WO2015098796A1 - 発光素子、基準用光源および発光体の観察方法 - Google Patents

発光素子、基準用光源および発光体の観察方法 Download PDF

Info

Publication number
WO2015098796A1
WO2015098796A1 PCT/JP2014/083835 JP2014083835W WO2015098796A1 WO 2015098796 A1 WO2015098796 A1 WO 2015098796A1 JP 2014083835 W JP2014083835 W JP 2014083835W WO 2015098796 A1 WO2015098796 A1 WO 2015098796A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting element
light source
temperature
Prior art date
Application number
PCT/JP2014/083835
Other languages
English (en)
French (fr)
Inventor
英文 秋山
吉田 正裕
克裕 近江谷
英博 久保田
謙雄 森
正博 下川原
Original Assignee
国立大学法人 東京大学
独立行政法人産業技術総合研究所
アトー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 独立行政法人産業技術総合研究所, アトー株式会社 filed Critical 国立大学法人 東京大学
Priority to US15/108,071 priority Critical patent/US10094709B2/en
Priority to DE112014005877.7T priority patent/DE112014005877B4/de
Priority to JP2015554858A priority patent/JP6454846B2/ja
Publication of WO2015098796A1 publication Critical patent/WO2015098796A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0228Control of working procedures; Failure detection; Spectral bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/205Neutral density filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4918Disposition being disposed on at least two different sides of the body, e.g. dual array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a light-emitting element, a reference light source, and a light-emitting body observation method.
  • An object of the present invention is to provide a technique capable of accurately evaluating the absolute light amount of a light emitting body that is a measurement object in the above-described weak light region.
  • the light whose radiation angle distribution is either Lambertian radiation distribution or isotropic uniform radiation distribution is extracted from the light extraction aperture window, and the in-plane distribution of the light intensity of the light extraction surface in the light extraction aperture window is uniform.
  • a light emitting device that can be used as a standard light source when measuring the absolute light amount of weak light emitted from a light emitter that is a measurement object.
  • a light emitting element having a characteristic that the brightness of the light emitting surface changes according to the operating temperature;
  • a light emitting element driving means for driving the light emitting element;
  • a temperature sensor for measuring the temperature of the light emitting element;
  • a control unit connected to each of the light emitting element driving means and the temperature sensor, and Based on the temperature information received from the temperature sensor, the light emitting element driving means controls the light emitting element driving means to suppress fluctuations in the light emitting surface brightness of the light emitting element caused by fluctuations in use environment temperature.
  • a reference light source is provided that is configured to vary a current value or voltage value to be driven.
  • the present invention it is possible to accurately evaluate the absolute light amount of a light emitting body, which is a measurement object, even in a faint light range of, for example, femto to milliW.
  • FIG. 3B is a plan configuration diagram of the light-emitting element shown in FIG. 3A.
  • FIG. 3 is a plan view of a light emitting element in an example. The elements on larger scale of the light emitting element in an Example. The figure which shows the measurement result of the pulse modulation output control characteristic of the light emitting element in an Example.
  • the picked-up image of the light extraction surface at the time of operating the light emitting element in an Example The picked-up image of the light extraction surface at the time of operating the light emitting element in an Example.
  • Schematic of the measurement system of light radiation angle distribution The figure which shows the measurement result of the light emission characteristic of the light emitting element in an Example.
  • the enlarged photograph of the light emission surface of a general LED element The enlarged photograph of the light emission surface of a general LED element.
  • FIG. 6 is a diagram illustrating Equation 2 for obtaining the light collection efficiency ( ⁇ L ) of the imaging device when the radiation angle distribution of light emitted from the light emitting element is Lambert radiation.
  • FIG. 6 is a schematic top view of a reference light source according to a second embodiment.
  • FIG. 11B is a schematic top view of the reference light source shown in FIG. 11A.
  • FIG. 6 is a schematic block diagram of a reference light source according to a second embodiment.
  • the measurement results cannot be compared if the conditions such as the measuring equipment and the measurement time are different, and the evaluation results are used effectively. There are things that cannot be done.
  • a method in which a luminescence standard substance solution is dissolved (luminescence standard substance solution), and the luminescence amount of the luminescent material (luminescence related substance) is quantified using the absolute light quantity of the luminescence standard substance solution as a standard light quantity That is, a method for evaluating (measuring) the absolute light amount of the light emitter has been proposed.
  • the absolute light amount of the illuminant may not be accurately evaluated. That is, in the luminescent standard substance solution, the absolute light quantity changes due to slight differences in temperature, concentration, stirring state, etc., and it may be difficult to make the absolute light quantity of the luminescent standard substance solution constant.
  • the inventors have accurately determined the absolute light amount (total light amount) of the illuminant that is the measurement object, for example, in the range of femto to milliW equivalent weak light.
  • the inventors have invented a new technology that can be evaluated.
  • a configuration of a light emitting element, a manufacturing method thereof, a method of observing a light emitter using the light emitting element as a standard light source, and the like in an embodiment of the present invention will be described in order.
  • the light emitting device 1 includes a lower cladding layer 2, a light emitting layer (active layer) 3 formed on the lower cladding layer 2, and an upper cladding formed on the light emitting layer 3.
  • a layer 4 and a transparent electrode 5 formed on the upper cladding layer 4 are provided.
  • the lower cladding layer 2 is made of, for example, a semiconductor material such as gallium phosphide (GaP), gallium arsenide (GaAs), gallium nitride (GaN), silicon (Si), germanium (Ge), oxygen (O), selenium (Se), or the like.
  • the upper clad layer 4 is made of, for example, the same semiconductor material as that of the lower clad layer 2, and instead of the n-type impurity used in the lower clad layer 2, impurities such as magnesium (Mg), zinc (Zn), and carbon (C) are used. It is formed as a p-type compound semiconductor layer doped with (p-type impurities) at a predetermined concentration (density).
  • the light emitting layer 3 is, for example, a thin film made of a semiconductor material similar to that of the lower cladding layer 2 and the upper cladding layer 4 and having a lower doping concentration (doping density) than the lower cladding layer 2 and the upper cladding layer 4. It is formed by.
  • the light emitting layer 3 is more preferably formed of a thin film of a semiconductor material having a small band gap, for example, as a semiconductor material by increasing the In composition ratio or decreasing the Al composition ratio.
  • the transparent electrode 5 is formed, for example, as a semiconductor layer doped with a p-type impurity at a high concentration, or a transparent conductive film such as indium tin oxide (ITO).
  • the semiconductor layer doped with p-type impurities at a high concentration uses a material having a larger band gap than the light emitting layer 3 or the upper cladding layer 4 by, for example, reducing the In composition ratio or increasing the Al composition ratio. As a result, the light absorption edge of the semiconductor layer is positioned on the shorter wavelength side, and thus has higher transparency.
  • a groove (concave portion) 6 (see FIG. 2) is formed at a depth reaching at least the light emitting layer 3, preferably the lower cladding layer 2 from the surface side of the transparent electrode 5.
  • the groove 6 is filled without gaps with an insulator 7 made of an organic insulating material such as benzocyclobutene (BCB), polyethylene, epoxy resin, polyimide, or an inorganic insulating material such as SiO 2 or SiN. ing.
  • the lower end of the insulator 7 reaches at least the light emitting layer 3, preferably the lower cladding layer 2.
  • the shape of the groove 6, that is, the shape of the insulator 7 is a cylindrical shape having a circular cross section.
  • the cylindrical insulator 7 By providing the cylindrical insulator 7, the current flowing in the light emitting element 1 flows only in a region surrounded by the cylindrical insulator 7, and in the region surrounded by the cylindrical insulator 7. Only light emission will occur. That is, the cylindrical insulator 7 functions as a current confinement portion (current blocking portion) that suppresses diffusion of current flowing in the light emitting element 1 and restricts the flow path.
  • a surface electrode 8 is formed on the transparent electrode 5.
  • the surface electrode 8 exposes the surface of a transparent electrode (disc-shaped transparent electrode) 5 surrounded by an insulator 7 to be a light extraction surface 12 to be described later, and the light emitted from the light extraction surface 12 is extracted.
  • An opening 8A for this purpose is formed. That is, the surface electrode 8 is formed in a region other than a region constituting a light extraction surface 12 described later.
  • the surface electrode 8 is formed so as to cover the entire outer peripheral edge of the transparent electrode (disk-shaped transparent electrode) 5 surrounded by the insulator 7. Specifically, the surface electrode 8 is configured to cover the outer peripheral end of the disk-shaped transparent electrode 5 with a predetermined width, that is, continuously cover without interruption.
  • the surface electrode 8 is formed so as to cover the surface of the transparent electrode 5 located in the outer region of the insulator 7. That is, the surface electrode 8 is configured to function also as a light shielding film that prevents light leakage from a region other than the light extraction surface 12 described later.
  • the surface electrode 8 is connected to the transparent electrode 5 inside the insulator 7 and is not electrically connected to the transparent electrode 5 outside the insulator 7.
  • the surface electrode 8 is made of a metal film formed of a metal material containing, for example, Au, Ag, Al, or the like.
  • a bonding wire (positive wiring) 9 for applying a voltage to the surface electrode 8 is connected to the surface electrode 8.
  • An insulating layer 20 made of an insulating material such as SiO 2 or SiN is formed between the transparent electrode 5 and the surface electrode 8 located in the outer region of the insulator 7.
  • the insulating layer 20 may be formed so as to cover the insulator 7. That is, the upper surface of the insulating layer 20 is preferably formed flat. Thereby, the surface electrode 8 can be formed more accurately.
  • the insulating layer 20 may be provided so as to cover the entire inner peripheral edge of the insulator 7 with a predetermined width.
  • a back electrode 10 is provided on the back side of the lower clad layer 2.
  • the back electrode 10 is made of a metal material containing, for example, Au, Ag, Al, or the like.
  • a bonding wire (negative wiring) 11 for applying a voltage to the back electrode 10 is connected to the back electrode 10.
  • the surface of the disc-shaped transparent electrode 5 surrounded by the insulator 7 is covered with the surface electrode 8 only in the vicinity of the outer peripheral edge, and the circular region inside the surface is exposed. Yes. That is, the surface of the disk-shaped transparent electrode 5 is exposed from the opening 8 ⁇ / b> A of the surface electrode 8.
  • the exposed surface (opening surface) of the transparent electrode 5 functions as a light extraction surface 12 from which light emitted from the light emitting layer 3 is extracted when current is injected between the front electrode 8 and the back electrode 10. That is, the exposed surface of the transparent electrode 5 becomes the light emitting surface of the light emitting element 1.
  • the opening 8 ⁇ / b> A of the surface electrode 8 functions as a light extraction opening window for extracting light emitted from the light emitting layer 3.
  • the light extraction surface 12, that is, the exposed surface of the transparent electrode 5, is preferably formed to be a flat surface.
  • the circular transparent electrode 5 constituting the light extraction surface 12 is configured to cover the entire surface without exposing the surface of the upper cladding layer 4 serving as a base.
  • the material, thickness, impurity concentration, etc. of the lower cladding layer 2, the light emitting layer 3, the upper cladding layer 4, the transparent electrode 5, the insulator 7, the front surface electrode 8, and the back surface electrode 10 constituting the light emitting device 1 are the same as those of the light emitting device 1. It is determined as appropriate based on specifications such as wavelength and light quantity.
  • the inner diameter, outer diameter, material of the insulator 7, the width of the surface electrode 8 covering the outer peripheral end of the transparent electrode 5, and the like are also appropriately determined based on the specifications of the light emitting element 1.
  • the shape of the light extraction surface 12 (opening 8A as a light extraction opening window), the inner diameter thereof, and the like are appropriately determined according to the shape and size of the light emitting body that is a measurement object in the observation method described later.
  • Examples of the shape of the light extraction surface 12 (light extraction opening window) include a circle having a diameter of 1 ⁇ m to 5 mm, preferably 3 ⁇ m to 3 mm, and more preferably 10 ⁇ m to 2 mm.
  • a lower cladding layer 2 is formed on an n + type GaAs wafer as a substrate, as shown in FIG. 2A, a light emitting layer 3 is formed on the lower cladding layer 2, and an upper portion is formed on the light emitting layer 3.
  • the clad layer 4 is formed. Then, the transparent electrode 5 is formed on the upper cladding layer 4.
  • a resist layer 13 having a predetermined pattern is formed on the transparent electrode 5.
  • a groove (concave portion) 6 is formed by etching or the like to a depth reaching at least the light emitting layer 3, preferably the lower cladding layer 2. After the groove 6 is formed, the resist layer 13 is removed.
  • an insulating film 14 constituting the insulator 7 is formed so as to fill the groove 6 with no gap and cover the surface of the transparent electrode 5. Then, as shown in FIG. 2D, the insulating film 14 located above the transparent electrode 5 is removed by etching. That is, the insulating film 14 is removed so that the upper surface of the insulator 7 having a cylindrical shape with a circular cross section is flat at the same height as the upper surface of the transparent electrode 5.
  • an insulating layer 20 is formed on the upper surface of the transparent electrode 5 and the upper surface of the insulator 7. Subsequently, a resist layer 16 having a predetermined pattern is formed on the insulating layer 20. Using the resist layer 16 as a mask, a predetermined portion of the insulating layer 20 is removed by etching or the like, and an insulating layer 20 that covers the entire outer region of the insulator 7 and the inner peripheral edge of the insulator 7 with a predetermined width is formed. Thereafter, the resist layer 16 is removed.
  • a resist layer having a predetermined pattern on the transparent electrode 5 surrounded by the insulator 7 (the insulating layer 20 covering the entire outer peripheral edge of the insulator 7 with a predetermined width). 17 is formed.
  • the resist layer 17 as a mask, metal deposition and lift-off are performed to form the surface electrode 8. That is, the outer peripheral end of the disc-shaped transparent electrode 5 (the insulating layer 20 covering the entire outer peripheral end of the insulator 7 with a predetermined width) is covered with the predetermined width, and the outer region of the insulator 7 is covered.
  • the surface electrode 8 is formed so as to cover it.
  • the resist layer 17 is removed. Thereby, an opening 8A as a light extraction opening window is formed in the surface electrode 8, and the surface of the disk-shaped transparent electrode 5 surrounded by the insulator 7 serving as the light extraction surface 12 is exposed.
  • a back electrode 10 is formed on the back side of the lower cladding layer 2.
  • the back electrode 10 is formed only on the back surface side of the lower clad layer 2 and only on the disk-shaped transparent electrode 5 surrounded by the insulator 7, that is, the region facing the light extraction surface 12.
  • the bonding wire 9 is connected to the front electrode 8 and the bonding wire 11 is connected to the back electrode 10. Thereby, the light emitting element 1 concerning this embodiment is manufactured, and the manufacturing process is complete
  • the absolute amount of light extracted when the light emitting element 1 is activated (emitted) is acquired.
  • the total luminous flux amount (A LU ) of the light extracted from the opening 8A serving as the light extraction opening window having a known size is obtained using, for example, an integrating sphere method. taking measurement.
  • a radiation angle distribution of light extracted when the light emitting element 1 is operated is acquired.
  • a photodiode is used as the photodetector, and the light emitting element 1 is arranged so that the light extraction surface 12 that is the light emitting surface of the light emitting element 1 faces the photodiode.
  • the light emitting element 1 is operated, and the radiation angle distribution of the light emitted from the light emitting element 1 is measured by changing the relative angle of the light emitting surface of the light emitting element 1 with respect to the photodiode.
  • the amount of light is measured by changing the angle of the light emitting element 1, that is, the angle of the light extraction surface 12 with respect to the photodiode, to measure the emission angle distribution of the light emitted from the light emitting element 1.
  • the light-emitting element 1 is placed in an imaging device (for example, a high-sensitivity CCD, so as to be able to photograph the light extraction surface 12 (light extraction aperture window) of the light-emitting element 1 for which the total luminous flux (A LU ) and radiation angle distribution have been acquired.
  • an imaging device for example, a high-sensitivity CCD, so as to be able to photograph the light extraction surface 12 (light extraction aperture window) of the light-emitting element 1 for which the total luminous flux (A LU ) and radiation angle distribution have been acquired.
  • a LU total luminous flux
  • the light emitting element 1 is operated, and the light extraction surface 12 (light extraction opening window) is photographed from above the light extraction opening window using the imaging device.
  • the light collection efficiency ( ⁇ L ) of the imaging device is defined.
  • the light collection efficiency ( ⁇ L ) of the imaging device is the ratio of the absolute light quantity (P LU ) of the light emitting element 1 to the total luminous flux quantity (A LU ) of the light emitted from the light extraction surface 12 of the light emitting element 1. .
  • the absolute amount of light (P LU) light-emitting element 1, taken by an absolute light amount of the light-emitting element 1 taken by the imaging device (P LU), or through the iris mechanism the imaging apparatus comprises an imaging apparatus
  • the absolute light quantity (P LU ) of the light emitting element 1 is said. That is, the light collection efficiency ( ⁇ L ) of the imaging device is defined by (Equation 1) shown below.
  • the light collection efficiency ( ⁇ L ) of the image pickup device can be calculated by integrating the measured radiation angle distribution with a solid angle according to the numerical aperture (NA) of the lens provided in the image pickup device and used for photographing.
  • NA numerical aperture
  • the light collection efficiency ( ⁇ L ) of the imaging device can be analytically calculated from (Equation 2) shown in FIG. 10A.
  • Equation 1 the absolute light quantity (P LU ) of the light-emitting element 1 that passes through the iris mechanism and enters the imaging device and is photographed by the imaging device is represented by the following (Equation 3).
  • P LU the absolute light quantity of the light-emitting element 1 that passes through the iris mechanism and enters the imaging device and is photographed by the imaging device is represented by the following (Equation 3).
  • a LU the total luminous flux
  • NA numerical aperture
  • the imaging apparatus includes an analog / digital converter having a predetermined resolution.
  • the imaging device is configured to digitize a signal obtained by the incidence of light for each pixel by an analog-digital converter and output a light and dark image as a captured image. A digitized numerical value for each pixel is called a luminance value.
  • the sum (I L ) of the luminance values of the image (bright and dark image) of the light extraction surface 12 of the light emitting element 1 output from the imaging device is acquired.
  • the absolute sensitivity (S) of the imaging device is calculated.
  • the absolute sensitivity (S) of the imaging device is the sum of the absolute light amount (P LU ) of the light-emitting element 1 calculated by ( Equation 3 ) and the luminance value of the image on the light extraction surface 12. It can be calculated from (I L ).
  • the calibrated imaging device uses the calibrated imaging device to photograph the light emitting surface of the illuminant that is the measurement object (observation object), and the absolute light amount of the weak light emitted from the illuminant is measured.
  • the light emitter is set so that the light emitting surface of the light emitter can be photographed using the imaging device that has been calibrated as described above, that is, has acquired the absolute sensitivity (S).
  • the light emission surface of a light-emitting body is image
  • the sum (I S ) of the luminance values of the light emitting surface of the light emitter is obtained from the captured image of the light emitting surface of the light emitter.
  • the light collection efficiency ( ⁇ S ) of the imaging device is calculated from (Equation 5) shown in FIG. 10B. If the light from the light emitter does not always radiate in the same direction, the light collection efficiency ( ⁇ S) of the imaging device is obtained in the same manner as when the radiation angle distribution of the light emitted from the light emitting element 1 is acquired. ) Should be determined. For example, by changing the angle of the light emitter to various angles, or changing the numerical aperture (NA) of the lens provided in the imaging device, the total luminance value (I S ) of the light emitting surface of the light emitter is measured. What is necessary is just to evaluate the radiation angle distribution of the emitted light and experimentally determine the light collection efficiency ( ⁇ S ) of the imaging device.
  • the total luminous flux amount (A S ) of the light emitter is calculated.
  • the total luminous flux amount (A S ) of the illuminant can be calculated from (Equation 6) shown below.
  • the ON / OFF pulse ratio (duty ratio) of (the amount of current injected into the light emitting element 1) and the lighting cycle may be adjusted.
  • the relationship between the ON / OFF pulse ratio of the injected current amount and the amount of light extracted from the light emitting element 1 is, for example, linear when the amount of light extracted from the light emitting element 1 is between 0.02 mW and 500 fW. Become.
  • S absolute sensitivity
  • PMT photomultiplier tube
  • the light emission wavelength of the light emitting element 1 is the same as the wavelength of a light-emitting body.
  • the absolute sensitivity (S) of the imaging device it is possible to obtain the total luminous flux amount (A S ) of the light emitter. it can. That is, when the wavelength of the light emitter is significantly different from the light emission wavelength of the light emitting element 1, first, the relative wavelength sensitivity characteristic of the imaging device is measured.
  • the total luminous flux amount (A S ) can be obtained.
  • the light extraction aperture window of the light emitting element 1 that is, the aperture 8A formed in the surface electrode 8 has good dimensional accuracy, an image obtained by photographing the light extraction surface 12 and an image obtained by photographing the light emission surface of the light emitter ,
  • the light emitting element 1 in which the light extraction surface 12 emits light uniformly in the surface can be used as a scale (scale). This makes it possible to accurately grasp the size, shape, area, and the like of the light emitting surface of the light emitter.
