of the labeled joints (E and F) since, according to a preferred embodiment of the invention, in order to obtain an optimal alignment of the different components of the system, said labeled joints (E and F) include side plates on each side of the bars that leave an intermediate space for the passage of the tension cables. .
  • Figure 2 shows a similar configuration of the system of the invention to that shown in Figure 1, but rotated 180 degrees with respect to it, where the power dissipator is connected to the upper beam (9).
  • the system shown in Figure 3 contains more than one energy sink, which in this case is shown schematically as metal heatsinks.
  • These energy dissipators are linked to the central bar (2) by means of the fixed connections (II, 12 and 13), and to the lower beam (8) by means of the fixed connections (Jl, J2 and J3).
  • Figure 4 shows a structure of a building whose resistant plane is formed by cutting walls (6 and 7) and mezzanine slabs or beams (8 and 9). Unlike the case of the frame-like structure, the rigid areas of the resistant plane can be any area belonging to the cutting walls (6 and 7).
  • the energy dissipation devices (10) are connected to the vertical surface of one of the side walls (6), since in this case it is more efficient to amplify the relative vertical deformation between the walls (6 and 7).
  • FIG. 5 The free body diagram of a sidebar (3) is shown in Figure 5, where F d is the force exerted by the energy dissipation device (s), which is transmitted to the union F by means of the central bar ( 2), which in this case is in a horizontal position; T is the force exerted by the tensioning cable; Q x and Q z are the horizontal and vertical components, respectively, of the reaction force exerted by the resistant plane through the rotary connection B; and ⁇ is the angle that forms the sidebar (3) with the vertical. Balancing moments with respect to point H, which is the connection point between the tensioning cable and the sidebar (3), and neglecting infinitesimal order ⁇ , we obtain:
  • f is the load amplification factor (deformation); the effective length of the sidebar being, and at a distance, measured on the axis of the sidebar (3), from the connection point (H) of the cable tensioner to the end where the sidebar that connects with the resistant plane in the joint (B).
  • Figure 6 also shows the free body diagram of the sidebar (3), but in this case it corresponds to a configuration in which the central bar (2) is in an upright position.
  • the amplification factor will then be:

Abstract

Un sistema combinado de amplificación de deformaciones y disipación de energía montable en un plano resistente de la estructura principal de una construcción, en que en el plano resistente se distinguen geométricamente dos mitades, o porciones, cada una con una o más zonas rígidas. El mecanismo de amplificación de deformaciones comprende: tres barras articuladas que forman tres de los cuatro lados de un cuadrilátero, donde un extremo de las barras laterales están unidas en forma rotatoria con una zona rígida de una mitad o porción del plano resistente y la barra central es paralela al lado del plano resistente contenido en la otra mitad de éste; y dos cables o barras tensoras que tienen un extremo libre unido en forma rotatoria a una zona rígida de dicha otra mitad o porción del plano resistente y el otro extremo unido en forma rotatoria a una de las barra laterales, respectivamente, el punto de unión con las barras laterales estando predefinido por la amplificación de deformación deseada. El o los dispositivos disipadores de energía están conectados con la barra central y con dicho lado del plano resistente al cual es paralelo a la barra central. El sistema se adapta a la tipología estructural de la construcción y sirve tanto para estructuras en base a marcos como en base a muros de corte, u otra.

