WO2015099383A1 - 금속회수반응기 및 금속회수시스템 - Google Patents

금속회수반응기 및 금속회수시스템 Download PDF

Info

Publication number
WO2015099383A1
WO2015099383A1 PCT/KR2014/012646 KR2014012646W WO2015099383A1 WO 2015099383 A1 WO2015099383 A1 WO 2015099383A1 KR 2014012646 W KR2014012646 W KR 2014012646W WO 2015099383 A1 WO2015099383 A1 WO 2015099383A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
metal
electrode
aqueous solution
auxiliary
Prior art date
Application number
PCT/KR2014/012646
Other languages
English (en)
French (fr)
Inventor
김수경
손정수
이강인
오영민
양동효
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130161751A external-priority patent/KR101416428B1/ko
Priority claimed from KR1020140002312A external-priority patent/KR101416429B1/ko
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to US14/779,384 priority Critical patent/US20160060778A1/en
Priority to CN201480070462.9A priority patent/CN105849318A/zh
Publication of WO2015099383A1 publication Critical patent/WO2015099383A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof

Definitions

  • the present invention relates to a metal recovery reactor and a metal recovery system capable of recovering metal at high speed using an electrolyzer.
  • waste liquids In general, useful metals are contained in waste liquids, plating waste liquids or washing water generated in the electronic industry such as semiconductor manufacturing processes.
  • waste liquids or washing water generated in industrial processes in which precious metals are used contain a considerable amount of precious metals, and thus, it is necessary to recover and recycle them.
  • the recovery method of precious metals contained in waste liquid or washing water is often adopted by ion exchange resin method, activated carbon method and electrolytic extraction method, and the solution after recovery may be neutralized, discarded or semi-treated and recycled.
  • the electrolytic extraction method is a method of electrolytic reduction of an aqueous solution or a leachate containing a noble metal as an electrolyte solution to deposit a desired noble metal on the negative electrode surface.
  • the electrowinning method has the advantage that a high purity metal is obtained at a time without going through an intermediate step such as crude metal, and that the solvent can be regenerated and reused in the leaching process according to the electrolysis.
  • the present invention is to solve the above problems, to provide a metal recovery reactor and a metal recovery system that can recover the metal at a high speed using an electrolyzer.
  • the object of the present invention in the metal recovery reactor, receives an aqueous solution containing a metal ion from the outside, when the aqueous solution is supplied to the reaction space formed between the positive electrode and the negative electrode surrounding the positive electrode to the metal ion of the aqueous solution And an electrolyzer which reduces and precipitates on the surface of the negative electrode, the negative electrode being achieved by including a main negative electrode and an auxiliary negative electrode located inside the main negative electrode and detachable from the main negative electrode.
  • Reduction of the metal ions may occur in the inner surface of the auxiliary negative electrode.
  • the main electrode may have a ring shape
  • the auxiliary negative electrode may have a plate shape and may be wound and positioned in the main electrode.
  • the auxiliary negative electrode may be made of a material that is dissolved by an acid that does not dissolve the metal to be recovered.
  • the auxiliary negative electrode may be in close contact with the main negative electrode, and the auxiliary negative electrode may substantially cover an entire inner surface of the main negative electrode.
  • the positive electrode has a rod shape and a plurality of grooves are formed on an outer surface thereof.
  • the positive electrode may have a hollow shape with both ends thereof, and the side surface of the positive electrode may not penetrate.
  • the ratio of the surface area of the positive electrode to the surface area of the negative electrode in the reaction space may be greater than one.
  • the object of the present invention is a metal recovery system, containing a water tank containing an aqueous solution containing metal ions; It receives an aqueous solution containing a metal ion from the outside, and includes the electrolyzer to reduce and precipitate the metal ion of the aqueous solution when the aqueous solution is supplied to the reaction space formed between the positive electrode and the negative electrode surrounding the positive electrode,
  • the negative electrode is achieved by including a main negative electrode and an auxiliary negative electrode located inside the main negative electrode and detachable from the main negative electrode.
  • the auxiliary negative electrode is in close contact with the main negative electrode to cover substantially all of the inner surface of the main negative electrode, and the reduction precipitation of the metal ions may occur at the inner surface of the auxiliary negative electrode.
  • the auxiliary negative electrode may be made of a material that is dissolved by an acid that does not dissolve the metal to be recovered.
  • the positive electrode has a rod shape and a plurality of grooves are formed on an outer surface thereof.
  • the positive electrode may have a hollow shape with both ends thereof, and the side surface of the positive electrode may not penetrate.
  • the ratio of the surface area of the positive electrode to the surface area of the negative electrode in the reaction space may be greater than one.
  • It may further include a solid-liquid separator receiving the aqueous solution discharged from the electrolyzer to separate the metal particles.
  • An auxiliary tank located between the electrolyzer and the solid-liquid separator;
  • a control unit for reducing the supply of the aqueous solution to the electrolyzer if the level of the auxiliary tank is greater than or equal to the first level, and reducing the supply of the aqueous solution to the solid-liquid separator if the level of the auxiliary tank is less than or equal to the second level smaller than the first level. It may further include.
  • a metal recovery reactor and a metal recovery system capable of recovering metal at high speed using an electrolyzer are provided.
  • FIG. 1 is a block diagram of a metal recovery system according to a first embodiment of the present invention
  • FIG. 2 is a view showing a control structure of a metal recovery system according to a first embodiment of the present invention
  • FIG. 3 is a cross-sectional view of the electrolyzer according to the first embodiment of the present invention.
  • FIG. 4 is a schematic exploded perspective view of an electrolyzer according to a first embodiment of the present invention.
  • FIG. 6 shows a configuration of a negative electrode according to a first embodiment of the present invention
  • FIG. 8 is a perspective view of a coupled state of the electrolyzer according to the first embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating an operation method according to an auxiliary tank level in the metal recovery system according to the first embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating an operating method of performing a solid-liquid separator cleaning in the metal recovery system according to the first embodiment of the present invention.
  • FIG. 16 illustrates a configuration of a negative electrode according to a fourth embodiment of the present invention.
  • FIG. 1 is a block diagram of a metal recovery system according to a first embodiment of the present invention
  • Figure 2 is a view showing a control structure of a metal recovery system according to a first embodiment of the present invention.
  • the metal recovery system includes an electrolyzer 100, a metal recovery reactor, an auxiliary tank 200, a solid-liquid separator 300, and a receiving tank 400.
  • Pumps 501, 502 and valves 601, 602, 603, 604 are provided for transporting and blocking the aqueous solution containing the metal ions and / or metal particles to be recovered (hereinafter aqueous solution).
  • a timer (800) for measuring the operation time of the level measuring unit 210 and the solid-liquid separator 300, etc. for measuring the level of the auxiliary tank 200, input from the level measuring unit 210 and the timer (800)
  • the controller 700 controls the operation of the pumps 501, 502 and the valves 601, 602, 603, 604 based on the signal.
  • the electrolyzer 100 receives an aqueous solution from the receiving tank 400 and collects (recovers) the metal from the aqueous solution by a cyclone electrolytic extraction method.
  • the electrolyzer 100 will be described in detail again.
  • the auxiliary tank 200 is supplied with an aqueous solution that is electrolytically collected from the electrolyzer 100.
  • the auxiliary tank serves as a buffer between the electrolyzer 100 and the solid-liquid separator 300, and solves an operation stability problem that may occur in a difference in the flow rate between the first pump 501 and the second pump 502.
  • the auxiliary tank 200 has a level sensor 210, the level sensor 210 senses whether the level of the auxiliary tank 200 is a proper range, more than the upper limit or less than the lower limit.
  • the level sensor 210 may be provided in various ways, such as using the total weight or pressure of the auxiliary tank 200.
  • the solid-liquid separator 300 separates the metal in the form of particles from an aqueous solution.
  • the metal in the form of particles may be generated by growing and separating the metals electrolytically collected from the electrolyzer 100.
  • the solid-liquid separator 300 is not limited thereto, but may include a filter capable of separating particles.
  • the aqueous solution from which the metal particles are separated in the solid-liquid separator 300 is received back into the receiving tank 400.
  • the receiving tank 400 combines the aqueous solution containing the recovery target metal supplied from the plating process and the aqueous solution from which the recovery target metal passed through the electrolyzer 100 and the solid-liquid separator 300 is recovered.
  • the aqueous solution supplied from the plating process and the aqueous solution passed through the electrolyzer 100 and the solid-liquid separator 300 are not combined, and the aqueous solution passed through the electrolyzer 100 and the solid-liquid separator 300 is a separate facility / process. Can be processed through
  • the metal recovery system also includes a wash section for cleaning the solid-liquid separator.
  • the washing unit includes a washing water supply unit, valves 603 and 604, a washing water discharge unit, and a washing water line.
  • An electrolyzer 100 according to a first embodiment of the present invention will be described in detail with reference to FIGS. 3 to 9.
  • FIG. 3 is a cross-sectional view of an electrolyzer according to the first embodiment of the present invention
  • FIG. 4 is a schematic exploded perspective view of the electrolyzer according to the first embodiment of the present invention
  • FIG. 5 is a first embodiment of the present invention.
  • the shape of the positive electrode of the electrolyzer Figure 6 shows the configuration of the negative electrode according to the first embodiment of the present invention
  • Figure 7 shows the assembly of the negative electrode according to the first embodiment of the present invention
  • Figure 8 is the present invention Is a perspective view of the coupled state of the electrolyzer according to the first embodiment
  • FIG. 9 is a cross-sectional view along the line IX-IX of FIG. 8.
  • the electrolyzer 100 includes an electrolytic cell 10, negative electrodes 20 and 22, and a positive electrode 30.
  • the electrolytic cell 10 is to provide a space for the electrolytic extraction process to be described later.
  • the electrolytic cell 10 has a cyclone shape, and includes a main body portion 11 and a cone portion 15.