  • the amount of light emission can be freely adjusted by changing the amount of current injected into the light emitting element 1. Since the relationship between the ON / OFF pulse ratio (duty ratio) of the injection current amount to the light emitting element 1 and the light amount is linear, for example, the light emission amount can be accurately controlled. For example, by adjusting the ON / OFF pulse ratio of the injection current amount and the lighting cycle, the light emission amount of the light emitting element 1 can be accurately controlled to a light amount suitable for the sensitivity of the imaging device. Therefore, a PD (photodiode) suitable for measuring a relatively large amount of light, an imaging device suitable for measuring faint light in the order of femto to pico W, and light detection such as a photomultiplier tube (PMT).
  • a PD photodiode
  • PMT photomultiplier tube
  • the insulator 7 can act as a current confinement portion (current blocking portion).
  • current injection carrier injection
  • the outer region of the insulator 7 can be prevented.
  • light emission in the outer region of the insulator 7 can be prevented. That is, the light emitting element 1 can extract light only from the opening 8A as a light extraction opening window.
  • the surface electrode 8 covers the entire outer peripheral end of the transparent electrode 5 surrounded by the insulator 7 (without interruption), so that when a voltage is applied to the surface electrode 8, Local electric field concentration is less likely to occur. That is, the current density flowing in the region surrounded by the insulator 7 can be made uniform in the plane. As a result, the in-plane distribution of the light intensity of the light extraction surface 12 can be made uniform. Further, the light emission angle distribution of the light emitted from the light extraction surface 12 and extracted from the light extraction opening window can be made smooth and simple.
  • the light radiation angle distribution can be a Lambertian radiation distribution or an isotropic uniform radiation distribution.
  • the shape of the light extraction surface 12 is circular as in the present embodiment, local electric field concentration in the light extraction surface 12 is less likely to occur when a voltage is applied to the surface electrode 8. That is, the current density flowing in the region surrounded by the insulator 7 can be made more uniform in the plane. As a result, the in-plane distribution of the light intensity of the light extraction surface 12 can be made more uniform.
  • the surface electrode 8 By providing the surface electrode 8 so as to cover the outer region of the insulator 7 in the main surface of the light emitting element 1 on the side where the light extraction surface 12 is formed, the surface electrode 8 also functions as a light shielding film. To do. As a result, light leakage from regions other than the light extraction surface 12 can be more reliably prevented. Moreover, by making the surface electrode 8 function also as a light shielding film, the structure of the light emitting element 1 can be simplified, and as a result, the manufacturing cost can be reduced.
  • the light extraction surface 12, that is, the transparent electrode 5 provided on the inner side of the insulator 7 is configured to cover the entire surface of the upper cladding layer 4 without exposing the surface.
  • the in-plane distribution of the light intensity of the light extraction surface 12 can be made uniform. That is, since all the light emitted from the light emitting layer 3 is extracted after passing through both the upper cladding layer 4 and the transparent electrode 5, the light extraction efficiency can be made uniform in the plane. It is possible to make the in-plane distribution of intensity uniform. As a result, when the light extraction surface 12 is photographed from above, unevenness in the in-plane brightness can be suppressed.
  • the transparent electrode 5 is provided on the light extraction surface 12 in, for example, a line and space shape, a lattice shape, an island shape, or the like, that is, only a part of the surface of the upper cladding layer 4 is covered, and the other portions are covered.
  • a line and space shape a lattice shape, an island shape, or the like
  • light extracted after passing through both the upper cladding layer 4 and the transparent electrode 5 and light extracted after passing through only the upper cladding layer 4 are mixed. It will end up.
  • the in-plane distribution of the light intensity of the light extraction surface 12 becomes non-uniform, and when the light extraction surface 12 is photographed from above, local unevenness occurs in the in-plane brightness. .
  • the light-emitting element 1 according to the present embodiment can be suitably used as a standard light source (a reference light source for comparison with a measurement object) when performing sensitive measurement of weak light emission or fluorescence.
  • the light-emitting element 1 according to the present embodiment is particularly effective when performing sensitive measurement of weak light emission or fluorescence in fields such as material evaluation, medical examination, environmental measurement, and biological experiments.
  • a white light source such as a halogen lamp generally used as a standard light source (hereinafter also simply referred to as a white light source) has a relatively large amount of light of 10 to 500 W, and is used for measuring weak light. It is inappropriate as a standard light source.
  • a white light source as a standard light source for measuring weak light by combining a white light source with a neutral density filter or reducing the sensitivity of the measuring device to eliminate the above-mentioned problems.
  • the equipment and work methods used for calibration work are not standardized. If the calibration equipment and method vary depending on the work environment and the worker, the calibration accuracy is not guaranteed, and the reliability as a standard light source is lacking.
  • a neutral density filter is provided, it is necessary to take measures to block light that travels around the neutral density filter.
  • a general LED element has a bonding wire 9 or an electrode provided on a light emitting surface, and when a light emitting surface is photographed, a shadow of the member or scattered light is reflected. End up.
  • a general LED element includes various optical components such as a light emitting plate, a reflecting plate, and a lens, and an in-plane distribution of light intensity and a radiation angle distribution in the light emitting surface. Is very complex (in-plane non-uniformity). Therefore, even if the LED element can be operated as a weak light source, it is inappropriate as a standard light source for measuring weak light.
  • the light emitting element 1 according to the present embodiment can not only adjust the light emission amount to the light amount suitable for the sensitivity of the imaging apparatus as described in (a), but also (b) to (f). It has excellent characteristics as described in. Therefore, the light emitting element 1 in the present embodiment can be suitably used as a standard light source when performing, for example, weak light emission or high sensitivity measurement of fluorescence.
  • the shape of the opening 8A (light extraction opening window) formed in the surface electrode 8, that is, the shape of the light extraction surface 12 is not limited to a circle.
  • An elliptical shape, an oval shape, a rounded corner shape, or a polygonal shape such as a rectangle (rectangle), a triangle, or a square may be used.
  • the figure which combined these may be sufficient.
  • a circle, an ellipse, an oval, and a rounded corner are preferable because the above-described effect (c) can be easily obtained.
  • the light extraction surface 12 is arranged in a dot matrix or in a line on the same surface, so that in-plane sensitivity unevenness, image distortion, etc. in an imaging device using an image detection element such as a CCD or a CMOS. Can be evaluated. Further, even when a plurality of light emitting elements 1 having a single light extraction surface 12 are arranged in a dot matrix on the same surface and the plurality of light emitting elements 1 are used as one light source, the same effect can be obtained. .
  • the back electrode 10 is not limited to the case where it is provided on the back side of the lower cladding layer 2.
  • the surface and side surfaces of the lower cladding layer 2 may be exposed, and metal electrodes provided on these surfaces may be used as the back electrode 10.
  • the outer portion of the cylindrical insulator 7, that is, the transparent electrode 5, the upper cladding layer 4, the light emitting layer 3, and the lower cladding layer 2 located outside the cylindrical insulator 7 may be removed by etching or the like. .
  • a protective film such as a SiN film may be provided as a base. That is, the cylindrical insulator 7 may be protected by the passivation film. Specifically, a passivation film as a protective film may be provided on the entire peripheral surface of the cylindrical insulator 7.
  • the protective film may be formed of a material having low light transmittance. Thereby, the effect of (b) described above is easily obtained, which is preferable.
  • the cylindrical insulator 7 may be formed of a material having a light shielding property (low light transmittance) (for example, a material having a black color). Thereby, the cylindrical insulator 7 prevents the light emitted from the region surrounded by the insulator 7 from leaking from the region other than the opening 8A (that is, the region other than the light extraction surface 12). It also functions as a (light absorption part). As a result, the above-described effect (b) can be easily obtained, which is preferable.
  • a material having a light shielding property for example, a material having a black color
  • the surface electrode 8 may be formed only on the outer peripheral end of the transparent electrode 5 surrounded by the insulator 7, and a light shielding film separate from the surface electrode 8 may be provided in the outer region on the transparent electrode 5.
  • the light shielding film may be formed of a metal film or a non-metal film.
  • 3A and 3B can be suitably used as a standard light source when performing sensitive measurement of weak light or fluorescence, for example.
  • the insulating layer 20 may not be provided when the light shielding film is not formed using a metal film or when the light shielding film is not provided.
  • the light emitting layer 3 is not limited to a single material thin film, that is, a bulk structure.
  • the light emitting layer 3 may have a single or multiple quantum well structure in which well layers and barrier layers are alternately stacked.
  • the well layer can be formed as a compound semiconductor layer such as InGaAs or InGaN.
  • the barrier layer can be formed as a compound semiconductor layer such as AlGaAs or GaN.
  • the lower cladding layer 2 is formed as an n-type compound semiconductor layer and the upper cladding layer 4 is formed as a p-type compound semiconductor layer. That is, the lower cladding layer 2 may be formed as a p-type compound semiconductor layer, and the upper cladding layer 4 may be formed as an n-type compound semiconductor layer.
  • the relationship between the amount of current injected into the light emitting element 1 and the amount of light extracted from the light emitting element 1 is not limited to a linear relationship. That is, for example, if the light emission amount of the light emitting element 1 can be accurately controlled to a light amount suitable for the sensitivity of the imaging device by adjusting the duty ratio and the lighting cycle, the amount of current injected into the light emitting element 1 and the light emitting element 1 The relationship with the amount of light extracted from the lens may not be linear.
  • FIG. 4A is a plan photograph of a light emitting device having a circular shape with a light extraction surface having a diameter of 1 mm in the example
  • FIG. 4B is a partially enlarged photograph thereof.
  • FIG. 5 is a diagram showing the measurement results of the pulse modulation output control characteristics of the light emitting element in the example. From FIG. 5, by adjusting the pulse ratio of the current injected into the light emitting device in each embodiment, the amount of light emitted from the light extraction surface of the light emitting device in each embodiment and extracted from the light extraction aperture window (light output) Can be seen to change over a wide range (millimeter to femto). For example, it can be seen that between 0.02 mW and 500 fW, the relationship between the amount of current injected into the light emitting element and the light amount of the light emitting element is linear.
  • the light emitting element in each embodiment has a light extraction aperture window of the light emitting element as long as the light quantity is acquired (calibrated) at least at two points of light quantity (for example, light in terms of millimeter W) that is equal to or greater than the measurement lower limit of the existing PD. It can be seen that the light quantity can be controlled by adjusting the pulse ratio even in the region where the quantity of light extracted from the light is weak light in the femto to milliW conversion.
  • FIG. 6A and 6B are images obtained by photographing the light extraction aperture window of the light emitting element in the example with the imaging device. That is, FIG. 6A and FIG. 6B are photographed images output by photographing a light extraction aperture window from above by operating a light emitting element having a circular shape with a light extraction surface of 100 ⁇ m in the embodiment. is there. Specifically, FIG. 6A and FIG. 6B are enlarged images of the light extraction aperture window (light extraction surface) and its periphery when the light emitting element emits light (actuates) under predetermined conditions. In FIG. 6A, the light emitting element emits light under the conditions of an applied voltage of 4.5 V and an injection current amount of 0.017 to 0.019 mA. In FIG.
  • the light emitting element emits light under the conditions of an applied voltage of 5.0 V and an injection current amount of 0.044 to 0.047 mA.
  • the light emitting element in the example emits light only in the inner region of the cylindrical insulator, that is, in the light extraction surface. That is, it is possible to prevent light emission in the outer region of the insulator and to confirm that there is no light leakage from a region other than the light extraction surface.
  • the light emitting element in an Example does not have disorder by the shadow and scattering of a structural member. That is, it can be seen that shadows such as bonding wires and scattered light do not appear in the captured images shown in FIGS. 6A and 6B. That is, it was confirmed that the light-emitting elements in the examples were free from light disturbance due to shadows and scattering of the constituent members.
  • FIG. 7A is a schematic diagram of a measurement system of the total luminous flux of the light emitting element
  • FIG. 7B is a diagram showing the measurement result of the total luminous flux of the light emitting element having a circular diameter of 100 ⁇ m on the light extraction surface in the embodiment.
  • the measurement of the total luminous flux amount of the light emitting element was performed using a photodetector.
  • an axis that is perpendicular to the light extraction surface of the light-emitting element and passes through the center of the light extraction surface is defined as a central axis (0 °), and the photodetector is moved from the central axis toward the x axis by a predetermined angle ( ⁇ ) Moved and measured the light intensity.
  • a predetermined angle Moved and measured the light intensity.
  • FIG. 8A is a photographed image of a light emitter that is a measurement object
  • FIG. 8B is a photographed image of a light extraction surface of the light emitting element in the example.
  • FIG. 8A is a light and dark image that is obtained by photographing an emission surface of HEK293 cells transfected with luciferase that emits red light with an imaging device and digitized for each pixel.
  • FIG. 8B is a light-dark image output by imaging the light extraction surface of a light-emitting element having a circular shape with a diameter of 30 ⁇ m using an imaging device and digitizing each pixel. From FIG. 8A and FIG.
  • the imaging apparatus can be calibrated, that is, the absolute sensitivity can be acquired, and the absolute light amount of the light emitter that emits weak light can be accurately acquired.
  • the imaging apparatus can be calibrated, that is, the absolute sensitivity can be acquired, and the absolute light amount of the light emitter that emits weak light can be accurately acquired.
  • Various optical sensors such as a photodiode (PD), a photomultiplier tube (PMT), and a charge coupled device (CCD) are used as an optical sensor provided in the optical measuring device.
  • PD photodiode
  • PMT photomultiplier tube
  • CCD charge coupled device
  • Many optical measurement devices incorporating these optical sensors are used, and calibration (validation) is necessary to determine whether the optical measurement device is operating normally and whether normal detection sensitivity is maintained. ) Is required.
  • the sample to be measured by the optical measuring device is various, such as a solid, a liquid, or a container. Therefore, the sample installation location of the optical measurement device has various shapes for each optical measurement device, and often has a structure that is firmly shielded so that external light does not enter.
  • a reference light source that can be used for validation of an optical measurement device with a light-shielded sample placement structure, it has a shape suitable for the sample placement part of the optical measurement device and does not require power supply from the outside of the reference light source
  • it is desirable that the amount of light does not change with the use environment temperature. In the case where the space of the sample setting part is narrow, it is also desired that the sample mounting unit be small.
  • a light source that can be driven by a small battery can be configured without requiring an external power source.
  • the brightness (brightness of the light emitting surface) of the LED varies depending on the use environment temperature. Therefore, a reference light source equipped with a temperature control device that stabilizes the temperature is commercially available (manufacturer Nichia Chemical Co., Ltd., distributor Otsuka Electronics Co., Ltd.).
  • a reference light source equipped with a temperature control device that stabilizes the temperature is commercially available (manufacturer Nichia Chemical Co., Ltd., distributor Otsuka Electronics Co., Ltd.).
  • such a light source is not suitable for use in a closed space such as a light-shielded sample installation portion of an optical measurement device because an external power source for driving a temperature control device with high power consumption is required.
  • a light source that incorporates a PD and corrects it to a constant amount while measuring the amount of light is also commercially available (stabilized light source for photomultiplier tubes: Hamamatsu Photonics Co., Ltd.) Company-made).
  • This type of light source is sold as a constant light quantity type as an evaluation light source for PMT, but since the PD is installed on the radiation side of the light emitting part of the LED, light is reflected inside the light source so as not to cause a shadow. Is not suitable for applications in which the light quantity is changed.
  • the inventors have invented a new technology related to a reference light source that can suppress fluctuations in the amount of light caused by fluctuations in the operating environment temperature. .
  • the configuration and the like of the reference light source according to an embodiment of the present invention will be described.
  • the reference light source according to the present embodiment is configured so as to be able to emit weak light with a variable amount of light that is precisely controlled, for example, about 10 fW to 10 pW.
  • the light source for reference according to the present embodiment is also configured to be operable in a closed space where a power supply from the outside cannot be supplied, such as a sample installation part of an optical measurement device.
  • operation buttons 72a to 72d are arranged on the upper surface of the housing 70 as operators for the user to perform various operation settings.
  • the power source of the reference light source 100 can be switched on and off by the operation button 72a.
  • the emission color can be selected by the operation button 72b.
  • the light amount value can be set by the operation buttons 72c and 72d.
  • the light amount value can be increased by the operation button 72c, and the light amount value can be decreased by the operation button 72d.
  • the reference light source 100 is configured such that the light amount value can be set independently for each of the emission colors of red (R), green (G), and blue (B). Accordingly, any one color of RGB, two colors of any combination of RGB, or all three colors of RGB can be emitted with a desired light amount.
  • a display panel 71 is disposed on the upper surface of the housing 70.
  • the display panel 71 displays the set emission color, the set light quantity value, and the like input by the operation buttons 72a to 72d.
  • FIG. 11A illustrates a situation where a light quantity value of “1/8” is selected for the red (R) emission color.
  • a light emitting unit 50 is also arranged on the upper surface of the housing 70.
  • the light emitting unit 50 emits light 80 having a light emission color and a light amount set by the user.
  • the light emitting element of the light emitting unit 50 for example, the light emitting element 1 described in the first embodiment or a light emitting diode (LED) which is a semiconductor light emitting element can be used.
  • LED light emitting diode
  • the brightness when the light emitting element (LED) is lit is expressed by the term “light emitting surface brightness”, which is the brightness of the light emitting surface of the light emitting element, and the light emitting element (LED).
  • the brightness at the time of pulse emission is expressed by the term “average light emitting surface brightness” as the brightness averaged over time.
  • the brightness of light emitted from the light emitting unit 50 of the reference light source 100 is expressed by the term “light quantity”.
  • the “light quantity” is also associated with a “light quantity value” that is a setting value in the reference light source 100.
  • the reference light source 100 controls the ratio between the lighting time and the light-off time of the LED, that is, the pulse width that is the lighting time per time and the frequency that is the number of times of lighting per unit time.
  • PWM pulse width modulation
  • the brightness of the light emitting surface of the LED varies depending on the operating temperature. Therefore, even when driving with the same set light amount value, if the use environment temperature is different, the actually obtained light amount will vary due to the variation of the light emitting surface brightness of the LED. Such fluctuations in the amount of light are not desirable for a reference light source that is assumed to be used under various environmental temperatures.
  • the inventors of the present application use a light-emitting element such as an LED having a characteristic that the brightness of the light-emitting surface changes according to the operating temperature.
  • standard which can suppress the fluctuation
  • FIG. 12 is a schematic block diagram of a constant current drive type reference light source 100.
  • the light emitting element 10L of the light emitting unit 50 is configured as a multicolor light emitting element including a red LED 10R, a green LED 10G, and a blue LED 10B.
  • a red LED 10R, a green LED 10G, and a blue LED 10B for example, an element configured similarly to the light-emitting element 1 shown in the first embodiment described above can be preferably used.
  • an RGB color LED (chip type) manufactured by ROHM Co., Ltd. can be used as the light emitting element 10L.
  • the light emitting element driving means 20 is configured to drive the light emitting element 10L.
  • the light emitting element driving unit 20 includes a constant current source, and is configured to drive the LEDs 10R to 10B of the light emitting element 10L with a constant current.
  • the temperature sensor 30 is configured to measure the temperature of the light emitting element 10L.
  • the temperature sensor 30 is a position that does not interfere with the light emitted from the light emitting unit 50, that is, a position that does not cause a shadow, and a position in the vicinity of the light emitting element 10L, for example, the light emitting element 10L is disposed. It is arranged on the same substrate as the existing substrate.
  • the temperature sensor 30 repeats the temperature measurement at a predetermined frequency, for example, every fixed time, for example, every 5 seconds, for example, every second, and outputs temperature information corresponding to the measured temperature to the light emitting surface brightness correction unit 44. Is configured to do.
  • the control unit 40 includes an operation setting unit 41, a light amount setting unit 42, a parameter selection table 43, a light emitting surface brightness (light amount) correction unit 44, and a correction coefficient selection table 45.
  • the control unit 40 is configured by, for example, a microprocessor (MPU).
  • Operation settings such as emission color and light intensity value are input to the operation setting means 41 by the operation buttons 72a to 72d.