Description

SISTEMA. COMBINADO DE AMPLIFICACIÓN DE DEFORMACIONES Y DISIPACIÓN DE ENERGÍA EN ESTRUCTURAS DE EDIFICACIONES CAMPO DE LA INVENCION
La presente invención se refiere a dispositivos y sistemas de protección contra los efectos de influencias externas, tales como sismo y viento, sobre las estructuras de edificaciones, en especial edificios con baja deformabilidad de entrepiso, como los edificios construidos con muros de hormigón armado. ESTADO DE LA TECNICA
Para mitigar las vibraciones mecánicas producidas por sismos destructivos o viento de gran intensidad en las edificaciones se utilizan disipadores de energía visco- elásticos, metálicos, fricciónales o combinación de éstos, que han probado ser de gran eficiencia para disipar grandes cantidades de energía, especialmente en estructuras flexibles. Sin embargo, para estructuras rígidas como, por ejemplo, marcos rígidos (stiff frames) ó muros de corte {shear walls) , típico de los edificios construidos con muros de hormigón armado en los que se producen pequeñas deformaciones de entrepiso, la implementación de disipadores de energía como estos resulta más difícil y costosa .
Para solucionar este inconveniente existen en el estado del arte sistemas que combinan dispositivos de disipación de energía con mecanismos de amplificación de deformaciones. Es así como los sistemas, denominados "Toggle-Brace Dampers" (TBD) , que fueron por primera vez patentados por Taylor en 1999 y probados por Constantinou et al., en 2001, han demostrado ser efectivos en estructuras rígidas. En las patentes ÜS5870863 y US5934028 de Taylor se enseña unas barras conectadas por rótulas u otra forma de unión articulada plana, disponiéndose las barras de tal manera que para una pequeña deformación del elemento estructural, se genera una deformación amplificada en el disipador de energía. De acuerdo a la configuración geométrica de las barras, tal amplificación de movimiento es de un factor típicamente entre 2 y 3 y aunque significativo, tales valores de amplificación requieren, sin embargo, del uso de disipadores de energía de gran tamaño .
A partir de lo anterior han surgido diferentes diseños de estos aparatos combinados de disipación de energía con amplificación de deformaciones que buscan mejorar la eficiencia en la mitigación de vibraciones en estructuras rígidas. Un ejemplo es el documento JP2006132311 que divulga un dispositivo de disipación de energía con amplificación de deformaciones que está formado por: (1) un pivote central ; (2) una palanca ; (3) un sistema de cables; y un disipador de energía, todo dentro de un marco exterior columna- viga. La palanca está unida al pivote central por medio de una rótula plana y sus extremos se vinculan al disipador de energía y los cables, respectivamente .
Existen básicamente dos configuraciones (o variaciones) del dispositivo de JP2006132311. La primera, que podría llamarse asimétrica o desbalanceada, en la que se usan dos cables por cada palanca; y la segunda, que podría llamarse simétrica o balanceada, en la que se usan cuatro cables por cada palanca. El dispositivo permite alcanzar factores de amplificación significativamente mayores a los del sistema TBD, sin embargo posee algunas limitaciones que es importante detallar. La primera de ellas es que la amplificación se produce sólo en el extremo de la palanca, por lo que sólo es posible colocar uno o dos disipadores de energía por cada dispositivo amplificador, en el extremo de la palanca. La segunda está relacionada con la variante asimétrica, la cual produce esfuerzos de corte sobre las vigas o columnas del plano resistente, que resultan del mismo orden de magnitud que las fuerzas generadas en los cables, que generalmente son de gran magnitud. Además, las deformaciones así inducidas en el plano resistente reducen significativamente la eficiencia del mecanismo de amplificación. Tales deficiencias se corrigen al usar la versión simétrica del dispositivo, aunque sólo cuando los extremos del marco se conectasen directamente y coincidieran con el marco estructural. Sin embargo, aún en este caso, el pivote central podría producir concentración de tensiones en el plano resistente.
