WO2015099189A1 - 貴金属の回収方法 - Google Patents

貴金属の回収方法 Download PDF

Info

Publication number
WO2015099189A1
WO2015099189A1 PCT/JP2014/084726 JP2014084726W WO2015099189A1 WO 2015099189 A1 WO2015099189 A1 WO 2015099189A1 JP 2014084726 W JP2014084726 W JP 2014084726W WO 2015099189 A1 WO2015099189 A1 WO 2015099189A1
Authority
WO
WIPO (PCT)
Prior art keywords
yeast
noble metal
ions
gold
palladium
Prior art date
Application number
PCT/JP2014/084726
Other languages
English (en)
French (fr)
Inventor
康裕 小西
範三 斎藤
正夫 岸田
Original Assignee
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学 filed Critical 公立大学法人大阪府立大学
Priority to US15/108,406 priority Critical patent/US10125406B2/en
Priority to EP14875501.0A priority patent/EP3088540B1/en
Priority to JP2015555080A priority patent/JP6230033B2/ja
Publication of WO2015099189A1 publication Critical patent/WO2015099189A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • C12N1/185Saccharomyces isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering noble metals.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-52315 discloses a method of recovering using a chelating agent after adsorbing a specific metal ion to a yeast that adsorbs the specific metal ion.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-77008 discloses a method for recovering a marine product waste by immersing it in an aqueous solution containing lactic acid bacteria, yeast and hydrocarbons, followed by fermentation treatment.
  • Patent Document 3 Japanese Patent Application Laid-Open No.
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-284556
  • Patent Document 5 Japanese Patent Publication No. 2009-538127
  • a method of recovering a metal using a body is disclosed.
  • the protein shown in Patent Document 4 is a histidine polypeptide, and Patent Document 4 shows that it is recovered as a metal ion.
  • the protein shown in Patent Document 5 is phytokeratin synthase or metallothionein, and is shown to be recovered as a complex of metal and protein.
  • these methods are methods for recovering metal as metal ions.
  • the metal ions are separated from the complex with protein in an operation of reducing the recovered metal ions and further, The operation to do is necessary.
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2007-113116 describes a method of recovering a metal from a metal oxide or metal hydroxide by the action of iron-reducing bacteria. In this method, it can be recovered as a metal (reduced form) in the iron-reducing bacteria.
  • Non-Patent Document 1 describes that metabolites secreted from the natural world by Delftia acidovorans reduce and deposit trivalent Au ions in the culture medium into Au nanoparticles.
  • yeast reduces noble metal ions and accumulates them in the cells as metals.
  • JP 2011-52315 A Japanese Patent Application Laid-Open No. 11-77008 JP 2004-33837 A JP 2003-284556 A JP-T 2009-538127 JP 2007-113116 A
  • An object of the present invention is to provide means for recovering a noble metal ion as a noble metal as a reductant thereof using the reducing power of yeast.
  • the method according to the present invention includes a step of bringing a yeast and the noble metal ion into contact with each other in a liquid containing the noble metal ion to accumulate a noble metal as a reductant in the yeast.
  • a noble metal ion can be reduced using yeast and recovered as a noble metal as a reductant.
  • FIG. 1 is a graph showing the result of gold reduction by Saccharomyces cerevisiae and Debaryomyces hansenii.
  • the B strain is Saccharomyces cerevisiae BY4741 and the D strain is Debaryomyces hansenii NITE BP-01780.
  • FIG. 2 is a TEM image of yeast (B strain) after 24 hours contact with gold ions in the presence of formate.
  • FIG. 3 is a graph showing reduction results of palladium by Saccharomyces cerevisiae and Debaryomyces hansenii.
  • the B strain is Saccharomyces cerevisiae BY4741 and the D strain is Debaryomyces hansenii NITE BP-01780.
  • FIG. 1 is a graph showing the result of gold reduction by Saccharomyces cerevisiae and Debaryomyces hansenii.
  • the B strain is Saccharomyces cerevisiae BY4741 and the D strain is Debaryo
  • FIG. 4 is a TEM image of yeast (B strain) after 24 hours of contact with palladium ions in the presence of formate.
  • FIG. 5 is a graph showing the result of gold reduction by baker's yeast (budding yeast Saccahromyces cerevisiae NBRC 2044).
  • FIG. 6 is a graph showing the result of gold reduction by fission yeast (Schizosaccharomyces pombe FY15985 strain).
  • FIG. 7 is a graph showing the result of gold reduction by miso yeast (Zygosaccharomyces rouxii NBRC 1130 strain).
  • FIG. 8 shows the results of powder X-ray diffraction measured by drying (50 ° C., 48 hours) baker's yeast (budding yeast S.
  • FIG. 9 shows a TEM image of baker's yeast (budding yeast S. cerevisiae) after contact with gold ions in the presence of formate for 24 hours, and an enlarged image of a part of the yeast.
  • FIG. 10 is an image showing the results of EDX analysis of baker's yeast (budding yeast S. cerevisiae) after contact with gold ions in the presence of formate for 24 hours, (a) is an image by HAADF, (b ) Is an image after gold element mapping. The white part in FIG. 5A shows gold particles, and the white part is mapped in FIG. FIG.
  • FIG. 11 is a graph showing the reduction results of palladium by baker's yeast (budding yeast Saccahromyces cerevisiae NBRC 2044 strain).
  • FIG. 12 is a graph showing the reduction results of palladium by fission yeast (Schizosaccharomyces pombe FY15985 strain).
  • FIG. 13 is a graph showing the reduction results of palladium by miso yeast (Zygosaccharomyces rouxii NBRC 1130 strain).
  • FIG. 14 shows the results of powder X-ray diffraction measured by drying (50 ° C., 48 hours) baker's yeast (budding yeast S. cerevisiae) after contact with palladium ions in the presence of formate for 24 hours.
  • FIG. 15 shows a TEM image of baker's yeast (budding yeast S. cerevisiae) after contact with palladium ions in the presence of formate for 24 hours, and an enlarged image of a part of the yeast.
