WO2015098286A1 - カーボンブラック - Google Patents

カーボンブラック Download PDF

Info

Publication number
WO2015098286A1
WO2015098286A1 PCT/JP2014/079046 JP2014079046W WO2015098286A1 WO 2015098286 A1 WO2015098286 A1 WO 2015098286A1 JP 2014079046 W JP2014079046 W JP 2014079046W WO 2015098286 A1 WO2015098286 A1 WO 2015098286A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
primary particles
ppa
particle diameter
active material
Prior art date
Application number
PCT/JP2014/079046
Other languages
English (en)
French (fr)
Inventor
東吾 山口
望 有満
Original Assignee
旭カーボン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭カーボン株式会社 filed Critical 旭カーボン株式会社
Priority to US15/107,756 priority Critical patent/US9979025B2/en
Priority to CN201480070298.1A priority patent/CN105849204B/zh
Publication of WO2015098286A1 publication Critical patent/WO2015098286A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to carbon black.
  • the electrode active material alone has a low electrical conductivity, and therefore a conductive agent is used at the time of electrode preparation.
  • This conductive agent forms a conductive path between individual electrode active material particles or the surface of the electrode active material.
  • acetylene black has been widely used as a conductive agent, but this acetylene black is dispersed and present between electrode active materials during use to form a path between particles, but since the particle diameter is relatively large, the electrode It is difficult to coat the surface of the active material evenly. Therefore, the current collecting effect is low because the contact point with the electrode active material is limited, and a sufficient conductive effect is not obtained.
  • acetylene black has few surface functional groups and is difficult to disperse in an aqueous solvent due to the reason for the manufacturing method, and this is negative for the conductive effect, so a higher performance conductive agent is required. ing.
  • Patent Document 1 discloses the production of an electrode active material for a lithium secondary battery.
  • a technique using carbon black having a fine particle diameter of 200 g / m 2 or more for nitrogen adsorption specific surface area (N 2 SA) is disclosed.
  • Patent Document 2 discloses a technique for coating the surface of an electrode active material by using two types of carbon blacks having different specific surface areas in combination.
  • the definition of carbon black for electrode use has been made based on the specific surface area and DBP absorption amount of carbon black, and the shape of the carbon black aggregate is defined as the particle size of the primary particles constituting the carbon black aggregate. Measured from the viewpoint of the degree of development of the carbon black aggregate evaluated by the number of primary particles, and by these characteristics, the shape of the carbon black aggregate optimal for coating the electrode active material for the secondary battery itself As far as the applicant of the present application knows, there is no example that stipulates.
  • the applicant of the present application has repeatedly conducted research and experiments on the optimal shape of the carbon black aggregate to coat the electrode active material of the secondary battery.
  • the present inventors have found a shape of a carbon black aggregate capable of efficiently covering the surface of an electrode active material as a battery conductive agent and enhancing the current collection effect.
  • an object of the present invention is to provide carbon black capable of efficiently covering the surface of an electrode active material as a conductive agent for a secondary battery and enhancing the current collecting effect.
  • the carbon black is characterized by comprising a carbon black aggregate 2 in which the ratio PPA / d between the number PPA (number) of primary particles 1 and the particle diameter d (nm) of the primary particles 1 is 8 or more. Is.
  • the carbon black aggregate 2 in which the ratio PPA / d between the number PPA (number) of the primary particles 1 and the particle diameter d (nm) of the primary particles 1 is 8 or more, 2.
  • the particle diameter d of the primary particles 1 is 15 nm or less, and the carbon black according to any one of claims 1 and 2 is characterized.
  • DBP dibutyl phthalate
  • DBP dibutyl phthalate
  • the resulting carbon black has excellent covering properties.
  • the carbon black of the present invention is used as a conductive agent for a secondary battery, the surface of the electrode active material is efficiently coated with carbon black.
  • the ratio PPA / d between the number PPA (number) of primary particles 1 constituting the carbon black aggregate 2 and the particle diameter d (nm) of the primary particles 1 is 8 or more. Since it comprised, the carbon black aggregate 2 becomes a shape suitable for coat
  • the applicant of the present application in the shape of the carbon black aggregate 2, has a larger particle diameter of the primary particles 1 than the size of the carbon black aggregate 2, or the number of primary particles 1 is small and the carbon black aggregate 2.