Otro ejemplo similar al anterior es el documento KR20120093644 que divulga un dispositivo de disipación de energía con amplificación de deformaciones montado en un marco estructural de una edificación, en que el dispositivo está formado por: (1) dos palancas verticales; (2) una barra horizontal que se conecta en forma articulada con los extremos inferiores de las palancas; (3) un marco interno rígido abierto formado por una viga horizontal y dos columnas verticales; (4) disipadores de energía; y (5) un marco exterior al cual se conectan los extremos libres de las palancas, los extremos libres de las columnas del marco interior, y los disipadores de energía. Este marco exterior se encarga de transferir los esfuerzos a los nodos del marco estructural.
Si bien el dispositivo de KR20120093644 es capaz de alcanzar amplificaciones similares al dispositivo de JP2006132311, tiene dos desventajas importantes. La primera es que el camino seguido por las fuerzas desde los disipadores de energía hasta los nodos del marco estructural es excesivamente largo, haciendo que el dispositivo sea de gran envergadura y su construcción sea compleja y costosa. La segunda desventaja es que las columnas del marco interior, que reciben las fuerzas amplificadas de las palancas y las transfieren al marco exterior, trabajan esencialmente en flexión por lo que son relativamente flexibles, lo cual disminuye considerablemente la eficiencia del sistema. Existe sin embargo una variante en que se elimina el marco exterior (Figura 13 de de KR20120093644) , lo cual resuelve en parte la primera de las desventajas mencionadas anteriormente. Sin embargo, esto trae un nuevo problema, debido a que las columnas se conectan directamente con la viga inferior del marco estructural, produciendo una gran concentración de tensiones y una mayor flexión del marco interior cuando es sometido al efecto vibratorio. Por consiguiente, es un objetivo de la presente invención superar los inconvenientes que subsisten en el estado del arte y proporcionar un sistema simple, económico y confiable de disipación de energía, con gran capacidad de amplificación de deformación, con un factor mayor a 5, y diseñado para todo tipo de construcciones, tanto habitacionales como industriales, particularmente para tabiques divisorios, que además no genere concentración de tensiones en el plano resistente donde se sitúa.
RESUMEN DE LA INVENCION
Con la finalidad de alcanzar los expresados objetivos, se ha desarrollado un sistema combinado de amplificación de deformaciones y disipación de energia que puede ser montado dentro de un plano resistente de la estructura principal de una construcción, en que en dicho plano resistente se distinguen dos mitades o porciones, cada una con una o más zonas rígidas. Las dimensiones y orientación de los componentes del sistema, en particular del mecanismo de amplificación de deformaciones, se adaptan a la tipología estructural de la construcción, por ejemplo, estructuras en base a marcos o bien en base a muros de corte.
El mecanismo de amplificación de deformaciones se compone de tres barras articuladas y dos cables o barras tensoras. Las tres barras articuladas comprenden una primera barra lateral, una segunda barra lateral y una barra central entremedio de las dos barras laterales formando así tres de los cuatro lados de un cuadrilátero. Las barras laterales tienen un extremo libre que se une en forma rotatoria con una zona rígida ubicada en una mitad o porción del plano resistente, mientras que el otro extremo se une en forma rotatoria con la barra central. Todas las uniones son rótulas planas.
A su vez, la barra central es paralela a un lado del plano resistente contenido en la otra mitad del mismo y está conectada con al menos un dispositivo disipador de energía, en que el o los disipadores de energía están fijados a dicho lado del plano resistente que es paralelo a la barra central. Es importante notar que esta barra permite conectar una gran cantidad de dispositivos de disipación de energía (disipación distribuida) . El tipo de conexión (articulada o rígida) de los disipadores con la barra central y con el plano estructural depende del tipo de disipador, por la forma de funcionamiento de éste. Por ejemplo los disipadores viscosos tienen una conexión articulada mientras que los disipadores metálicos la tienen rígida .