  • FIG. 16 is an image showing the result of EDX analysis of baker's yeast (budding yeast S. cerevisiae) after contact with palladium ions in the presence of formate for 24 hours, (a) is an image by HAADF, (b ) Is an image after mapping of palladium element. The white part of the figure (a) shows a palladium particle, and the white part is mapped in the figure (b).
  • the method according to the present invention is a method comprising a step of bringing a yeast and the noble metal ion into contact with each other in a liquid containing the noble metal ion and accumulating the noble metal as a reductant in the yeast. That is, the present invention is characterized in that noble metal ions are recovered as noble metals using the reducing power of yeast.
  • yeast that can be used in the present invention may be any yeast as long as it can reduce the noble metal ions in the cells.
  • yeast is not limited to the genus Saccharomyces and is used in a broad sense including other yeasts.
  • Yeasts that can be used in the present invention include, for example, the genus Saccharomyces, Candida, Torulopsis, Zygosaccharomyces, Schizosaccharomyces, Pichia, and Pichia, Genus Yarrowia, Hansenula, Kluyveromyces, Debaryomyces, Geotrichum, Wickerhamia, Ferromyces, Sporoboromyces (Sporobolomyces) yeast, among which yeast belonging to the genus Saccharomyces, Digosaccharomyces, Schizosaccharomyces and Debariomyces is preferred.
  • the yeast of the genus Saccharomyces is a representative yeast of the budding yeast, for example, S. bayanus, S. boulardii, S. bulderi, S. cariocanus, S. cariocus, S. cerevisiae, S. chevalieri, S. dairenensis, S. ellipsoideus, S. florentinus, S. kluyveri, S. martiniae, S. monacensis, S. norbensis It can be S.Sparadoxus, S.spastorianus, S. spencerorum, S. turicensis, S.sunisporus, S. uvarum, S. zonatus.
  • the genus Digosaccharomyces is a salt-tolerant yeast and is a yeast isolated from miso or soy sauce, for example, Z. ⁇ ⁇ ⁇ rouxii.
  • the yeast of the genus Schizosaccharomyces is a fission yeast, for example S. cryophilus, S. japonicus, S. octosporus, S. pombe.
  • yeast belonging to the genus Devariomyces deposited with the deposit number NITE BP-01780 (Room 2-5-8, Kazusa-Kamashita, Kisarazu City, Chiba, Japan, Room 122, National Institute of Technology and Evaluation, Patent Microorganism Depositary Center) Debaryomyces hansenii) is also exemplified.
  • the metal that can be recovered by the method according to the present invention is a noble metal.
  • gold and platinum group metals more specifically gold, silver, platinum, palladium, rhodium, iridium, ruthenium, and osmium. .
  • the contact between the noble metal ions of these noble metals and the yeast is carried out in a liquid.
  • the yeast may be a living bacterium or a dead bacterium as long as the reducing function is exhibited.
  • the liquid should just be the environment where the function of yeast is exhibited.
  • water alone may be used, and pH adjusting agents such as potassium hydrogen phosphate and / or sodium chloride (sodium chloride derived from physiological saline used for suspending yeast or sodium chloride for isotonicity) ) Only.
  • the liquid is a solution (addition solution) in which an electron donor is artificially added, and may be a solution in which an electron donor is not artificially added (non-addition solution).
  • the electron donor may be, for example, a low molecular organic acid and / or a salt or alcohol thereof, or hydrogen gas.
  • organic acids include aliphatic carboxylic acids having 1 to 7 carbon atoms such as formic acid, acetic acid and lactic acid, aromatic carboxylic acids having 1 to 7 carbon groups such as benzoic acid, pyruvic acid and oxocarboxylic acids. possible.
  • the alcohol can be, for example, an aliphatic alcohol having 1 to 7 carbon atoms such as methanol or ethanol.
  • the addition of these electron donors contributes to the reduction of the noble metal ions and can increase the amount of reduction (reduction power) of the noble metal ions. In the present invention, since the final acceptor of electrons supplied from the electron donor is considered to be a metal ion, the addition of the electron acceptor is not essential.
  • the liquid does not require nutrients necessary for the growth of the yeast, but may be a liquid containing the minimum nutrients (nitrogen source and carbon source) necessary for the growth of the yeast.
  • nutrients are nutrients used for culturing yeast and can be, for example, sucrose, glucose, lactose, yeast extract, meat extract, bouillon, polypeptone, and peptone.
  • the liquid to be contacted with yeast is prepared by adding these nutrients to a liquid containing noble metal ions, or adding a liquid containing noble metal ions to be recovered in a solution containing these nutrients.
  • the liquid containing nutrients is, for example, a YPD medium specialized for yeast, and may be a bouillon medium that is a general-purpose medium.
  • the liquid containing the noble metal ions can be prepared from the object to be collected by a known method.
  • the preparation method is, for example, a method of suspending in water if it is soil and performing an acid treatment if necessary, and a method of performing an acid treatment and performing a filtration or neutralization treatment if necessary if it is a mineral or alloy. It is.
  • the object to be recovered may be any object that can be extracted as noble metal ions, regardless of whether it is a salt or a metal such as an alloy, and whether it is a liquid or a solid. If it contains an ion, it will not specifically limit.
  • the liquid containing noble metal ions may contain non-noble metals other than the noble metals or non-noble metal ions.
  • the pH and temperature of the liquid brought into contact with the yeast are matters that can be appropriately set by those skilled in the art.