  • the main body 11 is formed in a cylindrical shape and the diameter is constant from the top to the bottom. And one side of the main body portion 11 is formed with an inlet 12 penetrating between the inner circumferential surface and the outer circumferential surface so that the aqueous solution to be described later is introduced. And the inlet port 13 for guiding the aqueous solution to the inlet 12 is connected to the inlet (12). In addition, a connection hole 14 is provided at one side of the main body 11 to insert a wire for applying power to the negative electrodes 20 and 22 to be described later.
  • the cone portion 15 extends from the lower portion of the main body portion 11, the diameter gradually decreases from the top to the bottom to form a conical shape as a whole.
  • an outlet 16 through which the aqueous solution introduced into the main body 11 flows out is provided below the cone 15.
  • an outlet port 17 for discharging the aqueous solution to the outside is connected to the outlet port (16).
  • a sealing cap 18 for opening and closing the inner space of the main body portion 11 is provided. That is, a female thread is formed on the upper inner circumferential surface of the main body portion 11, and a male thread is formed on the outer circumferential surface of the sealing cap 18, so that the sealing cap 18 is screwed to the main body portion 11. Then, the O-ring 18a is interposed between the sealing cap 18 and the main body portion 11 to ensure the sealing property.
  • the sealing cap 18 is formed with an insertion hole 18b penetrating between the upper surface and the lower surface, and a rod-shaped positive electrode 30 to be described later is inserted into the insertion hole 18b.
  • the O-ring 18c is interposed around the insertion hole 18b to prevent the airtight release between the positive electrode 30 and the insertion hole 18b to be described later.
  • the pressing cap 19 is screwed on the upper portion of the sealing cap 18 to compress the O-ring 18c to the upper surface of the sealing cap 18 to enhance the airtightness.
  • the through hole 19c is formed in the center of the compression cap 19 so that the positive electrode 30 can be fitted.
  • a negative electrode structure according to an embodiment of the present invention will be described.
  • the negative electrodes 20 and 22 are generally cylindrical in shape and are fitted inside the main body 11 to be coupled. In the present embodiment, the negative electrodes 20 and 22 are formed in a cylindrical shape with a constant diameter throughout the entire upper and lower portions.
  • the negative electrodes 20 and 22 include a main negative electrode 20 and an auxiliary negative electrode 22.
  • the main electrode 20 is cylindrical.
  • the auxiliary negative electrode 22 has a plate shape, and is bent at the time of assembly to be mounted inside the main negative electrode 20. Therefore, in this embodiment, the main electrode 20 and the auxiliary negative electrode 22 are not physically coupled, and can be detached at any time if necessary.
  • the inlet 21 formed in the main electrode 20 is formed at a position corresponding to the inlet 12 of the main body 11, and communicates with the inlet 12 of the main body 11.
  • Auxiliary inlet 23 corresponding to the inlet 21 of the main electrode 20 is also formed in the auxiliary negative electrode 22.
  • the aqueous solution including the metal ion is introduced into the negative electrodes 20 and 22 through the inlet 12, the inlet 21, and the auxiliary inlet 23.
  • the aqueous solution should be introduced into the negative electrode (20, 22) to form a turbulent flow in the electrolytic cell 10, for this purpose, the inflow direction in which the aqueous solution is introduced into the negative electrode (20, 22) is approximately cylindrical It must be in the tangential direction of. That is, when a cylindrical negative electrode is assumed as a circle, it must flow in a tangential direction at the edge of the circle. The solution must be introduced in the tangential direction so that turbulence can be formed while the aqueous solution rotates along the inner circumferential surfaces of the negative electrodes 20 and 22.
  • the main electrode 20 is electrically connected to a power source through a connection hole 14 formed in the main body 11.
  • the main electrode 20 and the auxiliary negative electrode 22 are in close contact with each other and electrically connected, and the auxiliary negative electrode 22 is connected to a power source through the main negative electrode 20.
  • the auxiliary negative electrode 22 is in close contact with the main negative electrode 20 and substantially covers the entire inner surface of the main negative electrode 20. As a result, reduction and precipitation of metal ions occur intensively on the inner surface of the auxiliary negative electrode 22. Reduction and precipitation of metal ions on the inner surface of the main electrode 20 may be very insignificant or substantially not generated. In addition, the metal ion reduction and precipitation on the outer surface of the auxiliary negative electrode 22 is also very small.
  • the inner surface of the main electrode 20 and the outer surface of the auxiliary anode 22 in which the reduction and precipitation of the metal ions are insignificant can be suppressed by Teflon coating to prevent unnecessary reduction and precipitation.
  • the metal to be recovered is deposited on the inner surface of the auxiliary negative electrode 22.
  • the auxiliary negative electrode 22 is easily separated from the main electrode 20, and the post-process of separating the recovery target metal such as gold from the auxiliary negative electrode 22 is performed.
  • the acid-soluble metal is used as the auxiliary negative electrode 22
  • the precious metal such as gold or platinum is not dissolved in the acid solution, and only the auxiliary negative electrode 22 is dissolved, so that the precious metal can be easily separated from the negative electrode.
  • the auxiliary negative electrode 22 may be, for example, iron, zinc, tin, nickel, or copper.
  • the main electrode 20 may be formed of a material different from that of the auxiliary negative electrode 22, and may be made of, for example, stainless steel or titanium.
  • the auxiliary negative electrode 22 is not physically coupled with the main negative electrode 20, so that the auxiliary negative electrode 22 is easily inserted into the main negative electrode 20 and separated after the process. As a result, only the auxiliary negative electrode 22 may be separated after the step to recover the metal on the surface. If the main electrode 20 is kept intact and only the new auxiliary electrode 22 is inserted, a new process can be started. In addition, since the metal precipitation is insignificant in the main electrode 20, operations such as cleaning are easy.
  • the precipitated metal may be separated from the negative electrode in the form of particles, and the separated metal particles are separated from the solid-liquid separator 300.
  • the precipitated metal may be separated from the negative electrode in the form of particles, and the separated metal particles are separated from the solid-liquid separator 300.
  • the precipitated metal may be separated from the negative electrode in the form of particles, and the separated metal particles are separated from the solid-liquid separator 300.
  • the precipitated metal may be separated from the negative electrode in the form of particles, and the separated metal particles are separated from the solid-liquid separator 300.
  • a metal having a dendritic growth property is easily separated from the negative electrode is separated from the solid-liquid separator 300.
  • the positive electrode 30 is formed to have a rod shape and is inserted into the electrolytic cell 10 through the through hole 19c of the compression cap 19 and the insertion hole 18b of the sealing cap 18.
  • the upper portion of the positive electrode 30 is electrically connected to a power source.
  • the positive electrode 30 is formed in a hollow shape with an empty inside so that the inside of the electrolytic cell 10 communicates with the outside through the hollow portion of the positive electrode 30. After the aqueous solution in the electrolytic cell 10 is lowered to the cone 15, a part is discharged to the outside through the outlet 16 under the cone, and the other part through the inside of the positive electrode 30.
  • a plurality of grooves 32 are formed on the outer surface of the positive electrode 30.
  • the grooves 32 are formed at regular intervals along the circumferential direction of the positive electrode 30 and have the same width d and the interval c.
  • the groove 32 serves to widen the surface area of the positive electrode 30.
  • the groove 32 has a lower manufacturing cost than forming the through hole.
  • forming the groove 32 is easier to widen the surface area of the positive electrode 30 as compared with forming the through hole. Increasing the surface area of the positive electrode 30 by forming the groove 32 affects the recovery efficiency, which will be described later.
  • the surface area of the positive electrode 30 may be adjusted by changing the width d, the gap c, and the depth y of the groove 32.
  • each groove 32 can be variously modified.
  • the width d of each groove 32 may be different and may be formed at irregular intervals.
  • the groove 32 may be formed along the longitudinal direction of the positive electrode 30 or may be formed in a lattice form or the like.
  • the groove 32 may be variously modified, such as a trapezoid or a semicircle, which is not rectangular as in the cross-sectional embodiment.
  • the positive electrode 30 may be made of titanium, and the iridium oxide is coated on the titanium to increase strength. Positive electrodes coated with iridium oxide on titanium remain stable without melting in strong acid or strong alkaline solutions. In addition, the positive electrode 30 may be used by coating it with stainless steel or platinum.
  • the electrolyzer 100 according to the present invention can effectively recover metals even at low metal ion concentrations is described in detail in Korean Patent Application Publication No. 2012-0138921 of the present applicant.
  • the aqueous solution of the reservoir 400 is supplied to the electrolyzer 100 by the first pump 501. Specifically, it is supplied into the electrolyzer 100 through the inlet 12 of the electrolyzer 100. Power sources are connected to the negative electrodes 20 and 22 and the positive electrode 30 of the electrolyzer 100, respectively.
  • the inflow rate is in the range of 2 to 10 m / sec. If the flow rate is less than 2 m / sec, turbulence may not be generated in the negative electrode, and thus, the desired performance cannot be obtained. If the flow rate exceeds 10 m / sec, it is uneconomical.
  • the aqueous solution flows in the tangential direction of the negative electrodes 20 and 22 and descends while rotating along the inner circumferential surfaces of the negative electrodes 20 and 22, and part of the cone portion 15 is discharged through the outlet 16 and part of the positive electrode 30. Inflow and rise inside the hollow part of The aqueous solution introduced in the tangential direction in the cyclone-type electrolytic cell is discharged through the positive electrode while forming an upward flow in the lower part of the electrolytic cell.
  • the positive electrode 30 and the negative electrodes 20 and 22 are energized with each other through an aqueous solution inside the electrolytic cell, and metal ions such as gold, silver, and platinum are received by the electrons emitted from the negative electrode and are reduced to a solid state on the surface of the auxiliary negative electrode 22. Precipitates.
  • the recovery of the metal through the electrolysis can be carried out effectively, in the present invention, even if the metal ion concentration in the aqueous solution is less than 0.3g / L Sampling is possible because the cyclone electrolyzer is used to move metal ions faster.
  • the aqueous solution forms turbulence in the electrolyzer, which is also confirmed by the relation between the dimensionless constant Reynolds number (Re) representing the flow rate and the dimensionless constant Sherwood number (Sh) representing the mass transfer. Can be.
  • Turbulence formation is due to the inherent geometric features of cyclones.
  • the mass transfer of metal ions is rapidly accelerated. That is, since the diffusion layer, which is the distance at which the metal ions diffuse, becomes thin, the distance from which the metal ions diffuse to the cathode surface becomes relatively short, thereby increasing the reaction rate.