  • the operation setting means 41 is configured to display the input operation setting on the display panel 71. Further, the operation setting unit 41 outputs information on the set emission color and light amount value to the light amount setting unit 42, and outputs information on the set emission color to the light emitting surface brightness correction unit 44. Is also configured.
  • the light amount setting means 42 is configured to set a parameter for driving the LED of the set light emission color with the set light amount value by referring to the drive parameter selection table 43 based on the set light emission color and light amount value information.
  • the drive parameter selection table 43 is a table that stores a correspondence relationship between a light amount value and a drive parameter for driving the LED with the light amount value. For example, a frequency and a pulse width are set as the drive parameters.
  • FIG. 13 shows an example of the drive parameter selection table 43.
  • 12 levels of light quantity values of “full”, “1/2” to “1/1024”, and “off (zero)” are prepared.
  • the light amount value “full” corresponds to continuous lighting without a light-off time (zero light-off time), and is the brightest light amount value setting.
  • the light amount value “off (zero)” corresponds to complete light extinction and is the darkest light amount value setting.
  • Each of the light amount values “1/2” to “1/1024” is a light amount value indicated by the ratio of the lighting time to the light amount value “full”.
  • the light amount value “1/8” corresponds to light emission in which lighting with a pulse width of 35.0 ⁇ s is repeated at a frequency of 3600 Hz, for example.
  • the light intensity values “1/2” to “1/256” are set so that the light intensity is decreased by 1/2 by decreasing the frequency by 1/2 while keeping the lighting pulse width constant at, for example, 35.0 ⁇ s. It has become.
  • the light quantity value “1/512” is set so that the lighting pulse width is 1 ⁇ 2 of 17.5 ⁇ s while the frequency is constant with respect to the light quantity value “1/256”, and the light quantity is halved.
  • the light quantity value “1/1024” is set so that the frequency is 1 ⁇ 2 and the light quantity is 1 ⁇ 2 while the lighting pulse width is constant at, for example, 17.5 ⁇ s with respect to the light quantity value “1/512”.
  • the pulse width and frequency in FIG. 13 are examples, and the setting of the pulse width and frequency may be changed as necessary. Further, the light amount difference for one step of the light amount value may be set to other than 1/2 times and 2 times as illustrated.
  • Temperature information corresponding to the temperature of the light emitting element 10L measured by the temperature sensor 30 is input to the light emitting surface brightness correction unit 44.
  • the light emitting surface brightness correction unit 44 sets the correction coefficient with reference to the correction coefficient selection table 45 for the LED of the set light emission color based on the light emission color information and the temperature information received from the temperature sensor 30.
  • the correction coefficient selection table 45 is a table that stores the correspondence between the temperature and the correction coefficient at the temperature.
  • the brightness of the light emitting surface tends to decrease as the use environment temperature rises, and the LED emits light as the use environment temperature falls.
  • the surface brightness tends to increase.
  • the decrease in light emitting surface brightness can be corrected by increasing the drive current value, and the increase in light emission surface brightness can be corrected by decreasing the drive current value.
  • the correction can be performed as follows.
  • the light emitting surface brightness when driven at the reference temperature at the reference current value J0 is defined as the reference light emitting surface brightness I0.
  • the light-emitting surface brightness when driven at the reference current value J0 at the actual use environment temperature is defined as the light-emitting surface brightness I1.
  • the ratio I0 / I1 of the reference light emission surface brightness I0 to the light emission surface brightness I1 is greater than 1 if the light emission surface brightness I1 is lower than the reference light emission surface brightness I0, and the light emission surface brightness I1. Becomes a value smaller than 1 if the reference light emitting surface brightness I0 is increased. Therefore, the corrected current value can be set by multiplying the reference current value J0 by using the ratio I0 / I1 as a correction coefficient. If the reference temperature is equal to the actual use environment temperature, the ratio I0 / I1, that is, the correction coefficient is 1.
  • the correction coefficient can be prepared in advance as follows.
  • the LED is driven at the reference current value J0 while changing the temperature, and the light emitting surface brightness I1 at each temperature is measured.
  • the light emission surface brightness at an appropriate reference temperature (for example, a temperature of about 25 ° C. at room temperature) is set as the reference light emission surface brightness I0, and a correction coefficient I0 / I1 at each temperature can be obtained.
  • the number of temperature measurement points can be appropriately determined in consideration of measurement accuracy and labor.
  • the correction coefficient in the temperature between measurement points can be calculated
  • the correction coefficient selection table 45 can be configured by the correction coefficient obtained by the measurement, various parameters necessary for the interpolation calculation, and the like.
  • the specific configuration of the correction coefficient selection table 45 can be variously changed as necessary. For example, the measurement results of temperature and light emitting surface brightness necessary for calculating the correction coefficient are corrected coefficient selection table. It is also possible to adopt an aspect such as that stored in 45.
  • Temperature dependence of light-emitting surface brightness varies depending on individual LEDs. Therefore, the temperature dependence of the light emitting surface brightness is measured for each of the red LED 10R, the green LED 10G, and the blue LED 10B, and the correction coefficient for each of the LEDs 10R, 10G, and 10B can be obtained from the correction coefficient selection table 45. It is preferable to keep it.
  • FIG. 14 is an example (partial) of the correction coefficient selection table 45, and shows, for example, correction coefficients for the blue LED 10B.
  • the correction coefficient is set for a temperature within a use environment temperature range, for example, a temperature within a range of 15 ° C. to 45 ° C. In the example shown in the figure, correction coefficients every 5 ° C. are shown.
  • the correction factor at temperatures between the temperatures shown can be determined by interpolation calculation as required.
  • the correction coefficient can be obtained, for example, in increments of 0.1 ° C. by linear interpolation. Note that the temperature range and the correction coefficient in FIG. 14 are examples, and the setting of the temperature range and the correction coefficient may be changed as necessary.
  • the light emitting surface brightness correction unit 44 sets a corrected current value by multiplying the set correction coefficient for each light emitting color by a reference current value J0 that is a reference driving current value.
  • the frequency and pulse width set by the light quantity setting means 42 and the temperature-corrected current value set by the light emitting surface brightness correction means 44 are input to the light emitting element driving means 20.
  • the light emitting element driving unit 20 performs constant current driving of the LEDs 10R to 10B of the light emitting element 10L with the current value received from the light emitting surface brightness correction unit 44.
  • substantially constant means, for example, that the variation range of the brightness of the light emitting surface in the operating environment temperature range (for example, a range of 15 ° C. to 45 ° C.) is preferably within ⁇ 1%, more preferably within ⁇ 0.5%.
  • the light emitting element driving means 20 is also set by turning on and off the respective LEDs 10R to 10B of the light emitting element 10L at the frequency and pulse width received from the light quantity setting means 42 and emitting light with a predetermined average light emitting surface brightness.
  • the light is emitted with the specified light intensity value.
  • the light emitting surface brightness correction unit 44 can also be regarded as a light amount correction unit.
  • the update of the setting of the correction coefficient that is, the update of the corrected current value is performed every time the light emitting surface brightness correction unit 44 receives temperature information from the temperature sensor 30, or at least the temperature information received from the temperature sensor 30 is updated. It can be done every time it fluctuates.
  • a neutral density filter (ND filter) 51 is disposed on the upper side (radiation side) of the light emitting element 10L. Light incident from the light emitting element 10L and attenuated by the neutral density filter 51 becomes light 80 emitted from the light emitting unit 50.
  • the measurement of the light emitting surface brightness to obtain the correction coefficient as described above is performed by, for example, measuring the light emitting surface brightness of each of the LEDs 10R to 10B driven by continuous lighting (light amount value “full”) before assembling the product. This is done by measuring with (PD).
  • PD light amount value
  • a brightness of about 1 ⁇ W for example, an LED drive current of about 500 ⁇ A is required.
  • the neutral density filter 51 that attenuates the output from the LED to, for example, 1/10 5 to 1/10 6 is used, and the output at the light amount value “full” is about 10 pW. It has been reduced to. Further, by performing the light amount control as described above, it is possible to obtain weak light whose output is variable in the range of 10 fW to 10 pW, for example. When it is desired to change the light radiation distribution, an appropriate light scattering plate can be used.
  • the advantage of setting the LED drive current to a magnitude of, for example, about 500 ⁇ A is as follows, in addition to the fact that it is easy to measure the brightness of the light emitting surface to obtain a correction coefficient. The following points are also mentioned.
  • the LED drive current must be suppressed to, for example, about several pA.
  • components used in the LED and other circuits function as a capacitor, and it is difficult to obtain an appropriate rectangular PWM control waveform.
  • the LED drive current by setting the LED drive current to a magnitude of, for example, about 500 ⁇ A, it becomes easy to perform PWM control with an appropriate rectangular control waveform, and to perform precise control of the amount of light. Becomes easy.
  • the LED 10R to 10B is not a general LED but an element configured similarly to the light emitting element 1 described in the first embodiment, even if the drive current is reduced (for example, less than 500 ⁇ A) Also, it becomes easy to maintain the PWM control waveform in a rectangular shape.
  • the LED drive current is The standard of the reference current value multiplied by the correction coefficient is not limited to about 500 ⁇ A exemplified.
  • a preferred range of the reference current value is, for example, a range of 100 ⁇ A to 500 ⁇ A.
  • the reference current value can be set independently for each of the light emitting LEDs 10R to 10B.
  • the battery 60 is configured to supply power to each of the light emitting element driving means 20, the temperature sensor 30, and the control unit 40.
  • the battery 60 is, for example, a button battery having a voltage of 3V.
  • a button battery having a voltage of 3V can be boosted to 4.2V and used.
  • the housing 70 is configured to integrally accommodate components such as the light emitting element 10L, the light emitting element driving unit 20, the temperature sensor 30, the control unit 40, and the battery 60. Since the reference light source 100 is driven by the battery 60 housed in the casing 70 together with the constituent members such as the light emitting element 10L, the reference light source 100 can be operated in a closed space where power cannot be supplied from the outside.
  • the reference light source 100 can emit weak light with a variable amount of light that is precisely controlled, for example, about 10 fW to 10 pW. Further, it can be operated in a closed space where a power supply from outside cannot be supplied, such as a sample installation part of an optical measurement device.
  • control unit 40 is configured to suppress the variation in brightness of the light emitting surface of the light emitting element 10L due to the variation in the use environment temperature based on the temperature information received from the temperature sensor 30.
  • the light emitting element driving means 20 is configured to change the current value for driving the light emitting element 10L. Thereby, the fluctuation
  • the control unit corrects the driving voltage value of the light emitting element based on the temperature information to suppress the variation of the light emitting surface brightness, that is, the variation of the light emitting surface brightness is suppressed. It is also possible to change the driving voltage value of the light emitting element. However, the correction of the light-emitting surface brightness by the current is easier to control and the variation of the light-emitting surface brightness is easier than the correction of the light-emitting surface brightness by the voltage.
  • the control unit instead of correcting the light emitting surface brightness itself, the control unit corrects the frequency and / or pulse width (at least one of them) in the PWM control based on the temperature information to obtain the average light emitting surface brightness. It is also possible to suppress the variation in the length (that is, to change at least one of the pulse width and the frequency so that the variation in the average light emitting surface brightness is suppressed). However, when such correction is performed, temporal parameters such as frequency and pulse width are finely adjusted, and driving at a relatively high clock frequency is performed. However, the higher the clock frequency, the higher the power consumption.
  • the battery-powered reference light source preferably operates with low power consumption. Therefore, from the viewpoint of reducing power consumption, the method of correcting the brightness of the light emitting surface by fine adjustment of the current value is preferable as in the second embodiment described above. Note that, as in the second embodiment described above, a relatively low clock frequency is used for a large light amount change in which the light amount value is changed in a geometric sequence, for example, 1 ⁇ 2 times or twice. Thus, the PWM control with reduced power consumption can be performed.
  • For each LED of each luminescent color measure the light emitting surface brightness while changing the operating environment temperature, obtain a light emitting surface brightness change curve indicating the temperature dependence of the light emitting surface brightness, from the light emitting surface brightness change curve, A current correction coefficient that makes the brightness of the light emitting surface substantially constant even when the temperature fluctuates was obtained.
  • FIG. 15 is a light emission surface brightness change curve in the example and a light emission surface brightness change curve in the comparative example for the blue LED.
  • the horizontal axis represents temperature in ° C.
  • the vertical axis represents light emitting surface brightness change in%.
  • the blue LED was driven with a current value corrected for each temperature, and in the comparative example, with a constant current value (without correcting the current value for each temperature). The measurement was performed in the temperature range of 15 ° C to 45 ° C.
  • the brightness of the light emitting surface decreased as the temperature increased.
  • it was found that substantially constant light-emitting surface brightness can be maintained over a wide temperature range of 15 ° C. to 45 ° C. by current correction.
  • the linearity of the reference light source according to the embodiment of the present invention was examined by a luminescence sensor JNR (manufactured by ATTO Co., Ltd.), which is a photon counting type luminescence measuring device using PMT as a detector.
  • the linearity is the linearity of the relationship between the set light amount value (set output) of each emission color of the reference light source according to the embodiment and the measured value by the measuring device.
  • FIG. 16 is a graph showing light emission linearity in the reference light source of the example.
  • the horizontal axis indicates the output of each emission color of the reference light source of the embodiment in pW units, and the vertical axis indicates the measured value by the measuring device in terms of relative light emission (RLU).
  • RLU relative light emission
  • a measuring apparatus (Japanese Patent No. 4052389) capable of separately measuring the light amounts of light emitting components of a plurality of colors has been put into practical use.
  • the reference light source according to the embodiment is suitable as a light source for verifying the operation of the measuring apparatus because it can emit light of a plurality of emission colors with a precisely controlled light amount.
  • Appendix 2 A lower cladding layer; A light emitting layer formed on the lower cladding layer; An upper cladding layer formed on the light emitting layer; A transparent electrode formed on the upper cladding layer; A cylindrical insulator provided so as to fill a groove formed at a depth reaching at least the light emitting layer from the surface side of the transparent electrode; An opening is formed as the light extraction opening window for exposing the surface of the transparent electrode formed on the transparent electrode and surrounded by the insulator serving as the light extraction surface, and for extracting weak light.
  • Appendix 3 The light emitting element according to appendix 2, wherein the groove is formed with a depth reaching at least the lower cladding layer from the surface side of the transparent electrode.
  • Appendix 4 The light-emitting element according to appendix 2 or 3, wherein the shape of the opening is any one of a circle, an ellipse, an ellipse, a rounded circle, a rectangle, and a combination thereof.
  • Appendix 6 The light emitting device according to any one of appendices 2 to 5, wherein a light shielding film that covers an outer region of the insulator is formed on a main surface of the light emitting device on a side where the opening is formed.
  • Appendix 7 The light-emitting element according to appendix 6, wherein the light-shielding film includes a metal film formed integrally with a metal film that constitutes the surface electrode.
  • Appendix 8 A light source comprising one or more light-emitting elements according to any one of appendices 1 to 7 arranged on the same surface.
  • Appendix 9 An imaging apparatus comprising the light-emitting element according to any one of appendices 1 to 7 as a standard light source.
  • Appendix 10 Obtaining a total luminous flux amount of light emitted from the light extraction surface of the light emitting element of any one of appendices 1 to 7, and a radiation angle distribution; Calibrating the imaging apparatus using the light emitting element having acquired the total luminous flux amount and the radiation angle distribution as a standard light source; and Photographing the light emitting surface of the light emitting body that is the object to be measured using the calibrated imaging apparatus, and obtaining the total luminous flux of the weak light emitted from the light emitting body, .
  • the supplementary note 9 including a step of obtaining a dimension of the light emitting surface of the light emitter by comparing an image obtained by photographing the light extraction surface of the light emitting element and an image obtained by photographing the light emitting surface of the light emitter. Observation method of illuminant.
  • a light emitting element driving means for driving the light emitting element;
  • a temperature sensor for measuring the temperature of the light emitting element;
  • Control units respectively connected to the light emitting element driving means and the temperature sensor;
  • the controller is Based on the temperature information received from the temperature sensor, a current value for driving the light emitting element by the light emitting element driving means so as to suppress the fluctuation of the light emitting surface brightness of the light emitting element due to the fluctuation of the use environment temperature or
  • a reference light source configured to change the voltage value.
  • the controller is The reference light source according to appendix 12, wherein a correction coefficient is set based on temperature information received from the temperature sensor, and the current value is changed by multiplying a reference current value by the correction coefficient.
  • the temperature sensor is Repeat the measurement of the temperature of the light emitting element at a predetermined frequency
  • the controller is The reference light source according to appendix 12 or 13, wherein the light emitting element driving means changes a current value for driving the light emitting element every time temperature information received from the temperature sensor fluctuates.
  • the controller is By giving a pulse width and frequency of lighting to the light emitting element driving means and controlling the lighting / lighting off operation of the light emitting element by the light emitting element driving means, the light emitting element emits light with a predetermined average light emitting surface brightness.
  • the controller is The reference light source according to supplementary note 15, configured to set the pulse width and the frequency based on a light amount value input by the operation element.
  • Appendix 18 18.
  • the light emitting element is It has a plurality of light emitting elements with different emission colors
  • the controller is Based on the temperature information received from the temperature sensor, the light emitting element driving means is configured to suppress variation in brightness of the light emitting surface in each of the plurality of light emitting elements having different emission colors due to variation in use environment temperature.
  • the reference light source according to any one of appendices 1 to 7, configured to change a current value for driving a plurality of light emitting elements having different emission colors.
  • Appendix 20 A battery for supplying power to the light emitting element driving means, the temperature sensor, and the control unit; A housing that integrally houses the light emitting element, the light emitting element driving means, the temperature sensor, the control unit, and the battery;
  • the light source for reference according to any one of appendices 12 to 19, further comprising:
  • Appendix 21 The reference light source according to any one of appendices 12 to 20, comprising the light-emitting element according to appendix 1 as the light-emitting element.
  • a light emitting element driving means for driving the light emitting element;
  • a temperature sensor for measuring the temperature of the light emitting element;
  • Control units respectively connected to the light emitting element driving means and the temperature sensor; With The controller is Based on the temperature information received from the temperature sensor, the light emitting element driving means is configured to suppress the variation of the light emitting surface brightness or the average light emitting surface brightness of the light emitted from the light emitting element due to the variation of the use environment temperature.
  • a reference light source configured to change at least one of a current value, a voltage value, and a lighting pulse width and frequency for driving the light emitting element.
  • Appendix 23 Acquiring a total luminous flux amount of light emitted from the light emitting surface of the reference light source according to appendix 12, and a radiation angle distribution; Calibrating the imaging apparatus using the light emitting element having acquired the total luminous flux amount and the radiation angle distribution as a standard light source; and Photographing the light emitting surface of the light emitting body that is the object to be measured using the calibrated imaging apparatus, and obtaining the total luminous flux of the weak light emitted from the light emitting body, .
  • Appendix 24 The method of acquiring a dimension of the light emitting surface of the light emitter by comparing an image obtained by photographing the light emitting surface of the reference light source according to appendix 12 with an image obtained by photographing the light emitting surface of the light emitter. 23. A method for observing a light emitter according to 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 放射角度分布がランバート性放射分布又は等方性一様放射分布のいずれかである光が光取り出し開口窓から取出され、光取り出し開口窓内の光取り出し面の光強度の面内分布が均一である発光素子を、測定対象物である発光体から放射される微弱光の絶対光量の測定を行う際の標準光源として用いる。