  • the pH of the liquid is preferably from about neutral to slightly acidic at about pH 5 and the temperature is preferably 25 to 35 ° C.
  • the contact time varies depending on the yeast cell density and the concentration of noble metal ions, but is approximately 1 to 48 hours. By contact with yeast for this amount of time, the noble metal ions are reduced in the yeast cells, Accumulated in the yeast cells as noble metals (grains). Moreover, it is preferable to shake the liquid during contact with the yeast. This is because the movement speed at which the noble metal ions in the liquid diffuse to the yeast surface is increased.
  • the concentration of noble metal ions in the liquid that is brought into contact with the yeast is a matter that can be appropriately set by those skilled in the art.
  • the precious metal ion concentration varies depending on the yeast cell concentration, it is generally 0.01 to 100 mmol / l, preferably 0.1 to 10 mmol / l.
  • the addition amount of the electron donor can also be set as appropriate.
  • the addition amount of the electron donor varies depending on the metal species and the number of cells, but with the above-mentioned noble metal ion concentration, the concentration in the liquid to be contacted with the yeast is generally 0.01 to 1000 mmol / l, It is about the same as or higher than the ion concentration, preferably about 10 times.
  • the noble metal reduced by destroying the yeast cells after contact with the noble metal ions is recovered as noble metal grains (noble metal crystals). Since the density of the recovered metal particles is high, the metal particles are precipitated in a solution in which the cells are destroyed, and the precipitate is easily recovered by a known method. Moreover, you may collect
  • the method of the present invention is a method of recovering noble metal ions as metals (grains) in yeast cells using the reducing power of yeast, recovery from yeast is easy.
  • the yeast cells are larger than the iron-reducing bacteria cells (the iron-reducing cells are about 1 micron, the yeast cells are about 5 microns), the solid-liquid separation of the cells is possible. It is easier than the cells of iron-reducing bacteria.
  • Saccharomyces cerevisiae BY4741 strain: B strain
  • Debaryomyces hansenii D strain
  • This debariomys hansen yi was isolated as follows, with the deposit number NITE BP-01780, the international depositary authority, 2-5-8, Kazusa Kamashi, Kisarazu City, Chiba, Japan Room 122 Product Evaluation Technology Deposited on December 6, 2013 at the Japan Foundation Microbiology Depositary Center.
  • Yeast was screened from various fermented salt foods such as sake lees and miso.
  • the source sample was suspended in sterilized water, and the test suspension was applied to a YPD (2% glucose, 0.5% yeast extract, 0.5% peptone) plate medium containing 13% NaCl. After time culture, growing colonies were isolated.
  • the isolated strain was screened for yeast.
  • the obtained salt-tolerant yeast strain was inoculated into a YPD liquid medium containing 200 ⁇ M cadmium chloride and then statically cultured at 30 ° C. The cadmium content of the bacterial strains grown up to 72 hours was measured, and a strain containing a larger amount of cadmium than the Saccharomyces cerevisiae B strain was isolated.
  • the above two strains of yeast were each inoculated into a YPD medium and then statically cultured at 30 ° C. for 48 hours. After recovering the cultured bacterial cells, the bacterial cell concentration of B strain was 0.8 ⁇ 10 8 cells / ml in an aqueous solution of gold chloride containing 1.0 mmol / m 3 of gold ions (Au 3+ ). Yeast was added so that the bacterial cell concentration was 1.0 ⁇ 10 8 cells / ml. After adding the yeast, the mixture was allowed to stand at 30 ° C., and the change in the gold concentration of the solution and the change in the color tone of the solution were examined.
  • the pH was kept at 6.5 to 6.6 in all the strains regardless of the presence or absence of the electron donor, while the Au concentration in the solution decreased.
  • the color of the solution after 24 hours of contact changed from pale purple to pink before starting the experiment, from pale purple to pink.
  • the phenomenon in which ultrafine metal particles absorb light of a specific wavelength (plasmon absorption) is a well-known phenomenon, and when this particle is present, a color change is observed. It depends on the type. When plasmon absorption occurs, it is generally known that gold nanoparticles exhibit “purple to pink (color changes with particle diameter)”. As a result, it was judged that metal fine particles were generated in the solution. Further, as shown in FIG. 2, Au metal fine particles were confirmed not only outside the yeast cells but also inside the yeast cells from the TEM image. From these facts, it is determined that these yeasts reduce Au ions and accumulate Au in the cells regardless of the presence or absence of an electron donor.
  • Saccharomyces cerevisiae Saccharomyces cerevisiae (Saccharomyces cerevisiae NBRC ⁇ ⁇ 2044 strain), baker's yeast, Schizosaccharomyces pombe FY15985 strain as fission yeast, and Digosaccharomyces rubii (Zygosaccharomyces roux 130 ⁇ ⁇ roux RC1) using Ms. yeast.
  • yeast B strain D strain and fission yeast in the absence of an electron donor
  • yeasts widely used for fermentation such as bread and miso in the presence of an electron donor are representative. It can be said that various yeasts can be used for the reduction of precious metals.
  • the present invention provides a method for recovering noble metal ions in a solution as noble metals using yeast.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】 貴金属イオンをその還元体である貴金属として酵母を用いて回収する手段を提供する。 【解決手段】 サッカロマイセス・セレヴィシエ(Saccharomyces cerevisiae)、ジゴサッカロマイセス・ルキシ(Zygosaccharomyces rouxii)、ジゾサッカロマイセス・ポンべ(Schizosaccharomyces pombe)や寄託番号NITE-BP01780で寄託されたデバリオマイセス属の酵母と、金やパラジウム、白金などの貴金属の金属イオンとを、好ましくは電子供与体を添加した液体中で接触させた後、回収した酵母から還元体である貴金属を回収する。