  • metal ions which are inherent in turbulent flow, cause anomalous fluctuation, which causes metal ions to move to the surface of the cathode momentarily, thereby rapidly increasing material movement.
  • the auxiliary tank 200 serves as a buffer between the electrolyzer 100 and the solid-liquid separator 300. That is, the flow rate of the pump 501 for supplying the aqueous solution to the electrolyzer 100 and the flow rate between the pump 502 for supplying the aqueous solution to the solid-liquid separator 300 from the electrolyzer 100 may be inconsistent. It is to relieve fair instability.
  • the aqueous solution of the auxiliary tank 200 is supplied to the solid-liquid separator 300 by the second pump 502.
  • the solid-liquid separator 300 separates the metal particles in the aqueous solution so that only the liquid phase is supplied to the receiving tank 400.
  • the electrode electrode 100 recovers the metal electrodeposited to the auxiliary negative electrode 22 and the metal separated from the solid-liquid separator 300 and operates again.
  • the continuous operation is stably performed by the auxiliary tank 200, and thus the economic efficiency is very high.
  • the solid-liquid separator 300 the metals easily separated from the negative electrodes 20 and 22 are effectively recovered, and the continuous operation is made stable.
  • the electrolyzer 100 and the solid-liquid separator 300 at the same time it is possible to effectively treat an aqueous solution having two or more components having different recovery characteristics.
  • the flow rate of the auxiliary tank 200 is changed by the difference in the flow rate between the pumps 501 and 502.
  • the level of the auxiliary tank 200 is continuously reduced, and in the opposite case, the level of the auxiliary tank 200 is continuously increased.
  • the auxiliary tank 200 may not serve as a proper buffer.
  • the control unit 700 receives a level value from the level sensor 210 of the auxiliary tank 200 and determines whether the level is between the set high and low levels (S110).
  • the control unit 700 stops the operation of the second pump 502 for supplying the aqueous solution to the solid-liquid separator 300 (S120). As a result, the level of the auxiliary tank 200 increases. After a certain time, the control unit 700 determines the level again and operates the second pump 502 if it is between the high and low levels in normal operation (S140).
  • control unit 700 stops the operation of the second pump 502, and then the level of the auxiliary tank 200 is at a predetermined level (eg, 50%, 60%, 70%, etc.) between low and high. ), The pump 502 can be restarted. It is also possible to reduce the operating flow rate without stopping the operation of the pump 502.
  • a predetermined level eg, 50%, 60%, 70%, etc.
  • the control unit 700 stops the operation of the first pump 501 for supplying the electrolyzer 100 aqueous solution (S130). As a result, the level of the auxiliary tank 200 is reduced. After a certain time, the controller 700 determines the level again and operates the first pump 501 to operate normally if it is between a high and a low level (S140).
  • control unit 700 stops the operation of the first pump 501, and then the level of the auxiliary tank 200 is a predetermined level (eg, 30%, 40%, 50%, etc.) between low and high. ), The first pump 501 may be restarted. In addition, the operating flow rate may be reduced without stopping the operation of the first pump 501.
  • the controller 600 increases the flow rate of the first pump 501, decreases the flow rate of the second pump 502, and reduces the flow rate of the auxiliary tank 200. If the level is high, the flow rate of the pump 501 can be reduced and the flow rate of the pump 502 can be increased. In addition, such adjustment may be performed at any time such that the level of the auxiliary tank 200 is a predetermined level (for example, 40%, 50%, 60%, etc.).
  • the washing operation is started by the determination of the washing start of the controller 600 during the normal operation (S200).
  • the control unit 600 may determine the washing start at every predetermined driving time based on the time information received from the timer 800.
  • control unit 600 may determine the start of washing based on the pressure of the solid-liquid separator 300, etc. Higher concentrations may lead to faster washing start).
  • the first pump 501 for supplying the aqueous solution to the electrolyzer 100 and the first valve 601 provided at the outlet of the auxiliary tank 200 are turned off (S210).
  • the second pump 502 for supplying the aqueous solution to the solid-liquid separator 300 and the second valve 602 provided at the outlet of the solid-liquid separator are turned off (S220). This eliminates the flow of the aqueous solution in the electrolyzer 100 and the solid-liquid separator 300.
  • the third valve 603 connected to the wash water supply unit, the second pump 502 connected to the solid-liquid separator 300, and the fourth valve 604 connected to the wash water discharge unit are turned on (S230). .
  • the washing water is supplied from the washing water supply unit to the solid-liquid separator 300 to wash the solid-liquid separator 300 and then discharged to the washing-water discharge unit (S240).
  • the third valve 603 is turned off to stop the supply of the washing water, the second pump 502 is turned off, and the fourth valve 604 is also turned off (S250).
  • the washing water supply unit and the washing water discharge unit are separated from the solid-liquid separator 300, and the operation of the washing unit is stopped.
  • the metal recovery system described above can be variously modified.
  • a plurality of electrolyzers 100 and / or solid-liquid separator 300 may be provided in parallel for operational stability and operational continuity.
  • the continuous process may be maintained by using another electrolyzer 100.
  • solid-liquid separator 300 When the solid-liquid separator 300 is provided in parallel, even when one of the solid-liquid separator 300 is washed or metal is recovered from the filter, another solid-liquid separator 300 may be used to maintain a continuous process.
  • the recovery behavior varies depending on the area ratio of the positive electrode / negative electrode.
  • the area of the positive electrode was changed to change the area ratio of the positive electrode / cathode to 0.42, 0.55, 0.67, 0.79, 0.93, and 1.02, respectively.
  • the material of the positive electrode was SUS 304, and the flow rate was fixed at 7.7 M / s (145 LPM), and the total applied current was 51.3 A, which is twice the electrolytic refining reference current density (550 A /).
  • the concentration of residual gold was reduced to about 50 ppm in a straight line, but after that, the decrease was greatly reduced, and the recovery efficiency was reduced due to high initial recovery efficiency and low residual concentration of gold. If the area ratio of the positive electrode / negative electrode is less than 1.0, the residual concentration of gold is about 140 ⁇ 160ppm after about 10 minutes, whereas if the area ratio is more than 1, it shows 107.6ppm. appear. After about 22 minutes, when the anode / cathode area ratio was greater than 1, the residual concentration of gold was 28.7 ppm, which was better than that of 48 to 70 ppm in the other cases. However, after 45 minutes, the residual concentration of gold ranged from 6.4 to 9.1ppm to 5.1ppm, which drastically reduced the difference in recovery.
  • Figure 13 shows the recovery behavior when the process time is increased to 180 minutes when the positive electrode / negative electrode area ratio is 0.93 and 1.02. As shown in the result of FIG. 12, the initial recovery was excellent when the area ratio was over 1, but almost converged after 45 minutes, and after 180 minutes, the residual concentration of gold was 1.3 ppm at the area ratio of 1.02 and 3.3 ppm at 0.93. Decreased to.
  • the area ratio of the positive electrode / negative electrode is preferably greater than 1 in order to increase the initial recovery rate.
  • the positive electrode / negative electrode area ratio may be 1 to 1.5 or 1 to 1.2.
  • a negative electrode configuration according to the second embodiment will be described with reference to FIG. 14.
  • the negative electrode connecting hole 21a corresponding to the connecting hole 14 of the through hole main body 11 is formed in the main electrode 20.
  • the auxiliary negative electrode 22 may be directly connected to the power source through the connection hole 14 and the negative electrode connection hole 21a.
  • a negative electrode configuration according to the third embodiment will be described with reference to FIG. 15.
  • the auxiliary negative electrode 22 is provided in a cylindrical shape. As a result, the insertion process into the main electrode 20 may be performed quickly. When the metal is recovered after the process, the auxiliary negative electrode 22 may be cut into a plate shape as necessary.
  • a negative electrode configuration according to the fourth embodiment will be described with reference to FIG. 16.
  • the protrusions 24 are formed on the surface of the auxiliary negative electrode 22 in contact with the main negative electrode 20.
  • the auxiliary negative electrode 22 is more electrically connected to the main negative electrode 20.
  • the protrusions 24 can be modified in various shapes and arrangements, for example, can be formed in a linear or lattice shape.
  • Figure 17 shows the recovery behavior when using a platinum coated anode and SUS anode.
  • the positive electrode / negative electrode area ratio was 1.02, and the flow rate, the applied current, and the like were tested under the same conditions as described in FIGS. 12 and 13.
  • the residual concentration of gold converged from 1.3 to 1.8 ppm at the two kinds of anodes.
  • 18 is an enlarged view of the initial portion to examine the initial recovery behavior.
  • Platinum-coated anodes seemed to be slightly ahead of recovery at the beginning of the test, but eventually showed little difference in recovery behavior.
  • the surface of the positive electrode examined after the experiment showed a significant difference. In other words, it was observed that a significant formula occurred on the surface of the SUS positive electrode, which is expected to adversely affect the purity of the recovered gold. In the case of the platinum-coated positive electrode, elution was suppressed as much as possible, so that the purity of gold was almost 100%.
  • the current 1.5 times, 2 times, and 3 times the current density of electrolytic refining were selected, and total currents of 38.5A, 51.3A, and 76.9A were applied based on the area of the negative electrode.
  • the current of 76.9A was applied during the test, excessive resistance was generated at the junction between the anode and the cathode, causing the hydrocyclone to partially melt. Accordingly, the test was stopped at the current, and the recovery behavior of the remaining conditions is shown in FIG. 19. After 20 minutes, the residual concentration of gold was 26.4ppm for 51.3A, and 34.0ppm for low current of 38.5A, which was lower than that for 51.3A. That is, in the 180-minute test, the residual concentrations showed little difference between 1.5 ppm and 1.7 ppm.
  • the recovery behavior was examined with flow rates of 5.3 m / s (100 LPM) and 7.7 m / s (145 LPM). As with the test with different current densities, this case also showed a difference in recovery behavior only at the beginning of the test.
  • the residual concentration of gold was 26.4 ppm and 4.1 ppm after 22 and 45 minutes, respectively, and at 5.3 M / s, it was 45.4 ppm and 6.3 ppm, respectively. After 180 minutes, the residual concentration of 1.5ppm and 1.6ppm is shown, and it can be seen that over time, the recovery behavior is similar and converges to the same value.
  • the recovery behavior according to the applied current change and the recovery behavior according to the flow rate tend to be very similar. However, if the initial recovery is important, it is more effective to increase the flow rate rather than increase the applied current.
  • the invention can be used in the industry of metal recovery.