Por su parte los dos cables tensores constituyen el medio de transmisión de la fuerza a la estructura principal. Uno de los extremos del primer cable tensor está unido en forma rotatoria a la primera barra lateral, mientras que el otro extremo está unido en forma rotatoria a una zona rígida de dicha otra mitad del plano resistente. De la misma forma, uno de los extremos del segundo cable tensor está unido en forma rotatoria a la segunda barra lateral, mientras que el otro extremo está unido asimismo en forma rotatoria a una zona rígida de dicha otra mitad del plano resistente. Los cables tensores se unen a las barras laterales en un punto de la longitud de éstas predefinido por la amplificación de deformación deseada.
Es importante mencionar que los cables tensores no trabajan simultáneamente, sino alternadamente uno a la vez y, por su naturaleza, siempre en tracción. Las barras laterales, en conjunto con los cables tensores, cumplen la función de amplificación mecánica de la deformación del plano resistente, mientras que la barra central transmite el movimiento amplificado a el o los disipadores de energía.
Cabe señalar que en estructuras donde los planos resistentes son diferentes a cualquiera de los dos mencionados anteriormente, como por ejemplo un reticulado de barras, es perfectamente posible usar el sistema aquí propuesto, ya que sólo se requiere seleccionar cuatro nodos (zonas de conexión entre las barras del reticulado) que formen un cuadrilátero.
Asimismo, es obvio que el invento podría incorporar cualquier otro par de elementos de uso común que trabajen a tracción y cumplan la función de amplificación mecánica de la deformación del plano resistente, como unas barras, y se obtendría el mismo efecto que los cables tensores.
Para facilitar la comprensión de las precedentes ideas, se describe seguidamente el objeto de la invención, haciendo referencia a los dibujos ilustrativos que se acompañan .
DESCRIPCION DE LAS FIGURAS
La Figura 1 muestra una primera configuración ejemplar de sistema combinado de disipación de energía y amplificación de deformaciones de acuerdo a la invención, aplicado a un plano resistente tipo marco {frame) , es decir, formado por dos vigas y dos columnas, en que la barra central es horizontal y existe un único dispositivo disipador de energía conectado a la viga inferior del marco .
La Figura 2 muestra una configuración similar a la mostrada en la Figura 1, pero en la cual el único disipador de energía está conectado a la viga superior del marco.
La Figura 3 muestra la misma configuración ejemplar mostrada en la Figura 1, pero con más de un dispositivo disipador de energía (disipación distribuida) .
La Figura 4 muestra la misma configuración ejemplar mostrada en la Figura 3, pero montada dentro de una edificación cuyos elementos resistentes están formados por muros de corte (shear walls) , por lo cual es conveniente girar en 90 grados el sistema de amplificación, es decir, con la barra central en posición vertical, colocando los disipadores de energía en cualquiera de los dos muros.
La Figura 5 muestra el diagrama de cuerpo libre de una barra lateral correspondiente a una configuración del sistema combinado de disipación de energía y amplificación de movimiento de la invención en que la segunda barra central está en posición horizontal.
La Figura 6 muestra el diagrama de cuerpo de libre de una barra lateral correspondiente a una configuración del sistema combinado de disipación de energía y amplificación de deformación de la invención en que la barra central está en posición vertical. DESCRIPCION DETALLADA DE LA INVENCION