Description

貴金属の回収方法
 本発明は貴金属の回収方法に関する。
 低品位鉱物や工場排水、植物などから微生物を用いて金属を回収する方法が知られている。例えば、特許文献1(特開2011-52315号公報)には、特定の金属イオンを吸着する酵母にこの特定金属を吸着させた後にキレート剤を用いて回収する方法が開示されている。特許文献2(特開平11-77008号公報)には、水産廃棄物を乳酸菌と酵母と炭化水素を含む水溶液中に浸漬して発酵処理した後に回収する方法が開示されている。特許文献3(特開2004-33837号公報)には、重金属を含む植物を乳酸菌と酵母と糖を含む培養液に浸漬することで重金属を解離した後にキレート剤を用いて回収する方法が開示されている。また、特許文献4(特開2003-284556号公報)や特許文献5(特表2009-538127号公報)には、金属を捕捉又は吸着するタンパク質をコードする遺伝子を形質転換した酵母などの形質転換体を用いて、金属を回収する方法が開示されている。特許文献4に示された当該タンパク質はヒスチジンポリプチドであって、特許文献4には金属イオンとして回収されることが示されている。特許文献5に示された当該タンパク質はフィトケラチン合成酵素又はメタロチオネインであって、金属とタンパク質の複合体として回収されることが示されている。
 しかしながら、これらの方法は金属を金属イオンとして回収する方法であり、これらの方法では、金属として回収するためには回収した金属イオンを還元させる操作やさらにはタンパクとの複合体から金属イオンを分離する操作が必要となる。
 一方、特許文献6(特開2007-113116号公報)には、鉄還元細菌を作用させて、金属酸化物や金属水酸化物から金属を回収する方法が記載されている。この方法では、鉄還元細菌の菌体内に金属(還元体)として回収できる。
 しかしながら、この方法は鉄還元細菌の鉄還元作用を利用する方法であるので、培地には電子供与体が必要となる。また、鉄還元細菌の菌体は小さいので溶液からの細菌の回収が困難であるという問題もあった。
 また、鉄還元細菌以外には、非特許文献1に、自然界から単離されたDelftia acidovoransが細胞外に分泌する代謝物が、培養液中の3価のAuイオンをAuナノ粒子に還元・析出させることが記載されているが、これまでのところ、酵母が貴金属イオンを還元して金属として菌体内に蓄積することは知られていない。
特開2011-52315号公報 特開平11-77008号公報 特開2004-33837号公報 特開2003-284556号公報 特表2009-538127号公報 特開2007-113116号公報
ネイチャー ケミカルバイオロジー、9、241、2013
 本発明の課題は、酵母の還元力を利用して貴金属イオンをその還元体である貴金属として回収する手段を提供することにある。
 本発明に係る方法は、貴金属イオンを含む液体中で酵母と前記貴金属イオンを接触させて、酵母の菌体内に還元体である貴金属を蓄積させる工程を有する。
 本発明によると、酵母を用いて貴金属イオンを還元して還元体である貴金属として回収できる。
図1はサッカロマイセス・セレビシエ及びデバリオマイセス・ハンセンイーによる金の還元結果を示すグラフである。B株はサッカロマイセス・セレビシエ(Saccharomyces cerevisiae BY4741株)、D株はデバリオマイセス・ハンセンイー(Debaryomyces hansenii NITE BP-01780)である。 図2はギ酸塩の存在下で金イオンと24時間接触させた後の酵母(B株)のTEM画像である。 図3はサッカロマイセス・セレビシエ及びデバリオマイセス・ハンセンイーによるパラジウムの還元結果を示すグラフである。B株はサッカロマイセス・セレビシエ(Saccharomyces cerevisiae BY4741株)、D株はデバリオマイセス・ハンセンイー(Debaryomyces hansenii NITE BP-01780)である。 図4はギ酸塩の存在下でパラジウムイオンと24時間接触させた後の酵母(B株)のTEM画像である。 図5はパン酵母(出芽酵母 Saccahromyces cerevisiae NBRC 2044株)による金の還元結果を示すグラフである。 図6は分裂酵母(Schizosaccharomyces pombe FY15985株)による金の還元結果を示すグラフである。 図7は味噌酵母(Zygosaccharomyces rouxii NBRC 1130株)による金の還元結果を示すグラフである。 図8はギ酸塩の存在下で金イオンと24時間接触させた後のパン酵母(出芽酵母 S. cerevisiae)を乾燥(50℃、48時間)させて測定した粉末X線回析の結果を示す回析図である。 図9はギ酸塩の存在下で金イオンと24時間接触させた後のパン酵母(出芽酵母 S. cerevisiae)のTEM画像と、その酵母の一部を拡大した画像である。 図10はギ酸塩の存在下で金イオンと24時間接触させた後のパン酵母(出芽酵母 S. cerevisiae)のEDX分析結果を示す画像であって、(a)はHAADFによる画像を、(b)は金元素のマッピング後の画像である。同図(a)の白い部分は金粒子を示し、同図(b)において当該白い部分がマッピングされている。 図11はパン酵母(出芽酵母 Saccahromyces cerevisiae NBRC 2044株)によるパラジウムの還元結果を示すグラフである。 図12は分裂酵母(Schizosaccharomyces pombe FY15985株)によるパラジウムの還元結果を示すグラフである。 図13は味噌酵母(Zygosaccharomyces rouxii NBRC 1130株)によるパラジウムの還元結果を示すグラフである。 図14はギ酸塩の存在下でパラジウムイオンと24時間接触させた後のパン酵母(出芽酵母 S. cerevisiae)を乾燥(50℃、48時間)させて測定した粉末X線回析の結果を示す回析図である。 図15はギ酸塩の存在下でパラジウムイオンと24時間接触させた後のパン酵母(出芽酵母 S. cerevisiae)のTEM画像と、その酵母の一部を拡大した画像である。 図16はギ酸塩の存在下でパラジウムイオンと24時間接触させた後のパン酵母(出芽酵母 S. cerevisiae)のEDX分析結果を示す画像であって、(a)はHAADFによる画像を、(b)はパラジウム元素のマッピング後の画像である。同図(a)の白い部分はパラジウム粒子を示し、同図(b)において当該白い部分がマッピングされている。
 本発明に係る方法は、貴金属イオンを含む液体中で酵母と前記貴金属イオンを接触させて、酵母の菌体内に還元体である貴金属を蓄積させる工程を有する方法である。つまり、本発明は、酵母が有する還元力を利用して貴金属イオンを貴金属として回収することに特徴がある。