Description

発光素子、基準用光源および発光体の観察方法
 本発明は、発光素子、基準用光源および発光体の観察方法に関する。
 材料評価、医療検査、環境計測、生物実験、化学実験等の分野では、例えばフェムト~ミリW換算の微弱光領域での高感度計測、例えば、光量分析や画像分析等が広く行われている。
 上述の微弱光領域においては、測定対象物である発光体の絶対光量を正確に評価することは困難であり、相対光量に基づいた評価が行われるのが一般的である。また、上述の微弱光領域においては、測定環境の温度変動によって測定結果が大きく影響を受けることがある。本発明の目的は、上述の微弱光領域において、測定対象物である発光体の絶対光量を正確に評価することが可能な技術を提供することにある。
 本発明の一態様によれば、
 放射角度分布がランバート性放射分布又は等方性一様放射分布のいずれかである光が光取り出し開口窓から取出され、前記光取り出し開口窓内の光取り出し面の光強度の面内分布が均一であり、測定対象物である発光体から放射される微弱光の絶対光量の測定を行う際の標準光源として用いることができる発光素子が提供される。
 本発明の他の態様によれば、
 動作温度に応じて発光面明るさが変化する特性を有する発光素子と、
 前記発光素子を駆動する発光素子駆動手段と、
 前記発光素子の温度を測定する温度センサと、
 前記発光素子駆動手段および前記温度センサにそれぞれ接続された制御部と、を備え、
 前記制御部は、前記温度センサから受信した温度情報に基づき、使用環境温度の変動に起因する前記発光素子の発光面明るさの変動が抑制されるよう、前記発光素子駆動手段が前記発光素子を駆動する電流値または電圧値を変化させるように構成されている基準用光源が提供される。
 本発明によれば、例えばフェムト~ミリW換算の微弱光領域においても、測定対象物である発光体の絶対光量を正確に評価することが可能となる。
第1実施形態における発光素子の断面構成図。 図1Aに示す発光素子の平面構成図。 図1A、図1Bに示す発光素子の製造工程を示すフロー図。 第1実施形態における発光素子の変形例を示す断面構成図。 図3Aに示す発光素子の平面構成図。 実施例における発光素子の平面撮影図。 実施例における発光素子の部分拡大図。 実施例における発光素子のパルス変調出力制御特性の測定結果を示す図。 実施例における発光素子を作動させた際の光取り出し面の撮影画像。 実施例における発光素子を作動させた際の光取り出し面の撮影画像。 光放射角度分布の測定系の概略図。 実施例における発光素子の光放射特性の測定結果を示す図。 測定対象物である発光体の撮影画像。 実施例における発光素子の光取り出し面の撮影画像。 一般的なLED素子の発光面の拡大写真。 一般的なLED素子の発光面の拡大写真。 発光素子から放射される光の放射角度分布がランバート放射である場合において、撮像装置の集光効率(ηL)を得るための式2を示す図。 ランダム配向の発光分子からなる発光体から光が等方向に放射される場合において、撮像装置の集光効率(ηS)を得るための式5を示す図。 第2実施形態における基準用光源の概略的な上面図。 図11Aに示す基準用光源の概略的な上面図。 第2実施形態による基準用光源の概略的なブロック図。 第2実施形態による駆動パラメータ選定表の一例を示す図。 第2実施形態による補正係数選定表の一例を示す図。 実施例および比較例における発光面明るさ変化曲線を示す図。 実施例における発光の直線性を示す図。
<第1実施形態>
 以下、本発明の第1実施形態について、主に図1~図10Bを参照しながら説明する。
(発明創成の背景)
 材料評価、医療検査、環境計測、生物実験、化学実験等の分野では、微弱光や蛍光の高感度計測、例えば光量分析や画像分析等が広く行われている。これらの応用で、測定対象物である発光体から放射される光は、指向性がないうえに、フェムト~ミリW換算の微弱領域である。このため、上述の光量領域では、発光体から放射される光の絶対光量を測定して評価することは困難である。従って、上述の光量領域では、任意単位で測定した相対光量を用い、発光体から放射される光量の評価が行われている。しかしながら、相対光量を用いた光量の評価(発光体から放射される光の評価)では、測定機器や測定時期等の条件が異なると測定結果を比較することができず、評価結果を有効に活用できないことがある。
 そこで、例えば、発光標準物質を溶解させた溶液(発光標準物質溶液)を作製し、この発光標準物質溶液の絶対光量を標準光量として発光体(発光関連物質)の発光量を定量化する方法、つまり、発光体の絶対光量を評価(測定)する方法が提案されている。
 しかしながら、上述のように、発光標準物質溶液を用いた発光体の絶対光量の評価では、発光体の絶対光量を正確に評価することができない場合がある。つまり、発光標準物質溶液は、温度、濃度、撹拌の状態等のわずかな違いによって、絶対光量が変化してしまい、発光標準物質溶液の絶対光量を一定にすることが難しいことがある。
 このような課題を解決すべく鋭意研究を行った結果、発明者等は、例えばフェムト~ミリW換算の微弱光の領域において、測定対象物である発光体の絶対光量(全光束光量)を正確に評価することが可能な新技術を発明するに至った。以下、本発明の一実施形態における発光素子の構成、その製造方法、この発光素子を標準光源として用いた発光体の観察方法等について、順に説明する。
(発光素子の構成)
 図1Aに示すように、本実施形態における発光素子1は、下部クラッド層2と、下部クラッド層2上に形成された発光層(活性層)3と、発光層3上に形成された上部クラッド層4と、上部クラッド層4上に形成された透明電極5と、を備えている。下部クラッド層2は、例えば、ガリウムリン(GaP)、ガリウム砒素(GaAs)、窒化ガリウム(GaN)等の半導体材料にシリコン(Si)、ゲルマニウム(Ge)、酸素(O)、セレン(Se)等の不純物(n型不純物)を所定の濃度(密度)でドープしたn型化合物半導体層として形成されている。なお、これらの半導体材料には、インジウム(In)やアルミニウム(Al)が所定の組成比で混晶化されたものも含まれる。上部クラッド層4は、例えば下部クラッド層2と同様の半導体材料を用い、下部クラッド層2で用いたn型不純物の替わりに、マグネシウム(Mg)、亜鉛(Zn)、炭素(C)等の不純物(p型不純物)を所定の濃度(密度)でドープしたp型化合物半導体層として形成されている。発光層3は、例えば、下部クラッド層2や上部クラッド層4と同様の半導体材料で、非ドープ、もしくは下部クラッド層2や上部クラッド層4よりもドープ濃度(ドープ密度)を低くした材料の薄膜により形成されている。発光層3は、より好ましくは、例えば、半導体材料として、In組成比を増やしたり、Al組成比を減らす等により、バンドギャップを小さくした半導体材料の薄膜により形成されている。透明電極5は、例えばp型の不純物を高濃度でドープした半導体層や、酸化インジウムスズ(ITO;Indium tin Oxide)等の透明伝導膜として形成されている。p型の不純物を高濃度でドープした半導体層は、発光層3や上部クラッド層4よりも、例えばIn組成比を減らしたり、Al組成比を増やす等により、バンドギャップを大きくした材料を用いる。これによって、半導体層の光吸収端がより短波長側に位置することとなり、より高い透過性を有することとなる。
 発光素子1には、透明電極5の表面側から少なくとも発光層3、好ましくは下部クラッド層2に達する深さで、溝(凹部)6(図2参照)が形成されている。溝6内は、例えばベンジシクロブデン(BCB)、ポリエチレン、エポキシ樹脂、ポリイミド等の有機系絶縁性物質や、SiO2やSiN等の無機系絶縁性物質からなる絶縁体7によって、隙間なく埋められている。絶縁体7の下端は、少なくとも発光層3、好ましくは下部クラッド層2に達している。溝6の形状、つまり、絶縁体7の形状は、横断面が円環形の筒状形状となっている。筒状の絶縁体7が設けられることで、発光素子1内を流れる電流は、筒状の絶縁体7に囲われた領域にのみ流れることとなり、筒状の絶縁体7に囲われた領域でのみ発光が起こることとなる。つまり、筒状の絶縁体7は、発光素子1内を流れる電流の拡散を抑制し、その流路を規制する電流狭窄部(電流阻止部)として機能する。
 透明電極5上には、表面電極8が形成されている。表面電極8には、後述の光取り出し面12となる絶縁体7に囲われた透明電極(円板状の透明電極)5の表面を露出させて、光取り出し面12から放射される光を取り出すための開口8Aが形成されている。つまり、表面電極8は、後述の光取り出し面12を構成する領域以外の領域に形成されている。表面電極8は、絶縁体7により囲われた透明電極(円板状の透明電極)5の外周端を全周覆うように形成されている。具体的には、表面電極8は、円板状の透明電極5の外周端を所定の幅で全周覆うように、つまり、途切れることなく連続的に覆うように構成されている。また、表面電極8は、絶縁体7の外側領域に位置する透明電極5の表面を覆うように形成されている。つまり、表面電極8は、後述の光取り出し面12以外の領域からの光漏れを防止する遮光膜としても機能するように構成されている。表面電極8は、絶縁体7の内側の透明電極5に接続され、絶縁体7の外側の透明電極5には電気的に接続されないように構成されている。表面電極8は、例えばAu、Ag、Al等を含む金属材料により形成される金属膜により構成されている。表面電極8には、表面電極8に電圧を印加するボンディングワイヤ(正側配線)9が接続されている。
 絶縁体7の外側領域に位置する透明電極5と表面電極8との間には、例えばSiO2やSiN等の絶縁性物質からなる絶縁層20が形成されている。これにより、絶縁体7の外側領域に位置する透明電極5と表面電極8との間が電気的に絶縁され、絶縁体7の外側領域への電流注入を回避することが可能となる。絶縁層20は、絶縁体7を覆うように形成されているとよい。すなわち、絶縁層20の上面が平坦に形成されているとよい。これにより、表面電極8をより精度良く形成できる。また、絶縁層20が絶縁体7の内側の外周端を所定の幅で全周覆うように設けられていてもよい。
 下部クラッド層2の裏面側には、裏面電極10が設けられている。裏面電極10は、例えばAu、Ag、Al等を含む金属材料により形成されている。裏面電極10には、裏面電極10に電圧を印加するボンディングワイヤ(負側配線)11が接続されている。
 図1Bに示すように、絶縁体7により囲われた円板状の透明電極5の表面は、その外周端近傍のみが表面電極8に覆われており、その内側の円形の領域は露出している。つまり、表面電極8の開口8Aから、円板状の透明電極5の表面が露出している。この透明電極5の露出面(開口面)は、表面電極8と裏面電極10との間に電流が注入されることで発光層3から放射される光が取り出される光取り出し面12として機能する。つまり、透明電極5の露出面は、発光素子1の発光面となる。このとき、表面電極8の開口8Aは、発光層3から放射される光を取り出す光取り出し開口窓として機能する。光取り出し面12、つまり透明電極5の露出面は平面に形成されているとよい。光取り出し面12を構成する円形の透明電極5は、下地となる上部クラッド層4の表面を露出させることなく、その全面を覆うように構成されている。
 発光素子1を構成する下部クラッド層2、発光層3、上部クラッド層4、透明電極5、絶縁体7、表面電極8、裏面電極10の材料、厚さ、不純物濃度等は、発光素子1の仕様、例えば波長や光量等に基づいて適宜決定される。絶縁体7の内径、外径、材料や、透明電極5の外周端を覆う表面電極8の幅等も、発光素子1の仕様に基づいて同様に適宜決定される。光取り出し面12(光取り出し開口窓としての開口8A)の形状やその内径等は、後述する観察方法において測定対象物となる発光体の形状や寸法に応じて適宜決定される。光取り出し面12(光取り出し開口窓)の形状として、例えば直径1μm~5mm、好ましくは3μm~3mm、より好ましくは10μm~2mmの円形が例示される。
(発光素子の製造方法)
 続いて、本実施形態にかかる発光素子1の製造方法について、図2を用いて説明する。
 例えば、基板としてのn+型GaAsウエハ上に、図2の(a)に示すように、下部クラッド層2を形成し、下部クラッド層2上に発光層3を形成し、発光層3上に上部クラッド層4を形成する。そして、上部クラッド層4上に、透明電極5を形成する。
 図2の(b)に示すように、透明電極5上に所定パターン(例えば横断面が円環形のパターン)を有するレジスト層13を形成する。レジスト層13をマスクとして、エッチング等により少なくとも発光層3、好ましくは下部クラッド層2に達する深さで溝(凹部)6を形成する。溝6を形成した後、レジスト層13を除去する。
 図2の(c)に示すように、溝6内を隙間なく埋めるとともに、透明電極5の表面を覆うように、絶縁体7を構成する絶縁膜14を形成する。そして、図2の(d)に示すように、透明電極5の上部に位置する絶縁膜14をエッチングにより除去する。つまり、横断面が円環形の筒状形状である絶縁体7の上面が、透明電極5の上面と同じ高さで平坦となるように、絶縁膜14を除去する。
 図2の(e)に示すように、透明電極5の上面及び絶縁体7の上面に絶縁層20を形成する。続いて、絶縁層20上に所定パターンを有するレジスト層16を形成する。レジスト層16をマスクとして、エッチング等により絶縁層20の所定箇所を除去し、絶縁体7の外側領域及び絶縁体7の内側の外周端を所定の幅で全周覆う絶縁層20を形成する。その後、レジスト層16を除去する。
 図2の(f)に示すように、絶縁体7(絶縁体7の内側の外周端を所定の幅で全周覆う絶縁層20)により囲われた透明電極5上に所定パターンを有するレジスト層17を形成する。レジスト層17をマスクとして、金属蒸着およびリフトオフを行い、表面電極8を形成する。つまり、円板状の透明電極5の外周端(絶縁体7の内側の外周端を所定の幅で全周覆う絶縁層20)を所定の幅で全周覆うとともに、絶縁体7の外側領域を覆うように表面電極8を形成する。表面電極8を形成した後、レジスト層17を除去する。これにより、表面電極8に光取り出し開口窓としての開口8Aが形成され、光取り出し面12となる絶縁体7により囲われた円板状の透明電極5の表面が露出される。
 図2の(g)に示すように、下部クラッド層2の裏面側に裏面電極10を形成する。好ましくは、下部クラッド層2の裏面側であって、絶縁体7により囲われた円板状の透明電極5、つまり、光取り出し面12と対向する領域にのみ裏面電極10を形成する。
 そして、表面電極8にボンディングワイヤ9を接続するとともに、裏面電極10にボンディングワイヤ11を接続する。これにより、本実施形態にかかる発光素子1が製造されて、その製造工程を終了する。
(発光体の観察方法)
 続いて、上述の発光素子1を標準光源として用いた発光体の観察方法を説明する。
[発光素子の全光束光量の取得]
 まず、発光素子1を作動(発光)させたときに取り出される光の絶対光量を取得する。具体的には、発光素子1を作動させたときに、大きさが既知である光取り出し開口窓としての開口8Aから取り出される光の全光束光量(ALU)を、例えば積分球方式を用いて測定する。
[発光素子から放射される光の放射角度分布の取得]
 発光素子1を作動させたときに取り出される光の放射角度分布を取得する。まず、光検出器として例えばフォトダイオードを用い、発光素子1の発光面である光取り出し面12がフォトダイオードと対向するように発光素子1を配置する。そして、発光素子1を作動させ、フォトダイオードに対する発光素子1の発光面の相対角度を変えて、発光素子1から放射される光の放射角度分布を測定する。例えば、発光素子1の角度、つまりフォトダイオードに対する光取り出し面12の角度を種々の角度に変えて光量を測定し、発光素子1から放射される光の放射角度分布を測定する。
[撮像装置の校正]
 続いて、測定対象物である発光体から放射される光の絶対光量を測定する際に用いる撮像装置の校正(バリデーション)を行う。まず、全光束光量(ALU)及び放射角度分布を取得済みの発光素子1の光取り出し面12(光取り出し開口窓)を撮影可能なように、発光素子1を撮像装置(例えば高感度CCD、CMOSカメラ等)にセットする。そして、発光素子1を作動させ、撮像装置を用いて光取り出し開口窓の上方から光取り出し面12(光取り出し開口窓)を撮影する。
 次に、撮像装置の集光効率(ηL)を定義する。撮像装置の集光効率(ηL)とは、発光素子1の光取り出し面12から放射される光の全光束光量(ALU)に対する、発光素子1の絶対光量(PLU)の割合である。発光素子1の絶対光量(PLU)とは、撮像装置によって撮影された発光素子1の絶対光量(PLU)、あるいは撮像装置が備える絞り(アイリス)機構を通過して撮像装置によって撮影された発光素子1の絶対光量(PLU)を言う。つまり、撮像装置の集光効率(ηL)は、下記に示す(数1)により定義される。
(数1)
撮像装置の集光効率(ηL)=発光素子1の絶対光量(PLU)/全光束光量(ALU
 撮像装置の集光効率(ηL)は、撮像装置が備え、撮影に使用したレンズの開口数(NA)に応じて、測定した放射角度分布を立体角で積分することで算出できる。例えば、発光素子1から放射される光の放射角度分布がランバート放射である場合、撮像装置の集光効率(ηL)は、図10Aに示す(数2)から解析的に計算できる。
 上記(数1)又は(数2)から、アイリス機構を通過して撮像装置に入射し、撮像装置によって撮影された発光素子1の絶対光量(PLU)は、下記の(数3)に示すように、全光束光量(ALU)と開口数(NA)とから算出できる。
(数3)
発光素子1の絶対光量(PLU
=全光束光量(ALU)×撮像装置の集光効率(ηL