En la Figura 1 se puede observar un entrepiso de un plano resistente de una estructura tipo marco formado por dos columnas (6 y 7) , una viga inferior (8) , y una viga superior (9), donde se ha dispuesto un diseño ejemplar del sistema combinado de disipación de energía y amplificación de deformación de acuerdo a la invención. En esta tipología estructural se tiene cuatro zonas rígidas (A, B, C y D) , que corresponden en este caso a las intersecciones de las vigas y las columnas del marco, comúnmente llamados nodos. Los elementos constitutivos del mecanismo de amplificación de deformación que forma parte de la invención son las barras laterales (1 y 3) que se unen en forma rotatoria cada una por un extremo a los nodos A y B, correspondientes a la intersección de las columnas (6 y 7) con la viga superior (9) , y por el otro extremo están conectadas a los extremos de la barra central (2) , por medio de rótulas planas (E y F) . En las barras laterales (1 y 3) se disponen asimismo unas uniones rotuladas planas (G y H) para los dos cables tensores (4 y 5), que en su otro extremo están fijados en forma rotatoria a los nodos (C y D) , respectivamente. A su vez, la barra central (2), que en este ejemplo es paralela a la viga inferior (8), está conectada por medio de una conexión rotatoria (I) a al menos un dispositivo de disipación de energía (10) (la figura muestra un solo disipador de tipo viscoso) y éste se encuentra fijado por medio de una conexión rotulada (J) a la viga inferior (8) . Nótese que los tensores (4 y 5) pasan por el interior de las uniones rotuladas (E y F) ya que, según una realización preferida de la invención, para obtener un alineamiento óptimo de los distintos componentes del sistema, dichas uniones rotuladas (E y F) incluyen unas placas laterales a cada lado de las barras que dejan un espacio entremedio para el paso de los cables tensores.
La Figura 2 muestra una configuración similar del sistema de la invención a la mostrada en la Figura 1, pero rotada en 180 grados respecto a ésta, donde el disipador de energía está conectado a la viga superior (9) .
El sistema mostrado en la Figura 3 contiene más de un disipador de energía, que en este caso se muestran de manera esquemática como disipadores metálicos. Estos disipadores de energía se vinculan con la barra central (2) por medio de las conexiones fijas (II, 12 y 13) , y con la viga inferior (8) por medio de las conexiones fijas (Jl, J2 y J3) .
En la Figura 4 se muestra una estructura de una edificación cuyo plano resistente está formado por muros de corte (6 y 7) y losas de entrepiso o vigas (8 y 9) . A diferencia del caso de la estructura tipo marco, las zonas rígidas del plano resistente pueden ser cualquier zona perteneciente a los muros de corte (6 y 7) . En esta figura se puede observar que los dispositivos de disipación de energía (10) están conectados a la superficie vertical de uno de los muros laterales (6) , ya que en este caso es más eficiente amplificar la deformación vertical relativa entre los muros (6 y 7) .
La orientación y las dimensiones de las barras y cables tensores del mecanismo de amplificación de movimiento, asi como la ubicación de los dispositivos de disipación de energía, siempre que estos últimos estén debidamente conectados a la barra central (2), quedan abiertas a la disponibilidad de espacio, la tipología estructural y las necesidades del diseñador. Esto es posible por su versatilidad y adaptabilidad en cuanto a disposición geométrica, su facilidad de instalación y bajo peso .
Cálculo del factor de amplificación de deformación
En la Figura 5 se muestra el diagrama de cuerpo libre de una barra lateral (3) , donde Fd es la fuerza ejercida por el o los dispositivos de disipación de energía, que se transmite hasta la unión F por medio de la barra central (2), que en este caso está en posición horizontal; T es la fuerza ejercida por el cable tensor; Qx y Qz son las componentes horizontal y vertical, respectivamente, de la fuerza de reacción ejercida por el plano resistente a través de la conexión rotatoria B; y Θ es el ángulo que forma la barra lateral (3) con la vertical. Haciendo equilibrio de momentos respecto al punto H, que es el punto de conexión entre el cable tensor y la barra lateral (3) , y despreciando infinitésimos de orden Θ, se obtiene:
donde f es el factor de amplificación de carga (deformación) ; siendo la longitud efectiva de la barra lateral, y a la distancia, medida sobre el eje de la barra lateral (3) , desde el punto de conexión (H) del cable tensor hasta el extremo en que la barra lateral que se conecta con el plano resistente en la unión (B) .
La Figura 6 muestra también el diagrama de cuerpo de libre de la barra lateral (3) , pero en este caso corresponde a una configuración en que la barra central (2) está en posición vertical. El factor de amplificación será entonces:
/ =— =— i
Fd a