 従って、本発明で使用し得る酵母は菌体内で貴金属イオンを還元できる酵母であればいずれの酵母でもよい。本発明において酵母はサッカロマイセス属に限られず、その他の酵母を含む広義の意味で用いられる。本発明で使用できる酵母は、例えば、サッカロマイセス属(Saccharomyces)やカンジダ属(Candida)、トルロプシス属(Torulopsis)、ジゴサッカロマイセス属(Zygosaccharomyces)、シゾサッカロマイセス属(Schizosaccharomyces)、ピチア属(Pichia)、ヤロウィア属(Yarrowia)、ハンセヌラ属(Hansenula)、クルイウェロマイセス属(Kluyveromyces)、デバリオマイセス属(Debaryomyces)、ゲオトリクム属(Geotrichum)、ウィッケルハミア属(Wickerhamia)、フェロマイセス属(Fellomyces)、スポロボロマイセス属(Sporobolomyces)の酵母であり、この中でも特にサッカロマイセス属、ジゴサッカロマイセス属、シゾサッカロマイセス属やデバリオマイセス属に属する酵母が好ましい。サッカロマイセス属の酵母は出芽酵母の代表的な酵母であって、例えば、S. bayanusであり、S. boulardiiであり、S. bulderiであり、S. cariocanusであり、S. cariocusであり、S. cerevisiaeであり、S. chevalieriであり、S. dairenensisであり、S. ellipsoideusであり、S. florentinusであり、S. kluyveriであり、S. martiniaeであり、S. monacensisであり、S. norbensisであり、S. paradoxusであり、S. pastorianusであり、S. spencerorumであり、S. turicensisであり、S. unisporusであり、S. uvarumであり、S. zonatusであり得る。ジゴサッカロマイセス属は耐塩性の酵母であって、味噌や醤油などから分離される酵母であり、例えばZ. rouxiiであり得る。シゾサッカロマイセス属の酵母は分裂酵母であり、例えばS. cryophilusであり、S. japonicusであり、S. octosporusであり、S. pombeであり得る。また、好ましい酵母として受託番号NITE BP-01780(日本国千葉県木更津市かずさ鎌足2-5-8 122号室 独立行政法人製品評価技術基盤機構 特許微生物寄託センター)で寄託されたデバリオマイセス属の酵母(Debaryomyces hansenii)も例示される。
 本発明に係る方法で回収可能な金属は、貴金属である。具体的には、金及び白金族金属であり、より具体的には金であり、銀であり、白金であり、パラジウムであり、ロジウムであり、イリジウムであり、ルテニウムであり、オスミウムであり得る。
 これら貴金属の貴金属イオンと酵母との接触は液体中で行われる。酵母は生菌でもよく、また還元機能が発揮される限り死菌であってもよい。液体は酵母の機能が発揮される環境であればよい。例えば、水のみであってもよく、水にリン酸水素カリウムなどのpH調整剤及び/又は塩化ナトリウム(酵母の懸濁に用いる生理食塩水に由来する塩化ナトリウムや等張にするための塩化ナトリウム)のみを加えた液体であり得る。また、当該液体は、電子供与体を人為的に加えた溶液(添加溶液)であり、電子供与体を人為的に加えない溶液(無添加溶液)でもあり得る。電子供与体は、例えば、低分子の有機酸及び/又はその塩やアルコール類、水素ガスであり得る。有機酸は、例えば、ギ酸や酢酸、乳酸などの炭素数1~7の脂肪族カルボン酸、安息香酸などの炭素数1~7のカルボキシル基を有する芳香族カルボン酸、ピルビン酸、オキソカルボン酸であり得る。アルコール類は、例えば、メタノールやエタノールなどの炭素数1~7の脂肪族アルコールであり得る。これらの電子供与体の添加は貴金属イオンの還元に貢献し、貴金属イオンの還元量(還元力)を増加し得る。なお、本発明では、電子供与体から供給される電子の最終受容体は金属イオンであると考えられることより、電子受容体の添加は必須ではない。
 また、当該液体は、酵母の生育に必要な栄養素を必須とはしないが、酵母の生育に最低限必要な栄養素(窒素源や炭素源)を含む液体でもあり得る。このような栄養素は酵母の培養に用いられる栄養素であり、例えば、ショ糖、ブドウ糖、乳糖、酵母エキス、肉エキス、ブイヨン、ポリペプトンやペプトンであり得る。栄養素を含む場合、酵母と接触させる液体は、貴金属イオンを含む液体中にこれらの栄養素が添加され、あるいはこれらの栄養素を含む溶液中に回収する貴金属イオンを含む液体を添加することで調製される。栄養素を含む液体は、例えば、酵母用に特化されたYPD培地であり、汎用培地であるブイヨン培地で有り得る。
 貴金属イオンを含む液体は回収対象物から公知の方法で調製され得る。その調製法は、例えば、土壌であれば水に懸濁して必要に応じて酸処理を行う方法であり、鉱物や合金であれば酸処理を行い必要に応じてろ過や中和処理を行う方法である。回収対象物は、貴金属イオンとして取り出せる対象物であればよく、塩であるか合金のような金属であるかを問わず、又液体であるか固体であるかを問わず、前記の貴金属又は貴金属イオンを含むものであれば特に限定されない。貴金属イオンを含む液体は、前記貴金属以外の非貴金属や非貴金属イオンを含むものであっても差し支えない。
 酵母と接触させる液体のpHや温度は当業者が適宜設定できる事項である。液体のpHは好ましくは7前後の中性からpH5程度の弱酸性であり、温度は好ましくは25~35℃である。接触時間は、酵母の菌体密度や貴金属イオンの濃度によっても異なるが、概ね1時間から48時間であり、この程度の時間、酵母と接触させることで貴金属イオンは酵母の菌体内で還元され、貴金属(粒)として酵母の菌体内に蓄積される。また、酵母との接触中は液体を振とうすることが好ましい。液体中の貴金属イオンが酵母表面に拡散する移動速度が高まるからである。
 酵母と接触させる液体の貴金属イオン濃度も当業者が適宜設定できる事項である。貴金属イオン濃度は、酵母の菌体濃度によっても異なるが、概ね0.01~100mmol/lであり、好ましくは0.1~10mmol/lである。電子供与体の添加量も適宜設定され得る。電子供与体の添加量は金属種や菌体数によっても異なるが、上記の貴金属イオン濃度であれば、酵母と接触させる液体中の濃度は、概ね0.01~1000mmol/lであって、貴金属イオン濃度と同程度かそれ以上、好ましくは10倍程度である。
 貴金属イオンと接触した後の酵母の菌体を破壊することで還元された貴金属は貴金属粒(貴金属結晶)として回収される。回収された金属粒の密度は高いので菌体を破壊した溶液中に沈殿し、その沈殿物は公知の方法で簡単に回収される。また、酵母の菌体を回収した後に菌体から貴金属を回収してもよい。例えば、回収した酵母を燃やして貴金属粒又は貴金属塊として回収する方法が例示される。
 このように本発明の方法は、酵母の還元力を利用して酵母の菌体中に貴金属イオンを金属(粒)として回収する方法なので、酵母からの回収が容易である。また、酵母菌体は鉄還元細菌の菌体よりも大きいので(鉄還元菌体は1ミクロン程度であるのに対して、酵母菌体は5ミクロン程度である)、菌体の固液分離が鉄還元細菌の菌体よりも容易である。
 以下、本発明について下記実施例に基づいてさらに説明するが、本発明は下記実施例に限定されないのは言うまでもない。
 酵母の代表菌であるサッカロマイセス・セレビシエ(Saccharomyces cerevisiae、BY4741株:B株)と、カドミウム耐性酵母であるデバリオマイセス・ハンセンイー(Debaryomyces hansenii:D株)を使用した。このデバリオマイス・ハンセンイーは次のようにして単離され、受託番号NITE BP-01780で、国際寄託当局である日本国千葉県木更津市かずさ鎌足2-5-8 122号室 独立行政法人製品評価技術基盤機構 特許微生物寄託センターに、2013年12月6日付で寄託された。