=全光束光量(ALU)×NA2
 そして、撮像装置の絶対感度(S)(W/単位輝度)を取得する。撮像装置は、所定の分解能を有するアナログデジタルコンバータを備えている。撮像装置は、光が入射されることで得られたシグナルをアナログデジタルコンバータで画素毎にデジタル化し、撮影画像として明暗画像を出力するように構成されている。画素毎のデジタル化された数値を輝度値と呼ぶ。そして、撮像装置から出力された発光素子1の光取り出し面12の画像(明暗画像)の輝度値の総和(IL)を取得する。
 そして、撮像装置の絶対感度(S)を算出する。下記の(数4)に示すように、撮像装置の絶対感度(S)は、(数3)によって算出した発光素子1の絶対光量(PLU)と光取り出し面12の画像の輝度値の総和(IL)とから算出できる。
(数4)
絶対感度(S)=発光素子1の絶対光量(PLU)/光取り出し面12の画像の輝度値の総和(IL
[発光体の全光束光量の測定]
 続いて、校正済みの撮像装置を用いて、測定対象物(観察対象物)である発光体の発光面を撮影して、発光体から放射された微弱光の絶対光量を測定する。具体的には、まず、上述のように校正を行った、つまり絶対感度(S)を取得した撮像装置を用いて、発光体の発光面を撮影できるように、発光体をセットする。そして、発光体の発光面を撮像装置を用いて撮影する。そして、発光体の発光面の撮影画像から、発光体の発光面の輝度値の総和(IS)を取得する。
 ランダム配向の発光分子からなる発光体から光が等方向に放射される場合、撮像装置の集光効率(ηS)は、図10Bに示す(数5)から計算される。もし、発光体から光が等方向に放射するとはかぎらない場合には、発光素子1から放射される光の放射角度分布を取得した場合と同様の方法で、撮像装置の集光効率(ηS)を決定すればよい。例えば、発光体の角度を種々の角度に変えたり、撮像装置が備えるレンズの開口数(NA)を変えて、発光体の発光面の輝度値の総和(IS)を測定し、発光体から放射される光の放射角度分布を評価し、撮像装置の集光効率(ηS)を実験的に決定すればよい。
 そして、発光体の全光束光量(AS)を算出する。発光体の全光束光量(AS)は、下記に示す(数6)から算出できる。
(数6)
発光体の全光束光量(AS)=輝度値の総和(IS)×絶対感度(S)/撮像装置の集光効率(ηS
 発光素子1を作動させる際、発光素子1の光取り出し面12の明るさ(光量)が、撮像装置の感度に適した光量となるように、表面電極8と裏面電極10との間に流す電流(発光素子1への注入電流量)のON/OFFパルス比(デューティ比)と、点灯周期と、を調整するとよい。上述の発光素子1においては、注入電流量のON/OFFパルス比と発光素子1から取り出される光量との関係は、例えば発光素子1から取り出される光量が0.02mWから500fWの間では直線的となる。これに点灯周期を変えることで、広範囲で定量的な光量可変が実現できる。従って、比較的大きな光量の測定に適したフォトダイオード(PD)や、フェムト~ピコW換算程度の微弱光の測定に適した撮像装置、さらには例えば光電子増倍管(PMT)のような光検出器等の絶対感度(S)を取得することが可能になる。つまり、PDや、微弱光の測定に適した撮像装置やPMTを正確に校正することが可能になる。その結果、発光体から放射される光がフェムト~ピコW換算の微弱光であっても、その発光体の全光束光量(AS)を取得することができるようになる。
 また、発光素子1の発光波長は、発光体の波長と同じであることが好ましい。しかしながら、発光素子1の発光波長と発光体の波長とが大きく異なる場合であっても、撮像装置の絶対感度(S)を取得し、発光体の全光束光量(AS)を取得することができる。つまり、発光体の波長が、発光素子1の発光波長と大きく異なる場合は、まず、撮像装置の相対波長感度特性を測定する。そして、発光素子1を標準光源として用いて取得した絶対感度(S)と相対波長感度特性とから、波長ごとに撮像装置の絶対感度(S)を求めることによって、発光体の全光束光量(AS)を取得することができる。
 また、発光素子1の光取り出し開口窓、つまり表面電極8に形成した開口8Aの寸法精度が良いものである場合、光取り出し面12を撮影した画像と、発光体の発光面を撮影した画像と、を比較することで、光取り出し面12が面内均一に発光する発光素子1を物差し(スケール)として用いることができる。これにより、発光体の発光面の寸法、形状、面積等も、正確に把握することが可能となる。
 本実施形態によれば、以下に示す1つ又は複数の作用効果を奏する。
(a)発光素子1へ注入する電流量を変化させることにより、発光量を自在に調整することができる。発光素子1への注入電流量のON/OFFパルス比(デューティ比)と光量との関係が例えば直線的であることから、発光量の正確な制御が可能である。例えば、注入電流量のON/OFFパルス比と、点灯周期とを調整することで、発光素子1の発光量を、撮像装置の感度に適した光量に正確に制御できる。従って、比較的大きな光量の測定に適したPD(フォトダイオード)や、フェムト~ピコW換算程度の微弱光の測定に適した撮像装置、さらには例えば光電子増倍管(PMT)のような光検出器等の絶対感度(S)を取得することが可能になる。つまり、PDや、微弱光の測定に適した撮像装置やPMTを正確に校正することが可能になる。その結果、発光体から放射される光がフェムト~ピコW換算の微弱光であっても、その発光体の全光束光量(AS)を取得することができるようになる。また、電流の注入量により発光量を自在に調整できることから、光取り出し面12の上方に減光フィルタを設ける必要がなくなる。また、減光フィルタを設けることによる追加の校正作業も不要となる。
(b)透明電極5の表面側から少なくとも発光層3に達する深さで筒状の絶縁体7を設けることで、絶縁体7を、電流狭窄部(電流阻止部)として作用させることができる。これにより、絶縁体7の内側領域への電流注入(キャリア注入)を効率的に行うだけでなく、絶縁体7の外側領域へのキャリア注入を防止することが可能となる。結果として、絶縁体7の外側領域での発光を防止することが可能となる。つまり、発光素子1は、光取り出し開口窓としての開口8Aからのみ、光を取り出すことが可能となる。
 特に、絶縁体7を、発光層3よりも下方まで、つまり、下部クラッド層2に達する深さで設けることで、絶縁体7の外側領域へのキャリア注入をより防止することが可能となる。つまり、絶縁体7の外側領域での発光を、より確実に防止することが可能となる。
(c)表面電極8が、絶縁体7に囲われた透明電極5の外周端を全周(途切れなく)覆うことで、表面電極8に電圧を印加した際に、光取り出し面12内での局所的な電界集中が生じにくくなる。つまり、絶縁体7に囲われた領域内に流れる電流密度を、その面内で均一化させることが可能となる。結果として、光取り出し面12の光強度の面内分布を均一化させることが可能となる。また、光取り出し面12から放射されて光取り出し開口窓から取り出される光の光放射角度分布を、滑らかで単純なものとすることができる。例えば、光放射角度分布をランバート性放射分布のようにしたり、等方性一様放射分布のようにしたりすることも可能となる。なお、光放射角度分布がランバート性放射分布であるとは、光放射角度分布がランバート放射分布すなわちcosθと完全に一致する場合の他、θ=0°方向で放射強度がもっとも強く、θの増大とともに滑らかに減少して、θ=90°方向でゼロとなるような、近似的なランバート放射分布の場合も含むものとする。この場合は、上記(数2)の撮像装置の集光効率(ηL)は、実際に測定された角度分布について数値的に積分を行って得るものとする。等方性一様放射分布についても同様である。
 特に、光取り出し面12の形状を本実施形態のように円形とした場合、表面電極8に電圧を印加した際に、光取り出し面12内での局所的な電界集中が更に生じにくくなる。つまり、絶縁体7に囲われた領域内に流れる電流密度を面内で更に均一化させることが可能となる。結果として、光取り出し面12の光強度の面内分布を更に均一化させることが可能となる。
(d)表面電極8が、光取り出し面12の外周端を覆うように設けられていることから、光取り出し面12から放射される光が、表面電極8、ボンディングワイヤ9等の部材によって遮られることがない。これに対し、発光素子として例えば図9A、図9Bに示すような通常のLEDを用いた場合、光取り出し面12を撮影した際に、ボンディングワイヤ9の影ができたり、出射光が散乱されたりして、測定の正確性が損なわれることがある。
(e)表面電極8を、光取り出し面12が形成された側の発光素子1の主表面のうち、絶縁体7の外側領域を覆うように設けることで、表面電極8が遮光膜としても機能する。これにより、光取り出し面12以外の領域からの光漏れをより確実に防止することが可能となる。また、表面電極8を遮光膜としても機能させることで、発光素子1の構造を簡略化することができ、結果として、製造コストを低減できる。
(f)光取り出し面12、つまり絶縁体7より内側に設けられた透明電極5は、上部クラッド層4の表面を露出させることなく、その全面を覆うように構成されている。これにより、光取り出し面12の光強度の面内分布を均一化させることが可能となる。つまり、発光層3から放射された光が、全て、上部クラッド層4と透明電極5との両方を透過してから取り出されることから、光取り出し効率を面内で均一化させることができ、光強度の面内分布を均一化させることが可能となる。結果として、光取り出し面12を上方から撮影した場合に、面内の明るさにムラが生じることを抑制できるようになる。
 なお、光取り出し面12上に、透明電極5を、例えばラインアンドスペース形状、格子形状、アイランド形状等で設けた場合、つまり、上部クラッド層4の表面の一部のみを覆い、他の部分を露出させるような形状で設けた場合、上部クラッド層4と透明電極5との両方を透過してから取り出される光と、上部クラッド層4のみを透過してから取り出される光とが、混在してしまうこととなる。その結果、光取り出し面12の光強度の面内分布が不均一になってしまい、光取り出し面12を上方から撮影した場合、面内の明るさに局所的なムラが生じてしまうこととなる。
(g)本実施形態の発光素子1の光取り出し面12の画像の輝度値の総和(IL)を取得し、撮像装置の校正を行うことで、測定対象物である微弱光(例えばフェムト~ミリW換算の光)の発光体の全光束光量(AS)を正確に取得することが可能となる。また、測定対象物である発光体と、本実施形態の発光素子1の光取り出し面12と、を撮影した画像の大きさを比較することで、測定対象物である発光体の発光面の寸法を正確に取得することが可能となる。つまり、本実施形態における発光素子1は、微弱発光や蛍光の高感度測定を行う際の標準光源(測定対象物との比較を行う際のリファレンス光源)として、好適に用いることが可能である。
(h)本実施形態における発光素子1は、例えば材料評価、医療検査、環境計測、生物実験等の分野で微弱発光や蛍光の高感度測定を行う際に、特に有効である。
 というのも、標準光源として一般的に用いられているハロゲンランプ等の白色光源(以下、単に白色光源ともいう)は、その光量が10~500W換算と比較的大きいことから、微弱光計測用の標準光源としては不適切である。
 白色光源に減光フィルタを組み合わせたり、計測装置の感度を落としたりすることで上述の課題を解消し、白色光源を微弱光計測用の標準光源として用いる手法も考えられる。しかしながら、これらの場合、減光フィルタの減光率や計測装置の感度等に基づいて校正作業を行う必要があり、この作業は極めて繁雑である。また、校正作業に用いる機材や作業方法は標準化されていない。校正機材や方法が作業環境や作業者によってまちまちであると、校正精度には保証がないこととなり、標準光源としての信頼性に欠けることとなる。また、減光フィルタを設けた場合、減光フィルタの周囲から回り込む光を遮断する措置も必要となる。
 また、一般的なLED素子(以下、単にLED素子ともいう)をON/OFFパルス比を調整しながら駆動させる(ON/OFFパルス比を小さくする)ことで、微弱光計測用の標準光源として用いることも考えられる。しかしながら、図9Aに例示するように、一般的なLED素子は、発光面にボンディングワイヤ9や電極等が設けられており、発光面を撮影した際に、部材の影や散乱光が写り込んでしまう。また、図9Bに例示するように、一般的なLED素子は、光放射板、反射板、レンズ等の様々な光学部品を備えており、発光面内における光強度の面内分布や放射角度分布が極めて複雑である(面内不均一である)。そのため、LED素子は、たとえ微弱光源として動作させることができたとしても、微弱光計測用の標準光源としては不適切である。
 これに対し、本実施形態における発光素子1は、(a)で述べたように撮像装置の感度に適した光量に発光量を調整することが可能なだけでなく、(b)~(f)に述べたような優れた特性を備えている。そのため、本実施形態における発光素子1は、例えば微弱発光や蛍光の高感度測定を行う際の標準光源として、好適に用いることが可能である。
(変形例)
 上述の実施形態は、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、表面電極8に形成する開口8A(光取り出し開口窓)の形状、つまり光取り出し面12の形状は円形に限定されない。楕円形、長円形、角丸形でもよいし、更には、長方形(矩形)、三角形、正方形などの多角形でもよい。また、これらを組み合わせた図形であってもよい。但し、円形、楕円形、長円形、角丸形の方が、上述した(c)の効果が得られ易くなり、好ましい。
 光取り出し面12(開口8A)は、1つ設けるだけでなく、複数を設けてもよい。例えば、光取り出し面12を、同一面上に、ドットマトリックス状に並べたり、ライン状に並べることにより、CCDやCMOS等の画像検出素子を用いた撮像装置における面内感度ムラや、像歪み等の評価が可能になる。また、単一の光取り出し面12を有する発光素子1を、同一面上に、ドットマトリックス状に複数並べ、これら複数の発光素子1を1つの光源として用いても、同様の作用効果が得られる。
 裏面電極10は、下部クラッド層2の裏面側に設ける場合に限定されない。例えば、下部クラッド層2の表面や側面を露出させ、これらの面に設けた金属電極を裏面電極10として用いてもよい。
 筒状の絶縁体7の外側の部分、つまり、筒状の絶縁体7の外側に位置する透明電極5、上部クラッド層4、発光層3、下部クラッド層2は、エッチング等により取り除いてもよい。
 筒状の絶縁体7を形成する際、下地として例えばSiN膜等の保護膜(パッシベーション膜)を設けてもよい。つまり、筒状の絶縁体7は、パッシベーション膜により保護されていてもよい。具体的には、筒状の絶縁体7の全周面には、保護膜としてのパッシベーション膜が設けられていてもよい。保護膜は、光透過率が低い物質により形成されているとよい。これにより、上述した(b)の効果が得られやすくなり、好ましい。
 筒状の絶縁体7は、遮光性を有する(光透過率が低い)物質(例えば黒色を有する物質等)により形成してもよい。これにより、筒状の絶縁体7は、絶縁体7に囲われた領域から放射された光が、開口8A以外の領域(つまり光取り出し面12以外の領域)から漏れ出ることを防止する遮光部(光吸収部)としても機能するようになる。その結果、上述した(b)の効果が得られやすくなり、好ましい。
 絶縁体7の外側領域を表面電極8で覆う場合に限定されない。例えば、表面電極8を、絶縁体7により囲われた透明電極5の外周端のみに形成し、透明電極5上の外側領域には、表面電極8と別体の遮光膜を設けてもよい。遮光膜は、金属膜により形成されていてもよく、非金属膜により形成されていてもよい。また、絶縁体7が遮光性を有する場合は、例えば図3A、図3Bに示すように、透明電極5上の外側領域に遮光膜を設けなくてもよい。図3A、図3Bに示すような発光素子1であっても、例えば微弱光や蛍光の高感度測定を行う際の標準光源として、好適に用いることが可能である。なお、遮光膜を金属膜により形成しない場合、遮光膜を設けない場合は、絶縁層20を設けなくてもよい。
 発光層3は、単一材料の薄膜、すなわちバルク構造を有する場合に限定されない。例えば、発光層3は、井戸層及びバリア層を交互に積層してなる単一あるいは多重の量子井戸構造を有していてもよい。井戸層は、例えばInGaAs、InGaN等の化合物半導体層として形成できる。バリア層は、例えばAlGaAs、GaN等の化合物半導体層として形成できる。
 下部クラッド層2をn型化合物半導体層として形成し、上部クラッド層4をp型化合物半導体層として形成する場合に限定されない。つまり、下部クラッド層2をp型化合物半導体層として形成し、上部クラッド層4をn型化合物半導体層として形成してもよい。
 発光素子1への注入電流量と発光素子1から取り出される光量との関係は直線的である場合に限定されない。つまり、例えば、デューティ比と点灯周期とを調整することで、発光素子1の発光量を、撮像装置の感度に適した光量に正確に制御できれば、発光素子1への注入電流量と発光素子1から取り出される光量との関係は、直線的でなくてもよい。
(実施例)
 以下、本実施形態により得られる効果を裏付ける実験結果について説明する。
 実施例として、図1A、図1Bに示す構成を有し、光取り出し面の直径が1mm、100μm、30μmの円形であり、一辺の長さが5mmの正方形である発光素子をそれぞれ作成した。図4Aは、実施例における光取り出し面の直径が1mmの円形である発光素子の平面写真であり、図4Bはその部分拡大写真である。そして、各実施例における発光素子のI-L(電流-光出力)特性、全光束光量、発光素子の光取り出し面の輝度値の総和、測定対象物である発光体の発光面の輝度値の総和を測定した。