  • the ratio PPA / d of the number PPA (number) of the primary particles 1 constituting the carbon black aggregate 2 and the particle diameter d (nm) of the primary particles 1 is specifically described. Is less than 8, the contact area of the carbon black to the electrode active material is reduced, the covering property is deteriorated, and it is not possible to sufficiently obtain the effect of improving conductivity and electrode stability. It found out from the result of the experiment conducted.
  • the carbon black of the present invention is configured as a conductive agent for a secondary battery, and when this is used, the carbon black is uniformly coated on the entire surface of the electrode active material, and the coated carbon black is used for the electrode active material.
  • the electrical conductivity is improved and the electrode stability of the secondary battery is improved, thereby improving the current collection effect of the secondary battery.
  • Various physical properties of the secondary battery for example, high energy density, high output density, or high speed The performance such as charge / discharge can be further improved.
  • the definition of carbon black for use in electrodes has been made based on the specific surface area and DBP absorption amount of carbon black.
  • the shape of the carbon black aggregate 2 is defined as the carbon black aggregate. 2 is actually measured from the viewpoint of the particle diameter d of the primary particles 1 constituting 2 and the degree of development of the carbon black aggregate 2 evaluated by the number PPA of the primary particles 1.
  • the optimal shape of the carbon black aggregate 2 that is optimal for the coating of the present invention.
  • the present invention presents the optimal condition and is completely new.
  • the carbon black has excellent characteristics and exhibits remarkable effects that cannot be achieved by conventional carbon black.
  • the PPA Particle number Per Aggregate
  • CB morphology analysis by an electron microscope defined in ASTM D3849-13 Means the value obtained by dividing the total number of particles derived by (nt in the regulation) by the number of observed carbon black aggregates 2.
  • the particle diameter d of the primary particles 1 refers to the diameter of the primary particles 1 constituting the carbon black aggregate 2, and is an average particle diameter (specified by a CB morphological analysis by an electron microscope specified by ASTM D3849-13. M) in the middle.
  • This example is carbon black configured as a conductive agent for a secondary battery, and the number PPA (number) of primary particles 1 and the particle diameter d (nm) of the primary particles 1 as shown in FIG. Is a carbon black comprising the carbon black aggregate 2 having a ratio PPA / d of 8 or more.
  • the ratio PPA / d between the number PPA (number) of the primary particles 1 and the particle diameter d (nm) of the primary particles 1 is 8 to 12, Furthermore, it is carbon black in which the particle diameter d of the primary particles 1 is 15 nm or less.
  • the carbon black of this example can be manufactured using a general carbon black manufacturing furnace. Specifically, from the upstream part, the fuel introduction part, the raw material introduction part, the narrow cylindrical part, the reaction stop It can be produced using a carbon black production furnace having a continuous reaction and cooling chamber provided with a rapid water pressure spraying apparatus.
  • Table 1 below is an example showing the production conditions (operation conditions) of the carbon black (CB01 to CB06) of this example.
  • CB11 and CB12 in Table 1 are examples (comparative examples) of conventional carbon black production conditions.
  • Carbon blacks (CB01 to CB06) of this example and conventional carbon blacks (CB11 and CB12) as comparative examples were produced under the production conditions shown in Table 1.
  • Table 2 shows the physicochemical characteristics of acetylene black (AB) conventionally used as a conductive agent as a result of the measurement and as a comparative example.
  • the DBP (dibutyl phthalate) absorption amount is the amount of dibutyl phthalate absorbed per 100 g of carbon black (mL / 100 g carbon black), and the structural characteristics of the carbon black aggregate 2 are It is a general index to evaluate.
  • the DBP (dibutyl phthalate) absorption was measured according to the method described in JIS K6217-4: 2008.
