WO2015098860A1 - 熱交換器および空気調和装置 - Google Patents

熱交換器および空気調和装置 Download PDF

Info

Publication number
WO2015098860A1
WO2015098860A1 PCT/JP2014/083945 JP2014083945W WO2015098860A1 WO 2015098860 A1 WO2015098860 A1 WO 2015098860A1 JP 2014083945 W JP2014083945 W JP 2014083945W WO 2015098860 A1 WO2015098860 A1 WO 2015098860A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
refrigerant
heat exchanger
internal space
header collecting
Prior art date
Application number
PCT/JP2014/083945
Other languages
English (en)
French (fr)
Inventor
智嗣 井上
宏和 藤野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES14873283.7T priority Critical patent/ES2676444T3/es
Priority to US15/108,205 priority patent/US10443944B2/en
Priority to EP14873283.7A priority patent/EP3088832B1/en
Priority to CN201480071204.2A priority patent/CN105849498B/zh
Priority to AU2014371155A priority patent/AU2014371155B2/en
Publication of WO2015098860A1 publication Critical patent/WO2015098860A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0207Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions the longitudinal or transversal partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • the present invention relates to a heat exchanger and an air conditioner.
  • a refrigerant that includes a plurality of flat tubes, fins joined to the plurality of flat tubes, and header collecting tubes respectively connected to one end side and the other end side of the plurality of flat tubes, and flows inside the flat tubes
  • a heat exchanger that exchanges heat with air flowing outside the flat tube is known.
  • the refrigerant can be easily guided upward from the lower part.
  • the refrigerant in a structure in which the refrigerant is not directly supplied to the lower part of the space that generates the refrigerant rising flow inside the header collecting pipe, it is necessary to devise the structure in order to form the rising flow of the refrigerant.
  • the subject of this invention is a structure where a refrigerant
  • Another object of the present invention is to provide a heat exchanger and an air conditioner that can form an upward flow of refrigerant.
  • the heat exchanger includes a plurality of flat tubes, a header collecting tube, and a plurality of fins.
  • Each of the plurality of flat tubes has a plurality of refrigerant passages extending in the longitudinal direction.
  • the plurality of flat tubes are arranged side by side.
  • the header collecting pipe is provided so as to extend along the vertical direction.
  • the plurality of fins are joined to the flat tube.
  • the header collecting pipe has a loop structure.
  • the loop structure includes a first partition member, a second partition member, an inflow port, an upper communication path, and a lower communication path.
  • the first partition member partitions the internal space of the header collecting pipe into an upper internal space and a lower internal space.
  • the second partition member partitions the upper internal space into a first space that is a space for raising the refrigerant and a second space that is a space for lowering the refrigerant when functioning as an evaporator of the refrigerant.
  • the inflow port is provided so as to penetrate in the thickness direction in the lower part of the first space of the first partition member.
  • the upper communication path is located in the upper part of the first space and the second space, and communicates the upper part of the first space and the second space to guide the refrigerant that has risen in the first space to the second space.
  • the lower communication path is located in the lower part of the first space and the second space, communicates the lower part of the first space and the second space, and guides the refrigerant from the second space to the first space.
  • the refrigerant guided to the second space and lowered in the second space is returned from the second space to the first space.
  • One end of the flat tube is connected to either the first space or the second space of the header collecting tube.
  • the inflow piping is connected to the space below the second space in the lower internal space.
  • the internal space of the header collecting pipe is partitioned into the first space and the second space by the partition member, when the refrigerant flowing into the first space from the inlet rises in the first space.
  • the cross-sectional area to pass can be made small compared with the case where 1st space and 2nd space are not partitioned off by the partition member. For this reason, even if the circulation amount of the refrigerant is a low circulation amount, the refrigerant that has flowed into the first space from the inlet can be raised in a narrow space of only the first space.
  • the refrigerant can be easily made to reach the upper part of the internal space of the header collecting pipe without greatly reducing the rising speed of the refrigerant. For this reason, even if the circulation amount of the refrigerant is a low circulation amount, the refrigerant can sufficiently flow through the flat tube.
  • the header collecting pipe has a loop structure including an inlet, a partition member, an upper communication path, and a lower communication path.
  • the refrigerant that has reached the upper portion of the first space passes through the upper communication path, is sent to the second space side, is lowered in the second space, and passes through the lower communication path to pass through the first space. It becomes possible to return downward. For this reason, even when the flow rate of the refrigerant flowing into the first space from the inlet is high and a refrigerant having a large specific gravity tends to gather above the first space as in the case of a high circulation amount, It is possible to sufficiently flow the refrigerant to each flat tube while circulating.
  • the inflow port is the first space in the upper internal space of the first partition member.
  • the structure provided below is adopted.
  • the supply of the refrigerant to the lower internal space is performed by passing through an inflow pipe connected to the space below the second space in the lower internal space. Since it is not directly supplied to the space below the first space on the side where it is provided, the refrigerant supplied to the second space of the lower internal space cannot be directly passed through the inlet of the first partition member.
  • the lower internal space is provided so as to straddle the space below the second space and the space below the first space.
  • the refrigerant supplied to the space below the second space in the lower internal space by passing through the inflow pipe can be sent to the space below the first space in the lower internal space.
  • the refrigerant sent to the space below the first space in the lower internal space is sent to the first space through the inlet of the first partition member, so that the rising flow of the refrigerant in the first space is increased. Can be generated.
  • the refrigerant rises in the first space by passing through the lower internal space even if the refrigerant is not directly supplied to the lower part of the space that causes the refrigerant rising flow inside the header collecting pipe. It is possible to generate a flow.
  • the heat exchanger according to the second aspect is the heat exchanger according to the first aspect, wherein the header collecting pipe is the wall surface on the side where the inflow pipe is connected in the lower internal space, and is the first in the upper internal space. It is provided on the extension of the wall surface on the 2 space side.
  • the upper internal space and the lower internal space are such that the wall surface on the second space side and the wall surface on the side where the inflow pipe is connected to each other in the upper internal space. It is provided so that it may be connected continuously. For this reason, it is possible to easily form the lower internal space simply by partitioning the internal space of the header collecting pipe on one side and the other side in the longitudinal direction by the first partition member.
  • the heat exchanger according to the third aspect is a heat exchanger according to the first aspect or the second aspect, and one end of the flat tube is connected to the first space of the header collecting pipe.
  • the inside of the header collecting pipe is partitioned by the second partition member, so that the first space in which the refrigerant rises is elongated vertically. For this reason, even when the rising speed of the refrigerant in the first space is low, the refrigerant can sufficiently flow through the flat tube connected above the first space. In addition, when the rising speed of the refrigerant in the first space is high, the refrigerant easily reaches the upper side of the first space by vigorously passing the side of the flat tube located below the first space.
  • the refrigerant can sufficiently flow through the flat tube connected to the upper side of the first space, and the refrigerant that descends the second space after reaching the upper side returns to the first space again, the first The refrigerant can be sufficiently supplied to the flat tube connected to the lower part of the space. Thereby, the drift of a refrigerant
  • coolant can be suppressed more reliably.
  • the air conditioner according to the fourth aspect includes a refrigerant circuit.
  • the refrigerant circuit is configured by connecting the heat exchanger according to any one of the first to third aspects and a variable capacity compressor.
  • the lower internal space can be easily formed simply by partitioning the internal space of the header collecting pipe on the one side and the other side in the longitudinal direction by the first partition member.
  • the air conditioner according to the fourth aspect even when the heat exchanger functions as an evaporator, the amount of refrigerant passing therethrough increases and the mixing ratio of the liquid-phase refrigerant increases or the flow velocity increases. In addition, it is possible to reduce the drift of the refrigerant in the heat exchanger.
  • summary of a structure of the air conditioning apparatus which concerns on one Embodiment.
  • the perspective view which shows the external appearance of an air-conditioning outdoor unit.
  • the external appearance schematic perspective view which shows an outdoor heat exchanger, gas refrigerant
  • the typical rear view which shows schematic structure of an outdoor heat exchanger.
  • the schematic perspective view which shows the attachment state of the heat-transfer fin in an outdoor heat exchanger.
  • FIG. 3 is a schematic cross-sectional view of the vicinity of a first internal space of a folded header collecting pipe.
  • FIG. 6 is a schematic cross-sectional view of the vicinity of a third internal space of the folded header collecting pipe. Explanatory drawing which shows the refrigerant
  • FIG. 1 is a circuit diagram showing an outline of a configuration of an air conditioner 1 according to an embodiment of the present invention.
  • the air conditioner 1 is an apparatus used for air conditioning in a building in which the air conditioning indoor unit 3 is installed by performing a vapor compression refrigeration cycle operation, and uses the air conditioning outdoor unit 2 as a heat source side unit,
  • the air conditioning indoor unit 3 as a side unit is connected by refrigerant communication pipes 6 and 7.
  • the refrigerant circuit configured by connecting the air-conditioning outdoor unit 2, the air-conditioning indoor unit 3, and the refrigerant communication pipes 6 and 7 includes a compressor 91, a four-way switching valve 92, an outdoor heat exchanger 20, an expansion valve 33, and indoor heat.
  • the exchanger 4 and the accumulator 93 are connected by a refrigerant pipe.
  • a refrigerant is sealed in the refrigerant circuit, and a refrigeration cycle operation is performed in which the refrigerant is compressed, cooled, decompressed, heated and evaporated, and then compressed again.
  • the refrigerant for example, one selected from R410A, R32, R407C, R22, R134a, carbon dioxide, and the like is used.
  • Air conditioning indoor unit 3 The air conditioning indoor unit 3 is installed on the wall surface of the room by wall hanging or the like, or embedded or suspended in the ceiling of a room such as a building.
  • the air conditioning indoor unit 3 has an indoor heat exchanger 4 and an indoor fan 5.
  • the indoor heat exchanger 4 is, for example, a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation to cool indoor air. In the heating operation, the heat exchanger functions as a refrigerant condenser and heats indoor air.
  • Air conditioning outdoor unit 2 The air conditioning outdoor unit 2 is installed outside a building or the like, and is connected to the air conditioning indoor unit 3 via the refrigerant communication pipes 6 and 7. As shown in FIGS. 2 and 3, the air-conditioning outdoor unit 2 has a substantially rectangular parallelepiped unit casing 10.
  • the air conditioner outdoor unit 2 has a structure in which the blower chamber S ⁇ b> 1 and the machine chamber S ⁇ b> 2 are formed by dividing the internal space of the unit casing 10 into two by a partition plate 18 extending in the vertical direction. (So-called trunk type structure).
  • the air conditioner outdoor unit 2 includes an outdoor heat exchanger 20 and an outdoor fan 95 disposed in the blower chamber S1 of the unit casing 10, and includes a compressor 91 and four compressors disposed in the machine chamber S2 of the unit casing 10.
  • a path switching valve 92, an accumulator 93, an expansion valve 33, a gas refrigerant pipe 31, and a liquid refrigerant pipe 32 are provided.
  • the unit casing 10 includes a bottom plate 12, a top plate 11, a side plate 13 on the blower chamber side, a side plate 14 on the machine chamber side, a front plate 15 on the blower chamber side, and a front plate 16 on the machine chamber side. Make up body.
  • the air conditioner outdoor unit 2 is configured to suck outdoor air into the blower chamber S ⁇ b> 1 in the unit casing 10 from a part of the back surface and side surface of the unit casing 10, and blow out the sucked outdoor air from the front surface of the unit casing 10.
  • the suction port 10a and the suction port 10b with respect to the blower chamber S1 in the unit casing 10 include an end portion on the back side of the side plate 13 on the blower chamber side and an end portion on the blower chamber S1 side of the side plate 14 on the machine chamber side. And is formed over.
  • the blower outlet 10c is provided in the fan chamber side front board 15, The front side is covered with the fan grill 15a.
  • the compressor 91 is a hermetic compressor driven by a compressor motor, for example, and is configured to be able to change the operating capacity by inverter control.
  • the four-way switching valve 92 is a mechanism for switching the direction of refrigerant flow. During the cooling operation, the four-way switching valve 92 connects the refrigerant pipe on the discharge side of the compressor 91 and the gas refrigerant pipe 31 extending from one end (gas side end) of the outdoor heat exchanger 20, and via the accumulator 93. Then, the refrigerant communication pipe 7 for the gas refrigerant and the refrigerant pipe on the suction side of the compressor 91 are connected (see the solid line of the four-way switching valve 92 in FIG. 1).
  • the four-way switching valve 92 connects the refrigerant pipe on the discharge side of the compressor 91 and the refrigerant communication pipe 7 for the gas refrigerant, and also connects the suction side and the outdoor heat of the compressor 91 via the accumulator 93.
  • a gas refrigerant pipe 31 extending from one end (gas side end) of the exchanger 20 is connected (see the broken line of the four-way switching valve 92 in FIG. 1).
  • the outdoor heat exchanger 20 is arranged upright in the blower chamber S1 in the vertical direction (vertical direction) and faces the suction ports 10a and 10b.
  • the outdoor heat exchanger 20 is an aluminum heat exchanger, and in this embodiment, the one having a design pressure of about 3 MPa to 4 MPa is used.
  • the gas refrigerant pipe 31 extends from one end (gas side end) so as to be connected to the four-way switching valve 92.
  • the liquid refrigerant pipe 32 extends from the other end (liquid side end) of the outdoor heat exchanger 20 so as to be connected to the expansion valve 33.
  • the accumulator 93 is connected between the four-way switching valve 92 and the compressor 91.
  • the accumulator 93 has a gas-liquid separation function that divides the refrigerant into a gas phase and a liquid phase.
  • the refrigerant flowing into the accumulator 93 is divided into a liquid phase and a gas phase, and the gas phase refrigerant that collects in the upper space is supplied to the compressor 91.
  • the outdoor fan 95 supplies outdoor air to the outdoor heat exchanger 20 for heat exchange with the refrigerant flowing through the outdoor heat exchanger 20.
  • the expansion valve 33 is a mechanism for decompressing the refrigerant in the refrigerant circuit, and is an electric valve capable of adjusting the opening.
  • the expansion valve 33 is provided between the outdoor heat exchanger 20 and the refrigerant communication pipe 6 for liquid refrigerant in order to adjust the refrigerant pressure and the refrigerant flow rate, and allows the refrigerant to be used in both the cooling operation and the heating operation. Has the function of expanding.
  • the outdoor fan 95 is disposed in the blower chamber S1 so as to face the outdoor heat exchanger 20.
  • the outdoor fan 95 sucks outdoor air into the unit, causes the outdoor heat exchanger 20 to perform heat exchange between the refrigerant and the outdoor air, and then discharges the air after heat exchange to the outside.
  • the outdoor fan 95 is a fan capable of changing the air volume of air supplied to the outdoor heat exchanger 20, and is, for example, a propeller fan driven by a motor such as a DC fan motor.
  • the low-pressure gas refrigerant is compressed by the compressor 91 to become a high-pressure gas refrigerant.
  • This high-pressure gas refrigerant is sent to the outdoor heat exchanger 20 via the four-way switching valve 92. Thereafter, the high-pressure gas refrigerant is condensed in the outdoor heat exchanger 20 by exchanging heat with the outdoor air supplied by the outdoor fan 95 to become a high-pressure liquid refrigerant. Then, the high-pressure liquid refrigerant in a supercooled state is sent from the outdoor heat exchanger 20 to the expansion valve 33.
  • the refrigerant that has been decompressed to near the suction pressure of the compressor 91 by the expansion valve 33 and is in a low-pressure gas-liquid two-phase state is sent to the indoor heat exchanger 4 and performs heat exchange with indoor air in the indoor heat exchanger 4. Evaporates into a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sent to the air-conditioning outdoor unit 2 via the refrigerant communication pipe 7 and again sucked into the compressor 91.
  • the air conditioner 1 uses the outdoor heat exchanger 20 as the refrigerant condenser compressed in the compressor 91 and the indoor heat exchanger 4 as the refrigerant condensed in the outdoor heat exchanger 20. To function as an evaporator.
  • the compressor 91 In the refrigerant circuit during the cooling operation, the compressor 91 is inverter-controlled so as to reach the set temperature (so that the cooling load can be processed) while the superheat degree control of the expansion valve 33 is performed. There are cases where the circulation rate is high and the circulation rate is low.
  • the four-way switching valve 92 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 91 is connected to the gas side of the indoor heat exchanger 4 via the refrigerant communication pipe 7. And the suction side of the compressor 91 is connected to the gas side of the outdoor heat exchanger 20 via the gas refrigerant pipe 31.
  • the opening of the expansion valve 33 is adjusted so that the degree of supercooling of the refrigerant at the outlet of the indoor heat exchanger 4 becomes constant at the target value of the degree of supercooling (supercooling degree control).
  • the compressor 91, the outdoor fan 95, and the indoor fan 5 are operated in the state of this refrigerant circuit, the low-pressure gas refrigerant is sucked into the compressor 91 and compressed to become a high-pressure gas refrigerant, and the four-way switching valve 92, And it is sent to the air conditioning indoor unit 3 via the refrigerant communication pipe 7.
  • the high-pressure gas refrigerant sent to the air conditioning indoor unit 3 undergoes heat exchange with the indoor air in the indoor heat exchanger 4 to condense into a high-pressure liquid refrigerant, and then passes through the expansion valve 33. Furthermore, the pressure is reduced according to the opening degree of the expansion valve 33.
  • the refrigerant that has passed through the expansion valve 33 flows into the outdoor heat exchanger 20.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 20 exchanges heat with the outdoor air supplied by the outdoor fan 95 to evaporate into a low-pressure gas refrigerant. Then, the air is sucked into the compressor 91 again.