 図5は、実施例における発光素子のパルス変調出力制御特性の測定結果を示す図である。図5から、各実施例における発光素子へ注入する電流のパルス比を調整することで、各実施例における発光素子の光取り出し面から放射されて光取り出し開口窓から取り出される光量(光の出力)が広範囲(ミリ~フェムト)に変化することが分かる。例えば、0.02mWから500fWの間では、発光素子への注入電流量と発光素子の光量との関係は直線的となることが分かる。そのため、各実施例における発光素子は、既存のPDの測定下限以上の光量(例えばミリW換算の光)の少なくとも2点で光量を取得(校正)しておけば、発光素子の光取り出し開口窓から取り出される光量がフェムト~ミリW換算の微弱光の領域においても、パルス比を調整することで、光量の制御ができることが分かる。
 図6A、図6Bは、実施例における発光素子の光取り出し開口窓を撮像装置によって撮影した画像である。つまり、図6A、図6Bはそれぞれ、実施例における光取り出し面の直径が100μmの円形である発光素子を作動させて、撮像装置によって光取り出し開口窓を上方から撮影して出力された撮影画像である。具体的には、図6A、図6Bはそれぞれ、所定の条件下で発光素子を発光(作動)させている際の光取り出し開口窓(光取り出し面)及びその周辺の拡大画像である。図6Aは印加電圧が4.5V、注入電流量が0.017~0.019mAの条件下で発光素子を発光させている。図6Bは印加電圧を5.0V、注入電流量を0.044~0.047mAの条件下で発光素子を発光させている。図6A、図6Bから、実施例における発光素子は、筒状の絶縁体より内側領域、つまり光取り出し面内でのみ発光が起こることが分かる。つまり、絶縁体の外側領域での発光を防止でき、光取り出し面以外の領域からの光漏れがないことが確認できる。また、実施例における発光素子は、構成部材の影や散乱による乱れがないことが分かる。つまり、図6A、図6Bに示す撮影画像には、ボンディングワイヤ等の影や散乱光が写り込んでいないことが分かる。つまり、実施例における発光素子は、構成部材の影や散乱による発光の乱れがないことが確認できた。
 図7Aは発光素子の全光束光量の測定系の概略図であり、図7Bは実施例における光取り出し面の直径が100μmの円形である発光素子の全光束光量の測定結果を示す図である。図7Aに示すように、発光素子の全光束光量の測定は、フォトディテクタを用いて行った。具体的には、発光素子の光取り出し面に対して垂直であって、光取り出し面の中心を通る軸を中心軸(0°)とし、フォトディテクタを中心軸からx軸の方へ所定角度(θ)動かして光強度を測定して行った。図7Bから、実施例における発光素子の全光束光量が分かる。また、図7Bから、実施例における発光素子は、光取り出し面12から放射されて光取り出し開口窓から取り出される光の光放射角度分布を、ランバート性放射分布のようにできることが分かる。
 図8Aは測定対象物である発光体の撮影画像であり、図8Bは実施例における発光素子の光取り出し面の撮影画像である。具体的には、図8Aは、赤色に発光するルシフェラーゼをトランスフェクトしたHEK293細胞の発光面を撮像装置によって撮影し、画素毎にデジタル化されて出力された明暗画像である。図8Bは、光取り出し面の直径が30μmの円形である発光素子の光取り出し面を撮像装置によって撮影し、画素毎にデジタル化して出力された明暗画像である。図8A、図8Bから、測定対象物である発光体の発光面及び実施例における発光素子の光取り出し面の画素毎の輝度値の総和をそれぞれ測定した。具体的には、図8A、図8Bのそれぞれに示す点線で囲った領域の画素毎の輝度値の総和を測定し、これをそれぞれ発光体の発光面の輝度値の総和、発光素子の光取り出し面の輝度値の総和とした。これにより、撮像装置の校正ができる、つまり絶対感度を取得でき、微弱光を発光する発光体の絶対光量を正確に取得できる。また、図8Aと図8Bとの像の大きさを比較することで、測定対象物の発光面の寸法をそれぞれ正確に取得することができることが分かる。
<第2実施形態>
 次に、本発明の第2実施形態について、図11A~図16を用いて説明する。
(発明創成の背景)
 光計測装置が備える光センサとして、フォトダイオード(PD)、光電子増倍管(PMT)、電荷結合素子(CCD)等、様々なものが利用されている。これらの光センサが組み込まれた光計測装置は数多く使われており、光計測装置が正常に動作しているか、正常な検出感度が保たれているか、等を判断するためには、校正(バリデーション)用の光源が必要である。
 光計測装置の計測対象試料は、固体や液体あるいは容器と様々である。そのため、光計測装置の試料設置場所は、光計測装置ごとに様々な形状をしており、外光が入らないようにしっかりと遮光された構造であることが多い。遮光された試料設置構造を持つ光計測装置のバリデーションに利用できる基準用光源としては、光計測装置の試料設置部に適した形状であって、かつ、基準用光源の外部からの電源供給が不要であり、しかも、使用環境温度で光量が変化しないものであることが望ましい。試料設置部の空間が狭い場合は、小型であることも望まれる。
 発光素子として発光ダイオード(LED)を用いることにより、外部電源を必要とせず、小型の電池で駆動可能な光源を構成することができる。しかし、LEDは、使用環境温度によって明るさ(発光面の明るさ)が変化する。そのために、温度を安定化させる温調装置を備えた基準光源が市販されている(製造元日亜化学工業株式会社、販売元大塚電子株式会社)。しかし、このような光源は、電力消費の大きい温調装置を駆動する外部電源が必要なため、光計測装置の遮光された試料設置部のような閉鎖空間内での使用には適当でない。
 他には、光量を補正するために、PDを内蔵させ光量を実測しながら、一定の光量となるように補正するタイプの光源も市販されている(光電子増倍管用安定化光源:浜松ホトニクス株式会社製)。このタイプの光源は、PMT用の評価光源として光量一定型として販売されているが、PDがLEDの発光部よりも放射側に設置されるため、影が生じないよう光源内部で光反射をさせるための構造を要し、また、光量を変化させるような用途には適当でない。
 このような課題を解決すべく鋭意研究を行った結果、発明者等は、使用環境温度の変動に起因する光量の変動を抑制することが可能な基準用光源に関する新技術を発明するに至った。以下、本発明の一実施形態における基準用光源の構成等について説明する。
(基準用光源の構成)
 図11Aおよび図11Bに示すように、本実施形態による基準用光源は、例えば10fW~10pW程度の精密に制御された可変な光量の微弱光を放出することができるように構成されている。本実施形態による基準用光源は、また、光計測装置の試料設置部のような、外部からの電源供給ができない閉鎖空間内で動作可能なように構成されている。
 筐体70の上面部に、ユーザが各種の動作設定を行うための操作子として、例えば操作ボタン72a~72dが配置されている。操作ボタン72aにより、基準用光源100の電源のオンオフを切り替えることができる。操作ボタン72bにより、発光色を選択することができる。操作ボタン72cおよび72dにより、光量値を設定することができる。操作ボタン72cにより光量値を増加させることができ、操作ボタン72dにより光量値を減少させることができる。
 基準用光源100は、赤(R)、緑(G)、青(B)の各発光色に対して、それぞれ独立に光量値を設定することができるように構成されている。これにより、RGBのうちの任意の1色、RGBのうちの任意の組み合わせの2色、または、RGBの3色すべてを、所望の光量で発光させることができる。
 筐体70の上面部に、また、表示パネル71が配置されている。表示パネル71に、操作ボタン72a~72dにより入力された設定発光色、設定光量値等が表示される。図11Aには、赤(R)の発光色について「1/8」の光量値が選択されている状況が例示されている。
 筐体70の上面部に、また、発光部50が配置されている。発光部50から、ユーザが設定した発光色および光量値の光80が放出される。発光部50の発光素子として、例えば、第1実施形態で説明した発光素子1や、半導体発光素子である発光ダイオード(LED)を用いることができる。
 ここで、発光素子(LED)の点灯時(連続的な点灯時)の明るさについては、発光素子の発光面の明るさである「発光面明るさ」という用語で表し、発光素子(LED)のパルス発光時(点灯と消灯とを交互に繰り返す間欠的な点灯時)の明るさについては、時間的に平均化された明るさとして「平均発光面明るさ」という用語で表すこととする。また、基準用光源100の発光部50からの発光の明るさ(後述の減光フィルタ51を経た明るさ)については「光量」という用語で表すこととする。「光量」は、例えばW(=J/sec)単位で表される。「光量」は、また、基準用光源100における設定値である「光量値」と対応づけられる。
 本実施形態による基準用光源100は、LEDの点灯時間と消灯時間との比率を制御することにより、つまり、1回当たりの点灯時間であるパルス幅と、単位時間当たりの点灯回数である周波数とを制御するパルス幅変調(PWM)により、LEDからの発光の平均発光面明るさを変えて、光量を変化させられるように構成されている。
 ただし、LEDの発光面明るさは、動作温度に応じて変動する。したがって、同一の設定光量値での駆動でも、使用環境温度が異なると、LEDの発光面明るさの変動に起因して、実際に得られる光量が変動してしまうこととなる。このような光量の変動は、さまざまな環境温度の下での使用が想定される基準用光源としては、望ましくない。
 本願発明者らは、以下に説明するように、動作温度に応じて発光面明るさが変化する特性を有するLEDのような発光素子を用いていても、使用環境温度の変動に起因する発光素子の発光面明るさの変動を抑制でき、これにより、光量の変動を抑制できる基準用光源を提案する。
 図11A、図11Bに加え図12も参照して、本実施形態による基準用光源100のより詳しい装置構成について説明する。図12は、定電流駆動型の基準用光源100の概略的なブロック図である。
 発光部50の発光素子10Lは、赤色LED10R、緑色LED10G、および青色LED10Bを含むマルチカラーの発光素子として構成されている。赤色LED10R、緑色LED10G、青色LED10Bとしては、それぞれ、例えば、上述の第1実施形態に示した発光素子1と同様に構成された素子を好適に用いることができる。また、発光素子10Lとして、例えば、ローム株式会社製のRGBカラーLED(チップタイプ)を用いることもできる。発光素子駆動手段20は、発光素子10Lを駆動するように構成されている。具体的には、発光素子駆動手段20は、定電流源を含み、発光素子10LのLED10R~10Bを、それぞれ定電流で駆動するように構成されている。
 温度センサ30は、発光素子10Lの温度を測定するように構成されている。温度センサ30は、発光部50から放出される光と干渉しないような位置、すなわち、影を生じさせないような位置であって、発光素子10Lの近傍の位置、例えば、発光素子10Lが配置されている基板と同一の基板上に配置されている。温度センサ30は、所定頻度で、例えば一定時間ごと、例えば5秒ごと、また例えば1秒ごとに、温度測定を繰り返し、測定した温度に対応する温度情報を、発光面明るさ補正手段44に出力するように構成されている。
 制御部40は、動作設定手段41、光量設定手段42、パラメータ選定表43、発光面明るさ(光量)補正手段44、補正係数選定表45を含んで構成されている。制御部40は、例えば、マイクロプロセッサ(MPU)により構成される。
 操作ボタン72a~72dにより、発光色、光量値等の動作設定が、動作設定手段41に入力される。動作設定手段41は、入力された動作設定を、表示パネル71に表示するよう構成されている。また、動作設定手段41は、設定された発光色および光量値の情報を、光量設定手段42に出力するとともに、設定された発光色の情報を、発光面明るさ補正手段44に出力するようにも構成されている。
 光量設定手段42は、設定された発光色および光量値の情報に基づいて、駆動パラメータ選定表43を参照し、設定発光色のLEDを設定光量値で駆動するためのパラメータを設定するように構成されている。駆動パラメータ選定表43は、光量値と、当該光量値でLEDを駆動させるための駆動パラメータとの対応関係を記憶した表である。駆動パラメータとして、例えば、周波数およびパルス幅等が設定される。
 図13に、駆動パラメータ選定表43の一例を示す。この例では、設定できる光量値として、「フル」、「1/2」~「1/1024」、および「オフ(ゼロ)」の12段階の光量値が用意されている。光量値「フル」は、消灯時間を設けない(消灯時間がゼロの)連続的な点灯に対応し、最も明るい光量値設定となる。光量値「オフ(ゼロ)」は、完全な消灯に対応し、最も暗い光量値設定となる。
 光量値「1/2」~「1/1024」の各々は、光量値「フル」に対する点灯時間の割合で示された光量値である。例えば光量値「1/8」は、例えばパルス幅35.0μsの点灯を周波数3600Hzで繰り返す発光に対応する。
 光量値「1/2」~「1/256」は、点灯パルス幅を例えば35.0μsで一定としたまま周波数を1/2ずつ減らしていくことにより、光量を1/2ずつ減らしていく設定となっている。光量値「1/512」は、光量値「1/256」に対し周波数を一定としたまま点灯パルス幅を1/2の17.5μsとして、光量を1/2とする設定となっている。光量値「1/1024」は、光量値「1/512」に対し点灯パルス幅を例えば17.5μsで一定としたまま周波数を1/2として、光量を1/2とする設定となっている。なお、図13のパルス幅や周波数は例示であり、パルス幅や周波数の設定は必要に応じて変化させてもよい。また、光量値の1段分の光量差は、必要に応じて、例示の1/2倍、2倍以外に設定してもよい。
 温度センサ30で測定された発光素子10Lの温度に対応する温度情報が、発光面明るさ補正手段44に入力される。発光面明るさ補正手段44は、発光色の情報、および温度センサ30から受信した温度情報に基づき、設定発光色のLEDについて、補正係数選定表45を参照し、補正係数を設定する。補正係数選定表45は、温度と、当該温度における補正係数との対応関係を記憶した表である。
 LEDは、一般に、同一条件(本例では同一電流)で駆動されていても、使用環境温度が上昇するにつれて発光面明るさが下降する傾向を有し、また、使用環境温度が下降するにつれて発光面明るさが上昇する傾向を有する。発光面明るさの下降分は、駆動電流値を上昇させることにより、また、発光面明るさの上昇分は駆動電流値を下降させることにより、補正することが可能である。
 より具体的には、以下のようにして補正を行うことができる。基準温度において、基準電流値J0で駆動した場合の発光面明るさを基準発光面明るさI0とする。実際の使用環境温度において、基準電流値J0で駆動した場合の発光面明るさを、発光面明るさI1とする。発光面明るさI1に対する基準発光面明るさI0の比率I0/I1は、発光面明るさI1が基準発光面明るさI0に対して下降していれば1より大きい値となり、発光面明るさI1が基準発光面明るさI0に対して上昇していれば1より小さい値となる。そこで、この比率I0/I1を補正係数として、基準電流値J0に乗じてやることにより、補正された電流値を設定することができる。なお、基準温度と実際の使用環境温度とが等しければ、比率I0/I1すなわち補正係数は1となる。
 補正係数は、予め、以下のようにして準備しておくことができる。温度を変化させながら基準電流値J0でのLEDの駆動を行って、各温度での発光面明るさI1を測定する。適当な基準温度(例えば室温25℃程度の温度)での発光面明るさを基準発光面明るさI0として、各温度での補正係数I0/I1を得ることができる。温度の測定点数は、測定の精確さや労力等を勘案して適宜定めることができる。また、測定点間の温度における補正係数は、補間計算により求めることができる。測定で得られた補正係数や、補間計算に必要な各種パラメータ等により、補正係数選定表45を構成することができる。なお、補正係数選定表45の具体的な構成態様は、必要に応じて種々に変えることができ、例えば、補正係数の計算に必要な、温度と発光面明るさの測定結果を補正係数選定表45に記憶させておくような態様等とすることもできる。
 発光面明るさの温度依存性は、個々のLEDによって異なる。したがって、赤色LED10R、緑色LED10G、および青色LED10Bのそれぞれについて、発光面明るさの温度依存性を測定しておき、補正係数選定表45によりLED10R、10G、10Bそれぞれの補正係数を求められるようにしておくことが好ましい。
 図14は、補正係数選定表45の(一部分の)例であり、例えば青色LED10Bに対する補正係数を示す。補正係数は、使用環境温度範囲内の温度、例えば15℃~45℃の範囲内の温度について設定される。図示の例では、5℃ごとの補正係数が示されている。示されている温度の間の温度での補正係数は、必要に応じて補間計算で求めることができる。例えば直線補間により、例えば0.1℃刻みで、補正係数を求めることができる。なお、図14の温度範囲や補正係数は例示であり、温度範囲や補正係数等の設定は必要に応じて変化させてもよい。
 発光面明るさ補正手段44は、各発光色について、設定された補正係数を、基準となる駆動電流値である基準電流値J0に乗じて、補正された電流値を設定する。