  • the N2SA nitrogen adsorption specific surface area
  • m 2 / g specific surface area per unit weight
  • JIS K6217-2 JIS K6217-2
  • PPA the number of primary particles 1 constituting the carbon black aggregate 2 and the particle diameter of the primary particles 1 are determined by a field emission scanning microscope (JSM-6700F, manufactured by JEOL Ltd.) in accordance with ASTM D3849-13. , CB morphology analysis, derivation of the total number of particles (nt in regulation), divided by the number of carbon black aggregates 2 observed, PPA, CB morphology analysis, The particle diameter (m in the specification) was derived and used as the particle diameter of the primary particles 1 (primary particle diameter).
  • the ratio PPA / d between the number PPA (number) of the primary particles 1 and the particle diameter d (nm) of the primary particles 1 is 8 ⁇ 12.
  • conventional carbon black (CB11, CB12) and acetylene black (AB) as comparative examples have a number PPA (number) of primary particles 1 and a particle diameter d (nm) of primary particles 1.
  • the ratio PPA / d shows a value smaller than 8.
  • the ratio PPA / d between the number PPA (number) of the primary particles 1 and the particle diameter d (nm) of the primary particles 1 is such that the carbon black aggregate 2 suitable for the carbon black to efficiently cover the electrode active material.
  • the ratio PPA / d between the number PPA (number) of primary particles 1 and the particle diameter d (nm) of the primary particles 1 is an index indicating the shape. It has been found that 8 or more is preferable, and more preferably 8 to 12 is optimal.
  • the present applicant has found that when the PPA / d is larger than 12, the particle diameter of the primary particles 1 is extremely small compared to the size of the carbon black aggregate 2.
  • the surface of the electrode active material cannot be uniformly coated, and the structure of the carbon black aggregate 2 becomes bulky.
  • the conductivity improvement effect cannot be sufficiently obtained, and further, the workability at the time of electrode production is adversely affected, and excessive solvent absorption also occurs, which may increase the electrode production cost. I have also confirmed that.
  • the particle diameter of the primary particles 1 is larger than the size of the carbon black aggregate 2 or the structure of the carbon black aggregate 2 is short. Since the contact area of the carbon black to the electrode active material is reduced and the coating performance is deteriorated, it is confirmed that the effect of improving the conductivity is not sufficiently obtained. From the above, the carbon black aggregate 2 is constituted. It was found that the ratio PPA / d between the number PPA (number) of primary particles 1 to be produced and the particle diameter d (nm) of the primary particles 1 is optimally 8-12.
  • the particle diameter d of the primary particles 1 is 15 nm or less.
  • the particle diameter d of the primary particles is larger than 15 nm, and in the case of acetylene black (AB), the primary particles 1
  • the particle diameter d is 30 nm or more.
  • the particle diameter of the primary particle 1 is confirmed by the results of experiments conducted repeatedly to preferably be 15 nm or less. That is, it has been confirmed that when the particle diameter of the primary particles 1 is larger than 15 nm, the contact area with the electrode active material is reduced and the surface conductive effect is reduced.
  • the lower limit of the particle size of the primary particles 1 it is very difficult to produce carbon black of less than 8 nm with the current production technology, and 8 nm is the lower limit in production.
  • the characteristic of carbon black is 8 nm. It is not the lower limit.
  • the carbon black (CB01 to CB06) of this example manufactured in this way is suitable as a conductive agent for a secondary battery.
  • a secondary battery was created by the following method.
  • Lithium titanate is used as the electrode active material
  • carbon black (CB01 to CB06) of this example and carbon blacks (CB11, CB12) and acetylene black (AB) of this example are used as the conductive agent
  • polyvinylidene fluoride is used as the binder.
  • N-methylpyrrolidone as a solvent, mixing each in a predetermined ratio to make an electrode slurry, applying this slurry to a copper foil, drying and pressing to form an electrode, and the counter electrode is the same
  • the electrode active material was prepared using lithium cobalt oxide.
  • the laminate cell was obtained by combining the electrode, the separator, and the electrolytic solution with a capacity of 6.6 mAh.
  • charge capacity The measurement results obtained by measuring (mAh), discharge capacity (mAh), charge / discharge efficiency (%), and cycle characteristics (%) are shown in Table 3 below.
  • each measurement item was measured using a charge / discharge measuring device SD8 (Hokuto Denko).