  • the air conditioner 1 uses the indoor heat exchanger 4 as a refrigerant condenser compressed in the compressor 91 and the outdoor heat exchanger 20 as a refrigerant condensed in the indoor heat exchanger 4. To function as an evaporator.
  • the compressor 91 In the refrigerant circuit during the heating operation, the compressor 91 is inverter-controlled so that the set temperature is reached (so that the heating load can be processed) while the degree of supercooling of the expansion valve 33 is being controlled. There are cases where the circulation amount of the refrigerant becomes high and the circulation amount becomes low.
  • FIG. 4 showing a schematic perspective view of the exterior of the outdoor heat exchanger 20, FIG.
  • the configuration of the outdoor heat exchanger 20 will be described in detail with reference to FIG. 5 showing a rear view and FIG. 6 which is a schematic rear view.
  • the outdoor heat exchanger 20 includes a heat exchanging unit 21 that exchanges heat between outdoor air and refrigerant, an inlet / outlet header collecting pipe 22 provided on one end side of the heat exchanging unit 21, and other heat exchanging units 21. And a folded header collecting pipe 23 provided on the end side.
  • FIG. 7 is a partially enlarged view showing a cross-sectional structure in a plane perpendicular to the flat direction of the flat multi-hole tube 21b of the heat exchange section 21 of the outdoor heat exchanger 20.
  • FIG. 8 is a schematic perspective view showing a mounting state of the heat transfer fins 21 a in the outdoor heat exchanger 20.
  • the heat exchanging unit 21 has an upper heat exchange region X located on the upper side and a lower heat exchange region Y located below the upper heat exchange region X.
  • the upper heat exchange region X includes a first upper heat exchange part X1, a second upper heat exchange part X2, and a third upper heat exchange part X3 arranged in order from the top.
  • the lower heat exchange region Y includes a first lower heat exchange unit Y1, a second lower heat exchange unit Y2, and a third lower heat exchange unit Y3 arranged in order from the top. .
  • the heat exchanging portion 21 is composed of a large number of heat transfer fins 21a and a large number of flat multi-hole tubes 21b.
  • the heat transfer fins 21a and the flat multi-hole tube 21b are both made of aluminum or an aluminum alloy.
  • the heat transfer fins 21a are flat plate members, and each heat transfer fin 21a has a plurality of notches 21aa for inserting a flat tube extending in the horizontal direction.
  • the heat transfer fins 21a are attached so as to have countless portions protruding toward the upstream side of the air flow.
  • the flat multi-hole tube 21b functions as a heat transfer tube, and transfers heat moving between the heat transfer fins 21a and outdoor air to the refrigerant flowing inside.
  • the flat multi-hole tube 21b has upper and lower flat portions serving as heat transfer surfaces and a plurality of internal flow paths 21ba through which the refrigerant flows.
  • the flat multi-hole tubes 21b that are slightly thicker than the upper and lower widths of the cutouts 21aa are arranged in a plurality of stages at intervals with the plane portion facing up and down, and are temporarily fixed in a state of being fitted into the cutouts 21aa.
  • the heat transfer fin 21a and the flat multi-hole tube 21b are brazed in a temporarily fixed state in which the flat multi-hole tube 21b is fitted in the notch 21aa of the heat transfer fin 21a. Further, both ends of each flat multi-hole tube 21b are fitted and brazed into the inlet / outlet header collecting tube 22 and the folded header collecting tube 23, respectively. Therefore, the upper and lower inner spaces 22a and 22b and the first to sixth inner spaces 23a, 23b, 23c, 23d, 23e, and 23f of the folded header collecting tube 23, which will be described later, are flat.
  • the internal channel 21ba of the multi-hole tube 21b is connected.
  • the entrance / exit header collecting pipe 22 is a tubular member made of aluminum or aluminum alloy that is provided on one end side of the heat exchange section 21 and extends in the vertical direction.
  • the entrance / exit header collecting pipe 22 has an upper entrance / exit interior space 22a and a lower entrance / exit interior space 22b partitioned in the vertical direction by a first baffle 22c.
  • a gas refrigerant pipe 31 is connected to the upper upper inlet / outlet inner space 22a, and a liquid refrigerant pipe 32 is connected to the lower lower inlet / outlet inner space 22b.
  • one end of a plurality of flat multi-hole pipes 21b is connected to both the upper inlet / outlet inner space 22a at the upper part of the inlet / outlet header collecting pipe 22 and the lower lower inlet / outlet inner space 22b.
  • the first upper heat exchange part X1, the second upper heat exchange part X2, and the third upper heat exchange part X3 in the upper heat exchange region X are placed in the upper inlet / outlet inner space 22a above the inlet / outlet header collecting pipe 22. It is provided to correspond.
  • first lower heat exchange part Y1, the second lower heat exchange part Y2, and the third lower heat exchange part Y3 in the lower heat exchange region Y are arranged in a lower entrance / exit internal space 22b below the entrance / exit header collecting pipe 22. It is provided to correspond to.
  • the folded header collecting pipe 23 is a tubular member made of aluminum or aluminum alloy that is provided on the other end side of the heat exchange section 21 and extends in the vertical direction.
  • the inside of the folded header collecting pipe 23 is partitioned in the vertical direction by the second baffle 23g, the third baffle 23h, the third baffle plate 43, the fourth baffle 23i, and the fifth baffle 23j, and the first to sixth inner spaces 23a, 23b, 23c, 23d, 23e, and 23f are formed.
  • the three first to third inner spaces 23a, 23b, and 23c of the folded header collecting pipe 23 have a large number of flattened one ends connected to the upper inlet / outlet inner space 22a above the inlet / outlet header collecting pipe 22.
  • the other end of the hole tube 21b is connected. That is, the second upper heat exchange part X2 of the upper heat exchange region X is the folded header set so that the first upper heat exchange part X1 of the upper heat exchange region X corresponds to the first internal space 23a of the folded header collecting pipe 23.
  • the third upper heat exchange part X3 of the upper heat exchange region X is provided so as to correspond to the first inner space 23c of the folded header collecting pipe 23 so as to correspond to the second inner space 23b of the pipe 23. .
  • the three fourth inner spaces 23d, 23e, 23f of the folded header collecting pipe 23 have a number of flat multi-hole pipes 21b whose one ends are connected to the lower inlet / outlet inner space 22b below the inlet / outlet header collecting pipe 22. The other end is connected. That is, the first lower heat exchanging portion Y1 in the lower heat exchanging region Y corresponds to the fourth inner space 23d of the folded header collecting pipe 23, and the second lower heat exchanging portion Y2 in the lower heat exchanging region Y. So as to correspond to the fifth internal space 23e of the folded header collecting pipe 23, so that the third lower heat exchange portion Y3 of the lower heat exchange region Y corresponds to the sixth inner space 23f of the folded header collecting pipe 23. , Each provided.
  • the uppermost first internal space 23 a and the lowermost sixth internal space 23 f of the folded header collecting pipe 23 are connected by a connecting pipe 24.
  • the second internal space 23b at the second level from the top and the fifth internal space 23e at the second level from the bottom are connected by a connecting pipe 25.
  • the third internal space 23c at the third level from the top and the fourth internal space 23d at the third level from the bottom are partitioned by the third current plate 43, but the third internal space 23c provided at the third current plate 43 is provided. It has a part which communicated up and down via the inflow port 43x.
  • the number of flat multi-hole pipes 21 b into which the refrigerant flowing through the connecting pipe 24 in the first inner space 23 a of the folded header collecting pipe 23 is diverted is lower in the lower inlet / outlet inner space 22 b below the inlet / outlet header collecting pipe 22.
  • the refrigerant flowing through the refrigerant pipe 32 is divided and is configured to be larger than the number of flat multi-hole tubes 21b that lead to the sixth internal space 23f (the flat inner spaces of the second internal space 23b and the fifth internal space 23e). The same applies to the relationship between the number of hole tubes 21b and the number of flat multi-hole tubes 21b in the third internal space 23c and the fourth internal space 23d).
  • the number of flat multi-hole tubes 21b connected to the first internal space 23a and the second internal space 23b are connected.
  • the number of the flat multi-hole pipes 21b and the number of flat multi-hole pipes 21b connected to the third internal space 23c are substantially the same.
  • a difference may be provided in order to optimize the refrigerant distribution state, but in the present embodiment, the number of flat multi-hole tubes 21b connected to the fourth internal space 23d and the fifth internal space
  • the number of flat multi-hole tubes 21b connected to 23e and the number of flat multi-hole tubes 21b connected to the sixth internal space 23f are substantially the same.
  • FIG. 9 a schematic perspective view, a schematic cross-sectional view of FIG.
  • a first rectifying plate 41 and a first partition plate 51 are provided.
  • the first rectifying plate 41 divides the first internal space 23a into a lower first rectifying space 41a, an upper first outflow space 51a, and a first loop space 51b. It is.
  • the first rectifying space 41a is a space above the second baffle 23g that partitions the first internal space 23a and the second internal space 23b, and from the flat multi-hole tube 21b immediately above the second baffle 23g. Is a space below the first rectifying plate 41 provided at a lower position.
  • the first rectifying space 41a communicates with a connecting pipe 24 extending from the lowermost sixth inner space 23f of the folded header collecting pipe 23.
  • the wall surface (circumferential surface) on the side of the first rectifying space 41a below the first rectifying plate 41 to which the connecting pipe 24 is connected is an extension of the wall surface (circumferential surface) on the first loop space 51b side. Is located. That is, the wall surface (circumferential surface) on the side where the connecting pipe 24 is connected in the first rectifying space 41a below the first rectifying plate 41 and the wall surface (circumferential surface) on the first loop space 51b side are Also constitutes the peripheral surface of the folded header collecting pipe 23.
  • the first partition plate 51 partitions a space above the first rectifying space 41a in the first internal space 23a into a first outflow space 51a and a first loop space 51b, and is a substantially square plate shape. It is a member.
  • the first partition plate 51 in the present embodiment is provided at the center of the first internal space 23a, so that the space above the first rectifying space 41a is changed to the first outflow space 51a.
  • the first loop space 51b are partitioned so as to have the same size in a top view.
  • the first partition plate 51 is fixed so that its side surface is in contact with the inner peripheral surface of the folded header collecting pipe 23.
  • the first outflow space 51a is a space on the side to which one end of the flat multi-hole tube 21b is connected in the first internal space 23a.
  • the first loop space 51b is a space on the opposite side to the first outflow space 51a side with respect to the first partition plate 51 in the first internal space 23a.
  • first upper communication path 51x configured by a vertical gap between the inner side of the upper end of the folded header collecting pipe 23 and the upper end portion of the first partition plate 51. It has been.
  • a first lower communication path 51y configured by a vertical gap between the upper surface of the first rectifying plate 41 and the lower end portion of the first partition plate 51 is provided.
  • the first lower communication passage 51y extends in the horizontal direction from the first loop space 51b side toward the first outflow space 51a side. Further, the outlet of the first lower communication passage 51y on the first outflow space 51a side is located further below the lowermost one of the flat multi-hole tubes 21b connected to the first outflow space 51a. ing.
  • the first rectifying plate 41 has a vertical direction provided in a first outflow space 51a that is a space on the side where the flat multi-hole tube 21b extends out of the first internal space 23a.
  • Two first inflow ports 41x which are openings communicating with each other, are provided.
  • the two first inflow ports 41x are provided apart on the upstream side and the downstream side in the air flow direction in which the air flows into the outdoor heat exchanger 20.
  • the first inflow port 41x is formed such that the closer to the first partition plate 51 side, the wider the air flow direction, and the closer to the flat multi-hole tube 21b side, the narrower the air flow direction width.
  • the first inflow port 41 x has a shape along the inner peripheral surface of the folded header collecting pipe 23.
  • the first rectifying space 41a is provided so as to connect the position where the outlet on the first rectifying space 41a side of the connecting pipe 24 is connected to the position below the first inlet 41x of the first rectifying plate 41. It has been.
  • the first internal space 23a has a refrigerant passage area (horizontal area) at the first inlet 41x that is sufficiently smaller than the refrigerant passage area of the first rectification space 41a (horizontal area of the first rectification space 41a). It has a rectifying structure. With this rectifying structure, the refrigerant flow from the first rectifying space 41a toward the first outflow space 51a can be sufficiently narrowed, and the flow velocity of the refrigerant moving vertically upward can be increased.
  • the space above the first rectifying plate 41 in the first internal space 23a is partitioned by the first partition plate 51, so that the refrigerant passage area on the first outflow space 51a side (inside the first outflow space 51a rises).
  • the refrigerant flow passage area) can be made smaller than the total horizontal area of the first outflow space 51a and the first loop space 51b. Accordingly, it is possible to easily maintain the rising speed of the refrigerant that has flowed into the first outflow space 51a via the first inflow port 41x, and the refrigerant can reach the upper portion of the first outflow space 51a even under a low circulation amount. Make it easy to reach.
  • the flat multi-hole tube 21b fills more than half of the horizontal area at the height position where the flat multi-hole tube 21b of the first outflow space 51a does not exist. It is embedded in the first outflow space 51a. And the flat multi-hole pipe 21b and the 1st inflow port 41x of the 1st baffle plate 41 are arrange
  • the refrigerant that has flowed into the first outflow space 51a via the first inflow port 41x is not allowed to pass through the first lower communication path 51y, which is more difficult to pass through, toward the first loop space 51b side. It is possible to guide the first outflow space 51a, which is easy to pass widely, to the portion excluding the flat multi-hole tube 21b.
  • the first internal space 23a has a loop structure including the first inflow port 41x, the first partition plate 51, the first upper communication path 51x, and the first lower communication path 51y. Therefore, the refrigerant that has reached the upper side without flowing into the flat multi-hole tube 21b in the first outflow space 51a passes through the first upper communication passage 51x above the first partition plate 51, as shown by the arrow in FIG. To the first loop space 51b, descends according to gravity in the first loop space 51b, and returns to the lower side of the first outflow space 51a via the first lower communication passage 51y below the first partition plate 51. In this way, the refrigerant that has reached the upper side of the first outflow space 51a can be looped in the first inner space 23a.
  • Second internal space 23b The second internal space 23b second from the top of the folded header collecting pipe 23 has the same configuration as that of the uppermost first internal space 23a, and is shown in FIGS. 6 and 12 respectively.
  • the 2nd baffle plate 42 and the 2nd partition plate 52 are provided.
  • the second rectifying plate 42 divides the second internal space 23b into a lower second rectifying space 42a, an upper second outflow space 52a, and a second loop space 52b. It is.
  • the second rectifying space 42a is a space above the third baffle 23h that partitions the second internal space 23b and the third internal space 23c, and from the flat multi-hole tube 21b directly above the third baffle 23h. Is a space below the second rectifying plate 42 provided at a lower position.
  • the second rectifying space 42a communicates with a communication pipe 25 extending from the second fifth inner space 23e from the bottom of the folded header collecting pipe 23.
  • the wall surface (circumferential surface) of the second rectifying space 42a below the second rectifying plate 42 to which the connecting pipe 25 is connected is an extension of the wall surface (circumferential surface) of the second loop space 52b. Is located. That is, the wall surface (circumferential surface) on the side where the connecting pipe 25 is connected in the second rectifying space 42a below the second rectifying plate 42 and the wall surface (circumferential surface) on the second loop space 52b side are either Also constitutes the peripheral surface of the folded header collecting pipe 23.
  • the second partition plate 52 divides a space above the second rectifying space 42a in the second internal space 23b into a second outflow space 52a and a second loop space 52b, and is a substantially square plate shape. It is a member.
  • the second outflow space 52a is a space on the side to which one end of the flat multi-hole tube 21b is connected in the second internal space 23b.
  • the second loop space 52b is a space on the opposite side to the second outflow space 52a side with respect to the second partition plate 52 in the second internal space 23b.
  • a second upper communication path 52x configured by a vertical gap between the lower surface of the second baffle 23g and the upper end portion of the second partition plate 52 is provided.
  • a second lower communication passage 52y configured by a vertical gap between the upper surface of the second rectifying plate 42 and the lower end portion of the second partition plate 52 is provided. Yes.
  • the second lower communication passage 52y extends in the horizontal direction from the second loop space 52b side toward the second outflow space 52a side.
  • the outlet on the second outflow space 52a side of the second lower communication passage 52y is positioned further below the lowermost flat multi-hole tube 21b connected to the second outflow space 52a.
  • the second rectifying plate 42 is an opening that is provided on the side of the second internal space 23b where the flat multi-hole tube 21b extends and communicates in the vertical direction. Two two inflow ports 42x are provided.
  • the second rectifying space 42a is provided so as to connect the position where the outlet on the second rectifying space 42a side of the connecting pipe 25 is connected to the position below the second inlet 42x of the second rectifying plate 42. It has been.
  • the second inlet of the second rectifying plate 42 is provided. It is possible to guide the refrigerant below 42x and pass the second inlet 42x upward.
  • the refrigerant passage area (horizontal area) at the second inlet 42x is set to the refrigerant passage area (second rectification space 42a) of the second rectification space 42a.
  • the rectifying structure is sufficiently smaller than the horizontal plane area).
  • the second internal space 23b includes a second inlet 42x, a second partition plate 52, a second upper communication path 52x, and a second lower communication path 52y. It has a loop structure.
  • the third rectifying plate 43 divides the third inner space 23c into a third inner space 23d (a space located below) that is third from the bottom of the folded header collecting pipe 23, and a third located above.
  • This is a substantially disk-shaped plate member that is partitioned into the outflow space 53a and the third loop space 53b.
  • the third partition plate 53 partitions a space above the fourth internal space 23d in the third internal space 23c into a third outflow space 53a and a third loop space 53b, and is a substantially square plate shape. It is a member.
  • the third outflow space 53a is a space on the side where one end of the flat multi-hole tube 21b is connected in the third internal space 23c.