 光量設定手段42で設定された周波数およびパルス幅と、発光面明るさ補正手段44で設定された温度補正された電流値とが、発光素子駆動手段20に入力される。発光素子駆動手段20は、発光面明るさ補正手段44から受信した電流値で、発光素子10Lの各LED10R~10Bの定電流駆動を行う。これにより、使用環境温度の変動に起因する発光面明るさ変動を抑制して、ほぼ一定の発光面明るさで各LED10R~10Bを点灯させることができる。ここで「ほぼ一定」とは、例えば、使用環境温度範囲(例えば15℃~45℃の範囲)における発光面明るさの変動幅が、好ましくは±1%以内、より好ましく±0.5%以内であることと定義することができる。
 発光素子駆動手段20は、また、光量設定手段42から受信した周波数およびパルス幅で、発光素子10Lの各LED10R~10Bを点灯および消灯させ所定の平均発光面明るさで発光させることにより、設定された光量値での発光を行う。温度変動に起因する各LED10R~10Bの発光面明るさ変動が抑制されていることにより、設定光量値での発光における光量の変動が抑制される。発光面明るさ補正手段44は、光量補正手段と捉えることもできる。
 補正係数の設定の更新、つまり、補正された電流値の更新は、発光面明るさ補正手段44が温度センサ30から温度情報を受信する度に、または少なくとも、温度センサ30から受信した温度情報が変動する度に、行うことができる。
 減光フィルタ(NDフィルタ)51が、発光素子10Lの上方側(放射側)に配置されている。発光素子10Lから入射し減光フィルタ51で減衰された光が、発光部50から放出される光80となる。
 上述のような、補正係数を得るための発光面明るさの測定は、例えば、製品組み立て前に、連続点灯(光量値「フル」)で駆動した各LED10R~10Bの発光面明るさをフォトダイオード(PD)で測定することにより行われる。PDで発光面明るさ測定を行うためには、例えば1μW程度の明るさ(LEDの駆動電流としては例えば500μA程度)が必要になる。
 ただし、この程度の明るさの光は、本実施形態の基準用光源100でバリデーションを行うことが想定されるような、光電子増倍管(PMT)等の高感度光センサに対しては、明るすぎ、光センサが飽和してしまう。そこで、本実施形態の基準用光源100では、LEDからの出力を例えば1/105~1/106に減衰させるような減光フィルタ51を用いて、光量値「フル」における出力を10pW程度に低下させている。さらに、上述のような光量制御を行うことにより、例えば10fW~10pWの範囲で出力が可変な微弱光を得ることができる。なお、光の放射分布を変えたい場合は、適当な光散乱板を利用することができる。
 LEDの駆動電流を例えば500μA程度の大きさとする(連続点灯で例えば1μW程度の明るさとする)ことの利点としては、補正係数を得るための発光面明るさ測定が容易となる点以外に、以下のような点も挙げられる。
 仮に、減光フィルタ51を用いずに、PMT等の高感度光センサに適した明るさの発光を行うとすると、LEDの駆動電流を例えば数pA程度に抑えなければならない。しかし、このような微弱電流でLEDを駆動すると、LEDとその他の回路に使われる部品がコンデンサーとして働き、適正な矩形状のPWM制御波形を得ることが難しい。本実施形態による基準用光源100では、LEDの駆動電流を例えば500μA程度の大きさとすることにより、適正な矩形状の制御波形でPWM制御を行うことが容易となり、光量の精密な制御を行うことが容易となる。なお、LED10R~10Bとして、一般的なLEDではなく、第1実施形態で説明した発光素子1と同様に構成された素子を用いるた場合には、駆動電流を小さくしたとしても(例えば500μA未満としても)、PWM制御波形を矩形状に維持することが容易となる。
 なお、適正な矩形状のPWM制御波形を得ることができ、また、補正係数を得るための発光面明るさ測定を何らかの光センサで行うことができるのであれば、LEDの駆動電流は、つまり、補正係数が乗じられる基準電流値の目安は、例示した500μA程度に限定されない。基準電流値の好適な範囲としては、例えば100μA~500μAの範囲が挙げられる。なお、基準電流値は、各発光色のLED10R~10Bについて、それぞれ独立に設定することができる。
 バッテリー60は、発光素子駆動手段20、温度センサ30、および制御部40のそれぞれに電力を供給するように構成されている。バッテリー60は、例えば電圧3Vのボタン電池である。例えば、電圧3Vのボタン電池を4.2Vに昇圧して用いることができる。筐体70は、発光素子10L、発光素子駆動手段20、温度センサ30、制御部40、バッテリー60等の構成部材を、一体的に収容するよう構成されている。基準用光源100は、筐体70に発光素子10L等の構成部材とともに収容されたバッテリー60で駆動されるので、外部からの電源供給ができない閉鎖空間内でも動作可能である。
 以上説明したように、本実施形態による基準用光源100は、例えば10fW~10pW程度の精密に制御された可変な光量の微弱光を放出することができる。また、光計測装置の試料設置部のような、外部からの電源供給ができない閉鎖空間内で動作可能である。
 また、本実施形態による基準用光源100は、制御部40が、温度センサ30から受信した温度情報に基づき、使用環境温度の変動に起因する発光素子10Lの発光面明るさ変動が抑制されるよう、発光素子駆動手段20が発光素子10Lを駆動する電流値を変化させるように構成されている。これにより、使用環境温度が変動した場合の光量の変動を抑制することができる。
(変形例)
 上述の第2実施形態では、発光素子を定電流で駆動し、電流値を補正することで発光面明るさの変動を抑制する例について説明した。但し、第2実施形態は、このような態様に限定されず、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、変形例として、制御部が、温度情報に基づき、発光素子の駆動電圧値を補正することで発光面明るさの変動を抑制すること、つまり、発光面明るさの変動が抑制されるように発光素子の駆動電圧値を変化させることも可能である。ただし、電圧による発光面明るさの補正よりも、電流による発光面明るさの補正の方が、制御が容易であり、発光面明るさのばらつきを少なくすることが容易である。
 また例えば、他の変形例として、発光面明るさ自体を補正する替わりに、制御部が、温度情報に基づき、PWM制御における周波数およびパルス幅(の少なくとも一方)を補正して、平均発光面明るさの変動を抑制すること(つまり、平均発光面明るさの変動が抑制されるようにパルス幅と周波数のうち少なくともいずれかを変化させること)も可能である。ただし、このような補正を行う場合は、周波数やパルス幅といった時間的なパラメータを微調整することとなり、比較的高いクロック周波数での駆動を行うこととなる。しかし、クロック周波数が高いと、消費電力が高くなる。
 バッテリー駆動する基準用光源は、低消費電力で動作することが好ましい。したがって、消費電力低減の観点からは、上述の第2実施形態のように、電流値の微調整により発光面明るさを補正する方法の方が好ましい。なお、上述の第2実施形態のように、光量値を等比数列的に、例えば1/2倍ずつ、或いは、2倍ずつ変えていくような大きな光量変化は、比較的低いクロック周波数を用いて、消費電力の抑制されたPWM制御で行うことができる。
(実施例)
 以下、本実施形態により得られる効果を裏付ける実験結果について説明する。
 各発光色のLEDごとに、使用環境温度を変化させながら発光面明るさを測定し、発光面明るさの温度依存性を示す発光面明るさ変化曲線を求め、発光面明るさ変化曲線から、温度が変動しても発光面明るさをほぼ一定とする電流補正係数を求めた。
 図15は、青色LEDについての、実施例における発光面明るさ変化曲線と比較例における発光面明るさ変化曲線である。横軸は、温度を℃単位で示し、縦軸は、発光面明るさ変化を%単位で示す。実施例では、温度ごとに補正された電流値で、比較例では、一定の電流値で(温度ごとの電流値補正なしで)、青色LEDを駆動した。測定は、15℃~45℃の温度範囲について行った。比較例では、温度が上昇するにつれ発光面明るさが下降する傾向が見られた。実施例では、電流補正により、15℃~45℃の広い温度範囲で、ほぼ一定の発光面明るさを維持できることがわかった。
 検出器としてPMTが使われているフォトンカウンティング方式の発光測定装置であるルミネセンサJNR(アトー株式会社製)により、本発明の実施例による基準用光源の直線性を調べた。ここで、直線性とは、実施例による基準用光源の各発光色の設定光量値(設定出力)と、測定装置による測定値との関係の線形性のことである。
 図16は、実施例の基準用光源における発光の直線性を示すグラフである。横軸は、実施例の基準用光源の各発光色の出力をpW単位で示し、縦軸は、測定装置による測定値を相対発光量(RLU)で示す。測定の結果、各発光色とも良好な直線関係が得られることが確認できた。なお、PMTの波長感度特性によって、各色の感度が異なること、例えば、PMTの赤色の感度は青色の感度の1/10以下であることが同時に示された。
 複数色の発光成分の光量を分離して測定することができる測定装置(日本国特許第4052389号)が実用化されている。しかし、この測定装置の測定結果が正しいことを検証するための基準用光源がこれまではなかった。実施例による基準用光源は、複数発光色の光を精密に制御された光量で放出することができるので、この測定装置の動作を検証する光源として適している。
<他の実施形態>
 以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、上述の実施形態に対し、種々の変更、改良、組み合わせ等が可能なことは、当業者に自明であろう。
<本発明の好ましい態様>
 以下、本発明の好ましい態様を付記する。
(付記1)
 放射角度分布がランバート性放射分布又は等方性一様放射分布のいずれかである光が光取り出し開口窓から取出され、前記光取り出し開口窓内の光取り出し面の光強度の面内分布が均一であり、測定対象物である発光体から放射される微弱光の絶対光量の測定を行う際の標準光源として用いることができる発光素子。
(付記2)
 下部クラッド層と、
 前記下部クラッド層上に形成された発光層と、
 前記発光層上に形成された上部クラッド層と、
 前記上部クラッド層上に形成された透明電極と、
 前記透明電極の表面側から少なくとも前記発光層に達する深さで形成された溝内を埋めるように設けられた筒状の絶縁体と、
 前記透明電極上に形成され、前記光取り出し面となる前記絶縁体に囲われた前記透明電極の表面を露出させて微弱光を取り出す前記光取り出し開口窓としての開口が形成され、前記絶縁体に囲われた前記透明電極の外周端を全周覆う表面電極と、
 前記下部クラッド層に接続された裏面電極と、を備える付記1に記載の発光素子。
(付記3)
 前記溝は、前記透明電極の表面側から少なくとも前記下部クラッド層に達する深さで形成されている付記2に記載の発光素子。
(付記4)
 前記開口の形状は、円形、楕円、長円、角丸形、長方形、およびこれらを組み合わせた図形のいずれかの形状である付記2又は3に記載の発光素子。
(付記5)
 前記開口から露出される前記透明電極は、前記上部クラッド層の表面を露出させることなく、その全面を覆っている付記2乃至4のいずれかに記載の発光素子。
(付記6)
 前記開口が形成された側の前記発光素子の主表面には、前記絶縁体の外側領域を覆う遮光膜が形成されている付記2乃至5のいずれかに記載の発光素子。
(付記7)
 前記遮光膜は、前記表面電極を構成する金属膜と一体に形成された金属膜を備える付記6に記載の発光素子。
(付記8)
 付記1乃至7のいずれかの発光素子を同一面上に1つ以上配置してなる光源。
(付記9)
 付記1乃至7のいずれかの発光素子を標準光源として備える撮像装置。
(付記10)
 付記1乃至7のいずれかの発光素子の前記光取り出し面から放射される光の全光束光量と、放射角度分布と、を取得する工程と、
 前記全光束光量及び前記放射角度分布を取得済みの前記発光素子を標準光源として用いて、撮像装置を校正する工程と、
 校正済みの前記撮像装置を用いて、測定対象物である発光体の発光面を撮影して前記発光体から放射された微弱光の全光束光量を取得する工程と、を有する発光体の観察方法。
(付記11)
 前記発光素子の光取り出し面を撮影した画像と、前記発光体の発光面を撮影した画像と、を比較することで、前記発光体の発光面の寸法を取得する工程を有する付記9に記載の発光体の観察方法。
(付記12)
 動作温度に応じて発光面明るさが変化する特性を有する発光素子と、
 前記発光素子を駆動する発光素子駆動手段と、
 前記発光素子の温度を測定する温度センサと、
 前記発光素子駆動手段および前記温度センサにそれぞれ接続された制御部と、
を備え、
 前記制御部は、
 前記温度センサから受信した温度情報に基づき、使用環境温度の変動に起因する前記発光素子の発光面明るさの変動が抑制されるよう、前記発光素子駆動手段が前記発光素子を駆動する電流値または電圧値を変化させるように構成されている基準用光源。
(付記13)
 前記制御部は、
 前記温度センサから受信した温度情報に基づいて補正係数を設定し、前記補正係数を基準電流値に乗じることで、前記電流値を変化させるように構成されている
 付記12に記載の基準用光源。
(付記14)
 前記温度センサは、
 前記発光素子の温度の測定を所定頻度で繰り返し、
 前記制御部は、
 少なくとも前記温度センサから受信した温度情報が変動する度に、前記発光素子駆動手段が前記発光素子を駆動する電流値を変化させるように構成されている
 付記12又は13に記載の基準用光源。
(付記15)
 前記制御部は、
 前記発光素子駆動手段に点灯のパルス幅および周波数を与えて、前記発光素子駆動手段による前記発光素子の点灯消灯動作を制御することで、前記発光素子を所定の平均発光面明るさで発光させるように構成されている
 付記1乃至14のいずれかに記載の基準用光源。
(付記16)
 光量値を入力するための操作子をさらに備え、
 前記制御部は、
 前記操作子により入力された光量値に基づいて、前記パルス幅および前記周波数を設定するように構成されている付記15に記載の基準用光源。
(付記17)
 前記基準電流値は、100μA~500μAの範囲内の電流値である付記13に記載の基準用光源。
(付記18)
 前記発光素子から入射した光を減衰させる減光フィルタをさらに備える付記12乃至17のいずれかに記載の基準用光源。
(付記19)
 前記発光素子は、
 発光色の異なる複数の発光素子を備え、
 前記制御部は、
 前記温度センサから受信した温度情報に基づき、使用環境温度の変動に起因する前記発光色の異なる複数の発光素子のそれぞれにおける発光面明るさの変動が抑制されるよう、前記発光素子駆動手段が前記発光色の異なる複数の発光素子を駆動するそれぞれの電流値を変化させるように構成されている付記1乃至7のいずれかに記載の基準用光源。
(付記20)
 前記発光素子駆動手段、前記温度センサ、および前記制御部に電力を供給するバッテリーと、
 前記発光素子、前記発光素子駆動手段、前記温度センサ、前記制御部、および前記バッテリーを一体的に収容する筐体と、
をさらに備える付記12乃至19のいずれかに記載の基準用光源。
(付記21)
 前記発光素子として付記1に記載の発光素子を備える付記12乃至20のいずれかに記載の基準用光源。
(付記22)
 動作温度に応じて発光面明るさが変化する特性を有する発光素子と、
 前記発光素子を駆動する発光素子駆動手段と、
 前記発光素子の温度を測定する温度センサと、
 前記発光素子駆動手段および前記温度センサにそれぞれ接続された制御部と、
を備え、
 前記制御部は、
 前記温度センサから受信した温度情報に基づき、使用環境温度の変動に起因する前記発光素子からの発光の発光面明るさまたは平均発光面明るさの変動が抑制されるよう、前記発光素子駆動手段が前記発光素子を駆動する電流値、電圧値、および、点灯のパルス幅と周波数のうち少なくともいずれかを変化させるように構成されている基準用光源。
(付記23)
 付記12に記載の基準用光源の発光面から放射される光の全光束光量と、放射角度分布と、を取得する工程と、
 前記全光束光量及び前記放射角度分布を取得済みの前記発光素子を標準光源として用いて、撮像装置を校正する工程と、
 校正済みの前記撮像装置を用いて、測定対象物である発光体の発光面を撮影して前記発光体から放射された微弱光の全光束光量を取得する工程と、を有する発光体の観察方法。
(付記24)
 付記12に記載の基準用光源の発光面を撮影した画像と、前記発光体の発光面を撮影した画像と、を比較することで、前記発光体の発光面の寸法を取得する工程を有する付記22に記載の発光体の観察方法。
  1,10L,10R,10G,10B 発光素子
  2    下部クラッド層
  3    発光層
  4    上部クラッド層
  5    透明電極
  6    溝
  7    絶縁体
  8    表面電極
  8A   開口
  10   裏面電極
  12   光取り出し面
  20   発光素子駆動手段
  30   温度センサ
  40   制御部
  41   動作設定手段
  42   光量設定手段
  43   駆動パラメータ選定表
  44   発光面明るさ(光量)補正手段
  45   補正係数選定表
  50   発光部
  51   減光フィルタ
  60   バッテリー
  70   筐体
  71   表示パネル
  72a~72d 操作ボタン(操作子)
  80  (発光部50から放出される)光