  • the charge capacity (mAh) and discharge capacity (mAh) were measured at a temperature of 25 ° C., 0.2 C (C is the charge / discharge rate), and a cut-off voltage of 1.5 to 2.7 V.
  • the charge / discharge efficiency (%) was calculated according to the following equation using the measured values of charge capacity (mAh) and discharge capacity (mAh) measured by the method described above.
  • Charge / discharge efficiency (%) discharge capacity (mAh) / charge capacity (mAh) ⁇ 100
  • Cycle characteristics (%) were measured by charging and discharging 200 times and measuring the rate of decrease from the initial battery capacity.
  • the laminate cells using the carbon blacks (CB01 to CB06) of this example as the conductive agent are the carbon blacks (CB11, CB12) and acetylene black (AB) of the comparative examples.
  • both charge capacity and discharge capacity are high.
  • acetylene black (AB) it exhibits the same or better properties even if the added amount of conductive agent is reduced.
  • the carbon black (CB01 to CB06) of this example used 6 wt% and the acetylene black (AB) 8 wt% were compared, the properties were almost the same, but the acetylene black (AB ) In comparison with the carbon black used in the present example, which is 6 wt%, the carbon black of this example is clearly superior in properties, and a significant decrease is seen even after repeated charge / discharge cycles. In addition, the result that the charge / discharge efficiency is maintained at a high value is obtained, and as a result, the carbon black of this example can achieve improvement in conductive performance and thereby improvement in battery performance. Proven.
  • FIGS. 2 and 3 each show a state in which the electrode active material, which is an amorphous particle having a size of about 1 ⁇ m, is coated with the carbon black and acetylene black of this example.
  • FIG. 3 is an SEM image of the electrode active material coated with carbon black of this example
  • FIG. 3 is an SEM image of the electrode active material coated with acetylene black.
  • the carbon black of the present example uniformly and uniformly coats the entire surface of the electrode active material.