  • the third loop space 53b is a space on the opposite side to the third outflow space 53a side with respect to the third partition plate 53 in the third internal space 23c.
  • a third upper communication path 53x configured by a vertical gap between the lower surface of the third baffle 23h and the upper end portion of the third partition plate 53 is provided.
  • a third lower communication path 53y configured by a vertical gap between the upper surface of the third rectifying plate 43 and the lower end portion of the third partition plate 53 is provided.
  • the third lower communication passage 53y extends in the horizontal direction from the third loop space 53b side toward the third outflow space 53a side.
  • the outlet on the third outflow space 53a side of the third lower communication passage 53y is located further below the lowermost one of the flat multi-hole tubes 21b connected to the third outflow space 53a.
  • the third rectifying plate 43 is provided on the side where the flat multi-hole tube 21b extends from the third internal space 23c in the vertical direction.
  • Two third inflow ports 43x which are communication openings are provided.
  • the refrigerant passage area (the area of the horizontal plane) at the third inlet 43x is set to the refrigerant passage area of the fourth internal space 23d. It has a rectifying structure that is sufficiently smaller than (the area of the horizontal plane of the fourth internal space 23d).
  • the third internal space 23c is, like the first internal space 23a and the second internal space 23b, the third inflow port 43x, the third partition plate 53, the third upper communication passage 53x, and the third lower connection. And a loop structure including the passage 53y.
  • the details of the arrangement configuration other than the first rectifying space 41a and the second rectifying space 42a are the same as those of the first internal space 23a and the second internal space 23b, and thus will be omitted.
  • the gas-liquid two-phase refrigerant is supplied to the lower inlet / outlet inner space 22 b below the inlet / outlet header collecting pipe 22 via the liquid refrigerant pipe 32.
  • the state of the refrigerant flowing into the lower inlet / outlet internal space 22b is assumed to be a gas-liquid two-phase refrigerant in the description of the present embodiment. However, depending on the outside air temperature, the room temperature, and the operating state, the state is substantially different. A liquid single-phase refrigerant may flow in.
  • the refrigerant supplied to the lower inlet / outlet inner space 22b at the lower part of the inlet / outlet header collecting pipe 22 passes through the plurality of flat multi-hole pipes 21b at the lower part of the heat exchanging part 21 connected to the lower inlet / outlet inner space 22b to return the header. These are supplied to the three fourth internal spaces 23d, 23e, and 23f below the collecting pipe 23, respectively. Note that the refrigerant supplied to the three fourth to sixth inner spaces 23d, 23e, and 23f below the folded header collecting pipe 23 passes through the flat multi-hole pipe 21b below the heat exchanging portion 21. A part of the liquid phase component of the refrigerant in the liquid two-phase state evaporates, so that the gas phase component is increased.
  • the refrigerant supplied to the sixth inner space 23f below the folded header collecting pipe 23 passes through the connecting pipe 24 and enters the first rectifying space 41a in the first inner space 23a above the folded header collecting pipe 23. Supplied.
  • the refrigerant supplied to the first rectifying space 41a in the first internal space 23a flows through the first rectifying space 41a and is sent to the lower side of the first inlet 41x of the first rectifying plate 41.
  • the refrigerant that has reached the lower side of the first inlet 41x of the first rectifying plate 41 passes upward through the first inlet 41x and is supplied to the first outlet space 51a.
  • the refrigerant supplied to the first outflow space 51a flows into each of the plurality of flat multi-hole tubes 21b (how to flow the refrigerant in the first internal space 23a will be described later).
  • the refrigerant that has flowed through the plurality of flat multi-hole tubes 21b is further evaporated to be in a gas phase state, and is supplied to the upper inlet / outlet inner space 22a above the inlet / outlet header collecting pipe 22.
  • the refrigerant supplied to the fifth inner space 23e below the folded header collecting pipe 23 passes through the connecting pipe 25 and enters the second rectifying space 42a in the second inner space 23b above the folded header collecting pipe 23. Supplied.
  • the refrigerant supplied to the second rectification space 42a in the second internal space 23b flows through the second rectification space 42a and is sent to the lower side of the second inlet 42x of the second rectification plate 42.
  • the refrigerant that has reached the lower side of the second inlet 42x of the second rectifying plate 42 passes upward through the second inlet 42x and is supplied to the second outlet space 52a.
  • the refrigerant supplied to the second outflow space 52a flows into each of the plurality of flat multi-hole tubes 21b (however, the refrigerant flows in the second internal space 23b will be described later).
  • the refrigerant that has flowed through the plurality of flat multi-hole tubes 21b is further evaporated to be in a gas phase state, and is supplied to the upper inlet / outlet inner space 22a above the inlet / outlet header collecting pipe 22.
  • the refrigerant supplied to the fourth inner space 23d below the folded header collecting pipe 23 passes through the third inlet 43x provided in the third rectifying plate 43 vertically upward, and the upper part of the folded header collecting pipe 23 To the internal space of the third internal space 23c.
  • the refrigerant supplied to the third internal space 23c flows into each of the plurality of flat multi-hole tubes 21b connected to the third internal space 23c (how to flow of the refrigerant in the third internal space 23c). Will be described later.)
  • the refrigerant that has flowed through the plurality of flat multi-hole tubes 21b is further evaporated to be in a gas phase state, and is supplied to the upper inlet / outlet inner space 22a above the inlet / outlet header collecting pipe 22.
  • the refrigerant flow is opposite to the flow indicated by the arrows in FIG.
  • the refrigerant flowing into the lower inlet / outlet inner space 22b of the inlet / outlet header collecting pipe 22 is decompressed by the expansion valve 33, and is in a gas-liquid two-phase state.
  • a part of the liquid phase component of the gas-liquid two-phase refrigerant that has flowed into the first internal space 23 a of the folded header collecting pipe 23 is returned from the lower inlet / outlet inner space 22 b of the inlet / outlet header collecting pipe 22. It evaporates when it passes through the flat multi-hole tube 21b toward the sixth internal space 23f of 23. For this reason, the refrigerant that passes through the connecting pipe 24 and flows into the first internal space 23a of the folded header collecting pipe 23 is in a state where gas phase components and liquid phase components having different specific gravity are mixed.
  • the gas phase component having a small specific gravity is contained in the refrigerant with respect to one end side of the flat multi-hole tube 21 b disposed relatively upward.
  • the refrigerant flowing out from the other end side of the flat multi-hole tube 21b has an excessively high degree of superheat, and no phase change occurs while passing through the flat multi-hole tube 21b. It will not be able to fully demonstrate.
  • the outdoor heat exchanger 20 of the present embodiment when the refrigerant supplied to the first rectifying space 41a passes through the first inflow port 41x having the throttle function of the first rectifying plate 41, it is vertical. The flow velocity of the refrigerant flow going upward is increased. Moreover, the space above the first rectifying plate 41 in the first internal space 23a is provided with the first partition plate 51, so that the space on the side where the first inflow port 41x is provided (first outflow space 51a). Since the refrigerant passage area is configured to be narrower than that in the case where the first partition plate 51 is not provided, the rising speed is unlikely to decline. For this reason, even in the case of a low circulation amount, the liquid phase component having a large specific gravity among the refrigerant can be easily guided to the upper side in the first outflow space 51a.
  • the refrigerant that has flowed into the first outflow space 51a through the first inflow port 41x is diverted to each flat multi-hole tube 21b while rising in the first outflow space 51a.
  • the small amount of refrigerant is guided to the upper end of the first outflow space 51a without flowing into the flat multi-hole tube 21b.
  • the refrigerant that has reached the upper end of the first outflow space 51a in this way is guided to the first loop space 51b via the first upper communication path 51x, and descends by gravity in the first loop space 51b.
  • the refrigerant descending the first loop space 51b flows in the horizontal direction while passing through the first lower communication passage 51y extending in the horizontal direction, and is returned again to the lower side of the first outflow space 51a.
  • the refrigerant returned to the first outflow space 51a through the first lower communication passage 51y is again dragged by the rising flow of the refrigerant that has passed through the first inflow port 41x, and then rises in the first outflow space 51a again. In some cases, after circulating in the first internal space 23a again, it can be caused to flow into the flat multi-hole tube 21b.
  • the second internal space 23b of the folded header collecting pipe 23 is the same as the first internal space 23a, and thus the description thereof is omitted.
  • the third internal space 23c of the folded header collecting pipe 23 is provided with a structure corresponding to the first rectifying space 41a and the second rectifying space 42a, unlike the first internal space 23a and the second internal space 23b. Therefore, the effects obtained by these structures do not occur, but the other points are the same, and the description is omitted.
  • the refrigerant flow in the outdoor heat exchanger 20 in the case of a high circulation amount during heating operation is hereinafter referred to as a folded header set.
  • the first internal space 23a of the tube 23 will be described as an example.
  • the refrigerant flowing into the first internal space 23a of the folded header collecting pipe 23 is in a state where gas phase components and liquid phase components having different specific gravities are mixed, as in the case of the low circulation amount. .
  • the amount of refrigerant per unit time flowing into the first rectifying space 41a via the connecting pipe 24 is large, and the flow rate of the refrigerant flowing through the outlet of the connecting pipe 24 is relatively fast.
  • the flow velocity can be further increased by adopting the throttling function of the first inflow port 41x as a measure against the low circulation rate described above.
  • the refrigerant rising speed is not easily reduced by the narrow refrigerant passage area of the first outflow space 51a in which the refrigerant passage cross-sectional area is narrowed by the first partition plate 51.
  • the liquid phase component having a large specific gravity among the refrigerant that has passed through the first inflow port 41x passes through the first outflow space 51a without flowing into the flat multi-hole tube 21b. They tend to tend to gather together.
  • a liquid phase component having a large specific gravity tends to gather upward
  • a gas phase component having a small specific gravity tends to gather downward, and the distribution is different from the case of the low circulation amount.
  • a drift is also generated.
  • the loop structure is employed in the first internal space 23a, the refrigerant that has reached the upper end of the first outflow space 51a is allowed to flow.
  • the first lower communication passage 51y is returned again below the first outflow space 51a, thereby It can be led to the flat multi-hole tube 21b located below the outflow space 51a.
  • the refrigerant returned to the first outflow space 51a through the first lower communication passage 51y is again dragged by the rising flow of the refrigerant that has passed through the first inflow port 41x, and then rises in the first outflow space 51a again. In some cases, after circulating in the first internal space 23a again, it can be caused to flow into the flat multi-hole tube 21b.
  • the second internal space 23b of the folded header collecting pipe 23 is the same as the first internal space 23a, and thus the description thereof is omitted.
  • the third internal space 23c of the folded header collecting pipe 23 is provided with a structure corresponding to the first rectifying space 41a and the second rectifying space 42a, unlike the first internal space 23a and the second internal space 23b. Therefore, the effects obtained by these structures do not occur, but the other points are the same, and the description is omitted.
  • the outdoor heat exchanger 20 of the present embodiment allows the refrigerant to flow into the first internal space 23a by the loop structure adopted in the first internal space 23a of the folded header collecting pipe 23 even in the case of a high circulation rate.
  • the refrigerant can be guided to the flat multi-hole tube 21b by looping at.
  • the outdoor heat exchanger 20 of the present embodiment is arranged in a plurality in the vertical direction regardless of whether it is a low circulation amount or a high circulation amount.
  • the drift of the refrigerant with respect to the flat multi-hole tube 21b can be kept small.
  • the outdoor heat exchanger 20 is not the upper inlet / outlet inner space 22a and the lower inlet / outlet inner space 22b of the inlet / outlet header collecting pipe 22, but the fourth inner spaces 23d, 23e, and 23f of the folded header collecting pipe 23.
  • a loop structure and a rectifying structure are adopted in the first to third inner spaces 23a, 23b, and 23c of the header collecting pipe 23. That is, during the heating operation, the refrigerant in which a large amount of the gas phase component and the liquid phase component are mixed flows, and the uneven flow between the flat multi-hole pipes 21b having different height positions tends to be noticeable.
  • a loop structure and a rectifying structure are employed in the first to third internal spaces 23a, 23b, and 23c.
  • the refrigerant immediately after passing through the first inlet 41x of the outdoor heat exchanger 20 of the present embodiment and flowing into the first outlet space 51a has the fastest rising speed, and has a plurality of flats connected to the first outlet space 51a.
  • the lower one of the multi-hole pipes 21b tends to be passed through.
  • the refrigerant that has descended the first loop space 51b in the first internal space 23a of the folded header collecting pipe 23 is connected below the first outflow space 51a.
  • An outlet on the first outflow space 51a side of the first lower communication passage 51y is arranged so as to be guided to the flat multi-hole tube 21b.
  • the first lower communication passage 51y is provided.
  • the refrigerant returned to the first outflow space 51a can be easily supplied.
  • tip of the connection piping 24 is on the opposite side to the side where the flat multi-hole pipe 21b is connected among the folding header collecting pipes 23 with respect to the 1st internal space 23a. It has a connected structure. And in the 1st internal space 23a, the rising flow of the refrigerant
  • the refrigerant supplied to the first internal space 23a to pass through the first rectifying space 41a flows upward in the first internal space 23a.
  • the first rectifying plate 41 can be guided to a position below the first inflow port 41x. Accordingly, the refrigerant guided to the lower side of the first inlet 41x of the first rectifying plate 41 can pass through the first inlet 41x upward, and the flat multi-hole pipe in the folded header collecting pipe 23 is allowed to pass.
  • An upward flow of the refrigerant can be generated in the first outflow space 51a which is the space on the side to which 21b is connected.
  • the present invention is not limited to this.
  • a flat multi-hole tube 121b similar to the above may be connected.
  • this flat multi-hole pipe 121b may be arrange
  • the flat multi-hole tube 121b is connected in the first rectifying space 41a. It may be difficult to connect the connecting pipe 24 on the same side as the connected side from the viewpoint of securing the connection location. In other words, it may be difficult to direct the refrigerant that has passed through the connecting pipe 24 to the space below the first inlet 41x of the first rectifying plate 41 in the first rectifying space 41a.
  • the first rectifying space 41 a connects the outlet portion of the connecting pipe 24 and the space below the first inflow port 41 x of the first rectifying plate 41.
  • the refrigerant sent through the communication pipe 24 can be guided to the lower side of the first inlet 41x of the first rectifying plate 41.
  • the present invention is not limited to this, and for example, the flat multi-hole pipe 21b and the connecting pipe 224 may be connected in the same direction as a folded header collecting pipe 23 shown in FIG.
  • the first internal space 223a of the folded header collecting pipe 223 is partitioned by the first rectifying plate 241 into the upper first outflow space 251a and the first loop space 251b, and the lower first rectifying space 241a.
  • the first partition plate 251 partitions the first loop space 251a in which the rising flow of the refrigerant is generated and the first outflow space 251b in which the flat multi-hole tube 21b is connected and the lowering flow of the refrigerant is generated.
  • the first upper communication passage 251x directs the refrigerant that has risen in the first loop space 251a from the first loop space 251a to the first outflow space 251b above the first partition plate 251.
  • the first lower communication passage 251y returns the lowered refrigerant without being sucked into the flat multi-hole pipe 21b from the first outflow space 251b to the first loop space 251a below the first partition plate 251.
  • the first rectifying plate 241 has a first inflow port 241x penetrating vertically on the side opposite to the side to which the flat multi-hole tube 21b and the connecting pipe 224 are connected.
  • the connecting pipe 224 is connected to the first rectifying plate 241 on the side opposite to the first inlet 241x side, so that the refrigerant is directly supplied to the first rectifying plate 241 below the first inlet 241x.
  • coolant can be guide
  • the upward flow of the refrigerant can be generated in the first loop space 251a by allowing the refrigerant to pass through the first inflow port 241x upward.
  • the 1st loop space 251a is narrowed by the 1st partition 251 being provided in the 1st internal space 223a, it is easy to make a refrigerant
  • the refrigerant that has reached the upper side of the first loop space 251a is sent to the first outflow space 251b via the first upper communication path 251x, and each flat multi-hole tube is moved while the refrigerant descends in the first outflow space 251b. It flows to 21b.
  • the refrigerant that has fallen without being sucked into the flat multi-hole tube 21b is sent again to the first loop space 251a via the first lower communication path 251y. In this way, the refrigerant circulates.
  • the present invention is not limited to this.
  • a cylindrical inflow passage extending in the vertical direction may be provided. In this case, when the refrigerant passes through the cylindrical inflow passage, it is possible to increase the speed of the refrigerant that flows out vertically upward.
  • the present invention is not limited to this.
  • the present invention can also be applied to a heat exchanger configured by using a corrugated heat transfer fin mainly used in an automobile heat exchanger. It is.
  • Air conditioning apparatus Air-conditioning outdoor unit 3 Air-conditioning indoor unit 10 Unit casing 20 Outdoor heat exchanger (heat exchanger) 21 Heat Exchanger 21a Heat Transfer Fin (Fin) 21b Flat multi-hole tube (flat tube) 21ba Internal flow path (refrigerant passage) 22 Gateway header collecting pipe 23 Folding header collecting pipe (header collecting pipe) 22a Upper entrance / exit internal space 22b Lower entrance / exit internal space 23a, 23b, 23c, 23d, 23e, 23f First to sixth internal spaces (internal spaces) 23g 2nd baffle (bottom part of internal space of header collecting pipe) 23h 3rd baffle (bottom part of internal space of header collecting pipe) 24 Connection piping (inflow piping) 25 Connection piping (inflow piping) 31 Gas refrigerant pipe 32 Liquid refrigerant pipe 33 Expansion valve 41 First flow regulating plate (first partition member) 41a First rectification space 41x First inlet (inlet) 42 2nd baffle plate (1s