Claims

REIVINDICACIONES
1. Sistema combinado de amplificación de deformaciones y disipación de energía para ser montado dentro de un plano resistente de la estructura principal de una construcción, en que en dicho plano resistente se distinguen geométricamente dos mitades o porciones, cada una con una o más zonas rígidas, que comprende:
un mecanismo de amplificación de deformaciones;
Y
al menos un dispositivo disipador de energía; en que el mecanismo de amplificación de deformaciones se compone de:
tres barras articuladas constituidas por una primera barra lateral, una segunda barra lateral y una barra central entremedio de las barras laterales de modo que las tres barras forman tres de los cuatro lados de un cuadrilátero, en que las barras laterales tienen un extremo libre que está unido en forma rotatoria con una zona rígida ubicada en una mitad del plano resistente y la barra central es paralela a un lado del plano resistente contenido en la otra mitad de éste; y dos cables o barras tensoras que comprenden un primer y un segundo cable o barra tensora con un primer y un segundo extremo cada uno, en que el primer extremo de cada cable o barra tensora está unido en forma rotatoria a una zona rígida de dicha otra mitad del plano resistente, el segundo extremo del primer cable o barra tensora está unido en forma rotatoria a la primera barra lateral y el segundo extremo del segundo cable o barra tensora está unido en forma rotatoria a la segunda barra lateral, en que los cables o barras tensoras están unidos a las barras laterales en un punto de la longitud de éstas predefinido por la amplificación de deformación deseada; y
en que el o los dispositivos disipadores de energía están conectados con la barra central y con dicho lado del plano resistente al cual es paralelo a la barra central.
2. Sistema combinado de mecanismo de amplificación de deformaciones y dispositivo de disipación de energía de la reivindicación 1, en donde el o los disipadores son viscosos y la conexión de éstos con la barra central y el lado del plano resistente al cual es paralelo la barra central es una rótula plana.
3. Sistema combinado de mecanismo de amplificación de deformaciones y dispositivo de disipación de energía de la reivindicación 1, en donde el o los disipadores son metálicos y la conexión de éstos con la barra central y el lado del plano resistente al cual es paralelo la barra central es una conexión rígida.
4. Sistema combinado de mecanismo de amplificación de deformaciones y dispositivo de disipación de energía de la reivindicación 1, en donde las dimensiones y orientación del mecanismo de amplificación de deformaciones está adaptado a la tipología estructural de la construcción.
5 . Sistema combinado de mecanismo de amplificación de deformaciones y dispositivo de disipación de energía de la reivindicación 1, en donde las uniones entre las barras laterales y central incluyen unas placas laterales a cada lado de las barras que dejan un espacio entremedio para el paso de los cables tensores.
PCT/CL2014/000081 2013-12-31 2014-12-19 Sistema, combinado de amplificación de deformaciones y disipación de energía en estructuras de edificaciones WO2015100509A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MX2016008470A MX2016008470A (es) 2013-12-31 2014-12-19 Sistema, combinado de amplificacion de deformaciones y disipacion de energia en estructuras de edificaciones.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2013003806A CL2013003806A1 (es) 2013-12-31 2013-12-31 Sistema combinado de amplificación de deformaciones y disipación de energía dispuesto dentro de un plano resistente de la estructura principal de una construcción, que comprende; un mecanismo de amplificación de deformaciones compuesto por tres barras articuladas y dos cables tensores, y al menos un dispositivo disipador de energía.
CL3806-2013 2013-12-31

Publications (1)

Publication Number Publication Date
WO2015100509A1 true WO2015100509A1 (es) 2015-07-09

Family

ID=53492871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2014/000081 WO2015100509A1 (es) 2013-12-31 2014-12-19 Sistema, combinado de amplificación de deformaciones y disipación de energía en estructuras de edificaciones

Country Status (3)