  • the carbon black of this example efficiently covers the surface of the electrode active material.
  • the carbon black CB06 of this example is slightly inferior in characteristics as compared with the other carbon blacks CB01 to CB05 of this example.
  • the carbon black CB06 of this example has a DBP absorption amount of 171 (mL / 100 g carbon black), which is lower than the DBP absorption amounts of the other carbon blacks CB01 to CB05 of this example. It has become a thing.
  • the DBP absorption amount is preferably 180 (mL / 100 g carbon black) or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

 二次電池の導電剤として電極活物質の表面を効率よく被覆し、集電効果を高めることができるカーボンブラックを提供することを目的とする。一次粒子1の数PPA(個)と、前記一次粒子1の粒子径d(nm)との比PPA/dが8以上であるカーボンブラック凝集体2から成るカーボンブラック。

Description

カーボンブラック
 本発明は、カーボンブラックに関するものである。
 近年、二次電池は電気自動車や携帯電話等、非常に広範な分野、業種に渡って用いられるようになり、また、その用途の拡大に伴って高エネルギー密度、高出力密度、或いは高速充放電といった性能に対する要求もより高くなってきている。
 そして、その要求達成の為に各種材料に関する様々な研究・開発が行われており、その一つとして二次電池に最適な導電剤の開発が挙げられる。
 一般的に電極活物質単体では電気伝導性が低いことから電極作製時に導電剤を用いており、この導電剤は個々の電極活物質粒子間の導電パスを形成するか、或いは電極活物質表面を覆って集電効果を高めることにより電極内の導電性を高め、最終製品である二次電池の性能を向上させる効果を有する。
 従来、導電剤としてアセチレンブラックが広く用いられてきたが、このアセチレンブラックは、使用時に電極活物質間に分散・存在して粒子間のパスを形成するものの、粒子径が比較的大きい為、電極活物質表面を均等に被覆することが難しく、そのため電極活物質との接触箇所が限られることから集電効果は低く、十分な導電効果が得られていないのが現状である。
 また、アセチレンブラックは、製法上の理由により、表面官能基が少なく、水系溶剤への分散が困難であり、これが導電効果に対してマイナスとなってしまう為、より高性能の導電剤が要望されている。
 この問題に対して、主にファーネス法によって製造されるカーボンブラックの物理特性を規定した導電用カーボンブラックが検討されており、例えば特許文献1には、リチウム二次電池の電極活物質製造に際し、窒素吸着比表面積(N2SA)が200g/m以上という細かい粒径のカーボンブラックを用いる手法が開示されている。
 また、特許文献2には、二種類の比表面積の異なるカーボンブラックを併用することにより電極活物質表面を被覆する手法が開示されている。
 また、これらの他にカーボンブラックの最小単位である凝集体の大きさの指標となるDBP吸収量を規定した発明も散見されるが、これら従来のカーボンブラックは、電極活物質表面の被覆を行う上で一定の効果を示すものの、被覆に最適なカーボンブラックの形状に着目した検討が成されているものはなく、まだ改良の余地がある。
 即ち、従来、電極用途のカーボンブラックの定義は、カーボンブラックの比表面積やDBP吸収量により行われており、カーボンブラック凝集体の形状を、このカーボンブラック凝集体を構成する一次粒子の粒子径と、この一次粒子の数で評価されるカーボンブラック凝集体の発達度合の観点から実測し、これらの特性により、二次電池用電極活物質の被覆を行う上で最適なカーボンブラック凝集体の形状そのものを規定した例は、本願出願人の知る限り存在しない。
特開2003-234099号公報 特開2010-027458号公報
 本願出願人は、上記のような現状に鑑み、二次電池の電極活物質を被覆するのに最適なカーボンブラック凝集体の形状について、日々、研究・実験を繰り返し行う中で、遂に、二次電池の導電剤として電極活物質の表面を効率よく被覆し、集電効果を高めることができるカーボンブラック凝集体の形状を見出した。