Abstract

 ヘッダ集合管の内部において冷媒上昇流れを生じさせる空間の下部に対して冷媒が直接的に供給されない構造であっても、冷媒の上昇流れを形成させることが可能な熱交換器および空気調和装置を提供する。室外熱交換器(20)の折返しヘッダ集合管(23)の第1内部空間(23a)の異なる高さ位置に、複数の扁平多穴管(21b)が接続されている。第1内部空間(23a)には、第1仕切板(51)、第1流出空間(51a)内で冷媒を上昇させるための第1流入口(41x)、第1上連通路(51x)からの冷媒を第1ループ空間(51b)で降下させて再び第1流出空間(51a)に導く第1下連通路(51y)を含んだループ構造が採用されている。扁平多穴管(21b)の一端は、第1流出空間(51a)もしくは第1ループ空間(51b)のいずれかに接続されている。第1整流板(41)のうち第1ループ空間(51b)の下方の空間に対して連絡配管(24)が接続されている。

Description

熱交換器および空気調和装置
 本発明は、熱交換器および空気調和装置に関する。
 従来より、複数の扁平管と、複数の扁平管に接合されたフィンと、複数の扁平管の一端側と他端側にそれぞれ連結されたヘッダ集合管とを備え、扁平管の内部を流れる冷媒を扁平管の外部を流れる空気と熱交換させる熱交換器が知られている。
 例えば、特許文献1(特開平2-219966号公報)に記載の熱交換器では、水平方向に延びた複数の流出管の両端が、それぞれ上下方向に延びたヘッダ集合管に接続されて構成されている。
 この特許文献1に記載の熱交換器では、上下方向に延びたヘッダ集合管の内部において、比重の大きい液相冷媒が下方に集まり比重の小さな気相冷媒が上方に集まることで偏流が生じることを課題として捕らえ、これを解決するために、ヘッダ集合管の内部において絞りを形成することを提案している。
 このように形成した絞りを通過させることで、気相冷媒と液相冷媒とを混合させやすくしつつ、冷媒の流速を向上させてヘッダ集合管内の上方にまで到達させやすくすることで、冷媒の偏流を抑制させようとしている。
 しかし、上述のような特許文献1に示された熱交換器は、冷媒の循環量が変化するような状況下で用いられることは全く想定されておらず、低循環量の場合であっても高循環量の場合であってもいずれの場合であっても偏流の抑制効果が得られるような構造については、なんら検討されていない。
 すなわち、低循環量の場合には、絞りを形成したことで流速を上げて、ヘッダ集合管内の上方まで到達させることにより偏流の抑制が可能になるが、高循環量になった場合には、絞りによって流速が高められ過ぎて比重の大きな冷媒が上方に集まり過ぎてしまい、偏流が生じてしまうことになる。
 他方、高循環量の場合に流速が高まり過ぎないように程度調節した絞りを設けることで偏流の抑制を可能にしたとしても、低循環量になった場合には、冷媒を上方に到達させることが困難になり、偏流が生じてしまうことになる。
 これに対して、ヘッダ集合管において扁平管が接続されている側の空間とその反対側の空間を仕切部材によって仕切ることで、冷媒を上端に到達させやすくすることが可能になる。さらに、当該仕切部材を超えた冷媒を仕切部材の下方を介して再び元の空間に戻すことができれば、冷媒の循環量が多すぎる場合であってもヘッダ集合管の上方に比重の大きな冷媒が集まりすぎてしまう状況を避けることができる。このように、冷媒をループさせることで冷媒の偏流を抑制させることが可能になる。
 ここで、ヘッダ集合管の内部において冷媒上昇流れを生じさせる空間の下部に対して直接的に冷媒が供給される構造であれば、当該下部から冷媒を上方に向けて容易に導くことが可能になる。ところが、ヘッダ集合管の内部において冷媒上昇流れを生じさせる空間の下部に対して冷媒が直接的に供給されない構造においては、冷媒の上昇流れを形成させるために構造を工夫する必要がある。
 本発明は上述した点に鑑みてなされたものであり、本発明の課題は、ヘッダ集合管の内部において冷媒上昇流れを生じさせる空間の下部に対して冷媒が直接的に供給されない構造であっても、冷媒の上昇流れを形成させることが可能な熱交換器および空気調和装置を提供することにある。
 第1観点に係る熱交換器は、複数の扁平管、ヘッダ集合管および複数のフィンを備えている。複数の扁平管は、それぞれ複数の長手方向に延びた冷媒通路を有している。この複数の扁平管は、互いに並んで配置されている。ヘッダ集合管は、鉛直方向に沿って延びるように設けられている。複数のフィンは、扁平管に接合されている。ヘッダ集合管は、ループ構造を有している。ループ構造は、第1仕切部材と、第2仕切部材と、流入口と、上連通路と、下連通路とを含んで構成されている。第1仕切部材は、ヘッダ集合管の内部空間を、上方内部空間と下方内部空間とに仕切っている。第2仕切部材は、冷媒の蒸発器として機能する場合に冷媒を上昇させるための空間である第1空間と冷媒を降下させるための空間である第2空間とに上方内部空間を仕切っている。流入口は、第1仕切部材のうち第1空間の下部において板厚方向に貫通するように設けられている。上連通路は、第1空間と第2空間の上部に位置し、第1空間と第2空間の上部を連通させることで、第1空間内を上昇した冷媒を第2空間へ導く。下連通路は、第1空間と第2空間の下部に位置し、第1空間と第2空間の下部を連通させ、第2空間から第1空間に冷媒を導くことで、第1空間から第2空間に導かれて第2空間内を降下した冷媒を第2空間から第1空間に戻す。扁平管の一端は、ヘッダ集合管の第1空間もしくは第2空間のいずれかに接続されている。下方内部空間のうち第2空間の下方の空間に対して流入配管が接続されている。
 この熱交換器では、ヘッダ集合管の内部空間が第1空間と第2空間に仕切部材によって仕切られているため、流入口から第1空間に流入した冷媒が第1空間内を上昇する際に通過する断面積を、第1空間と第2空間とが仕切部材によって仕切られていない場合と比較して、小さくすることができている。このため、冷媒の循環量が低循環量であっても、流入口から第1空間内に流入した冷媒を、第1空間だけの狭い空間において上昇させることができるため、第1空間内での冷媒の上昇速度を大きく落とすこと無くヘッダ集合管の内部空間の上方にまで冷媒を到達させやすくすることができる。このため、冷媒の循環量が低循環量であっても、扁平管に対しても十分に冷媒を流すことが可能になる。
 また、この熱交換器は、ヘッダ集合管は、流入口と仕切部材と上連通路と下連通路を含んだループ構造を有している。このため、高循環量である場合のように流入口から第1空間に流入する冷媒の流速が早く、第1空間の上方に比重の大きな冷媒が集まりがちになる場合であっても、第1空間の上方部分にまで到達した比重の大きな冷媒を、ループ構造によって再び第1空間の下方に戻すことが可能になる。すなわち、ループ構造は、第1空間の上方部分まで到達した冷媒を、上連通路を通過させて第2空間側に送り、第2空間において降下させ、下連通路を通過させて第1空間の下方に戻すことが可能になる。このため、高循環量である場合のように流入口から第1空間に流入する冷媒の流速が早く、第1空間の上方に比重の大きな冷媒が集まりがちになる場合であっても、冷媒を循環させながら各扁平管に対して十分に冷媒を流すことが可能になる。
 以上のように冷媒の偏流を抑制する冷媒のループ流れを実現させるために第1空間において冷媒の上昇流れを生じさせる構造として、流入口が、第1仕切部材のうち上方内部空間の第1空間の下方に設けられている構造が採用されている。そして、この熱交換器では、下方内部空間に対する冷媒の供給は、下方内部空間のうちの第2空間の下方の空間に接続されている流入配管を通過することで行われており、流入口が設けられている側である第1空間の下方の空間には直接供給されないため、下方内部空間の第2空間に供給された冷媒を直接第1仕切部材の流入口に通過させることができない。これに対して、この熱交換器では、下方内部空間は、第2空間の下方の空間と第1空間の下方の空間にまたがるように設けられている。このため、流入配管を通過することで下方内部空間のうちの第2空間の下方の空間に供給された冷媒を、下方内部空間のうちの第1空間の下方の空間まで送ることが可能になる。これにより、下方内部空間のうちの第1空間の下方の空間まで送られた冷媒を、第1仕切部材の流入口を介して第1空間に送ることで、第1空間における冷媒の上昇流れを生じさせることが可能になる。
 以上により、ヘッダ集合管の内部において冷媒上昇流れを生じさせる空間の下部に対して冷媒が直接的に供給されない構造であっても、下方内部空間を通過することで、第1空間における冷媒の上昇流れを生じさせることが可能になる。
 第2観点に係る熱交換器は、第1観点に係る熱交換器であって、ヘッダ集合管は、下方内部空間のうち流入配管が接続されている側の壁面は、上方内部空間のうち第2空間側の壁面の延長上に設けられている。
 この熱交換器では、ヘッダ集合管の内部空間のうち、上方内部空間と下方内部空間とは、上方内部空間のうち第2空間側の壁面と流入配管が接続されている側の壁面とが互いに連続的に繋がるように設けられている。このため、ヘッダ集合管の内部空間を、長手方向において一方側と他方側に第1仕切部材によって仕切るだけで簡単に下方内部空間を形成することが可能になる。
 第3観点に係る熱交換器は、第1観点または第2観点に係る熱交換器であって、扁平管の一端は、ヘッダ集合管の第1空間に接続されている。
 この熱交換器では、第2仕切部材によってヘッダ集合管内を仕切ることで、冷媒が上昇する第1空間内を上下に細長く構成されている。このため、第1空間の冷媒の上昇速度が低い場合であっても、第1空間の上方に接続されている扁平管にも冷媒を十分に流すことが可能になる。また、第1空間の冷媒の上昇速度が高い場合については、第1空間の下方に位置している扁平管の横を勢いよく通過して第1空間の上方に冷媒が到達しやすいため、第1空間の上方に接続されている扁平管に対して十分に冷媒を流すことができ、しかも、上方に到達した後第2空間を降下した冷媒が再び第1空間に戻ってくるため、第1空間の下方に接続されている扁平管に対しても十分に冷媒を供給することが可能になる。これにより、より確実に冷媒の偏流を抑制できる。
 第4観点に係る空気調和装置は、冷媒回路を備えている。冷媒回路は、第1観点から第3観点のいずれかの熱交換器と、容量可変の圧縮機と、が接続されて構成されている。
 この空気調和装置では、容量可変の圧縮機が駆動することで、冷媒回路を流れる冷媒の循環量が変動し、熱交換器を通過する冷媒の量が変動する。ここで、熱交換器が蒸発器として機能する場合に、通過する冷媒の量が増大して液相冷媒の混合比率が増大したり、流速が高まることがあっても、熱交換器内における冷媒の偏流を小さく抑えることが可能になる。
 第1観点に係る熱交換器では、ヘッダ集合管の内部において冷媒上昇流れを生じさせる空間の下部に対して冷媒が直接的に供給されない構造であっても、下方内部空間を通過することで、第1空間における冷媒の上昇流れを生じさせることが可能になる。
 第2観点に係る熱交換器では、ヘッダ集合管の内部空間を、長手方向において一方側と他方側に第1仕切部材によって仕切るだけで簡単に下方内部空間を形成することが可能になる。
 第3観点に係る熱交換器では、より確実に冷媒の偏流を抑制できる。
 第4観点に係る空気調和装置では、熱交換器が蒸発器として機能する場合に、通過する冷媒の量が増大して液相冷媒の混合比率が増大したり、流速が高まることがあっても、熱交換器内における冷媒の偏流を小さく抑えることが可能になる。
一実施形態に係る空気調和装置の構成の概要を説明するための回路図。 空調室外機の外観を示す斜視図。 空調室外機の各機器の配置の概要を説明するための模式的な断面図。 室外熱交換器、ガス冷媒配管および液冷媒配管を示す外観概略斜視図。 室外熱交換器の概略構成を示す模式的な背面図。 室外熱交換器の構成を説明するための概略背面図。 室外熱交換器の熱交換部の構成を説明するための部分拡大断面図。 室外熱交換器における伝熱フィンの取付状態を示す概略斜視図。 折返しヘッダ集合管の上方近傍部分の概略構成斜視図。 折返しヘッダ集合管の第1内部空間付近の概略断面図。 折返しヘッダ集合管の第1内部空間付近の上面視概略図。 折返しヘッダ集合管の第2内部空間付近の概略断面図。 折返しヘッダ集合管の第3内部空間付近の概略断面図。 参考例としての低循環量時の冷媒分布状況を示す説明図。 参考例としての中間循環量時の冷媒分布状況を示す説明図。 参考例としての高循環量時の冷媒分布状況を示す説明図。 他の実施形態Aに係る折返しヘッダ集合管の第1内部空間付近の概略断面図。 他の実施形態Bに係る折返しヘッダ集合管の第1内部空間付近の概略断面図。
 (1)空気調和装置1の全体構成
 図1は、本発明の一実施形態に係る空気調和装置1の構成の概要を示す回路図である。
 空気調和装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって空調室内機3が設置されている建物内の冷暖房に使用される装置であり、熱源側ユニットとしての空調室外機2と、利用側ユニットとしての空調室内機3とが冷媒連絡配管6,7で接続されて構成されている。
 空調室外機2と空調室内機3と冷媒連絡配管6,7とが接続されて構成される冷媒回路は、圧縮機91、四路切換弁92、室外熱交換器20、膨張弁33、室内熱交換器4およびアキュムレータ93などが冷媒配管で接続されることで構成されている。この冷媒回路内には冷媒が封入されており、冷媒が圧縮され、冷却され、減圧され、加熱・蒸発された後に、再び圧縮されるという冷凍サイクル運転が行われるようになっている。冷媒としては、例えば、R410A、R32、R407C、R22、R134a、二酸化炭素、などから選択されたものが用いられる。
 (2)空気調和装置1の詳細構成
 (2-1)空調室内機3
 空調室内機3は、室内の壁面に壁掛け等により、又は、ビル等の室内の天井に埋め込みや吊り下げ等により設置される。空調室内機3は、室内熱交換器4と、室内ファン5とを有している。室内熱交換器4は、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内空気を加熱する熱交換器である。
 (2-2)空調室外機2
 空調室外機2は、ビル等の室外に設置されており、冷媒連絡配管6,7を介して空調室内機3に接続される。空調室外機2は、図2および図3に示されているように、略直方体状のユニットケーシング10を有している。
 図3に示されているように、空調室外機2は、ユニットケーシング10の内部空間を鉛直方向に延びる仕切板18で二つに分割することによって送風機室S1と機械室S2とを形成した構造(いわゆる、トランク型構造)を有するものである。空調室外機2は、ユニットケーシング10の送風機室S1内に配置された室外熱交換器20および室外ファン95を有しており、ユニットケーシング10の機械室S2内に配置された圧縮機91、四路切換弁92、アキュムレータ93、膨張弁33、ガス冷媒配管31、および、液冷媒配管32を有している。
 ユニットケーシング10は、底板12と、天板11と、送風機室側の側板13と、機械室側の側板14と、送風機室側前板15と、機械室側前板16とを備えて、筐体を構成している。
 空調室外機2は、ユニットケーシング10の背面および側面の一部からユニットケーシング10内の送風機室S1に室外空気を吸い込んで、吸い込んだ室外空気をユニットケーシング10の前面から吹き出すように構成されている。具体的には、ユニットケーシング10内の送風機室S1に対する吸入口10aおよび吸入口10bが、送風機室側の側板13の背面側の端部と機械室側の側板14の送風機室S1側の端部とにわたって形成されている。また、吹出口10cは、送風機室側前板15に設けられており、その前側がファングリル15aによって覆われている。
 圧縮機91は、例えば圧縮機用モータによって駆動される密閉式圧縮機であり、インバータ制御によって運転容量を変化させることができるよう構成されている。
 四路切換弁92は、冷媒の流れの方向を切り換えるための機構である。冷房運転時には、四路切換弁92は、圧縮機91の吐出側の冷媒配管と室外熱交換器20の一端(ガス側端部)から延びるガス冷媒配管31とを接続するとともに、アキュムレータ93を介してガス冷媒の冷媒連絡配管7と圧縮機91の吸入側の冷媒配管とを接続する(図1の四路切換弁92の実線を参照)。また、暖房運転時には、四路切換弁92は、圧縮機91の吐出側の冷媒配管とガス冷媒の冷媒連絡配管7とを接続するとともに、アキュムレータ93を介して圧縮機91の吸入側と室外熱交換器20の一端(ガス側端部)から延びるガス冷媒配管31とを接続する(図1の四路切換弁92の破線を参照)。