Abstract

본 발명은 금속회수장치 및 금속회수시스템에 관한 것이다. 본 발명에 따른 금속회수 장치는 외부로부터 금속이온이 포함된 수용액을 공급받으며, 양전극과 상기 양전극을 둘러싸고 있는 음전극 간에 형성되는 반응공간에 상기 수용액이 공급되면 상기 수용액의 금속이온을 상기 음전극 표면에서 환원 석출하는 전해기를 포함하며, 상기 음전극은 주음전극과, 상기 주음전극 내부에 위치하고 상기 주음전극으로부터 탈착가능한 보조 음전극을 포함하는 것을 특징으로 한다.

Description

금속회수반응기 및 금속회수시스템
본 발명은 전해기를 이용하여 금속을 고속으로 회수할 수 있는 금속회수반응기 및 금속회수시스템에 관한 것이다.
반도체 제조공정 등과 같은 전자산업에서 발생하는 폐액, 도금 폐액 또는 세척수 중에는 유용 금속이 함유되어 있는 것이 일반적이다. 특히 귀금속이 사용되는 산업공정에서 발생하는 폐액이나 세척수 중에는 상당량의 귀금속이 함유되어 있으므로 이를 회수하여 재활용할 필요가 있다.
일반적으로 폐액이나 세척수 중에 함유되는 귀금속의 회수방법은 이온교환수지법, 활성탄소법 및 전해채취 방법을 채택하는 경우가 많으며 회수 후의 용액은 중화처리하여 폐기하거나 정액처리 하여 재순환시켜 사용하기도 한다.
이들 중 전해채취방법은 귀금속이 함유되어 있는 수용액 또는 침출액을 전해액으로서 전해환원하여 목적하는 귀금속을 음전극면 위에 석출시키는 방법이다. 전해채취방법은 조금속 같은 중간 단계를 거치지 않고 한 번에 고순도의 금속이 얻어지는 이점과, 전해에 따라서 용매가 재생되어 침출공정에 재사용될 수 있다는 이점이 있다.
그러나 전해채취의 경우 이러한 이점에도 불구하고 수용액 내의 금속 이온의 농도가 높은 경우에 적용이 용이하며, 농도가 낮은 경우에는 금속이온이 음전극 표면으로 이동되는 속도가 느려 금속의 회수율이 저하된다는 단점이 있다.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 전해기를 이용하여 금속을 고속으로 회수할 수 있는 금속회수반응기 및 금속회수시스템을 제공하는 것이다.
상기 본 발명의 목적은 금속회수 반응기에 있어서, 외부로부터 금속이온이 포함된 수용액을 공급받으며, 양전극과 상기 양전극을 둘러싸고 있는 음전극 간에 형성되는 반응공간에 상기 수용액이 공급되면 상기 수용액의 금속이온을 상기 음전극 표면에서 환원 석출하는 전해기를 포함하며, 상기 음전극은 주음전극과, 상기 주음전극 내부에 위치하고 상기 주음전극으로부터 탈착가능한 보조 음전극을 포함하는 것에 의해 달성된다.
상기 금속이온의 환원 석출은 상기 보조 음전극의 내부면에서 일어날 수 있다.
상기 주음전극은 고리형상이며, 상기 보조 음전극은 판형상이며 권취하여 상기 주음전극 내에 위치할 수 있다.
상기 보조 음전극은 회수 대상 금속은 녹이지 않는 산에 의해 녹는 재질로 이루어져 있을 수 있다.
상기 보조음전극은 상기 주음전극과 밀착되어 있으며, 상기 보조음전극은 상기 주음전극의 내면을 실질적으로 모두 덮고 있을 수 있다.
상기 양전극은, 봉 형상으로 바깥 표면에 복수의 그루부가 형성되어 있다.
상기 양전극은 양 단이 뚫려 있는 중공형상이며, 상기 양전극의 측면은 관통되어 있지 않을 수 있다.
상기 반응공간에서 상기 양전극의 표면적/음극의 표면적의 비는 1보다 클 수 있다.
상기 본 발명의 목적은 금속회수 시스템에 있어서, 금속이온이 포함된 수용액을 수용하는 수용조; 외부로부터 금속이온이 포함된 수용액을 공급받으며, 양전극과 상기 양전극을 둘러싸고 있는 음전극 간에 형성되는 반응공간에 상기 수용액이 공급되면 상기 수용액의 금속이온을 상기 음전극 표면에서 환원 석출하는 전해기를 포함하며, 상기 음전극은 주음전극과, 상기 주음전극 내부에 위치하고 상기 주음전극으로부터 탈착가능한 보조 음전극을 포함하는 것에 의해 달성된다.
상기 보조음전극은 상기 주음전극과 밀착되어 상기 주음전극의 내면을 실질적으로 모두 덮고 있으며, 상기 금속이온의 환원 석출은 상기 보조 음전극의 내부면에서 일어날 수 있다.
상기 보조 음전극은 회수 대상 금속은 녹이지 않는 산에 의해 녹는 재질로 이루어져 있을 수 있다.
상기 양전극은, 봉 형상으로 바깥 표면에 복수의 그루부가 형성되어 있다.
상기 양전극은 양 단이 뚫려 있는 중공형상이며, 상기 양전극의 측면은 관통되어 있지 않을 수 있다.
상기 반응공간에서 상기 양전극의 표면적/음극의 표면적의 비는 1보다 클 수 있다.
상기 전해기에서 배출된 수용액을 공급받으며 금속입자를 분리하는 고액분리기를 더 포함할 수 있다.
상기 전해기와 상기 고액분리기 사이에 위치하는 보조탱크와; 상기 보조탱크의 레벨이 제1레벨이상이면 상기 전해기로의 수용액 공급을 감소시키고, 상기 보조탱크의 레벨이 상기 제1레벨보다 작은 제2레벨 이하이면 상기 고액분리기로의 수용액 공급의 감소시키는 제어부를 더 포함할 수 있다.
본 발명에 따르면 전해기를 이용하여 금속을 고속으로 회수할 수 있는 금속회수반응기 및 금속회수시스템이 제공된다.
도 1은 본 발명의 제1실시예에 따른 금속 회수 시스템의 구성도이고,
도 2는 본 발명의 제1실시예에 따른 금속 회수 시스템의 제어구조를 나타낸 도면이고,
도 3은 본 발명의 제1실시예에 따른 전해기의 단면도이고,
도 4는 본 발명의 제1실시예에 따른 전해기의 개략적 분리 사시도이고,
도 5는 본 발명의 제1실시예에 따른 전해기의 양전극 형상이고,
도 6은 본 발명의 제1실시예에 따른 음전극의 구성을 나타낸 것이고,
도 7은 본 발명의 제1실시예에 따른 음전극의 조립을 나타낸 것이고,
도 8은 본 발명에 제1실시예에 따른 전해기의 결합상태의 사시도이고,
도 9는 도 8의 IX-IX선을 따른 단면도이고,
도 10은 본 발명의 제1실시예에 따른 금속 회수 시스템에서 보조탱크 레벨에 따른 운전방법을 나타낸 순서도이고,
도 11는 본 발명의 제1실시예에 따른 금속 회수 시스템에서 고액분리기 세척을 수행하는 운전방법을 나타낸 순서도이고,
도 12 및 도 13은 양전극/음전극 면적비에 따른 회수거동을 나타낸 것이고,
도 14는 본 발명의 제2실시예에 따른 음전극의 구성을 나타낸 것이고,
도 15는 본 발명의 제3실시예에 따른 음전극의 구성을 나타낸 것이고,
도 16은 본 발명의 제4실시예에 따른 음전극의 구성을 나타낸 것이고,
도 17 및 도 18은 양전극 재질에 따른 회수거동을 나타낸 것이고,
도 19는 인가전류에 따른 회수거동을 나타낸 것이고,
도 20은 유속에 따른 회수거동을 나타낸 것이다.
이하, 첨부된 도면을 참조하여, 본 발명에 따른 금속회수반응기 및 금속회수시스템에 대해 상세히 설명한다.
도 1은 본 발명의 제1실시예에 따른 금속 회수 시스템의 구성도이고, 도 2는 본 발명의 제1실시예에 따른 금속 회수 시스템의 제어구조를 나타낸 도면이다.
금속회수시스템은 전해기(100, 금속회수반응기), 보조탱크(200), 고액분리기(300) 및 수용조(400)를 포함한다. 회수대상인 금속이온 및/또는 금속입자를 포함한 수용액(이하 수용액)의 이송 및 차단을 위한 펌프(501, 502)와 밸브(601, 602, 603, 604)가 마련되어 있다. 또한 보조탱크(200)의 레벨을 측정하는 레벨측정기(210)와 고액분리기(300) 등의 운전시간을 측정하는 타이머(800)가 마련되어 있고, 레벨측정기(210)와 타이머(800)로부터 입력된 신호에 기초하여 펌프(501, 502)와 밸브(601, 602, 603, 604)의 운전을 제어하는 제어부(700)를 포함한다.
전해기(100)는 수용조(400)로부터 수용액을 공급받으며, 사이클론 전해채취방법으로 수용액으로부터 금속을 채취(회수)한다. 전해기(100)에 대해서는 다시 자세히 설명한다.
보조탱크(200)는 전해기(100)에서 전해채취된 수용액을 공급받는다. 보조탱크는 전해기(100)와 고액분리기(300) 사이에서 버퍼 역할을 수행하며, 제1펌프(501)와 제2펌프(502)간의 통과유량 차이에서 발생할 수 있는 운전안정성 문제를 해결한다. 보조탱크(200)에는 레벨센서(210)가 있으며, 레벨센서(210)는 보조탱크(200)의 레벨이 적정범위인지, 상한값 이상인지 또는 하한값 이하인지 센싱한다. 레벨센서(210)는 보조탱크(200)의 전체 무게나 압력을 이용하는 등 다양한 방식으로 마련될 수 있다.
고액분리기(300)는 입자 형태의 금속을 수용액으로부터 분리한다. 입자 형태의 금속은 전해기(100)에서 전해채취된 금속이 성장하여 분리되어 발생할 수 있다. 고액분리기(300)는, 이에 한정되지는 않으나, 입자를 분리할 수 있는 필터를 포함할 수 있다.
고액분리기(300)에서 금속입자가 분리된 수용액은 수용조(400)로 다시 수용된다.
수용조(400)에는 도금과정 등에서 공급된 회수대상 금속을 포함하는 수용액과 전해기(100)와 고액분리기(300)를 거친 회수대상 금속이 회수된 수용액이 합쳐진다. 다른 실시예서는 도금과정 등에서 공급된 수용액과 전해기(100)와 고액분리기(300)를 거친 수용액은 합쳐지지 않고, 전해기(100)와 고액분리기(300)를 거친 수용액은 별도의 설비/공정을 통해 처리될 수 있다.
금속회수시스템에는 또한 고액분리기를 세척할 수 있는 세척부를 포함한다. 세척부는 세척수 공급부, 밸브(603, 604), 세척수 배출부 및 세척수 라인 등으로 구성되어 있다.
도 3 내지 도 9를 참조하여 본 발명의 제1실시예에 따른 전해기(100)에 대해 자세히 설명한다.
도 3은 본 발명의 제1실시예에 따른 전해기의 단면도이고, 도 4는 본 발명의 제1실시예에 따른 전해기의 개략적 분리 사시도이고, 도 5는 본 발명의 제1실시예에 따른 전해기의 양전극 형상이고, 도 6은 본 발명의 제1실시예에 따른 음전극의 구성을 나타낸 것이고, 도 7은 본 발명의 제1실시예에 따른 음전극의 조립을 나타낸 것이고, 도 8은 본 발명에 제1실시예에 따른 전해기의 결합상태의 사시도이고, 도 9는 도 8의 IX-IX선을 따른 단면도이다.
도 3 내지 도 9를 참조하면, 본 발명에 따른 전해기(100)는 전해조(10), 음전극(20, 22) 및 양전극(30)을 구비한다.
전해조(10)는 후술할 전해채취공정이 진행되는 공간을 제공하기 위한 것이다. 본 실시예에서 전해조(10)는 싸이클론 형상으로 이루어져, 본체부(11)와 원추부(15)를 구비한다.
본 실시예에서 본체부(11)는 원통형으로 형성되어 상부에서 하부까지 직경이 일정하다. 그리고 본체부(11)의 일측에는 후술할 수용액이 유입될 수 있도록 내주면과 외주면 사이를 관통하는 유입구(12)가 형성된다. 그리고 수용액을 유입구(12)로 안내하기 위한 유입포트(13)가 유입구(12)로 연결된다. 또한, 본체부(11)의 일측에는후술할 음전극(20, 22)에 전원을 인가하기 위한 전선이 삽입될 수 있도록 연결공(14)이 마련된다.
본 실시예에서 원추부(15)는 본체부(11)의 하부로부터 연장형성되며, 상부에서 하부로 갈수록 직경이 점차 작아져서 전체적으로 원추 형상을 이룬다. 그리고 원추부(15)의 하부에는 본체부(11)로 유입된 수용액이 유출되는 유출구(16)가 마련된다. 그리고 수용액을 외부로 배출시키기 위한 유출포트(17)가 유출구(16)에 연결된다.
또한, 본체부(11)의 내측 공간을 개방 및 폐쇄하기 위한 밀폐캡(18)이 마련된다. 즉, 본체부(11)의 상측 내주면에는 암나사산이 형성되며, 밀폐캡(18)의 외주면에도 수나사산이 형성되어 밀폐캡(18)은 본체부(11)에 나사결합된다. 그리고, 밀폐캡(18)과 본체부(11) 사이에는 오링(18a)이 개재되어 밀폐성을 확보한다.