 即ち、本発明は、二次電池の導電剤として電極活物質の表面を効率よく被覆し、集電効果を高めることができるカーボンブラックを提供することを目的とする。
 添付図面を参照して本発明の要旨を説明する。
 一次粒子1の数PPA(個)と、前記一次粒子1の粒子径d(nm)との比PPA/dが8以上であるカーボンブラック凝集体2から成ることを特徴とするカーボンブラック係にるものである。
 また、前記一次粒子1の数PPA(個)と、前記一次粒子1の粒子径d(nm)との比PPA/dが8以上であるカーボンブラック凝集体2から成る構成として、二次電池の導電剤として構成したことを特徴とする請求項1記載のカーボンブラックに係るものである。
 また、前記一次粒子1の粒子径dは、15nm以下であることを特徴とする請求項1,2のいずれか1項に記載のカーボンブラックに係るものである。
 また、ジブチルフタレート(DBP)吸収量が180mL/100gカーボンブラック以上であることを特徴とする請求項1,2のいずれか1項に記載のカーボンブラックに係るものである。
 また、ジブチルフタレート(DBP)吸収量が180mL/100gカーボンブラック以上であることを特徴とする請求項3記載のカーボンブラックに係るものである。
 本発明は上述のように構成したから、被覆性に優れたカーボンブラックとなり、例えば本発明のカーボンブラックを二次電池の導電剤として用いれば、電極活物質の表面をカーボンブラックが効率よく被覆し、二次電池の集電効果を高めることができ、これによって、二次電池の諸物性、例えば高エネルギー密度、高出力密度、或いは高速充放電といった性能をより一層向上させることができ、更に、キャパシタや導電ペーストといった導電性を要求される用途にも格別な効果を発揮し有効的に利用可能となる画期的なカーボンブラックとなる。
本実施例のカーボンブラック凝集体を示す説明図である。 本実施例のカーボンブラックが電極活物質を被覆した状態を示すSEM画像である。 従来例のアセチレンブラックが電極活物質を被覆した状態を示すSEM画像である。
 好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。
 本発明のカーボンブラックは、カーボンブラック凝集体2を構成する一次粒子1の数PPA(個)と、前記一次粒子1の粒子径d(nm)との比PPA/dが8以上となるように構成したから、カーボンブラック凝集体2が二次電池の電極活物質を効率良く被覆するのに適した形状となる。
 即ち、本願出願人は、カーボンブラック凝集体2の形状において、このカーボンブラック凝集体2の大きさに比べて一次粒子1の粒子径が大きかったり、一次粒子1の数が少なくカーボンブラック凝集体2の構造長が短かったりした場合、具体的には、カーボンブラック凝集体2を構成する一次粒子1の数PPA(個)と、前記一次粒子1の粒子径d(nm)との比PPA/dが8よりも小さい値となる場合は、カーボンブラックの電極活物質への接触面積が低下して被覆性が悪化し、導電性、電極安定性の向上効果を十分に得ることができないことを繰り返し行った実験の結果から見出した。
 これにより、例えば本発明のカーボンブラックを二次電池の導電剤として構成し、これを用いれば、カーボンブラックが電極活物質の表面全体に均一に被覆し、この被覆したカーボンブラックにより電極活物質の導電性が向上すると共に二次電池の電極安定性が向上し、これにより二次電池の集電効果を高めることができ、二次電池の諸物性、例えば高エネルギー密度、高出力密度、或いは高速充放電といった性能をより一層向上させることができる。
 このように、従来、電極用途のカーボンブラックの定義は、カーボンブラックの比表面積やDBP吸収量により行われており、本発明のように、カーボンブラック凝集体2の形状を、このカーボンブラック凝集体2を構成する一次粒子1の粒子径dと、この一次粒子1の数PPAで評価されるカーボンブラック凝集体2の発達度合の観点から実測し、これらの特性により、二次電池用電極活物質の被覆を行う上で最適なカーボンブラック凝集体2の形状そのものを規定した例は、本願出願人の知る限り存在せず、加えて本発明は、その最適条件を提示したものであり、全く新規な特性のカーボンブラックであり、従来のカーボンブラックでは達成できない顕著な効果を奏するものとなる。
 尚、本発明におけるPPA(Particle number Per Aggregate)とは、カーボンブラック凝集体2の一体当たりに含まれるカーボンブラック一次粒子1の数を指し、ASTM D3849-13で規定される電子顕微鏡によるCB形態分析で導出される総粒子数(規定中でのnt)を、観察したカーボンブラック凝集体2の数で除した値を意味するものである。
 また、一次粒子1の粒子径dは、カーボンブラック凝集体2を構成する一次粒子1の径を指し、ASTM D3849-13で規定される電子顕微鏡によるCB形態分析で導出される平均粒子径(規定中でのm)を意味するものである。