Claims (19)

  1.  放射角度分布がランバート性放射分布又は等方性一様放射分布のいずれかである光が光取り出し開口窓から取出され、前記光取り出し開口窓内の光取り出し面の光強度の面内分布が均一であり、測定対象物である発光体から放射される微弱光の絶対光量の測定を行う際の標準光源として用いることができる発光素子。
  2.  下部クラッド層と、
     前記下部クラッド層上に形成された発光層と、
     前記発光層上に形成された上部クラッド層と、
     前記上部クラッド層上に形成された透明電極と、
     前記透明電極の表面側から少なくとも前記発光層に達する深さで形成された溝内を埋めるように設けられた筒状の絶縁体と、
     前記透明電極上に形成され、前記光取り出し面となる前記絶縁体に囲われた前記透明電極の表面を露出させて微弱光を取り出す前記光取り出し開口窓としての開口が形成され、前記絶縁体に囲われた前記透明電極の外周端を全周覆う表面電極と、
     前記下部クラッド層に接続された裏面電極と、を備える請求項1に記載の発光素子。
  3.  前記溝は、前記透明電極の表面側から少なくとも前記下部クラッド層に達する深さで形成されている請求項2に記載の発光素子。
  4.  前記開口の形状は、円形、楕円、長円、角丸形、長方形、およびこれらを組み合わせた図形のいずれかの形状である請求項2に記載の発光素子。
  5.  前記開口から露出される前記透明電極は、前記上部クラッド層の表面を露出させることなく、その全面を覆っている請求項2に記載の発光素子。
  6.  前記開口が形成された側の前記発光素子の主表面には、前記絶縁体の外側領域を覆う遮光膜が形成されている請求項2に記載の発光素子。
  7.  前記遮光膜は、前記表面電極を構成する金属膜と一体に形成された金属膜を備える請求項6に記載の発光素子。
  8.  動作温度に応じて発光面明るさが変化する特性を有する発光素子と、
     前記発光素子を駆動する発光素子駆動手段と、
     前記発光素子の温度を測定する温度センサと、
     前記発光素子駆動手段および前記温度センサにそれぞれ接続された制御部と、を備え、
     前記制御部は、
     前記温度センサから受信した温度情報に基づき、使用環境温度の変動に起因する前記発光素子の発光面明るさの変動が抑制されるよう、前記発光素子駆動手段が前記発光素子を駆動する電流値または電圧値を変化させるように構成されている基準用光源。
  9.  前記制御部は、前記温度センサから受信した温度情報に基づいて補正係数を設定し、前記補正係数を基準電流値に乗じることで、前記電流値を変化させるように構成されている請求項8に記載の基準用光源。
  10.  前記温度センサは、前記発光素子の温度の測定を所定頻度で繰り返し、
     前記制御部は、少なくとも前記温度センサから受信した温度情報が変動する度に、前記発光素子駆動手段が前記発光素子を駆動する電流値を変化させるように構成されている請求項8に記載の基準用光源。
  11.  前記制御部は、前記発光素子駆動手段に点灯のパルス幅および周波数を与えて、前記発光素子駆動手段による前記発光素子の点灯消灯動作を制御することで、前記発光素子を所定の平均発光面明るさで発光させるように構成されている請求項8に記載の基準用光源。
  12.  光量値を入力するための操作子をさらに備え、
     前記制御部は、前記操作子により入力された光量値に基づいて、前記パルス幅および前記周波数を設定するように構成されている請求項8に記載の基準用光源。
  13.  前記基準電流値は、100μA~500μAの範囲内の電流値である請求項8に記載の基準用光源。
  14.  前記発光素子から入射した光を減衰させる減光フィルタをさらに備える請求項8に記載の基準用光源。
  15.  前記発光素子は、発光色の異なる複数の発光素子を備え、
     前記制御部は、前記温度センサから受信した温度情報に基づき、使用環境温度の変動に起因する前記発光色の異なる複数の発光素子のそれぞれにおける発光面明るさの変動が抑制されるよう、前記発光素子駆動手段が前記発光色の異なる複数の発光素子を駆動するそれぞれの電流値を変化させるように構成されている請求項8に記載の基準用光源。
  16.  前記発光素子駆動手段、前記温度センサ、および前記制御部に電力を供給するバッテリーと、
     前記発光素子、前記発光素子駆動手段、前記温度センサ、前記制御部、および前記バッテリーを一体的に収容する筐体と、
    をさらに備える請求項9に記載の基準用光源。
  17.  前記発光素子として請求項1に記載の発光素子を備える請求項9に記載の基準用光源。
  18.  請求項1に記載の発光素子の光取り出し面から放射される光の全光束光量と、放射角度分布と、を取得する工程と、
     前記全光束光量及び前記放射角度分布を取得済みの前記発光素子を標準光源として用いて、撮像装置を校正する工程と、
     校正済みの前記撮像装置を用いて、測定対象物である発光体の発光面を撮影して前記発光体から放射された微弱光の全光束光量を取得する工程と、を有する発光体の観察方法。
  19.  請求項8に記載の基準用光源の発光面から放射される光の全光束光量と、放射角度分布と、を取得する工程と、
     前記全光束光量及び前記放射角度分布を取得済みの前記発光素子を標準光源として用いて、撮像装置を校正する工程と、
     校正済みの前記撮像装置を用いて、測定対象物である発光体の発光面を撮影して前記発光体から放射された微弱光の全光束光量を取得する工程と、を有する発光体の観察方法。
PCT/JP2014/083835 2013-12-24 2014-12-22 発光素子、基準用光源および発光体の観察方法 WO2015098796A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/108,071 US10094709B2 (en) 2013-12-24 2014-12-22 Light emitting element, reference light source and method for observing luminous body
DE112014005877.7T DE112014005877B4 (de) 2013-12-24 2014-12-22 Lichtemittierendes Element, Referenzlichtquelle und Verfahren zum Beobachten eines Leuchtkörpers
JP2015554858A JP6454846B2 (ja) 2013-12-24 2014-12-22 発光素子、基準用光源および発光体の観察方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-265184 2013-12-24
JP2013265184 2013-12-24
JP2014094698 2014-05-01
JP2014-094698 2014-05-01

Publications (1)

Publication Number Publication Date
WO2015098796A1 true WO2015098796A1 (ja) 2015-07-02

Family

ID=53478650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083835 WO2015098796A1 (ja) 2013-12-24 2014-12-22 発光素子、基準用光源および発光体の観察方法

Country Status (4)

Country Link
US (1) US10094709B2 (ja)
JP (1) JP6454846B2 (ja)
DE (1) DE112014005877B4 (ja)
WO (1) WO2015098796A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108444917A (zh) * 2018-06-05 2018-08-24 深圳迎凯生物科技有限公司 自校准的弱光检测装置
JP2019102634A (ja) * 2017-12-01 2019-06-24 キヤノン株式会社 発光素子アレイ及びこれを用いた露光ヘッドと画像形成装置
KR102111967B1 (ko) * 2018-11-15 2020-05-18 (주)아이테드 투명전극 제조 장치 및 투명전극 제조 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220015242A1 (en) * 2018-11-15 2022-01-13 Ited Inc. Apparatus and method for manufacturing transparent electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262931A (ja) * 1990-03-13 1991-11-22 Aloka Co Ltd 光電子増倍管の感度校正用光源装置
JP2006276784A (ja) * 2005-03-30 2006-10-12 Iiyama Corp 液晶表示装置
JP2009287976A (ja) * 2008-05-27 2009-12-10 Hamamatsu Photonics Kk 感度校正用光源装置
JP2012211783A (ja) * 2011-03-30 2012-11-01 Fujifilm Corp 光量安定化光源装置
JP2012238721A (ja) * 2011-05-11 2012-12-06 Canon Inc 光量制御装置及びその制御方法、及び表示装置
JP2013532839A (ja) * 2010-08-02 2013-08-19 コリア リサーチ インスティテュート オブ スタンダーズ アンド サイエンス 積分球光度計及びその測定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095402A2 (en) 2000-06-08 2001-12-13 Showa Denko K.K. Semiconductor light-emitting device
US6255129B1 (en) 2000-09-07 2001-07-03 Highlink Technology Corporation Light-emitting diode device and method of manufacturing the same
JP2004191232A (ja) 2002-12-12 2004-07-08 Yokogawa Electric Corp 光量検出器の校正方法および光量測定装置
JP4052389B2 (ja) 2003-05-02 2008-02-27 アトー株式会社 複数の発光成分の発光量測定法およびその発光測定装置
TW201100703A (en) * 2009-06-18 2011-01-01 Young Bright Technology Corp Light emitting diode illumination apparatus and power supply module thereof
US20110169409A1 (en) * 2010-01-11 2011-07-14 Stasky Glenn A Led motorcycle lighting system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262931A (ja) * 1990-03-13 1991-11-22 Aloka Co Ltd 光電子増倍管の感度校正用光源装置
JP2006276784A (ja) * 2005-03-30 2006-10-12 Iiyama Corp 液晶表示装置
JP2009287976A (ja) * 2008-05-27 2009-12-10 Hamamatsu Photonics Kk 感度校正用光源装置
JP2013532839A (ja) * 2010-08-02 2013-08-19 コリア リサーチ インスティテュート オブ スタンダーズ アンド サイエンス 積分球光度計及びその測定方法
JP2012211783A (ja) * 2011-03-30 2012-11-01 Fujifilm Corp 光量安定化光源装置
JP2012238721A (ja) * 2011-05-11 2012-12-06 Canon Inc 光量制御装置及びその制御方法、及び表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102634A (ja) * 2017-12-01 2019-06-24 キヤノン株式会社 発光素子アレイ及びこれを用いた露光ヘッドと画像形成装置
JP7094694B2 (ja) 2017-12-01 2022-07-04 キヤノン株式会社 発光素子アレイ及びこれを用いた露光ヘッドと画像形成装置
CN108444917A (zh) * 2018-06-05 2018-08-24 深圳迎凯生物科技有限公司 自校准的弱光检测装置
KR102111967B1 (ko) * 2018-11-15 2020-05-18 (주)아이테드 투명전극 제조 장치 및 투명전극 제조 방법

Also Published As

Publication number Publication date
JPWO2015098796A1 (ja) 2017-03-23
JP6454846B2 (ja) 2019-01-23
US20170191872A1 (en) 2017-07-06
DE112014005877B4 (de) 2022-05-05
DE112014005877T5 (de) 2016-09-22
US10094709B2 (en) 2018-10-09

Similar Documents

Publication Publication Date Title
JP6454846B2 (ja) 発光素子、基準用光源および発光体の観察方法
CN104641256B (zh) X射线辐射的检测和x射线检测器系统
WO2014007542A1 (ko) 비접촉식 발광다이오드 검사장치와 이를 이용한 검사방법
US9520439B2 (en) X-ray and optical image sensor
JP2007536742A (ja) 複合光センサーを備えるoledディスプレイ
US9113542B2 (en) Method for temperature stabilization, X-ray detector and CT system
CN107167648B (zh) 确定转换器元件中的直流电流分量
US10900831B2 (en) Spectroscopic measurement apparatus, electronic apparatus, and spectroscopic measurement method
JP2006278368A (ja) 光源装置および表示装置
JP6110897B2 (ja) 三次元計測装置
JP2016149890A (ja) 太陽電池の評価方法及び評価装置
US20120235269A1 (en) Optical sensor and electronic apparatus
TW201833520A (zh) 用於測試cmos影像掃描裝置的led光源探針卡技術
TWI706555B (zh) 發光裝置
JP5700899B2 (ja) 放射検出器
US20180018940A1 (en) Method of adapting emitted radiation from light-emitting diodes in pixels of a display apparatus, and display apparatus
US10644070B2 (en) Component for detecting electromagnetic radiation
KR101683005B1 (ko) 광수신기와 주변광 센서 및/또는 발광 다이오드 패키지를 구비하는 개선된 광 소자 모듈
Mazzillo et al. Electro-optical characterization of SiPMs with green bandpass dichroic filters
JP3716303B2 (ja) 光感応型発光素子の発光効率測定方法及び装置
KR101527303B1 (ko) 광전 소자 및 광전 소자의 동작 방법
WO2022043233A1 (en) Ambient radiation sensing
CN105934825B (zh) 具有实现光学擦拭的光发生器的数字检测器
JP6294150B2 (ja) 受発光装置
JP2010217217A (ja) Ledバックライトの白色調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554858

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014005877

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15108071

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14874047

Country of ref document: EP

Kind code of ref document: A1