 室外熱交換器20は、送風機室S1に上下方向(鉛直方向)に立てて配置され、吸入口10a,10bに対向している。室外熱交換器20は、アルミニウム製の熱交換器であり、本実施形態では設計圧力が3MPa~4MPa程度のものを用いている。室外熱交換器20は、一端(ガス側端部)から、四路切換弁92と接続されるように、ガス冷媒配管31が延びている。また、室外熱交換器20の他端(液側端部)から、膨張弁33に接続されるように、液冷媒配管32が延びている。
 アキュムレータ93は、四路切換弁92と圧縮機91との間に接続されている。アキュムレータ93は、冷媒を気相と液相とに分ける気液分離機能を具備している。アキュムレータ93に流入する冷媒は、液相と気相とに分かれ、上部空間に集まる気相の冷媒が圧縮機91へと供給される。
 室外ファン95は、室外熱交換器20を流れる冷媒との間で熱交換をさせるための室外空気を、室外熱交換器20に対して供給する。
 膨張弁33は、冷媒回路において冷媒を減圧するための機構であり、開度調整が可能な電動弁である。膨張弁33は、冷媒圧力や冷媒流量の調節を行うために、室外熱交換器20と液冷媒の冷媒連絡配管6の間に設けられ、冷房運転時および暖房運転時のいずれにおいても、冷媒を膨張させる機能を有している。
 室外ファン95は、送風機室S1に室外熱交換器20に対向して配置されている。室外ファン95は、ユニット内に室外空気を吸入して、室外熱交換器20において冷媒と室外空気との間で熱交換を行わせた後に、熱交換後の空気を室外に排出する。この室外ファン95は、室外熱交換器20に供給する空気の風量を可変することが可能なファンであり、例えば、DCファンモータ等からなるモータによって駆動されるプロペラファン等である。
 (3)空気調和装置1の動作
 (3-1)冷房運転
 冷房運転時は、四路切換弁92が図1の実線で示される状態、すなわち、圧縮機91の吐出側がガス冷媒配管31を介して室外熱交換器20のガス側に接続され、かつ、圧縮機91の吸入側がアキュムレータ93、冷媒連絡配管7を介して室内熱交換器4のガス側に対して接続された状態となっている。膨張弁33は、室内熱交換器4の出口(すなわち、室内熱交換器4のガス側)における冷媒の過熱度が一定になるように開度調節されるようになっている(過熱度制御)。この冷媒回路の状態で、圧縮機91、室外ファン95および室内ファン5を運転すると、低圧のガス冷媒は、圧縮機91で圧縮されることで高圧のガス冷媒となる。この高圧のガス冷媒は、四路切換弁92を経由して室外熱交換器20に送られる。その後、高圧のガス冷媒は、室外熱交換器20において、室外ファン95によって供給される室外空気と熱交換を行って凝縮して高圧の液冷媒となる。そして、過冷却状態になった高圧の液冷媒は、室外熱交換器20から膨張弁33に送られる。膨張弁33によって圧縮機91の吸入圧力近くまで減圧されて低圧の気液二相状態となった冷媒は、室内熱交換器4に送られ、室内熱交換器4において室内空気と熱交換を行って蒸発して低圧のガス冷媒となる。
 この低圧のガス冷媒は、冷媒連絡配管7を経由して空調室外機2に送られ、再び、圧縮機91に吸入される。このように冷房運転では、空気調和装置1は、室外熱交換器20を圧縮機91において圧縮される冷媒の凝縮器として、かつ、室内熱交換器4を室外熱交換器20において凝縮された冷媒の蒸発器として機能させる。
 なお、冷房運転時の冷媒回路では、膨張弁33の過熱度制御が行われつつ、設定温度となるように(冷房負荷を処理できるように)圧縮機91がインバータ制御されているため、冷媒の循環量が高循環量となる場合と、低循環量になる場合がある。
 (3-2)暖房運転
 暖房運転時は、四路切換弁92が図1の破線で示される状態、すなわち、圧縮機91の吐出側が冷媒連絡配管7を介して室内熱交換器4のガス側に接続され、かつ、圧縮機91の吸入側がガス冷媒配管31を介して室外熱交換器20のガス側に接続された状態となっている。膨張弁33は、室内熱交換器4の出口における冷媒の過冷却度が過冷却度目標値で一定になるように開度調節されるようになっている(過冷却度制御)。この冷媒回路の状態で、圧縮機91、室外ファン95および室内ファン5を運転すると、低圧のガス冷媒は、圧縮機91に吸入されて圧縮されて高圧のガス冷媒となり、四路切換弁92、および、冷媒連絡配管7を経由して、空調室内機3に送られる。
 そして、空調室内機3に送られた高圧のガス冷媒は、室内熱交換器4において、室内空気と熱交換を行って凝縮して高圧の液冷媒となった後、膨張弁33を通過する際に、膨張弁33の弁開度に応じて減圧される。この膨張弁33を通過した冷媒は、室外熱交換器20に流入する。そして、室外熱交換器20に流入した低圧の気液二相状態の冷媒は、室外ファン95によって供給される室外空気と熱交換を行って蒸発して低圧のガス冷媒となり、四路切換弁92を経由して、再び、圧縮機91に吸入される。このように暖房運転では、空気調和装置1は、室内熱交換器4を圧縮機91において圧縮される冷媒の凝縮器として、かつ、室外熱交換器20を室内熱交換器4において凝縮された冷媒の蒸発器として機能させる。
 なお、暖房運転時の冷媒回路では、膨張弁33の過冷却度制御が行われつつ、設定温度となるように(暖房負荷を処理できるように)圧縮機91がインバータ制御されているため、冷媒の循環量が高循環量となる場合と、低循環量になる場合がある。
 (4)室外熱交換器20の詳細構成
 (4-1)室外熱交換器20の全体構成
 次に、室外熱交換器20の外観概略斜視図を示す図4、室外熱交換器の模式的な背面図を示す図5、および、概略背面図である図6を用いて室外熱交換器20の構成について詳細に説明する。
 室外熱交換器20は、室外空気と冷媒との熱交換を行わせる熱交換部21と、この熱交換部21の一端側に設けられた出入口ヘッダ集合管22と、この熱交換部21の他端側に設けられた折返しヘッダ集合管23と、を備えている。
 (4-2)熱交換部21
 図7は、室外熱交換器20の熱交換部21の扁平多穴管21bの扁平方向に対して垂直な平面における断面構造を示す部分拡大図である。また、図8は、室外熱交換器20における伝熱フィン21aの取付状態を示す概略斜視図である。
 熱交換部21は、上側に位置する上側熱交換領域Xと、上側熱交換領域Xの下方に位置する下側熱交換領域Yとを有している。このうち、上側熱交換領域Xは、上から順に並んだ、第1上側熱交換部X1、第2上側熱交換部X2、第3上側熱交換部X3を有して構成されている。また、下側熱交換領域Yは、上から順に並んだ、第1下側熱交換部Y1、第2下側熱交換部Y2、第3下側熱交換部Y3を有して構成されている。
 この熱交換部21は、多数の伝熱フィン21aと多数の扁平多穴管21bとで構成されている。伝熱フィン21aおよび扁平多穴管21bは、いずれもアルミニウム製もしくはアルミニウム合金製である。
 伝熱フィン21aは、平板部材であり、各伝熱フィン21aには水平方向に延びる扁平管挿入用の切り欠き21aaが上下方向に並べて複数形成されている。なお、伝熱フィン21aは、空気流れの上流側に向けて突出した部分を無数に有するように取り付けられている。
 扁平多穴管21bは、伝熱管として機能し、伝熱フィン21aと室外空気との間を移動する熱を、内部を流れる冷媒に伝達する。この扁平多穴管21bは、伝熱面となる上下の平面部と、冷媒が流れる複数の内部流路21baを有している。切り欠き21aaの上下の幅よりもわずかに厚い扁平多穴管21bは、平面部を上下に向けた状態で、間隔をあけて複数段配列され、切り欠き21aaに嵌め込まれた状態で仮固定される。このように、伝熱フィン21aの切り欠き21aaに扁平多穴管21bが嵌め込まれた仮固定の状態で、伝熱フィン21aと扁平多穴管21bとがロウ付けされる。また、各扁平多穴管21bの両端は、それぞれ出入口ヘッダ集合管22と折返しヘッダ集合管23に嵌め込まれてロウ付けされる。そのため、後述する出入口ヘッダ集合管22の上方出入口内部空間22a、下方出入口内部空間22bや後述する折返しヘッダ集合管23の第1~第6内部空間23a,23b,23c,23d,23e,23fと扁平多穴管21bの内部流路21baとが繋がっている。
 図7に示されているように、伝熱フィン21aは、上下に繋がっているため、伝熱フィン21aや扁平多穴管21bで生じた結露は、伝熱フィン21aに沿って下方に滴り落ち、底板12に形成されている経路を通って外部に排出される。
 (4-3)出入口ヘッダ集合管22
 出入口ヘッダ集合管22は、熱交換部21の一端側に設けられ、鉛直方向に延びるアルミニウム製もしくはアルミニウム合金製の筒状部材である。
 出入口ヘッダ集合管22は、第1バッフル22cによって上下方向に仕切られた上方出入口内部空間22a,下方出入口内部空間22bを有している。上部の上方出入口内部空間22aには、ガス冷媒配管31が接続され、下部の下方出入口内部空間22bには、液冷媒配管32が接続されている。
 なお、出入口ヘッダ集合管22の上部の上方出入口内部空間22aも下部の下方出入口内部空間22bも、いずれも複数の扁平多穴管21bの一端が接続されている。具体的には、上側熱交換領域Xの第1上側熱交換部X1、第2上側熱交換部X2、第3上側熱交換部X3は、出入口ヘッダ集合管22の上部の上方出入口内部空間22aに対応するように設けられている。また、下側熱交換領域Yの第1下側熱交換部Y1、第2下側熱交換部Y2、第3下側熱交換部Y3は、出入口ヘッダ集合管22の下部の下方出入口内部空間22bに対応するように設けられている。
 (4-4)折返しヘッダ集合管23
 折返しヘッダ集合管23は、熱交換部21の他端側に設けられ、鉛直方向に延びるアルミニウム製もしくはアルミニウム合金製の筒状部材である。
 折返しヘッダ集合管23の内部は、第2バッフル23g,第3バッフル23h,第3整流板43,第4バッフル23i,第5バッフル23jによって上下方向に仕切られ、第1~第6内部空間23a,23b,23c,23d,23e、23fが形成されている。
 このうち、折返しヘッダ集合管23の3つの第1~第3内部空間23a,23b,23cには、出入口ヘッダ集合管22の上部の上方出入口内部空間22aに一端が接続されている多数の扁平多穴管21bの他端が接続されている。すなわち、上側熱交換領域Xの第1上側熱交換部X1は折返しヘッダ集合管23の第1内部空間23aに対応するように、上側熱交換領域Xの第2上側熱交換部X2は折返しヘッダ集合管23の第2内部空間23bに対応するように、上側熱交換領域Xの第3上側熱交換部X3は折返しヘッダ集合管23の第1内部空間23cに対応するように、それぞれ設けられている。
 また、折返しヘッダ集合管23の3つの第4内部空間23d,23e,23fには、出入口ヘッダ集合管22の下部の下方出入口内部空間22bに一端が接続されている多数の扁平多穴管21bの他端が接続されている。すなわち、下側熱交換領域Yの第1下側熱交換部Y1は折返しヘッダ集合管23の第4内部空間23dに対応するように、下側熱交換領域Yの第2下側熱交換部Y2は折返しヘッダ集合管23の第5内部空間23eに対応するように、下側熱交換領域Yの第3下側熱交換部Y3は折返しヘッダ集合管23の第6内部空間23fに対応するように、それぞれ設けられている。
 折返しヘッダ集合管23の最上段の第1内部空間23aと最下段の第6内部空間23fは、連絡配管24により接続されている。
 上から2段目の第2内部空間23bと、下から2段目の第5内部空間23eは、連絡配管25により接続されている。
 上から3段目の第3内部空間23cと、下から3段目の第4内部空間23dは、第3整流板43によって仕切られてはいるが、第3整流板43に設けられた第3流入口43xを介して上下に連通した部分を有している。
 また、折返しヘッダ集合管23の第1内部空間23aにおいて連絡配管24を流れてきた冷媒が分流される扁平多穴管21bの本数は、出入口ヘッダ集合管22の下部の下方出入口内部空間22bにおいて液冷媒配管32を流れてきた冷媒が分流され第6内部空間23fに通じる扁平多穴管21bの本数よりも多くなるように構成されている(第2内部空間23bと第5内部空間23eの扁平多穴管21bの本数の関係や、第3内部空間23cと第4内部空間23dの扁平多穴管21bの本数の関係も同様)。なお、冷媒分布状態を最適化させるために相違を設けていてもよいが、本実施形態では、第1内部空間23aに接続された扁平多穴管21bの本数と、第2内部空間23bに接続された扁平多穴管21bの本数と、第3内部空間23cに接続された扁平多穴管21bの本数は、ほぼ同数となっている。また、同様に、冷媒分布状態を最適化させるために相違を設けていてもよいが、本実施形態では、第4内部空間23dに接続された扁平多穴管21bの本数と、第5内部空間23eに接続された扁平多穴管21bの本数と、第6内部空間23fに接続された扁平多穴管21bの本数は、ほぼ同数となっている。
 (4-5)折返しヘッダ集合管23のループ構造等
 折返しヘッダ集合管23のうち、上方の3つの第1~第3内部空間23a,23b,23cには、ループ構造、および、整流構造が設けられている。
 以下、第1~第3内部空間23a、23b、23cそれぞれについて、ループ構造および整流構造について説明する。
 (4-5-1)第1内部空間23a
 折返しヘッダ集合管23の最も上方の第1内部空間23aには、図6と、図9の概略斜視図と、図10の概略断面図と、図11の上面視概略図と、にそれぞれ示すように、第1整流板41および第1仕切板51が設けられている。
 第1整流板41は、第1内部空間23aを、下方の第1整流空間41aと、上方の第1流出空間51aおよび第1ループ空間51bと、に仕切っている、略円盤状の板状部材である。第1整流空間41aは、第1内部空間23aと第2内部空間23bを仕切っている第2バッフル23gよりも上方の空間であって、かつ、第2バッフル23gの直上の扁平多穴管21bよりも低い位置に設けられた第1整流板41よりも下方の空間である。この第1整流空間41aには、折返しヘッダ集合管23の最も下方の第6内部空間23fから延び出した連絡配管24が連通している。
 ここで、第1整流板41の下方の第1整流空間41aのうち連絡配管24が接続されている側の壁面(周面)は、第1ループ空間51b側の壁面(周面)の延長上に位置している。すなわち、第1整流板41の下方の第1整流空間41aのうち連絡配管24が接続されている側の壁面(周面)と、第1ループ空間51b側の壁面(周面)とは、いずれも折返しヘッダ集合管23の周面を構成している。
 第1仕切板51は、第1内部空間23aのうち第1整流空間41aよりも上方の空間を、第1流出空間51aと、第1ループ空間51bと、に仕切っている、略方形の板状部材である。特に限定されるものではないが、本実施形態における第1仕切板51は、第1内部空間23aの中心に設けられることで、第1整流空間41aよりも上方の空間を、第1流出空間51aと第1ループ空間51bとが上面視において同等広さになるように仕切っている。第1仕切板51は、その側面が、折返しヘッダ集合管23の内周面に接するようにして固定されている。第1流出空間51aは、第1内部空間23aのうち扁平多穴管21bの一端が接続されている側の空間である。第1ループ空間51bは、第1内部空間23aのうち、第1仕切板51に対して第1流出空間51a側とは反対側の空間である。
 第1内部空間23aの上方には、折返しヘッダ集合管23の上端の内側と、第1仕切板51の上端部分と、の間の上下方向の隙間によって構成される第1上連通路51xが設けられている。
 第1内部空間23aの下方には、第1整流板41の上面と、第1仕切板51の下端部分と、の間の上下方向の隙間によって構成される第1下連通路51yが設けられている。本実施形態においては、第1下連通路51yは、第1ループ空間51b側から第1流出空間51a側に向けて水平方向に延びている。また、この第1下連通路51yの第1流出空間51a側の出口は、第1流出空間51aに接続されている扁平多穴管21bのうち最も下に位置するものよりもさらに下方に位置している。
 第1整流板41には、図9に示すように、第1内部空間23aのうちの扁平多穴管21bが延び出している側の空間である第1流出空間51aに設けられた、鉛直方向に連通した開口である第1流入口41xが2つ設けられている。2つの第1流入口41xは、室外熱交換器20に対して空気が流入する向きである空気流れ方向の上流側と下流側に離れて設けられている。第1流入口41xは、第1仕切板51側に近いほど空気流れ方向の幅が広く、扁平多穴管21b側に近いほど空気流れ方向の幅が狭くなるように形成されている。また、第1流入口41xは、折返しヘッダ集合管23の内周面に沿った形状を有している。