 〔Debaryomyces hansenii(D株)の単離〕
 種々の酒粕・味噌等の発酵塩性食品から酵母をスクリーニングした。単離源試料を滅菌水に懸濁し、験濁液を13%のNaClを含むYPD(2%グルコース、0.5%酵母エキス、0.5%ペプトン)平板培地に塗布し、30℃、48時間培養後、生育してきたコロニーを単離した。単離した菌株を検鏡により酵母を選別した。得られた耐塩性酵母菌株を200μMの塩化カドミウムを含むYPD液体培地に接種後、30℃で静置培養した。72時間目までに生育した菌株の菌体カドミウム含量を計測し、前記のSaccharomyces cerevisiae B株よりも多い量のカドミウムを含有する株を単離した。
 (金の回収)
 上記2株の酵母をそれぞれYPD培地に接種した後、30℃、48時間静置培養した。培養した菌体を回収した後、1.0mmol/m3の金イオン(Au3+)を含む塩化金の水溶液に、B株の菌体濃度が0.8×10cells/ml、D株の菌体濃度が1.0×10cells/mlとなるようにそれぞれ酵母を加えた。酵母を加えた後、30℃で静置し、溶液の金濃度の変化及び溶液の色調変化を調べた。また、電子供与体としてギ酸ナトリウムを50mmol/m3となるように加えた場合、同じく水素ガスを溶液中に供給した場合についても同様の実験を行った。その結果を図1に示した。また、TEM(透過型電子顕微鏡:Transmission Electron Microscope)を用いて、ギ酸ナトリウムの存在下24時間接触後の酵母を撮影した。その結果を図2に示した。
 図1から分かるように、電子供与体の有無を問わず、全ての株においてpHは6.5~6.6に保たれた一方で、溶液のAu濃度は低下した。また、24時間接触後の溶液の色は全ての系において、実験開始前の黄色からレモン色であったのが淡い紫色からピンク色に変化していた。金属の超微粒子が特定の波長の光を吸収する現象(プラズモン吸収)はよく知られた現象であり、この現象によって金属微粒子が存在すると色変化が観察され、色の変化は金属微粒子の大きさや種類によって異なる。プラズモン吸収を生じると、金ナノ粒子は「紫色からピンク色(粒子径で色が変化)」を示すことが一般に知られている。この結果、溶液中に金属微粒子が生成されたと判断された。また、図2に示すように、TEM画像からも、酵母の菌体外ではなく酵母の菌体内にAuの金属微粒子が確認された。これらのことから、電子供与体の存在の有無に拘わらず、これらの酵母はAuイオンを還元し、菌体内にAuを蓄積すると判断される。
 (パラジウムの回収)
 濃度1.0mmol/lの塩化パラジウムの水溶液に、上記と同濃度の酵母を加え、電子供与体としてギ酸ナトリウム、乳酸ナトリウムを用いて金の場合と同様の実験を行った。その結果を図3に示す。また、ギ酸ナトリウムの存在下で24時間接触した後の酵母のTEM画像を図4に示す。溶液の色も全ての系において、黄色からレモン色であったのが、D株ではギ酸ナトリウムの存在下では約2.5時間後に、また、乳酸ナトリウムの存在下では約4時間後に黒色に変化していた。また、B株でも24時間後には黒色に変化していた。パラジウムのナノ粒子はプラズモン吸収により黒色を示すことが知られている。これらのことから、電子供与体の存在下で、酵母はPdイオンを還元して菌体内にPdを蓄積することが確認された。
 次に、B株、D株とは異なる3株の酵母を用いて同様の実験を行った。パン酵母であるサッカロマイセス・セレビシエ(Saccharomyces cerevisiae NBRC 2044株)、分裂酵母としてシゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe FY15985株)、味噌酵母としてジゴサッカロマイセス・ルキシ(Zygosaccharomyces rouxii NBRC 1130株)を用いた。
 (金の回収)
 1.27mmol/m3の金イオン(Au3+)を含む塩化金の水溶液に、菌体濃度が1.5×1015cells/mlとなるように酵母を加えた。酵母を加えた後、30℃で静置し、溶液の金濃度の変化及び溶液の色調変化を調べた。また、電子供与体としてギ酸ナトリウムを50mmol/m3となるように加えた場合についても同様の実験を行った。その結果を図5~7に示した。図中のパーセンテージは、24時間後の濃度の低下割合を示す。この間、溶液のpHは6.5~6.7に保たれていたが、溶液の金イオン濃度は低下した。また、溶液の色はギ酸ナトリウムの存在下でピンク色から紫色に変色しており、金イオンの還元が認められた。なお、対照であるギ酸ナトリウムのみを加えた場合には、酵母によるバイオ還元が顕著に起こる酵母添加直後の時間内では、金イオン濃度の顕著な低下が見られず、この間には化学還元が起こっていないことが確認された(図示せず)。その一方、ギ酸ナトリウムを加えない場合にも金イオン濃度の低下が認められており、これらの酵母において、電子供与体の非存在下では還元だけでなくイオンの吸着及び吸収が生じていると考えられる。また、ギ酸ナトリウムの存在下で金イオンと接触させた後のパン酵母について粉末X線回析を行った結果、金イオンが還元されて金(金属)が生産されることが確認された(図8参照)。そして、酵母菌体内に金粒子が蓄積されることは、当該酵母のTME画像やEDXマッピングからも確認された(図9、図10参照)。
 (パラジウムの回収)
 1.2mmol/m3のパラジウムイオン(Pd2+)を含む塩化パラジウムの水溶液に、菌体濃度が1.5×1014cells/ml(但し、パン酵母は1.5×1015cells/ml)となるように酵母を加えた。酵母を加えた後、30℃で静置し、溶液のパラジウム濃度の変化及び溶液の色調変化を調べた。また、電子供与体としてギ酸ナトリウムを50mmol/m3となるように加えた場合についても同様の実験を行った。その結果を図11~13に示した。図中のパーセンテージは、24時間後の濃度の低下割合を示す。この間、溶液のpHは6.5~6.7に保たれていた一方、溶液のパラジウムイオン濃度は低下した。また、溶液の色はギ酸ナトリウムの存在下で黒色に変色しており、パラジウムイオンの還元が認められた。なお、対照であるギ酸ナトリウムのみを加えた場合には、酵母によるバイオ還元が顕著に起こる酵母添加直後の時間内では、パラジウムイオン濃度の顕著な低下が見られず、この間には化学還元が起こっていないことが確認された(図示せず)その一方、ギ酸ナトリウムを加えない場合にもパラジウムイオン濃度の低下が認められており、これらの酵母において電子供与体の非存在下では還元よりもイオンの吸着及び吸収が生じていると考えられる。また、ギ酸ナトリウムの存在下でパラジウムイオンと接触させた後のパン酵母について粉末X線回析を行った結果、パラジウムイオンが還元されてパラジウム(金属)が生産されることが確認された(図14参照)。そして、酵母菌体内にパラジウム粒子が蓄積されることは、当該酵母のTME画像やEDXマッピングからも確認された(図15、図16参照)。
 これらの結果から、電子供与体の非存在下における酵母B株、D株及び分裂酵母に限定されず、電子供与体の存在下ではパンや味噌など発酵に広く利用されている酵母を代表とする各種の酵母は貴金属の還元に利用できると言える。
 本発明は、酵母を用いて溶液中の貴金属イオンを貴金属として回収する方法を提供する。
[規則26に基づく補充 19.01.2015] 
Figure WO-DOC-RO134