밀폐캡(18)에는 상면과 하면 사이를 관통하는 삽입공(18b)이 형성되며, 이 삽입공(18b)에는 후술할 봉 형상의 양전극(30)이 삽입된다. 그리고 이 삽입공(18b)을 둘러싸며 오링(18c)이 개재되어 후술할 양전극(30)과 삽입공(18b) 사이로 기밀이 해제되는 것을 방지한다. 그리고 오링(18c)을 밀폐캡(18)의 상면에 압착시켜 기밀성을 강화하도록 밀폐캡(18)의 상부에는 압착캡(19)이 나사결합된다. 압착캡(19)의 중앙에도 관통공(19c)이 형성되어 양전극(30)이 끼워질 수 있다.
본 발명의 실시예에 따른 음전극 구조를 설명한다.
음전극(20, 22)은 전체적으로는 원통형이며 본체부(11)의 내측에 끼워져 결합된다. 본 실시예에서 음전극(20, 22)은 전체적으로는 상하부 전체에 걸쳐 일정한 직경으로 원통형으로 형성된다.
음전극(20, 22)은 주음전극(20)과 보조음전극(22)을 포함한다. 주음전극(20)은원통형상이다. 보조음전극(22)은 판상이며, 조립 시 휘게 만들어 주음전극(20) 내부에 장착하게 된다. 따라서 본 실시예에서 주음전극(20)과 보조음전극(22)은 물리적으로 결합되어 있지 않고, 필요시 언제든 탈착이 가능하다.
주음전극(20)에 형성된 입구부(21)는 본체부(11)의 유입구(12)와 대응되는 위치에 형성되어, 본체부(11)의 유입구(12)와 연통된다. 보조음전극(22)에도 주음전극(20)의 입구부(21)에 대응하는 보조 입구부(23)가 형성되어 있다. 금속이온을 포함하는 수용액은 유입구(12), 입구부(21) 및 보조 입구부(23)를 통해 음전극(20, 22)의 내측으로 유입된다.
본 발명에서는 수용액이 음전극(20, 22)의 내측으로 유입되어 전해조(10) 내에서 난류를 형성하도록 하여야 하는데, 이를 위해서는 수용액이 음전극(20, 22)의 내측으로 유입되는 유입방향이 대략 원통형 음전극의 접선방향이어야 한다. 즉, 원통형 음전극을 원으로 상정하였을 때, 원의 가장자리에서 접선방향으로 유입되어야 한다. 이렇게 접선방향으로 유입되어야만 수용액이 음전극(20, 22)의 내주면을 따라 회전하게 되면서 난류를 형성할 수 있다.
예컨대, 음전극의 중심을 향해 반경방향을 따라 유입되는 경우 전해조(10) 내에서 난류가 형성되지 않으므로, 원하는 효과를 얻을 수 없다.
주음전극(20)은 본체부(11)에 형성된 연결공(14)을 통해 전원과 전기적으로 연결된다. 주음전극(20)과 보조음전극(22)은 밀착되어 전기적으로 연결되어 있으며, 보조음전극(22)은 주음전극(20)을 통해 전원과 연결된다.
보조음전극(22)은 주음전극(20)과 밀착되어 있으며, 주음전극(20)의 내면을 실질적으로 모두 덮고 있다. 이에 의해 금속이온의 환원 및 석출은 보조음전극(22)의 내부 표면에서 집중적으로 일어난다. 주음전극(20) 내부면에서의 금속이온의 환원 및 석출은 매우 미미하거나 실질적으로 발생하지 않을 수 있다. 또한 보조음전극(22)의 외부면에서의 금속이온 환원 및 석출도 매우 미미하다.
금속이온의 환원 및 석출이 미미한 주음전극(20)의 내부면 및 보조음전극(22)의 바깥면은 테프론 코팅하여 불필요한 환원 및 석출을 억제할 수 있다.
전해채취공정이 진행되면 보조 음전극(22)의 내측 표면에서 회수 대상 금속이 석출된다. 공정 후 보조음전극(22)은 용이하게 주음전극(20)으로부터 분리되고 보조 음전극(22)으로부터 금과 같은 회수 대상 금속을 분리하는 후공정이 진행된다. 산에 녹는 금속을 보조음전극(22)으로 사용하면 금이나 백금 같은 귀금속은 산용액에 녹지 않고 보조음전극(22)만 용해되므로 귀금속을 음전극으로부터 용이하게 분리할 수 있는 장점이 있다. 보조음전극(22)은, 예를 들어 철, 아연, 주석, 니켈 또는 구리일 수 있다.
주음전극(20)은 보조음전극(22)과 다른 재질로 마련될 수 있으며, 예를 들어, 스테인레스 스틸 또는 티타늄으로 만들어 질 수 있다.
이상 설명한 바와 같이, 보조음전극(22)은 주음전극(20)과 물리적으로 결합되어 있지 않기 때문에, 주음전극(20) 내부로의 삽입 및 공정 후 분리가 용이하다. 이에 의해, 공정 후에 보조음전극(22)만을 분리하여 표면의 금속을 회수하면 된다. 주음전극(20)은 그대로 유지하고 새로운 보조음전극(22) 만을 삽입하면 새로운 공정이 시작될 수 있다. 또한 주음전극(20)에는 금속 석출이 미미하기 때문에 세정 등의 작업이 용이하다.
한편, 회수 대상 금속의 석출량이 증가하면 석출된 금속이 입자형태로 음전극에서 분리될 수 있으며, 분리된 금속입자는 고액분리기(300)에서 분리된다. 또한 수지상으로 성장하는 특성을 가진 금속의 경우에는 음전극에서 쉽게 분리되어 고액분리기(300)에서 분리된다.
양전극(30)은 봉 형상으로 길게 형성되어 압착캡(19)의 관통공(19c)과 밀폐캡(18)의 삽입공(18b)을 통해 전해조(10)의 내측으로 삽입된다. 양전극(30)의 상부는 전원과 전기적으로 연결된다.
또한 양전극(30)은 내부가 비어 있는 중공형으로 형성되어 양전극(30)의 중공부를 통해 전해조(10)의 내부가 외부와 연통된다. 전해조(10) 내부의 수용액은 원추부(15)로 하강한 후, 일부는 원추부 하측의 유출구(16)를 통해, 나머지 일부는 양전극(30)의 내측을 통해 외부로 배출된다.
양전극(30)의 외표면에는 다수의 그루브(32)가 형성되어 있다. 그루브(32)는 양전극(30)의 둘레방향을 따라 일정한 간격으로 형성되어 있으며 동일한 폭(d)과 간격(c)으로 형성되어 있다. 그루브(32)는 양전극(30)의 표면적을 넓혀주는 역할을 한다. 그루브(32) 형성은 관통홀을 형성하는 것에 비해 제조원가가 낮다. 또한 그루브(32)를 형성하는 것은 관통홀을 형성하는 것에 비하여 양전극(30)의 표면적을 넓히기 용이하다. 그루브(32)를 형성하여 양전극(30)의 표면적을 넓히는 것은 회수효율에 영향을 주며, 이에 대하여는 후술한다.
양전극(30)의 표면적은 그루브(32)의 폭(d), 간격(c) 및 깊이(y)을 변화시켜 조절할 수 있다.
그루브(32)의 형태 및 배치는 다양하게 변형가능하다. 다른 실시예에서는 각 그루브(32)의 폭(d)이 다를 수 있으며, 불일정한 간격으로 형성될 수 있다. 또한 그루브(32)는 양전극(30)의 길이방향을 따라 형성되거나, 격자형태 등으로 형성할 수 있다. 그루브(32)의 단면도 실시예와 같은 직사각형이 아닌 사다리꼴이나 반원형 등 다양하게 변형될 수 있다.
본 실시예에서 양전극(30)은 티타늄으로 제조될 수 있으며, 티타늄 위에 이리듐 옥사이드를 코팅시켜 강도를 증대시킨다. 티타늄에 이리듐 옥사이드를 코팅한 양전극은 강산성 용액이나 강알칼리성 용액에서도 녹지 않고 안정하게 유지된다. 또한 양전극(30)은 스테인레스 스틸이나 이를 백금으로 코팅하여 사용할 수 있다.
전해채취공정에서는 일반적으로 높은 분해전압이 요구되는데, 예컨대 흑연을 양전극으로 사용하면서 과전압이 걸리는 경우 흑연 양전극은 표면이 약화되어 고속으로 흐르는 유체에 의해 마모되는 경우가 많다. 그러나, 본 실시예에서와 같이, 티타늄에 이리듐 옥사이드를 코팅한 전극 또는 스테인레스 스틸에 백금을 코팅한 전극을 사용하면, 자체적인 기계적 강도로 인해 높은 과전압과 빠른 유속에서도 전극이 마모되지 않고 원형 그대로 유지되므로 안정성이 뛰어나다는 이점이 있다.
본 발명에 따른 전해기(100)가 낮은 금속이온 농도에서도 효과적으로 금속을 회수할 수 있는 것은 본 출원 발명자의 한국공개특허 제2012-0138921호에서 자세히 설명되어 있다.
이상 설명한 금속 회수 시스템을 이용한 금속회수 방법에 대하여 설명한다.
수용조(400)의 수용액은 제1펌프(501)에 의해 전해기(100)로 공급된다. 구체적으로는 전해기(100)의 유입구(12)를 통해 전해기(100) 내부로 공급된다. 전해기(100)의 음전극(20, 22)과 양전극(30)에는 각각 전원이 연결되어 있다.
수용액을 전해기(100) 내부로 유입시킬 때 유입속도는 2 ~ 10 m/sec 의 범위이다. 2m/sec 미만으로 유입되면 음전극 내에서 난류를 발생시키지 못하므로 원하는 성과를 얻을 수 없으며, 10m/sec를 초과하는 경우 비경제적이기 때문이다.
수용액은 음전극(20, 22)의 접선방향으로 유입되어 음전극(20, 22)의 내주면을 따라 회전하면서 하강하고, 원추부(15)에서 일부는 유출구(16)를 통해 배출되고 일부는 양전극(30)의 중공부 내측으로 유입 및 상승되어 배출된다. 이렇게 싸이클론 형태의 전해조에서 접선방향으로 유입된 수용액은 전해조의 하부에서 상승류를 형성하면서 양전극 내부를 통해 배출된다.
전해조 내부의 수용액을 통해 양전극(30)과 음전극(20, 22)은 상호 통전되고, 금, 은, 백금과 같은 금속 이온은 음전극에서 방출되는 전자를 받아 환원되면서 보조음전극(22) 표면에서 고체 상태로 석출된다.
기존의 전해채취에서는 일반적으로 수용액 내의 금속 이온이 3g/L 이상 존재하는 경우에 전해채취를 통한 금속의 회수가 효과적으로 수행될 수 있었지만, 본 발명에서는 수용액 내의 금속 이온 농도가 0.3g/L 이하에서도 전해채취가 가능한데, 이는 싸이클론 방식의 전해조가 사용되어 금속 이온의 이동속도가 빠르기 때문이다.
수용액은 전해조 내부에서 난류를 형성하는데, 이러한 난류의 형성은 유속을 나타내는 무차원 상수 레이놀즈 수(Reynolds number, Re)와 물질이동을 나타내는 무차원 상수 셔우드 수(Sherwood number, Sh)와의 관계를 통해서도 확인할 수 있다.
난류 형성은 사이클론이 갖는 고유한 기하학적 특징에 기인하는 것이다. 이러한 난류에서는 금속 이온의 물질이동(mass transfer)이 급격히 빨라지게 된다. 즉, 금속 이온이 확산(diffusion)하는 거리인 확산층(diffusion layer)이 얇아지기 때문에 금속이온이 음극 표면으로 확산해 가는 거리가 상대적으로 짧아져 반응속도가 증가하게 되는 것이다. 또한 특히 난류가 가지는 고유한 특징인 금속 이온이 변칙적 요동(random fluctuation)을 하게 되어 이것이 금속 이온을 순간적으로 음극 표면으로 이동시켜 물질이동을 급격히 증가시키는 역할을 하게 된다.
전해과정을 거친 후 전해기(100)의 유출구(16)와 양전극(30)의 내측을 통해 배출된 수용액은 보조탱크(200)로 공급된다. 보조탱크(200)는 전해기(100)와 고액분리기(300) 사이에서 버퍼역할을 수행한다. 즉, 전해기(100)에 수용액을 공급하는 펌프(501)의 통과유량과 전해기(100)로부터 고액분리기(300)에 수용액을 공급하는 펌프(502) 간의 통과유량이 일치하지 않음으로써 발생할 수 있는 공정불안정을 해소하는 것이다.
보조탱크(200)의 수용액은 제2펌프(502)에 의해 고액분리기(300)로 공급된다. 고액분리기(300)에서는 수용액 중 금속입자를 분리하여 수용조(400)에 액상만이 공급되도록 한다.
일정 시간 운전 후 공정을 정지시킨 후 전해기(100)에서 보조 음전극(22)에 전착된 금속과 고액분리기(300)에서 분리된 금속을 회수하고 다시 운전한다.
이상 설명한 금속회수 공정에서는 보조탱크(200)에 의해 연속운전이 안정적으로 이루어져 경제성이 매우 높아진다. 또한 고액분리기(300)를 이용하여 음전극(20, 22)에서 분리되기 쉬운 금속을 효과적으로 회수하고, 연속운전이 안정적으로 이루어지게 한다. 또한 전해기(100)와 고액분리기(300)를 동시에 사용하여 회수 특성이 다른 2가지 이상의 성분을 가진 수용액을 효과적으로 처리할 수 있다.
이하에서는 위에서 설명한 정상상태에서의 공정과 다른 보조탱크(200)의 레벨에 문제가 있는 경우와 고액분리기(300)를 세척할 경우의 운전에 대해 설명한다.