 ここで、連絡配管24の第1整流空間41a側の出口は第1ループ空間51bの下方に位置するように設けられているため、第1整流板41の第1流入口41xにおいて冷媒を上方に向けて通過させるためには、連絡配管24を流れてきた冷媒を第1流出空間51aの下方に導く必要がある。ここでは、第1整流空間41aが、連絡配管24の第1整流空間41a側の出口が接続されている位置と第1整流板41の第1流入口41xの下方の位置とを繋ぐように設けられている。このため、連絡配管24の第1整流空間41a側の出口が第1整流板41の第1流入口41xの下方に対して直接接続されていなくても、第1整流板41の第1流入口41xの下方に冷媒を導いて、第1流入口41xを上方に向けて通過させることが可能になっている。
 第1内部空間23aは、第1流入口41xにおける冷媒通過面積(水平面の面積)を、第1整流空間41aの冷媒通過面積(第1整流空間41aの水平面の面積)に比べて十分に小さくした整流構造を有している。この整流構造によって、第1整流空間41aから第1流出空間51a側に向かう冷媒流れを十分に絞り込むことができ、鉛直上方に向かう冷媒流速を増大させることができている。
 また、第1内部空間23aのうち第1整流板41の上方の空間は、第1仕切板51によって仕切られることで、第1流出空間51a側における冷媒通過面積(第1流出空間51a内を上昇する冷媒流れの通過面積)を、第1流出空間51aと第1ループ空間51bの合計の水平面積よりも狭くすることができている。これにより、第1流入口41xを介して第1流出空間51aに流入した冷媒の上昇速度を維持させやすくすることができ、低循環量下においても冷媒を第1流出空間51aの上方部分にまで到達させやすくしている。
 なお、図11の上面視概略図に示すように、扁平多穴管21bは、第1流出空間51aの扁平多穴管21bが存在しない高さ位置での水平面積の半分以上を埋めるように、第1流出空間51a内に埋め込まれている。そして、扁平多穴管21bと、第1整流板41の第1流入口41xとは、上面視において一部が重なる位置に配置されている。
 ただし、「第1流出空間51aの扁平多穴管21bが存在しない高さ位置での水平面積」から「扁平多穴管21bのうち第1流出空間51a内に延び出している部分の水平面積」を差し引いた残りの面積(第1流出空間51aにおいて冷媒が扁平多穴管21bを避けて上昇する部分の面積)が、第1下連通路51yの冷媒通過面積よりも大きくなるように配置されている。これにより、第1流入口41xを介して第1流出空間51aに流入した冷媒を、より狭く通過しづらい第1下連通路51yを第1ループ空間51b側に向けて通過させるのではなく、より広く通過しやすい第1流出空間51aにおける扁平多穴管21bを除いた部分を上昇するように導くことが可能になる。
 また、第1内部空間23aは、第1流入口41xと、第1仕切板51と、第1上連通路51xと、第1下連通路51yと、を含んだループ構造を有している。このため、第1流出空間51aにおいて扁平多穴管21bに流入することなく上方まで到達した冷媒は、図10の矢印に示すように、第1仕切板51の上方の第1上連通路51xを介して第1ループ空間51bに導かれ、第1ループ空間51bにおいて重力に従って降下し、第1仕切板51の下方の第1下連通路51yを介して第1流出空間51aの下方に戻される。このようにして、第1流出空間51aの上方に到達した冷媒を、第1内部空間23a内においてループさせることが可能になっている。
 (4-5-2)第2内部空間23b
 折返しヘッダ集合管23の上から2つ目の第2内部空間23bには、最も上方の第1内部空間23aと同様の構成であり、図6と、図12の概略断面図と、にそれぞれ示すように、第2整流板42および第2仕切板52が設けられている。
 第2整流板42は、第2内部空間23bを、下方の第2整流空間42aと、上方の第2流出空間52aおよび第2ループ空間52bと、に仕切っている、略円盤状の板状部材である。第2整流空間42aは、第2内部空間23bと第3内部空間23cを仕切っている第3バッフル23hよりも上方の空間であって、かつ、第3バッフル23hの直上の扁平多穴管21bよりも低い位置に設けられた第2整流板42よりも下方の空間である。この第2整流空間42aには、折返しヘッダ集合管23の下から2番目の第5内部空間23eから延び出した連絡配管25が連通している。
 ここで、第2整流板42の下方の第2整流空間42aのうち連絡配管25が接続されている側の壁面(周面)は、第2ループ空間52b側の壁面(周面)の延長上に位置している。すなわち、第2整流板42の下方の第2整流空間42aのうち連絡配管25が接続されている側の壁面(周面)と、第2ループ空間52b側の壁面(周面)とは、いずれも折返しヘッダ集合管23の周面を構成している。
 第2仕切板52は、第2内部空間23bのうち第2整流空間42aよりも上方の空間を、第2流出空間52aと、第2ループ空間52bと、に仕切っている、略方形の板状部材である。第2流出空間52aは、第2内部空間23bのうち扁平多穴管21bの一端が接続されている側の空間である。第2ループ空間52bは、第2内部空間23bのうち、第2仕切板52に対して第2流出空間52a側とは反対側の空間である。
 第2内部空間23bの上方には、第2バッフル23gの下面と、第2仕切板52の上端部分と、の間の上下方向の隙間によって構成される第2上連通路52xが設けられている。
 第2内部空間23bの下方には、第2整流板42の上面と、第2仕切板52の下端部分と、の間の上下方向の隙間によって構成される第2下連通路52yが設けられている。本実施形態においては、第2下連通路52yは、第2ループ空間52b側から第2流出空間52a側に向けて水平方向に延びている。この第2下連通路52yの第2流出空間52a側の出口は、第2流出空間52aに接続されている扁平多穴管21bのうち最も下に位置するものよりもさらに下方に位置している。
 第2整流板42には、第1整流板41と同様に、第2内部空間23bのうちの扁平多穴管21bが延び出している側に設けられた、鉛直方向に連通した開口である第2流入口42xが2つ設けられている。
 ここで、連絡配管25の第2整流空間42a側の出口は第2ループ空間52bの下方に位置するように設けられているため、第2整流板42の第2流入口42xにおいて冷媒を上方に向けて通過させるためには、連絡配管25を流れてきた冷媒を第2流出空間52aの下方に導く必要がある。ここでは、第2整流空間42aが、連絡配管25の第2整流空間42a側の出口が接続されている位置と第2整流板42の第2流入口42xの下方の位置とを繋ぐように設けられている。このため、連絡配管25の第2整流空間42a側の出口が第2整流板42の第2流入口42xの下方に対して直接接続されていなくても、第2整流板42の第2流入口42xの下方に冷媒を導いて、第2流入口42xを上方に向けて通過させることが可能になっている。
 また、第2内部空間23bについても、第1内部空間23aと同様に、第2流入口42xにおける冷媒通過面積(水平面の面積)を、第2整流空間42aの冷媒通過面積(第2整流空間42aの水平面の面積)に比べて十分に小さくした整流構造を有している。
 さらに、第2内部空間23bは、第1内部空間23aと同様に、第2流入口42xと、第2仕切板52と、第2上連通路52xと、第2下連通路52yと、を含んだループ構造を有している。
 他の配置構成の詳細は、第1内部空間23aと同様であるため、省略する。
 (4-5-3)第3内部空間23c
 折返しヘッダ集合管23の上から3つ目の第3内部空間23cには、図6と、図13の概略断面図と、にそれぞれ示すように、第3整流板43および第3仕切板53が設けられている。
 第3整流板43は、第3内部空間23cを、折返しヘッダ集合管23の下から3つ目の第4内部空間23d(下方に位置している空間)と、上方に位置している第3流出空間53aおよび第3ループ空間53bと、に仕切っている、略円盤状の板状部材である。
 第3仕切板53は、第3内部空間23cのうち第4内部空間23dよりも上方の空間を、第3流出空間53aと、第3ループ空間53bと、に仕切っている、略方形の板状部材である。第3流出空間53aは、第3内部空間23cのうち扁平多穴管21bの一端が接続されている側の空間である。第3ループ空間53bは、第3内部空間23cのうち、第3仕切板53に対して第3流出空間53a側とは反対側の空間である。
 第3内部空間23cの上方には、第3バッフル23hの下面と、第3仕切板53の上端部分と、の間の上下方向の隙間によって構成される第3上連通路53xが設けられている。
 第3内部空間23cの下方には、第3整流板43の上面と、第3仕切板53の下端部分と、の間の上下方向の隙間によって構成される第3下連通路53yが設けられている。本実施形態においては、第3下連通路53yは、第3ループ空間53b側から第3流出空間53a側に向けて水平方向に延びている。この第3下連通路53yの第3流出空間53a側の出口は、第3流出空間53aに接続されている扁平多穴管21bのうち最も下に位置するものよりもさらに下方に位置している。
 第3整流板43には、第1整流板41や第2整流板42と同様に、第3内部空間23cのうちの扁平多穴管21bが延び出している側に設けられた、鉛直方向に連通した開口である第3流入口43xが2つ設けられている。
 また、第3内部空間23cについても、第1内部空間23a、第2内部空間23bと同様に、第3流入口43xにおける冷媒通過面積(水平面の面積)を、第4内部空間23dの冷媒通過面積(第4内部空間23dの水平面の面積)に比べて十分に小さくした整流構造を有している。
 さらに、第3内部空間23cは、第1内部空間23a、第2内部空間23bと同様に、第3流入口43xと、第3仕切板53と、第3上連通路53xと、第3下連通路53yと、を含んだループ構造を有している。
 第1整流空間41aおよび第2整流空間42a以外の他の配置構成の詳細は、第1内部空間23aや第2内部空間23bと同様であるため、省略する。
 (5)室外熱交換器20における暖房運転時の冷媒の流れ方の概略
 以下、上述のように構成された室外熱交換器20における冷媒の流れ方を、主として、暖房運転時について説明する。
 暖房運転時には、図5の矢印で示すように、液冷媒配管32を介して出入口ヘッダ集合管22の下部の下方出入口内部空間22bに、気液二相状態の冷媒が供給される。なお、この下方出入口内部空間22bに流入する冷媒の状態は、本実施形態の説明では気液二相状態の冷媒を想定しているが、外気温度や室内温度や運転状態によっては、実質的に液単相状態の冷媒が流入することがあってもよい。
 出入口ヘッダ集合管22の下部の下方出入口内部空間22bに供給された冷媒は、下方出入口内部空間22bに接続された熱交換部21の下部の複数の扁平多穴管21bを通過して、折返しヘッダ集合管23の下部の3つの第4内部空間23d,23e,23fにそれぞれ供給される。なお、折返しヘッダ集合管23の下部の3つの第4~第6内部空間23d,23e,23fに供給される冷媒は、熱交換部21の下部の扁平多穴管21bを通過する際に、気液二相状態の冷媒のうちの液相成分の一部が蒸発することで、気相成分が増大した状態になっている。
 折返しヘッダ集合管23の下部の第6内部空間23fに供給された冷媒は、連絡配管24を通過して、折返しヘッダ集合管23の上部の第1内部空間23aのうちの第1整流空間41aに供給される。第1内部空間23aのうちの第1整流空間41aに供給された冷媒は、第1整流空間41a内を流れることによって、第1整流板41の第1流入口41xの下方まで送られる。第1整流板41の第1流入口41xの下方に到達した冷媒は、第1流入口41xを上方に向けて通過し、第1流出空間51aに供給される。第1流出空間51aに供給された冷媒は、複数の扁平多穴管21bそれぞれに流入していく(なお、第1内部空間23a内での冷媒の流れ方は後述する。)。複数の扁平多穴管21bを流れた冷媒は、さらに蒸発することで気相状態になって出入口ヘッダ集合管22の上方の上方出入口内部空間22aに供給される。
 折返しヘッダ集合管23の下部の第5内部空間23eに供給された冷媒は、連絡配管25を通過して、折返しヘッダ集合管23の上部の第2内部空間23bのうちの第2整流空間42aに供給される。第2内部空間23bのうちの第2整流空間42aに供給された冷媒は、第2整流空間42a内を流れることによって、第2整流板42の第2流入口42xの下方まで送られる。第2整流板42の第2流入口42xの下方に到達した冷媒は、第2流入口42xを上方に向けて通過し、第2流出空間52aに供給される。第2流出空間52aに供給された冷媒は、複数の扁平多穴管21bにそれぞれに流入していく(なお、第2内部空間23b内での冷媒の流れ方は後述する。)。複数の扁平多穴管21bを流れた冷媒は、さらに蒸発することで気相状態になって出入口ヘッダ集合管22の上方の上方出入口内部空間22aに供給される。
 折返しヘッダ集合管23の下部の第4内部空間23dに供給された冷媒は、第3整流板43に設けられた第3流入口43xを鉛直上方に向けて通過し、折返しヘッダ集合管23の上部の第3内部空間23cの内部空間に供給される。第3内部空間23cに供給された冷媒は、第3内部空間23cに接続されている複数の扁平多穴管21bそれぞれに流入していく(なお、第3内部空間23c内での冷媒の流れ方は後述する。)。複数の扁平多穴管21bを流れた冷媒は、さらに蒸発することで気相状態になって出入口ヘッダ集合管22の上方の上方出入口内部空間22aに供給される。
 折返しヘッダ集合管23の上部の第1~第3内部空間23a,23b,23cから複数の扁平多穴管21bを流れて出入口ヘッダ集合管22の上方の上方出入口内部空間22aに供給された冷媒は、上方出入口内部空間22aにおいて合流し、ガス冷媒配管31から流出していく。
 なお、冷房運転時には、図5の矢印で示す流れとは、冷媒流れが逆方向になる。
 (6)暖房運転時の低循環量の場合の室外熱交換器20における冷媒の流れ方
 暖房運転時の低循環量の場合の室外熱交換器20における冷媒の流れ方を、以下、折返しヘッダ集合管23の第1内部空間23aを例に挙げて説明する。
 出入口ヘッダ集合管22の下方出入口内部空間22bに流入する冷媒は、膨張弁33において減圧されることで、気液二相状態になっている。そして、折返しヘッダ集合管23の第1内部空間23aに流入した気液二相状態の冷媒のうちの液相成分の一部は、出入口ヘッダ集合管22の下方出入口内部空間22bから折返しヘッダ集合管23の第6内部空間23fに向けて扁平多穴管21bを通過する際に蒸発する。このため、連絡配管24を通過して折返しヘッダ集合管23の第1内部空間23aに流入する冷媒は、比重の異なる気相成分と液相成分が混在した状態になっている。
 低循環量の場合には、連絡配管24を介して第1整流空間41a内に流入する単位時間当たりの冷媒量が少なく、連絡配管24の出口を流れる冷媒の流速は相対的に遅めになる。このため、この流速のままであれば、冷媒のうち比重の大きな液相成分については、上昇させにくいため、第1内部空間23aに接続されている複数の扁平多穴管21bのうち上方に位置しているものに対して到達させにくく、複数の扁平多穴管21bにおいて高さ位置に応じて通過量が不均一になり、偏流が生じてしまうおそれがある。ここで、図14の低循環量時の参考例の説明図に示すように、比較的上方に配置された扁平多穴管21bの一端側に対して、冷媒のうち比重の小さい気相成分が主に流入すると、扁平多穴管21bの他端側から流出する冷媒は過熱度が大きくなりすぎて、扁平多穴管21bを通過している途中で相変化を生じなくなり、熱交換の能力を十分に発揮させることができないことになる。他方で、比較的下方に配置された扁平多穴管21bの一端側に対して、冷媒のうち比重の大きな液相成分が主に流入すると、扁平多穴管21bの他端側から流出する冷媒は過熱度が付きにくく、蒸発することなく扁平多穴管21bの他端側に到達してしまうことがあり、やはり、熱交換の能力を十分に発揮させることができないことになる。
 これに対して、本実施形態の室外熱交換器20では、第1整流空間41aに供給された冷媒は、第1整流板41の絞り機能を有する第1流入口41xを通過する際に、鉛直上方に向かう冷媒流れの流速が高められている。しかも、第1内部空間23aの第1整流板41の上方の空間は、第1仕切板51が設けられることで、第1流入口41xが設けられている側の空間(第1流出空間51a)の冷媒通過面積は第1仕切板51が無い場合と比較して狭くなるように構成されているため、上昇速度は衰えにくい。このため、低循環量の場合でも、冷媒のうち比重の大きな液相成分についても、第1流出空間51a内の上方にまで導きやすくすることができている。