Claims (5)

  1.  貴金属イオンを含む液体中で酵母と前記貴金属イオンを接触させて、酵母の菌体内に還元体である貴金属を蓄積させる工程を有する貴金属回収方法。
  2.  前記貴金属イオンを含む液体は、電子供与体の無添加溶液である請求項1に記載の貴金属回収方法。
  3.  前記貴金属イオンを含む液体は、電子供与体の添加溶液である請求項1に記載の貴金属回収方法。
  4.  前記貴金属イオンは、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウムからなる群から選ばれる1種又は2種以上のイオンである請求項1~3の何れか1項に記載の貴金属回収方法。
  5.  サッカロマイセス属、ジゴサッカロマイセス属、シゾサッカロマイセス属、デバリオマイセス属の酵母の何れか1種又は2種以上の酵母と接触させる請求項1~4の何れか1項に記載の貴金属回収方法。
PCT/JP2014/084726 2013-12-28 2014-12-28 貴金属の回収方法 WO2015099189A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/108,406 US10125406B2 (en) 2013-12-28 2014-12-28 Noble metal recovery method
EP14875501.0A EP3088540B1 (en) 2013-12-28 2014-12-28 Noble metal recovery method
JP2015555080A JP6230033B2 (ja) 2013-12-28 2014-12-28 貴金属の回収方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-273690 2013-12-28
JP2013273690 2013-12-28

Publications (1)

Publication Number Publication Date
WO2015099189A1 true WO2015099189A1 (ja) 2015-07-02

Family

ID=53479027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084726 WO2015099189A1 (ja) 2013-12-28 2014-12-28 貴金属の回収方法

Country Status (5)

Country Link
US (1) US10125406B2 (ja)
EP (1) EP3088540B1 (ja)
JP (1) JP6230033B2 (ja)
TW (1) TWI580647B (ja)
WO (1) WO2015099189A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227474A (ja) * 2014-05-30 2015-12-17 公立大学法人大阪府立大学 白金族金属の分離回収方法
JP2017020100A (ja) * 2015-07-09 2017-01-26 公立大学法人大阪府立大学 金属回収用バッグ、金属回収用包装体並びに金属の回収方法
JP2017088990A (ja) * 2015-11-17 2017-05-25 公立大学法人大阪府立大学 放射性の白金族金属の回収方法
WO2018038218A1 (ja) * 2016-08-24 2018-03-01 公立大学法人大阪府立大学 希少金属の回収方法
JP2020122220A (ja) * 2020-04-27 2020-08-13 公立大学法人大阪 放射性の白金族金属の回収方法
WO2023286850A1 (ja) * 2021-07-14 2023-01-19 東洋エンジニアリング株式会社 金属の回収方法
WO2024128055A1 (ja) * 2022-12-14 2024-06-20 東洋エンジニアリング株式会社 レアアースの回収方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105315B (zh) * 2021-12-09 2023-11-14 延边大学 一种吸附提取重金属污染物中重金属的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177008A (ja) 1997-09-04 1999-03-23 Agency Of Ind Science & Technol 水産廃棄物の処理方法
JP2003284556A (ja) 1999-11-19 2003-10-07 Toyota Motor Corp 金属捕捉能タンパク質を発現する遺伝子
JP2004033837A (ja) 2002-07-01 2004-02-05 Kankyo Soken Kk 重金属を含む農林産物たる植物およびその収穫物の処理方法
JP2007113116A (ja) 2005-09-26 2007-05-10 Osaka Prefecture Univ 金属回収方法
JP2009538127A (ja) 2006-05-22 2009-11-05 コーリア アドバンスド インスティチュウト オブ サイエンス アンド テクノロジー 金属吸着タンパク質を用いた重金属ナノ粒子の製造方法
JP2009541593A (ja) * 2006-07-05 2009-11-26 ジャンセン ファーマシューティカ エヌ.ヴェー. 金属ナノ粒子を製造するための方法
JP2011052315A (ja) 2009-09-04 2011-03-17 Nippon Telegr & Teleph Corp <Ntt> 金属回収装置及び金属回収方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690894A (en) 1985-09-20 1987-09-01 Advanced Mineral Technologies, Inc. Treatment of microorganisms with alkaline solution to enhance metal uptake properties