 本発明の具体的な実施例について図面に基づいて説明する。
 本実施例は、二次電池の導電剤として構成したカーボンブラックであって、図1に示すような、一次粒子1の数PPA(個)と、前記一次粒子1の粒子径d(nm)との比PPA/dが8以上であるカーボンブラック凝集体2から成るカーボンブラックである。
 より具体的には、本実施例のカーボンブラックは、前記一次粒子1の数PPA(個)と、前記一次粒子1の粒子径d(nm)との比PPA/dが8~12であり、更に、前記一次粒子1の粒子径dが15nm以下であるカーボンブラックである。
 また、本実施例のカーボンブラックは、一般的なカーボンブラック製造炉を用いて製造可能なものであり、具体的には、上流部より、燃料導入部、原料導入部、狭小円筒部、反応停止用急冷水圧噴霧装置を備えた反応継続兼冷却室が連接したカーボンブラック製造炉を用いて製造することができる。
 下表1は、本実施例のカーボンブラック(CB01~CB06)の製造条件(操作条件)を示した一例である。尚、表1のCB11、CB12は従来のカーボンブラックの製造条件の一例(比較例)である。
Figure JPOXMLDOC01-appb-T000001
 この表1に示した各製造条件で本実施例のカーボンブラック(CB01~CB06)及び比較例として従来のカーボンブラック(CB11、CB12)を製造し、夫々の物理化学特性、具体的には、DBP(ジブチルフタレート)吸収量、N2SA(窒素吸着比表面積)、PPA(カーボンブラック凝集体2を構成する一次粒子1の数)、一次粒子径(カーボンブラック凝集体2を構成する一次粒子1の粒子径d)を測定した。
 その測定結果、並びに比較例として、従来、導電剤に用いられているアセチレンブラック(AB)の物理化学特性を下表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この表2の各測定項目について説明すると、DBP(ジブチルフタレート)吸収量は、カーボンブラック100g当たりに吸収されるジブチルフタレート量(mL/100gカーボンブラック)であり、カーボンブラック凝集体2の構造特性を評価する一般的な指標となるものである。本実施例では、このDBP(ジブチルフタレート)吸収量は、JIS K6217-4:2008に記載の方法に従い測定した。
 また、このN2SA(窒素吸着比表面積)は、単位重量当たりの比表面積(m/g)であり、本実施例では、このN2SA(窒素吸着比表面積)を、JIS K6217-2:2001に記載の方法に従い測定した。
 また、PPA(カーボンブラック凝集体2を構成する一次粒子1の数)と一次粒子1の粒子径は、ASTM D3849-13の規定に従い、電界放射走査顕微鏡(JSM-6700F,日本電子社製)により、CB形態分析を行い、総粒子数(規定中でのnt)を導出し、これを観察したカーボンブラック凝集体2の数で除して求めた値をPPAとし、CB形態分析を行い、平均粒子径(規定中でのm)を導出し、これを一次粒子1の粒子径(一次粒子径)とした。
 この表2に示すように、本実施例のカーボンブラック(CB01~CB06)は、一次粒子1の数PPA(個)と、一次粒子1の粒子径d(nm)との比PPA/dが8~12となる。
 これに対して、比較例としての従来のカーボンブラック(CB11、CB12)及びアセチレンブラック(AB)は、この一次粒子1の数PPA(個)と、一次粒子1の粒子径d(nm)との比PPA/dが8よりも小さい値を示している。
 この一次粒子1の数PPA(個)と、一次粒子1の粒子径d(nm)との比PPA/dは、カーボンブラックが電極活物質を効率よく覆うのに適したカーボンブラック凝集体2の形状を示す指標であり、本願出願人は、繰り返し行った実験の中から、この一次粒子1の数PPA(個)と、一次粒子1の粒子径d(nm)との比PPA/dは、8以上が好ましく、より好ましくは8~12が最適であることを見出した。
 即ち、本願出願人は、繰り返し行った実験の結果から、このPPA/dが12よりも大きい場合は、カーボンブラック凝集体2の大きさに比べて一次粒子1の粒子径が極度に微粒径であり、電極活物質表面を均質に被覆できなくなること、及びカーボンブラック凝集体2の構造が嵩高くなって、例えば二次電池の電極作製時に電極スラリーへの分散性悪化や過度の吸着が起こることから、導電性向上効果が十分に得られないことを確認し、更に、電極作製時の加工性にも悪影響を及ぼす他、過度の溶媒吸収も起こる為、電極作製コストが増大する懸念があることも確認している。
 一方、このPPA/dが8よりも小さい場合は、カーボンブラック凝集体2の大きさに比べて一次粒子1の粒子径が大きくなるか、又はカーボンブラック凝集体2の構造が短いものとなる為、カーボンブラックの電極活物質への接触面積が低下し、被覆性能が悪化するので、やはり導電性向上効果が十分に得られないことを確認し、以上のことより、カーボンブラック凝集体2を構成する一次粒子1の数PPA(個)と、一次粒子1の粒子径d(nm)との比PPA/dは、8~12となることが最適であることを見出した。