먼저 도 10을 참조하여 보조탱크(200)의 레벨에 문제가 있는 경우에 대해 설명한다.
정상적인 운전(S100) 과정에서도 펌프(501, 502) 간의 통과유량의 차이에 의해 보조탱크(200)의 유량은 변화한다. 전해기(100)로 공급되는 유량보다 고액분리기(300)로 공급되는 유량이 많으면 보조탱크(200)의 레벨을 계속 감속하고, 반대의 경우 보조탱크(200)의 레벨이 계속 증가하게 된다. 감소된 레벨과 증가된 레벨이 일정 수준 이상이 되면 보조탱크(200)는 적절한 버퍼 역할을 할 수 없다.
제어부(700)는 보조탱크(200)의 레벨센서(210)로부터 레벨값을 입력 받아 레벨이 설정되어 있는 하이와 로우 레벨 사이에 있는지 여부를 판단한다(S110)
레벨값이 로우 이하로 매우 낮은 경우, 제어부(700)는 고액분리기(300)로 수용액을 공급하는 제2펌프(502)의 작동을 중지한다(S120). 이에 의해 보조탱크(200)의 레벨이 증가한다. 일정시간 경과 후, 제어부(700)는 다시 레벨을 판단하여 하이와 로우 레벨 사이에 있다면 제2펌프(502)를 작동시켜 정상운전(S140)한다.
다른 실시예에서 제어부(700)는 제2펌프(502)의 작동을 중지한 후 보조탱크(200)의 레벨이 로우와 하이 사이의 일정수준(예를 들어, 50%, 60%, 70% 등)이 되면 펌프(502)를 재작동시킬 수 있다. 또한 펌프(502)의 작동을 중지하지 않고 작동유량을 감소시킬 수도 있다.
레벨값이 하이 이상으로 매우 높은 경우, 제어부(700)는 전해기(100) 수용액을 공급하는 제1펌프(501)의 작동을 중지한다(S130). 이에 의해 보조탱크(200)의 레벨이 감소한다. 일정시간 경과 후, 제어부(700)는 다시 레벨을 판단하여 하이와 로우 레벨 사이에 있다면 제1펌프(501)를 작동시켜 정상운전(S140)한다.
다른 실시예에서 제어부(700)는 제1펌프(501)의 작동을 중지한 후 보조탱크(200)의 레벨이 로우와 하이 사이의 일정수준(예를 들어, 30%, 40%, 50% 등)이 되면 제1펌프(501)를 재작동시킬 수 있다. 또한 제1펌프(501)의 작동을 중지하지 않고 작동유량을 감소시킬 수도 있다.
또 다른 실시예에서 제어부(600)는 보조탱크(200)의 레벨이 낮을 경우, 제1펌프(501)의 유량을 증가시키고 제2펌프(502)의 유량을 감소시키고, 보조탱크(200)의 레벨이 높을 경우에는, 펌프(501)의 유량을 감소시키고 펌프(502)의 유량을 증가시킬 수 있다. 또한 이러한 조절은 보조탱크(200)의 레벨이 일정수준(예를 들어, 40%, 50%, 60% 등)이 되도록 항시 수행될 수도 있다.
이상과 같은 보조탱크(200)의 레벨제어에 의해 보조탱크(200)의 버퍼역할을 안정적으로 유지할 수 있게 되어, 연속공정의 신뢰도가 향상된다.
다음으로 도 11을 참조하여 고액분리기(300)를 세척하는 경우의 운전을 설명한다.
정상운전 중 제어부(600)의 세척개시의 판단(S200)에 의해 세척운전이 시작된다. 제어부(600)은 타이머(800)로부터 입력받은 시간정보에 근거해 일정 운전 시간마다 세척개시를 판단할 수 있다.
다른 실시예에서, 제어부(600)는 고액분리기(300)의 압력 등을 기초로 세척개시를 판단할 수 있으며(압력이 일정수준 이상되면 세척개시), 세척개시의 판단에 수용액의 금속 농도(금속 농도가 높으면 더 빨리 세척개시)를 고려할 수 있다.
세척개시가 판단되면 먼저 전해기(100)에 수용액을 공급하는 제1펌프(501)과 보조탱크(200)의 출구에 마련된 제1밸프(601)를 오프한다(S210). 이어서, 고액분리기(300)에 수용액을 공급하는 제2펌프(502)와 고액분리기이 출구에 마련된 제2밸브(602)를 오프한다(S220). 이에 의해 전해기(100)와 고액분리기(300)에서는 수용액 흐름이 없어진다.
다음으로 세척부를 가동한다. 구체적으로는, 세척수 공급부에 연결되어 있는 제3밸브(603), 고액분리기(300)에 연결된 제2펌프(502) 및 세척수 배출부에 연결되어 있는 제4밸브(604)를 온시킨다(S230). 이에 의해 세척수가 세척수 공급부로부터 고액분리기(300)로 공급되어 고액분리기(300)를 세척한 후 세척수 배출부로 배출되는 세척과정이 진행된다(S240).
세척이 완료되면, 제3밸브(603)를 오프하여 세척수 공급을 중단하고 제2펌프(502)도 오프시키고, 제4밸브(604)도 오프시킨다(S250). 이에 의해 세척수공급부와 세척수배출부는 고액분리기(300)와 분리되어, 세척부의 가동이 중지된다.
이상과 같은 세척 공정을 완료한 이후에는 정상상태 운전(S260)을 실시한다.
이상 설명한 금속회수시스템은 다양하게 변형 가능하다. 특히 운전안정성 및 운전연속성을 위해 전해기(100) 및/또는 고액분리기(300)를 병렬로 복수 개 마련할 수 있다.
전해기(100)를 병렬로 마련할 경우 어느 하나의 전해기(100)로부터 전착된 금속을 회수할 경우, 다른 전해기(100)를 이용하여 연속공정을 유지할 수 있다.
고액분리기(300)를 병렬로 마련할 경우 어느 하나의 고액분리기(300)를 세척 또는 필터로부터 금속을 회수하는 경우에도 다른 고액분리기(300)를 사용하여 연속공정을 유지할 수 있다.
이상 설명한 금속회수시스템 및 금속회수방법은 양전극/음전극의 면적비에 따라 회수거동이 달라진다.
도 12 및 도 13을 참조하여 양전극/음전극의 면적비에 따른 회수거동을 설명한다.
양전극의 면적에 따른 회수거동을 관찰하기 위해 양전극의 면적을 변화시켜 양전극/음극의 면적비를 각각 0.42, 0.55, 0.67, 0.79, 0.93, 1.02로 변화시켰다. 양전극의 재질은 SUS 304이며, 유속은 7.7M/s(145LPM)로 고정하였고, 총 인가 전류는 전해정련 기준전류밀도(550A/)의 2배인 51.3A이었다
도 12는 Au 회수거동을 나타낸 것이다. 잔류 금의 농도가 약 50ppm까지는 직선형으로 감속하였으나, 이후에는 감소폭이 크게 줄어들어, 초기의 회수효율이 높고 금이 잔류농도가 낮아지면서 회수효율이 감소하는 것으로 보인다. 양전극/음전극 면적비가 1.0보다 작을 경우에는 약 10분 경과 후 금의 잔류농도가 140~160ppm인데 반해 면적비가 1을 넘은 경우에는 107.6ppm을 나타내어 양전극/음전극 면적비가 1.0을 넘을 경우 초기 회수율이 우수한 것으로 나타났다. 약 22분 경과 후에도 양극/음극 면적비가 1보다 큰 경우에 금의 잔류농도가 28.7ppm으로 다른 경우의 48 내지 70ppm보다 우수한 회수거동을 보였다. 하지만, 45분 경과 후에는 금의 잔류농도가 6.4 내지 9.1ppm 대 5.1ppm으로 나타나 회수율의 차이가 크게 줄어들었다.
도 13은 양전극/음전극 면적비가 0.93과 1.02인 경우 공정시간을 180분까지 증가시켰을 때의 회수거동을 나타낸 것이다. 도 12의 결과와 마찬가지로 면적비가 1을 넘을 경우에 초기 회수율이 우수하였으나 45분 이후에는 거의 수렴하였으며, 180분에 이르러서는 금의 잔류농도가 면적비 1.02의 경우에 1.3ppm, 0.93의 경우에는 3.3ppm까지 감소하였다.
이로부터 초기 회수율을 높이기 위해서는 양전극/음전극 면적비가 1보다 큰 것이 바람직함을 확인할 수 있다. 구체적으로는 양전극/음전극 면적비는 1 내지 1.5 또는 1 내지 1.2일 수 있다.
도 14를 참조하여 제2실시예에 따른 음전극 구성에 대해 설명한다.
제2실시예에서는 주음전극(20)에 관통공 본체부(11)의 연결공(14)에 대응하는 음전극 연결공(21a)이 형성되어 있다. 보조음전극(22)은 연결공(14) 및 음전극 연결공(21a)을 통해 전원과 직접 연결될 수 있다.
도 15를 참조하여 제3실시예에 따른 음전극 구성에 대해 설명한다.
제3실시예에서는 보조음전극(22)이 원통 형상으로 마련된다. 이에 의해 주음전극(20) 내부로의 삽입과정이 빠르게 이루어질 수 있다. 공정 후 금속 회수할 경우,필요에 따라 보조음전극(22)을 커팅하여 판 형상으로 만들 수 있다.
도 16을 참조하여 제4실시예에 따른 음전극 구성에 대해 설명한다.
제4실시예에서는 주음전극(20)과 접하는 보조음전극(22)의 표면에 돌기(24)가 형성되어 있다. 돌기(24)에 의해 보조음전극(22)은 주음전극(20)과 보다 확실히 전기적으로 연결된다. 돌기(24)는 다양한 형태 및 배치로 변형될 수 있으며, 예를 들어 선형 또는 격자형으로 형성될 수 있다.
도 17 및 도 18를 참조하여 양극재질에 따른 회수거동을 설명한다. 도 17는 백금으로 코팅한 양극과 SUS 양극을 사용할 경우의 회수거동을 나타낸 것이다. 양전극/음전극 면적비는 1.02이며, 유속, 인가전류 등은 도 12 및 도 13에서 대한 설명에서와 동일한 조건으로 시험을 수행하였다. 금의 잔류농도가 2종류의 양극에서 1.3 내지 1.8ppm으로 수렴하였다. 도 18은 초기 회수거동을 살펴보기 위하여 초기 부분을 확대한 그림이다.
백금이 코팅된 양극의 경우 시험 초기에서 회수율이 약간 앞서는 듯 보이지만, 결국 회수율 거동에서는 초반부터 거의 차이가 없는 것으로 나타났다. 그러나 실험 후 살펴본 양전극의 표면은 상당한 차이를 나타내었다. 즉, SUS 양전극의 경우 표면에 상당한 공식이 발생한 것이 관찰되었는데, 이로 인해 회수된 금의 순도에 좋지 않은 영향을 미칠 것으로 예상된다. 백금코팅한 양전극의 경우에는 용출이 최대한 억제되어 금의 순도가 거의 100%를 유지하였다.
도 19를 참조하여 인가 전류에 따른 회수거동을 설명한다.
전류는 전해정련 기준 전류밀도의 1.5배, 2배, 3배 등을 선택하여 음전극 면적을 기준으로 각각 38.5A, 51.3A, 76.9A 총 전류를 인가하였다. 시험과정에서 76.9A의 전류를 인가했을 경우 양극과 음극의 접합부분에서의 과도한 저항발열이 발생하여 하이드로사이클론이 일부가 녹는 문제가 발생하였다. 이에 따라 해당 전류에서의 시험은 중단하였으며, 나머지 조건의 회수거동을 도 19에 나타내었다. 20분 경과했을 경우, 전류가 51.3A의 경우에 금의 잔류농도가 26.4ppm이었으며 전류가 38.5A로 낮은 경우 34.0ppm으로 51.3A의 경우보다 낮게 나왔으나 이후에는 수렴농도가 거의 비슷하게 나타났다. 즉, 180분 시험에서 각각의 잔류농도가 1.5ppm과 1.7ppm으로 거의 차이를 나타내지 않았다.
금의 회수율만을 고려한다면 전류밀도를 높이는 것이 중요하겠지만, 전체적인 에너지 소비효율을 고려한다면 35A 내지 45A의 인가 전류에서 고속회수를 수행하는 것이 적합할 것으로 판단된다.
도 20은 유속에 따른 회수거동을 나타낸 것이다.
5.3m/s(100LPM)과 7.7m/s(145LPM)의 유속으로 회수거동을 살펴보았다. 전류밀도를 달리한 시험과 마찬가지로 이 경우에도 시험 초기에만 회수율 거동의 차이를 나타내었다. 즉 7.7M/s의 유속에서는 금의 잔류농도가 22분 및 45분 경과 후 각각 26.4ppm과 4.1ppm으로 나타났으며, 5.3M/s에서는 각각 45.4ppm과 6.3ppm을 나타내었다. 180분 경과 후에는 1.5ppm과 1.6ppm의 잔류농도를 나타내어 시간이 지날수록 회수율 거동이 비슷해져서 동일한 수치로 수렴됨을 알 수 있다.
인가전류 변화에 따른 회수율 거동과 유속 변화에 따른 회수율 거동은 매우 비슷한 경향을 나타내고 있으나, 초기 회수율이 중요한 경우에는 인가전류의 증가보다는 유속을 증가시키는 것이 더욱 효과적인 것으로 판단된다.
본 발명은 첨부된 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.
본 발명은 금속을 회수하는 산업에 이용될 수 있다.