 なお、第1流入口41xを介して第1流出空間51a内に流入した冷媒は、第1流出空間51a内を上昇していきながら、各扁平多穴管21bに分流していくが、一部のわずかな冷媒は、扁平多穴管21bに流入することなく、第1流出空間51aの上端にまで導かれる。
 このようにして第1流出空間51aの上端にまで到達した冷媒は、第1上連通路51xを介して第1ループ空間51bに導かれ、第1ループ空間51bにおいて重力によって降下する。第1ループ空間51bを降下した冷媒は、水平方向に延びた第1下連通路51yを通過しながら水平方向に流れ、再び、第1流出空間51aの下方に戻される。
 第1下連通路51yを介して第1流出空間51aに戻された冷媒は、第1流入口41xを通過した冷媒の上昇流れに引きずられるようにして、再度、第1流出空間51a内を上昇していき、場合によっては第1内部空間23a内を再度循環した後、扁平多穴管21bに流入させることができる。
 これにより、本実施形態の室外熱交換器20では、低循環量時であっても、高さ位置の異なる部分に配置された複数の扁平多穴管21bに流入する冷媒の状態を、図15の中間循環量時の参考例の説明図に示すような状態に近づけて、できるだけ均一化させることが可能になる。
 なお、折返しヘッダ集合管23の第2内部空間23bについては、第1内部空間23aと同様であるため、説明を省略する。
 また、折返しヘッダ集合管23の第3内部空間23cについては、上記第1内部空間23aや第2内部空間23bとは異なり、第1整流空間41aや第2整流空間42aに対応する構造が設けられていないため、これらの構造により得られる効果は生じないが、その他の点は同様であるため、説明を省略する。
 (7)暖房運転時の高循環量の場合の室外熱交換器20における冷媒の流れ方
 暖房運転時の高循環量の場合の室外熱交換器20における冷媒の流れ方を、以下、折返しヘッダ集合管23の第1内部空間23aを例に挙げて説明する。
 ここで、折返しヘッダ集合管23の第1内部空間23aに流入する冷媒が、比重の異なる気相成分と液相成分が混在した状態になっていることは、低循環量の場合と同様である。
 高循環量の場合には、連絡配管24を介して第1整流空間41a内に流入する単位時間当たりの冷媒量が多く、連絡配管24の出口を流れる冷媒の流速は相対的に早めになる。しかも、上述した低循環量対策として第1流入口41xの絞り機能を採用していることにより、さらに流速が高められる。さらに、上述した低循環量対策として冷媒通過断面積を第1仕切板51によって狭めた第1流出空間51aの狭い冷媒通過面積によって、冷媒の上昇速度は衰えにくくなっている。このため、高循環量の場合には、第1流入口41xを勢いよく通過した冷媒のうち比重の大きな液相成分は、第1流出空間51a内において扁平多穴管21bに流入することなく通過しがちになり、上方に集まりがちになってしまう。この場合には、比重の大きな液相成分が上方に集まりやすく、比重の小さな気相成分が下方に集まりやすくなり、低循環量の場合とは分布が異なるが、図16の高循環量時の参考例の説明図に示すように、やはり偏流が生じてしまう。
 これに対して、本実施形態の室外熱交換器20では、第1内部空間23aにはループ構造が採用されているため、第1流出空間51aの上端にまで到達した冷媒を、第1上連通路51xを介して第1ループ空間51bに導き、第1ループ空間51bにおいて降下させた後、第1下連通路51yを介して、再び、第1流出空間51aの下方に戻すことで、第1流出空間51aの下方に位置している扁平多穴管21bに導くことができる。
 第1下連通路51yを介して第1流出空間51aに戻された冷媒は、第1流入口41xを通過した冷媒の上昇流れに引きずられるようにして、再度、第1流出空間51a内を上昇していき、場合によっては第1内部空間23a内を再度循環した後、扁平多穴管21bに流入させることができる。
 これにより、本実施形態の室外熱交換器20では、高循環量時であっても、高さ位置の異なる部分に配置された複数の扁平多穴管21bに流入する冷媒の状態を、図15の中間循環量時の参考例の説明図に示すような状態に近づけて、できるだけ均一化させることが可能になる。
 なお、折返しヘッダ集合管23の第2内部空間23bについては、第1内部空間23aと同様であるため、説明を省略する。
 また、折返しヘッダ集合管23の第3内部空間23cについては、上記第1内部空間23aや第2内部空間23bとは異なり、第1整流空間41aや第2整流空間42aに対応する構造が設けられていないため、これらの構造により得られる効果は生じないが、その他の点は同様であるため、説明を省略する。
 (8)空気調和装置1の室外熱交換器20の特徴
 (8-1)
 本実施形態の室外熱交換器20は、低循環量の場合であっても、折返しヘッダ集合管23の第1内部空間23aにおける第1流入口41xおよび第1仕切板51によって狭められた第1流出空間51aの構成によって、冷媒の上昇速度を維持させることで、第1流出空間51aの上方にまで冷媒を到達させやすくすることができる(第2内部空間23b、第3内部空間23cも同様)。
 また、本実施形態の室外熱交換器20は、高循環量の場合であっても、折返しヘッダ集合管23の第1内部空間23aにおいて採用されたループ構造によって、冷媒を第1内部空間23a内でループさせることで、冷媒を扁平多穴管21bに導くことができる。
 以上により、本実施形態の室外熱交換器20は、低循環量の場合であっても高循環量の場合であっても、いずれの場合であっても、上下方向に複数並んで配置された扁平多穴管21bに対する冷媒の偏流を小さく抑えることができる。
 (8-2)
 本実施形態の室外熱交換器20は、出入口ヘッダ集合管22の上方出入口内部空間22a、下方出入口内部空間22bではなく、折返しヘッダ集合管23の第4内部空間23d、23e、23fでもなく、折返しヘッダ集合管23の第1~第3内部空間23a、23b、23cにおいて、ループ構造と整流構造を採用している。すなわち、暖房運転時において気相成分と液相成分が多く混在した冷媒が流れており、高さ位置の異なる扁平多穴管21bの間での偏流が顕著になりがちな折返しヘッダ集合管23の第1~第3内部空間23a、23b、23cにおいて、ループ構造と整流構造が採用されている。
 このため、冷媒の偏流抑制効果をより十分に発揮させることが可能になっている。
 (8-3)
 本実施形態の室外熱交換器20の第1流入口41xを通過して第1流出空間51aに流入した直後の冷媒は、上昇速度が最も早く、第1流出空間51aに接続された複数の扁平多穴管21bのうち下方のものほど、通過されてしまいがちになる場合がある。
 これに対して、本実施形態の室外熱交換器20では、折返しヘッダ集合管23の第1内部空間23aにおいて、第1ループ空間51bを降下してきた冷媒を、第1流出空間51aの下方に接続されている扁平多穴管21bに導くことができるように、第1下連通路51yの第1流出空間51a側の出口が配置されている。
 このため、第1流入口41xを介して第1流出空間51aに流入した流速の早い冷媒が通過しがちな下方に位置する扁平多穴管21bに対して、第1下連通路51yを介して第1流出空間51aに戻される冷媒を供給しやすくすることができている。
 なお、上述の点は、第2内部空間23b、23cについても同様である。
 (8-4)
 上記実施形態の室外熱交換器20では、第1内部空間23aに対して、折返しヘッダ集合管23のうち扁平多穴管21bが接続されている側とは反対側において、連絡配管24の先端が接続された構造となっている。そして、第1内部空間23aでは、折返しヘッダ集合管23のうち扁平多穴管21bが接続されている側の空間である第1流出空間51aにおいて冷媒の上昇流れを生じさせている。したがって、折返しヘッダ集合管23において、第1内部空間23aへの冷媒の供給が行われる側と、第1内部空間23aにおいて冷媒の上昇流れを生じさせる側とが、反対側に位置した構造となっている。
 ここで、上記室外熱交換器20では、第1内部空間23aに供給された冷媒を、第1整流空間41a内を通過させることにより、第1内部空間23aにおいて冷媒の上昇流れを生じさせるために第1整流板41の第1流入口41xの下方まで導くことが可能になっている。これにより、第1整流板41の第1流入口41xの下方に導かれた冷媒を、第1流入口41xを上方に向けて通過させることができ、折返しヘッダ集合管23のうち扁平多穴管21bが接続されている側の空間である第1流出空間51aにおいて冷媒の上昇流れを生じさせることが可能になっている。
 なお、上述の点は、第2内部空間23bについても同様である。
 (9)他の実施形態
 上記実施形態では、本発明の実施形態の一例を説明したが、上記実施形態はなんら本願発明を限定する趣旨ではなく、上記実施形態には限られない。本願発明は、その趣旨を逸脱しない範囲で適宜変更した態様についても当然に含まれる。
 (9-1)他の実施形態A
 上記実施形態では、第1整流空間41aには扁平多穴管21bが接続されていない場合(第2整流空間42aについても同様)を例に挙げて説明した。
 しかし、本発明はこれに限られるものではなく、例えば、図17に示すヘッダ集合管123のように、第1整流空間41aにおいても、第1流出空間51aに接続されている扁平多穴管21bと同様の扁平多穴管121bが接続されていてもよい。そして、この扁平多穴管121bは、第1流出空間51aに接続されている複数の扁平多穴管21bと同様に上下方向に並んで配置されていてもよい。
 このように、第1整流空間41aにおいて、第1整流板41のうち第1流入口41xが設けられている側に扁平多穴管121bが接続された構造では、扁平多穴管121bが接続されている側と同じ側において連絡配管24を接続することが、接続場所の確保の観点から困難になることがある。すなわち、第1整流空間41aにおける第1整流板41の第1流入口41xの下方の空間に連絡配管24を通過した冷媒を直接導こうとしても、困難な場合がある。
 この場合であっても、図17に示すヘッダ集合管123のように、第1整流空間41aが連絡配管24の出口部分と第1整流板41の第1流入口41xの下方の空間とを繋ぐことで、連絡配管24を介して送られてきた冷媒を、第1整流板41の第1流入口41xの下方に導くことができるようになる。これにより、第1整流板41の第1流入口41xを上方に向けて冷媒を通過させることで、第1流出空間51a内において冷媒の上昇流れを生じさせることが可能になる。
 なお、上述した点は、第2整流空間42aについても同様である。
 (9-2)他の実施形態B
 上記実施形態では、折返しヘッダ集合管23において扁平多穴管21bが接続されている側と連絡配管24が接続されている側とが対向している(反対側である)場合(連絡配管25についても同様))を例に挙げて説明した。
 しかし、本発明は、これに限られるものではなく、例えば、図18に示す折返しヘッダ集合管23のように、扁平多穴管21bと連絡配管224とが同じ方向に接続されていてもよい。ここでは、折返しヘッダ集合管223の第1内部空間223aは、第1整流板241によって、上方の第1流出空間251aおよび第1ループ空間251bと、下方の第1整流空間241aと、に仕切られている。第1仕切板251は、冷媒の上昇流れが生じる第1ループ空間251aと、扁平多穴管21bが接続されており冷媒の下降流れが生じる第1流出空間251bとに仕切っている。第1上連通路251xは、第1ループ空間251a内を上昇した冷媒を、第1仕切板251の上方において、第1ループ空間251aから第1流出空間251bに向かわせる。第1下連通路251yは、扁平多穴管21bに吸い込まれることなく降下した冷媒を、第1仕切板251の下方において、第1流出空間251bから第1ループ空間251aに戻す。第1整流板241は、扁平多穴管21bや連絡配管224が接続されている側とは反対側において上下に貫通した第1流入口241xを有している。
 このように、第1整流板241における第1流入口241x側とは反対側に連絡配管224が接続されることで、第1整流板241における第1流入口241xの下方に直接冷媒を供給することができない構造であっても、第1整流空間241aが設けられていることで、第1流入口241xの下方に冷媒を導くことができる。これにより、第1流入口241xを上方に向けて冷媒を通過させることで、第1ループ空間251aにおいて冷媒の上昇流れを生じさせることができる。
 なお、第1内部空間223aは、第1仕切板251が設けられていることで第1ループ空間251aが狭められているため、上方まで冷媒を到達させやすくなっている。ここで、第1ループ空間251aの上方に達した冷媒は、第1上連通路251xを介して第1流出空間251bに送られ、第1流出空間251bにおいて冷媒が降下しながら各扁平多穴管21bに流れていく。扁平多穴管21bに吸い込まれることなく降下した冷媒は、第1下連通路251yを介して再び第1ループ空間251aに送られる。このようにして冷媒が循環する。
 (9-3)他の実施形態C
 上記実施形態では、板状部材である第1整流板41において板厚方向に開口させた第1流入口41xを設けた場合(第2流入口42x、第3流入口43xも同様))を例に挙げて説明した。
 しかし、本発明は、これに限られるものではなく、例えば、板状部材に開口を形成して流入口を設ける代わりに、鉛直方向に延びた筒状の流入通路を設けてもよい。この場合には、筒状の流入通路を冷媒が通過する際に、より鉛直上方に向けて流出する冷媒速度を上げることが可能になる。
 なお、上述した点は、第2流入口42x、第3流入口43xも同様である。
 (9-4)他の実施形態D
 上記実施形態や他の実施形態においては、第1内部空間23aの第1整流板41よりも上方の空間と、第2内部空間23bの第2整流板42よりも上方の空間と、第3内部空間23cのうち第3整流板43よりも上方の空間が同様の形態である場合を例に挙げて説明した。
 しかし、本発明は、これに限られるものではなく、これらの形態は、互いに異なっていてもよい。
 (9-5)他の実施形態E
 上記実施形態では、伝熱フィンとして、図7、図8に示すような伝熱フィン21aのような平板部材を用いた場合を例に挙げて説明した。
 しかし、本発明は、これに限られるものではなく、例えば、主に自動車用熱交換器に用いられるコルゲートタイプの伝熱フィンを用いて構成される熱交換器に対しても適用することが可能である。
 1   空気調和装置
 2   空調室外機
 3   空調室内機
 10  ユニットケーシング
 20  室外熱交換器(熱交換器)
 21  熱交換部
 21a 伝熱フィン(フィン)
 21b 扁平多穴管(扁平管)
 21ba 内部流路(冷媒通路)
 22 出入口ヘッダ集合管
 23 折返しヘッダ集合管(ヘッダ集合管)
 22a 上方出入口内部空間
 22b 下方出入口内部空間
 23a、23b、23c、23d、23e、23f 第1~第6内部空間(内部空間)
 23g 第2バッフル(ヘッダ集合管の内部空間の底部分)
 23h 第3バッフル(ヘッダ集合管の内部空間の底部分)
 24 連絡配管(流入配管)
 25 連絡配管(流入配管)
 31 ガス冷媒配管
 32 液冷媒配管
 33 膨張弁
 41 第1整流板(第1仕切部材)
 41a 第1整流空間
 41x 第1流入口(流入口)
 42 第2整流板(第1仕切部材)
 42a 第2整流空間
 42x 第2流入口(流入口)
 51 第1仕切板(第2仕切部材)
 51a 第1流出空間(上方内部空間、第1空間)
 51b 第1ループ空間(上方内部空間、第2空間)
 51x 第1上連通路(上連通路)
 51y 第1下連通路(下連通路)
 52 第2仕切板(第2仕切部材)
 52a 第2流出空間(上方内部空間、第1空間)
 52b 第2ループ空間(上方内部空間、第2空間)
 52x 第2上連通路(上連通路)
 52y 第2下連通路(下連通路)
 91 圧縮機
121b 扁平多穴管(扁平管)
123 折返しヘッダ集合管(ヘッダ集合管)
223 折返しヘッダ集合管(ヘッダ集合管)
223a 第1内部空間
224 連絡配管(流入配管)
241 第1整流板(第1仕切部材)
241a 第1整流空間
241x 第1流入口(流入口)
251 第1仕切板(第2仕切部材)
251a 第1ループ空間(上方内部空間、第1空間)
251b 第1流出空間(上方内部空間、第2空間)
251x 第1上連通路(上連通路)
251y 第1下連通路(下連通路)
  X 上側熱交換領域
  X1、X2、X3 上側熱交換部
  Y 下側熱交換領域
  Y1、Y2、Y3 下側熱交換部
特開平2-219966号公報