Country Link
CL (1) CL2013003806A1 (es)
MX (1) MX2016008470A (es)
WO (1) WO2015100509A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105926764A (zh) * 2016-06-13 2016-09-07 姚攀峰 一种工业化预加工再生式结构体系及其施工方法
CN109403492A (zh) * 2018-11-22 2019-03-01 华中科技大学 具位移放大型单剪刀支撑阻尼器系统及减振效能评估方法
CN111836932A (zh) * 2018-02-06 2020-10-27 凯内普罗斯有限责任公司 抗震装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003597A (ja) * 1999-06-23 2001-01-09 Tokico Ltd 制振装置
JP2002357014A (ja) * 2001-05-31 2002-12-13 Tatsuji Ishimaru 制振装置
JP2008069552A (ja) * 2006-09-14 2008-03-27 Institute Of National Colleges Of Technology Japan 木造建築物の耐震構造
KR20120093644A (ko) * 2011-02-15 2012-08-23 조선대학교산학협력단 변위증폭형 제진시스템 및 이의 시공방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003597A (ja) * 1999-06-23 2001-01-09 Tokico Ltd 制振装置
JP2002357014A (ja) * 2001-05-31 2002-12-13 Tatsuji Ishimaru 制振装置
JP2008069552A (ja) * 2006-09-14 2008-03-27 Institute Of National Colleges Of Technology Japan 木造建築物の耐震構造
KR20120093644A (ko) * 2011-02-15 2012-08-23 조선대학교산학협력단 변위증폭형 제진시스템 및 이의 시공방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105926764A (zh) * 2016-06-13 2016-09-07 姚攀峰 一种工业化预加工再生式结构体系及其施工方法
CN105926764B (zh) * 2016-06-13 2019-03-22 姚攀峰 一种工业化预加工再生式结构体系及其施工方法
CN111836932A (zh) * 2018-02-06 2020-10-27 凯内普罗斯有限责任公司 抗震装置
CN109403492A (zh) * 2018-11-22 2019-03-01 华中科技大学 具位移放大型单剪刀支撑阻尼器系统及减振效能评估方法
CN109403492B (zh) * 2018-11-22 2023-07-25 华中科技大学 具位移放大型单剪刀支撑阻尼器系统及减振效能评估方法

Also Published As

Publication number Publication date
MX2016008470A (es) 2016-09-14
CL2013003806A1 (es) 2014-08-18

Similar Documents

Publication Publication Date Title
EP2475829B1 (en) Structural protection system for buildings
ES2587713T3 (es) Dispositivo disipador de energía
WO2015100509A1 (es) Sistema, combinado de amplificación de deformaciones y disipación de energía en estructuras de edificaciones
JP2015045332A5 (es)
JP2015113703A (ja) エネルギー散逸接合組立体およびそれを用いた耐震構造
CN103953122B (zh) 一种可变刚度的耗能钢结构梁柱节点
JP2013044155A (ja) 制震構造
ES2350217B2 (es) Sistema para disipar la energia sismica en las construcciones.
WO2013145726A1 (ja) 床材及びこの床材を組み合わせた路面の床構造
WO2009133526A2 (es) Elemento de union entre modulos para construcciones
JP6368545B2 (ja) 制振要素
JP2010196390A (ja) 活断層帯を横断する地中構造物
ES2674489T3 (es) Soporte de componentes
ES2257949B1 (es) Seguidor solar basado en cinematica paralela.
KR101439754B1 (ko) 육각 지오메트리 건물 외피 구조 및, 다각 지오메트리 건물 외피 구조
JP2014047522A (ja) 建物
JP5841889B2 (ja) 柱脚用ピン構造
JP5722823B2 (ja) 建物ユニット、建物ユニットの配置構造およびユニット建物
JP5956893B2 (ja) 柱脚金物及びそれを用いた柱脚構造
JP5342687B2 (ja) 活断層帯を横断する地中構造物
JP6303492B2 (ja) 制震構造物
JP2014202023A (ja) 角パイプを用いる補強構造、梁及び構造体の補強構造
JP2013028938A (ja) 制震架構
ITUD20110030A1 (it) Pilastro per costruzioni edili
WO2022120508A1 (es) Sistema y método de protección estructural para edificaciones de baja altura.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876210

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/008470

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876210

Country of ref document: EP

Kind code of ref document: A1