Claims (16)

  1. 금속회수 반응기에 있어서,
    외부로부터 금속이온이 포함된 수용액을 공급받으며, 양전극과 상기 양전극을 둘러싸고 있는 음전극 간에 형성되는 반응공간에 상기 수용액이 공급되면 상기 수용액의 금속이온을 상기 음전극 표면에서 환원 석출하는 전해기를 포함하며,
    상기 음전극은 주음전극과, 상기 주음전극 내부에 위치하고 상기 주음전극으로부터 탈착가능한 보조 음전극을 포함하는 금속회수 반응기.
  2. 제1항에 있어서,
    상기 금속이온의 환원 석출은 상기 보조 음전극의 내부면에서 일어나는 것을 특징으로 하는 금속회수 반응기.
  3. 제1항에 있어서,
    상기 주음전극은 고리형상이며,
    상기 보조 음전극은 판형상이며 권취하여 상기 주음전극 내에 위치하는 것을 특징으로 하는 금속회수 반응기.
  4. 제1항에 있어서,
    상기 보조 음전극은 회수 대상 금속은 녹이지 않는 산에 의해 녹는 재질로 이루어져 있는 것을 특징으로 하는 금속회수 반응기.
  5. 제1항에 있어서,
    상기 보조음전극은 상기 주음전극과 밀착되어 있으며,
    상기 보조음전극은 상기 주음전극의 내면을 실질적으로 모두 덮고 있는 것을 특징으로 하는 금속회수 반응기.
  6. 제1항에 있어서,
    상기 양전극은,
    봉 형상으로 바깥 표면에 복수의 그루부가 형성되어 있는 것을 특징으로 하는 금속회수 반응기.
  7. 제1항에 있어서,
    상기 양전극은 양 단이 뚫려 있는 중공형상이며,
    상기 양전극의 측면은 관통되어 있지 않은 것을 특징으로 하는 금속회수 반응기.
  8. 제1항에 있어서,
    상기 반응공간에서 상기 양전극의 표면적/음극의 표면적의 비는 1보다 큰 것을 특징으로 하는 금속회수 반응기.
  9. 금속회수 시스템에 있어서,
    금속이온이 포함된 수용액을 수용하는 수용조;
    외부로부터 금속이온이 포함된 수용액을 공급받으며, 양전극과 상기 양전극을 둘러싸고 있는 음전극 간에 형성되는 반응공간에 상기 수용액이 공급되면 상기 수용액의 금속이온을 상기 음전극 표면에서 환원 석출하는 전해기를 포함하며,
    상기 음전극은 주음전극과, 상기 주음전극 내부에 위치하고 상기 주음전극으로부터 탈착가능한 보조 음전극을 포함하는 금속회수 시스템.
  10. 제9항에 있어서,
    상기 보조음전극은 상기 주음전극과 밀착되어 상기 주음전극의 내면을 실질적으로 모두 덮고 있으며,
    상기 금속이온의 환원 석출은 상기 보조 음전극의 내부면에서 일어나는 것을 특징으로 하는 금속회수 시스템.
  11. 제9항에 있어서,
    상기 보조 음전극은 회수 대상 금속은 녹이지 않는 산에 의해 녹는 재질로 이루어져 있는 것을 특징으로 하는 금속회수 시스템.
  12. 제9항에 있어서,
    상기 양전극은,
    봉 형상으로 바깥 표면에 복수의 그루부가 형성되어 있는 것을 특징으로 하는 금속회수 반응기.
  13. 제9항에 있어서,
    상기 양전극은 양 단이 뚫려 있는 중공형상이며,
    상기 양전극의 측면은 관통되어 있지 않은 것을 특징으로 하는 금속회수 반응기.
  14. 제9항에 있어서,
    상기 반응공간에서 상기 양전극의 표면적/음극의 표면적의 비는 1보다 큰 것을 특징으로 하는 금속회수 반응기.
  15. 제9항에 있어서,
    상기 전해기에서 배출된 수용액을 공급받으며 금속입자를 분리하는 고액분리기를 더 포함하는 것을 특징으로 하는 금속회수 시스템.
  16. 제15항에 있어서,
    상기 전해기와 상기 고액분리기 사이에 위치하는 보조탱크와; 상기 보조탱크의 레벨이 제1레벨이상이면 상기 전해기로의 수용액 공급을 감소시키고, 상기 보조탱크의 레벨이 상기 제1레벨보다 작은 제2레벨 이하이면 상기 고액분리기로의 수용액 공급의 감소시키는 제어부를 더 포함하는 것을 특징으로 하는 금속 회수 시스템.
PCT/KR2014/012646 2013-12-23 2014-12-22 금속회수반응기 및 금속회수시스템 WO2015099383A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/779,384 US20160060778A1 (en) 2013-12-23 2014-12-22 Metal recovery reactor and metal recovery system
CN201480070462.9A CN105849318A (zh) 2013-12-23 2014-12-22 金属回收反应器及金属回收系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130161751A KR101416428B1 (ko) 2013-12-23 2013-12-23 금속회수반응기, 금속회수시스템 및 금속회수방법
KR10-2013-0161751 2013-12-23
KR1020140002312A KR101416429B1 (ko) 2014-01-08 2014-01-08 금속회수반응기 및 금속회수시스템
KR10-2014-0002312 2014-01-08