Claims (4)

  1.  それぞれ複数の長手方向に延びた冷媒通路(21ba)を有しており、互いに並んで配置された複数の扁平管(21b、121b)と、
     鉛直方向に沿って延びたヘッダ集合管(23)と、
     前記扁平管に接合された複数のフィン(21a)と、
    を備える熱交換器(20)であって、
     前記ヘッダ集合管(23、223)は、
      内部空間を、上方内部空間(51a、51b、52a、52b)と下方内部空間(41a、42a、241a)とに仕切る第1仕切部材(41、42、241)と、
      冷媒の蒸発器として機能する場合に冷媒を上昇させるための空間である第1空間(51a、52a、251a)と冷媒を降下させるための空間である第2空間(51b、52b、251b)とに前記上方内部空間を仕切る第2仕切部材(51、52、251)と、
      前記第1仕切部材のうち前記第1空間の下部において板厚方向に貫通するように設けられた流入口(41x、42x、241x)と、
      前記第1空間と前記第2空間の上部に位置し、前記第1空間と前記第2空間の上部を連通させることで、前記第1空間内を上昇した冷媒を前記第2空間へ導く上連通路(51x、52x、251x)と、
      前記第1空間と前記第2空間の下部に位置し、前記第1空間と前記第2空間の下部を連通させ、前記第2空間から前記第1空間に冷媒を導くことで、前記第1空間から前記第2空間に導かれて前記第2空間内を降下した冷媒を前記第2空間から前記第1空間に戻す下連通路(51y、52y、251y)と、
    を含むループ構造を有しており、
     前記扁平管(21b、121b)の一端は、前記ヘッダ集合管の前記第1空間(51a、52a、251a)もしくは前記第2空間(51b、52b、251b)のいずれかに接続されており、
     前記下方内部空間(41a、42a)のうち前記第2空間(51b、52b、251b)の下方の空間に対して流入配管(24、25、224)が接続されている、
    熱交換器(20)。
  2.  前記ヘッダ集合管(23)は、前記下方内部空間(61a、61b)のうち前記流入配管(24、25)が接続されている側の壁面は、前記上方内部空間(51a、51b)のうち前記第2空間(51b)側の壁面の延長上に設けられている、
    請求項1に記載の熱交換器。
  3.  前記扁平管(21b、121b)の一端は、前記ヘッダ集合管(23)の前記第1空間(51a、52a)に接続されている、
    請求項1または2に記載の熱交換器。
  4.  請求項1から3のいずれか1項に記載の熱交換器(20)と、容量可変の圧縮機(91)と、が接続されて構成される冷媒回路を備えた空気調和装置(1)。
PCT/JP2014/083945 2013-12-27 2014-12-22 熱交換器および空気調和装置 WO2015098860A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES14873283.7T ES2676444T3 (es) 2013-12-27 2014-12-22 Intercambiador de calor y dispositivo de acondicionamiento de aire
US15/108,205 US10443944B2 (en) 2013-12-27 2014-12-22 Heat exchanger and air conditioning device
EP14873283.7A EP3088832B1 (en) 2013-12-27 2014-12-22 Heat exchanger and air conditioning device
CN201480071204.2A CN105849498B (zh) 2013-12-27 2014-12-22 热交换器及空调装置
AU2014371155A AU2014371155B2 (en) 2013-12-27 2014-12-22 Heat exchanger and air conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-273268 2013-12-27
JP2013273268A JP5794293B2 (ja) 2013-12-27 2013-12-27 熱交換器および空気調和装置

Publications (1)

Publication Number Publication Date
WO2015098860A1 true WO2015098860A1 (ja) 2015-07-02

Family

ID=53478713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083945 WO2015098860A1 (ja) 2013-12-27 2014-12-22 熱交換器および空気調和装置

Country Status (7)

Country Link
US (1) US10443944B2 (ja)
EP (1) EP3088832B1 (ja)
JP (1) JP5794293B2 (ja)
CN (1) CN105849498B (ja)
AU (1) AU2014371155B2 (ja)
ES (1) ES2676444T3 (ja)
WO (1) WO2015098860A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200109902A1 (en) * 2017-03-27 2020-04-09 Daikin Industries, Ltd. Heat exchanger and air conditioner
JP2020118385A (ja) * 2019-01-25 2020-08-06 東芝キヤリア株式会社 熱交換器及び冷凍サイクル装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5794293B2 (ja) 2013-12-27 2015-10-14 ダイキン工業株式会社 熱交換器および空気調和装置
JP6704361B2 (ja) * 2017-01-13 2020-06-03 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP6369648B1 (ja) * 2017-03-27 2018-08-08 ダイキン工業株式会社 熱交換器および空気調和装置
JP6888686B2 (ja) * 2017-10-18 2021-06-16 ダイキン工業株式会社 熱交換器及びそれを備えた空気調和装置
TWI718485B (zh) * 2019-02-27 2021-02-11 雙鴻科技股份有限公司 熱交換裝置
JP6693588B1 (ja) 2019-03-29 2020-05-13 株式会社富士通ゼネラル 熱交換器
US11402161B2 (en) * 2019-04-22 2022-08-02 Hitachi-Johnson Controls Air Conditioning, Inc. Distributor, heat exchanger, indoor unit, outdoor unit, and air-conditioning device
CN112824769A (zh) * 2019-11-20 2021-05-21 青岛海信日立空调系统有限公司 一种空调器
JP7327214B2 (ja) 2020-03-03 2023-08-16 株式会社富士通ゼネラル 熱交換器
JP7310655B2 (ja) 2020-03-03 2023-07-19 株式会社富士通ゼネラル 熱交換器
JP7327213B2 (ja) * 2020-03-03 2023-08-16 株式会社富士通ゼネラル 熱交換器
JP6930622B1 (ja) * 2020-03-24 2021-09-01 株式会社富士通ゼネラル 熱交換器
EP4321830A4 (en) * 2021-04-06 2024-04-03 Mitsubishi Electric Corp HEAT EXCHANGER AND AIR CONDITIONING DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219966A (ja) 1989-02-21 1990-09-03 Matsushita Refrig Co Ltd 冷媒分流器
JPH10281684A (ja) * 1997-04-07 1998-10-23 Sanden Corp 熱交換器
JPH11337293A (ja) * 1998-05-26 1999-12-10 Showa Alum Corp 蒸発器
WO2007094422A1 (ja) * 2006-02-15 2007-08-23 Gac Corporation 熱交換器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922732A (en) * 1989-11-20 1990-05-08 Dyna-Manufacturing, Ltd. Evaporator system for refrigeration systems
US6606882B1 (en) * 2002-10-23 2003-08-19 Carrier Corporation Falling film evaporator with a two-phase flow distributor
US6688137B1 (en) * 2002-10-23 2004-02-10 Carrier Corporation Plate heat exchanger with a two-phase flow distributor
US7044200B2 (en) * 2004-02-26 2006-05-16 Carrier Corporation Two-phase refrigerant distribution system for multiple pass evaporator coils
US20050262872A1 (en) * 2004-05-26 2005-12-01 Carrier Corporation Two-phase refrigerant distribution system for parallel tube evaporator coils
JP2006132920A (ja) * 2004-07-15 2006-05-25 Showa Denko Kk 熱交換器
US20060118287A1 (en) * 2004-12-02 2006-06-08 Quasar Industries, Inc. Heat exchanger and method of making same
JP5097472B2 (ja) * 2007-08-10 2012-12-12 Gac株式会社 熱交換器
JP4645681B2 (ja) * 2008-05-19 2011-03-09 株式会社デンソー 蒸発器ユニット
US20110030934A1 (en) * 2008-06-10 2011-02-10 Carrier Corporation Integrated Flow Separator and Pump-Down Volume Device for Use in a Heat Exchanger
US9551540B2 (en) 2011-11-22 2017-01-24 Daikin Industries, Ltd. Heat exchanger
JP5794293B2 (ja) 2013-12-27 2015-10-14 ダイキン工業株式会社 熱交換器および空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219966A (ja) 1989-02-21 1990-09-03 Matsushita Refrig Co Ltd 冷媒分流器
JPH10281684A (ja) * 1997-04-07 1998-10-23 Sanden Corp 熱交換器
JPH11337293A (ja) * 1998-05-26 1999-12-10 Showa Alum Corp 蒸発器
WO2007094422A1 (ja) * 2006-02-15 2007-08-23 Gac Corporation 熱交換器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200109902A1 (en) * 2017-03-27 2020-04-09 Daikin Industries, Ltd. Heat exchanger and air conditioner
US11181328B2 (en) * 2017-03-27 2021-11-23 Daikin Industries, Ltd. Heat exchanger and air conditioner
JP2020118385A (ja) * 2019-01-25 2020-08-06 東芝キヤリア株式会社 熱交換器及び冷凍サイクル装置
JP7132138B2 (ja) 2019-01-25 2022-09-06 東芝キヤリア株式会社 熱交換器及び冷凍サイクル装置

Also Published As

Publication number Publication date
EP3088832A1 (en) 2016-11-02
AU2014371155A1 (en) 2016-08-11
EP3088832B1 (en) 2018-04-25
EP3088832A4 (en) 2017-02-01
CN105849498A (zh) 2016-08-10
ES2676444T3 (es) 2018-07-19
JP2015127619A (ja) 2015-07-09
AU2014371155B2 (en) 2017-09-28
US10443944B2 (en) 2019-10-15
JP5794293B2 (ja) 2015-10-14
CN105849498B (zh) 2018-11-09
US20160320135A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
JP5794293B2 (ja) 熱交換器および空気調和装置
JP5754490B2 (ja) 熱交換器および空気調和装置
JP5741680B1 (ja) 熱交換器および空気調和装置
JP6237068B2 (ja) 熱交換器および空気調和装置
JP5850118B1 (ja) 熱交換器および空気調和装置
JP6070685B2 (ja) 熱交換器および空気調和装置
KR101647908B1 (ko) 공기 조화 장치
JP6179399B2 (ja) 熱交換器および空気調和装置
JP6388067B2 (ja) 熱交換器および空気調和装置
JP6458432B2 (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873283

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15108205

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014873283

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873283

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014371155

Country of ref document: AU

Date of ref document: 20141222

Kind code of ref document: A