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177008A (ja) 1997-09-04 1999-03-23 Agency Of Ind Science & Technol 水産廃棄物の処理方法
JP2003284556A (ja) 1999-11-19 2003-10-07 Toyota Motor Corp 金属捕捉能タンパク質を発現する遺伝子
JP2004033837A (ja) 2002-07-01 2004-02-05 Kankyo Soken Kk 重金属を含む農林産物たる植物およびその収穫物の処理方法
JP2007113116A (ja) 2005-09-26 2007-05-10 Osaka Prefecture Univ 金属回収方法
JP2009538127A (ja) 2006-05-22 2009-11-05 コーリア アドバンスド インスティチュウト オブ サイエンス アンド テクノロジー 金属吸着タンパク質を用いた重金属ナノ粒子の製造方法
JP2009541593A (ja) * 2006-07-05 2009-11-26 ジャンセン ファーマシューティカ エヌ.ヴェー. 金属ナノ粒子を製造するための方法
JP2011052315A (ja) 2009-09-04 2011-03-17 Nippon Telegr & Teleph Corp <Ntt> 金属回収装置及び金属回収方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HYUN-AH LIM ET AL.: "Effect of pH on the Extra Cellular Synthesis of Gold and Silver Nanoparticles by Saccharomyces cerevisae", JOURANAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 11, no. 1, January 2011 (2011-01-01), pages 518 - 522, XP008184619 *
KATSUYA TAKAHASHI ET AL.: "Pan Kobo no Shikiso Oyobi Kinzoku Ion Kyuchaku Tokusei", KAGAKUKEIGAKU KYOKAI TOHOKU TAIKAI PROGRAM OYOBI KOEN YOKOSHU, vol. 2006, 22 September 2006 (2006-09-22), pages 149, XP008184026 *
NATURE, CHEMICAL BIOLOGY, vol. 9, 2013, pages 241
See also references of EP3088540A4 *
TEPPEI NIIDE ET AL.: "Yuka Kinzoku Kaishu no Tameno Biomaterial no Kaihatsu", ABSTRACTS OF ANNUAL MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS , JAPAN, vol. 75, 18 February 2010 (2010-02-18), pages B121, XP008184025 *
YASUHIRO KONISHI: "Application of Microbial Biomineralization by Means of Metal-reducing Microorganisms to Fabrication of Noble Metal Nanoparticle Catalysts", CATALYST, vol. 55, no. 4, 10 August 2013 (2013-08-10), pages 232 - 238, XP008184620 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227474A (ja) * 2014-05-30 2015-12-17 公立大学法人大阪府立大学 白金族金属の分離回収方法
JP2017020100A (ja) * 2015-07-09 2017-01-26 公立大学法人大阪府立大学 金属回収用バッグ、金属回収用包装体並びに金属の回収方法
JP2017088990A (ja) * 2015-11-17 2017-05-25 公立大学法人大阪府立大学 放射性の白金族金属の回収方法
WO2018038218A1 (ja) * 2016-08-24 2018-03-01 公立大学法人大阪府立大学 希少金属の回収方法
JP2020122220A (ja) * 2020-04-27 2020-08-13 公立大学法人大阪 放射性の白金族金属の回収方法
JP7029190B2 (ja) 2020-04-27 2022-03-03 公立大学法人大阪 放射性の白金族金属の回収方法
WO2023286850A1 (ja) * 2021-07-14 2023-01-19 東洋エンジニアリング株式会社 金属の回収方法
WO2024128055A1 (ja) * 2022-12-14 2024-06-20 東洋エンジニアリング株式会社 レアアースの回収方法

Also Published As

Publication number Publication date
EP3088540A4 (en) 2017-08-16
EP3088540B1 (en) 2019-11-20
JP6230033B2 (ja) 2017-11-15
TWI580647B (zh) 2017-05-01
EP3088540A1 (en) 2016-11-02
US20160319394A1 (en) 2016-11-03
TW201529488A (zh) 2015-08-01
US10125406B2 (en) 2018-11-13
JPWO2015099189A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6230033B2 (ja) 貴金属の回収方法
Li et al. Low-cost voltammetric sensors for robust determination of toxic Cd (II) and Pb (II) in environment and food based on shuttle-like α-Fe2O3 nanoparticles decorated β-Bi2O3 microspheres
Cai et al. Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR-1
Castro-Longoria et al. Production of platinum nanoparticles and nanoaggregates using Neurospora crassa
Pavani et al. Synthesis of lead nanoparticles by Aspergillus species
Schinner et al. Extraction of zinc from industrial waste by a Penicillium sp
Liermann et al. Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria
Liang et al. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates
CN113293287B (zh) 一种利用微生物浸出风化壳淋积型稀土矿的方法
Elcey et al. Synthesis of magnetite nanoparticles from optimized iron reducing bacteria isolated from iron ore mining sites
JP6586690B2 (ja) 貴金属の回収方法
Chao et al. High aluminum tolerance of Rhodotorula sp. RS1 is associated with thickening of the cell wall rather than chelation of aluminum ions
Chatterjee et al. Bioreduction of chromium (VI) to chromium (III) by a novel yeast strain Rhodotorula mucilaginosa (MTCC 9315)
CN113203732B (zh) 一种基于磁性纳米晶体酶制剂的芳氧苯氧丙酸酯类除草剂比色检测方法
Saitoh et al. Microbial recovery of palladium by baker's yeast through bioreductive deposition and biosorption
JPWO2014178360A1 (ja) 希土類元素を溶出させる能力を有する微生物、希土類元素の溶出方法、希土類元素を固化する能力を有する微生物及び希土類元素の固化方法
Naseri et al. Bioleaching of valuable metals from spent LIBs followed by selective recovery of manganese using the precipitation method: Metabolite maximization and process optimization
Deng et al. Study of characteristics on metabolism of Penicillium chrysogenum F1 during bioleaching of heavy metals from contaminated soil
JP2021141826A (ja) エルゴチオネインの生産方法
Polák et al. Aspergillus niger enhances oxalate production as a response to phosphate deficiency induced by aluminium (III)
Dhanjal et al. Selenite stress elicits physiological adaptations in Bacillus sp.(strain JS-2)
Tsaplina et al. Oxidation of gold-antimony ores by a thermoacidophilic microbial consortium
CN104328073A (zh) 一株产游离葡萄糖醛酸的木糖葡糖醋杆菌
He et al. Resistant rare earth phosphates as possible sources of environmental dissolved rare earth elements: Insights from experimental bio-weathering of xenotime and monazite
JP2016148099A (ja) 微生物を用いた希土類金属の回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15108406

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015555080

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014875501

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014875501

Country of ref document: EP