Publications (1)

Publication Number Publication Date
WO2015099383A1 true WO2015099383A1 (ko) 2015-07-02

Family

ID=53479168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012646 WO2015099383A1 (ko) 2013-12-23 2014-12-22 금속회수반응기 및 금속회수시스템

Country Status (3)

Country Link
US (1) US20160060778A1 (ko)
CN (1) CN105849318A (ko)
WO (1) WO2015099383A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102372210B1 (ko) 2015-03-23 2022-03-08 삼성디스플레이 주식회사 표시 장치
CN108118154A (zh) * 2017-12-23 2018-06-05 大余县东宏锡制品有限公司 一种利用apt废渣回收稀有金属的方法
US11806728B1 (en) * 2018-12-21 2023-11-07 Samuel, Son & Co. (Usa) Inc. Automated cathode washing system
TWI732716B (zh) * 2020-11-20 2021-07-01 徐德弦 金屬回收之裝置
DE102021207624A1 (de) * 2021-07-16 2023-01-19 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zur elektrolytischen Gewinnung mindestens eines Metalls

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0160564B1 (ko) * 1995-07-10 1999-01-15 강필종 전기화학적 방법으로 용액중의 반응물을 산화/환원하기위한 사이클론 전해조와 그 운전방법
JPH11319839A (ja) * 1998-05-13 1999-11-24 Matsushita Seiko Co Ltd 電解中性水生成機の電解槽
JP2001281044A (ja) * 2000-03-30 2001-10-10 Kawasaki Steel Corp 逆洗液のレベル計測装置
KR20120138921A (ko) * 2011-06-16 2012-12-27 한국지질자원연구원 수용액 중의 유용 금속 회수를 위한 전해채취장치 및 전해채취방법
KR101307713B1 (ko) * 2010-07-07 2013-09-11 다나까 홀딩스 가부시끼가이샤 귀금속 회수 장치 및 회수 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675085A (en) * 1985-07-31 1987-06-23 Adalberto Vasquez Method and apparatus for recovery of metal from solution
US4808290A (en) * 1988-05-09 1989-02-28 Hilbig Herbert H Electrolytic pool chlorinator having baffled cathode chamber into which chlorinated water is delivered
CN2064366U (zh) * 1989-12-05 1990-10-24 航空航天部航空工业规划设计研究院 双极阴极换向除垢次氯酸钠发生器
US7736772B2 (en) * 2002-02-14 2010-06-15 Alberta Research Council, Inc. Tubular solid oxide fuel cell stack
US20060243604A1 (en) * 2003-04-30 2006-11-02 Sota Nakagawa Method and apparatus for treating waste water
CN1780794A (zh) * 2003-04-30 2006-05-31 株式会社荏原制作所 废水处理的方法和设备
JP5645036B2 (ja) * 2009-09-14 2014-12-24 スク,サンヨプ 接触比表面積を増大させた有価金属回収用電解槽
KR100992716B1 (ko) * 2009-10-13 2010-11-05 석상엽 접촉 비표면적을 증대시킨 유가금속 회수용 전해조

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0160564B1 (ko) * 1995-07-10 1999-01-15 강필종 전기화학적 방법으로 용액중의 반응물을 산화/환원하기위한 사이클론 전해조와 그 운전방법
JPH11319839A (ja) * 1998-05-13 1999-11-24 Matsushita Seiko Co Ltd 電解中性水生成機の電解槽
JP2001281044A (ja) * 2000-03-30 2001-10-10 Kawasaki Steel Corp 逆洗液のレベル計測装置
KR101307713B1 (ko) * 2010-07-07 2013-09-11 다나까 홀딩스 가부시끼가이샤 귀금속 회수 장치 및 회수 방법
KR20120138921A (ko) * 2011-06-16 2012-12-27 한국지질자원연구원 수용액 중의 유용 금속 회수를 위한 전해채취장치 및 전해채취방법

Also Published As

Publication number Publication date
CN105849318A (zh) 2016-08-10
US20160060778A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
WO2015099383A1 (ko) 금속회수반응기 및 금속회수시스템
AU651439B2 (en) Mineral recovery apparatus
WO2011046332A2 (ko) 접촉 비표면적을 증대시킨 유가금속 회수용 전해조
KR890002751B1 (ko) 유동층을 이용한 전해방법과 전해조
CN101166838A (zh) 金属氧化物的电化学还原
WO2011030945A1 (ko) 접촉 비표면적을 증대시킨 유가금속 회수용 전해조
KR20120138921A (ko) 수용액 중의 유용 금속 회수를 위한 전해채취장치 및 전해채취방법
CN101045963A (zh) 铜的干式精炼方法
CA2016031A1 (en) Process for electroplating metals
JP3146706B2 (ja) ガリウムの電解方法
KR101611951B1 (ko) 금속회수방법
WO2018182083A1 (ko) 시안화물 제거를 포함하는 금속회수방법 및 이를 위한 금속회수 시스템
KR102195794B1 (ko) 금속회수를 위한 전해장치
KR890005181B1 (ko) 원광과 정광으로부터의 아연제조방법
KR100367709B1 (ko) 폐액으로부터 백금족 금속의 회수방법
US4744875A (en) Steel refining with an electrochemical cell
JP4524248B2 (ja) 銅採取方法
JPH06192877A (ja) ガリウム金属の精製方法
KR101416428B1 (ko) 금속회수반응기, 금속회수시스템 및 금속회수방법
JPS6126795A (ja) 流動床を用いる電解方法及び電解槽
JP2012092447A (ja) コバルトの電解採取方法
US20220275527A1 (en) Metal Recovery From Lead Containing Electrolytes
KR101461502B1 (ko) 전해기를 이용한 금속회수 시스템 및 전해기를 이용한 금속회수 방법
US815881A (en) Process for the reduction of ores.
US4026771A (en) Process for the purification of metals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874146

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14779384

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874146

Country of ref document: EP

Kind code of ref document: A1