 また、表2に示すように、本実施例のカーボンブラック(CB01~CB06)は、一次粒子1の粒子径dは、15nm以下となる。
 これに対して、比較例のカーボンブラック(CB11、CB12)及びアセチレンブラック(AB)は、一次粒子の粒子径dが15nmよりも大径になり、特にアセチレンブラック(AB)においては、一次粒子1の粒子径dが30nm以上となる。
 この一次粒子1の粒子径は、15nm以下であることが好ましいことを繰り返し行った実験の結果により確認している。即ち、この一次粒子1の粒子径が15nmよりも大きいと、電極活物質への接触面積が低下し、表面導電効果が低下することが確認できている。
 尚、この一次粒子1の粒子径の下限については、現在の製造技術では8nm未満のカーボンブラックを製造することは非常に難しく、8nmが製造上の下限となるが、カーボンブラックの特性として8nmが下限になるわけではない。
 このように製造した本実施例のカーボンブラック(CB01~CB06)は、二次電池の導電剤に適する。
 以下に、本実施例のカーボンブラック(CB01~CB06)を用いて作成した二次電池に関する評価結果を示す。
 本実施例では、以下の方法で二次電池を作成した。
 電極活物質にチタン酸リチウムを用い、導電剤に本実施例のカーボンブラック(CB01~CB06)及び比較例のカーボンブラック(CB11、CB12)並びにアセチレンブラック(AB)を用い、バインダーにポリフッ化ビニリデンを用い、溶剤にN-メチルピロリドンを用い、夫々を所定の割合で混合して電極スラリー化し、このスラリーを銅箔に塗布し、乾燥後、プレスして電極を形成し、また、対極は同様の方法で、電極活物質にコバルト酸リチウムを用いて作成した。
 この電極とセパレータ、電解液とを組み合わせて、容量6.6mAhの設計でラミネートセルを得た。
 この導電剤に本実施例のカーボンブラック(CB01~CB06)及び比較例のカーボンブラック(CB11、CB12)並びにアセチレンブラック(AB)を用いた各ラミネートセルにおける電気化学特性、具体的には、充電容量(mAh)、放電容量(mAh)、充放電効率(%)、サイクル特性(%)を測定した測定結果を下表3に示す。
Figure JPOXMLDOC01-appb-T000003
 この表3の各測定項目について説明すると、本実施例では、各測定項目の測定は、充放電測定装置SD8(北斗電工社製)を用いて測定した。
 具体的には、充電容量(mAh)、放電容量(mAh)は、ともに温度25℃、0.2C(Cは充放電レート)、カットオフ電圧1.5~2.7Vで測定した。
 また、充放電効率(%)は、上述した方法により測定した充電容量(mAh)、放電容量(mAh)の測定値を用い、下式に従い算出した。
  充放電効率(%)=放電容量(mAh)/充電容量(mAh)×100
 また、サイクル特性(%)は、充電、放電を200回行い、初期電池容量からの減少割合を測定した。
 この表3に示す評価結果(測定結果)から、本実施例のカーボンブラック(CB01~CB06)を導電剤として用いたラミネートセルは、比較例のカーボンブラック(CB11、CB12)及びアセチレンブラック(AB)を導電剤として用いたラミネートセルに比べて、充電容量、放電容量共に高い数値を示し、特に、アセチレンブラック(AB)と比べると、導電剤の添加量を減らしても同等以上の性状を示すことが確認できた。
 即ち、本実施例のカーボンブラック(CB01~CB06)を6wt%用いたものと、アセチレンブラック(AB)を8wt%用いたものとを対比すると、性状はほぼ同等であったが、アセチレンブラック(AB)を本実施例のカーボンブラックと同じ6wt%用いたものと対比すると、明らかに本実施例のカーボンブラックの方が性状が優れており、また、充放電のサイクルを重ねても大きな低下は見られず、しかも、充放電効率も高い値を維持する結果が得られており、これにより、本実施例のカーボンブラックは、導電性能の向上、及びそれによる電池の性能向上が達成されることが証明された。
 また、更に、上記の裏付けとして、本実施例のカーボンブラックと、アセチレンブラックの夫々の電極活物質に対する被覆性を確認した結果を図2、図3に示す。
 この図2、図3においては、各図とも、1μm程度の大きさの不定形粒子である電極活物質を、本実施例のカーボンブラック及びアセチレンブラックが被覆した状態を示すものであり、図2は、本実施例のカーボンブラックによって被覆された電極活物質のSEM画像であり、図3は、アセチレンブラックによって被覆された電極活物質のSEM画像である。
 この図2から分かるように、本実施例のカーボンブラックは、電極活物質の表面全体をムラ無く、且つ万遍なく被覆していることが確認できる。
 一方、図3から分かるように、アセチレンブラックは、電極活物質の表面に対して不均一に存在していることが確認できる。
 このように、本実施例のカーボンブラックは、電極活物質の表面を効率よく被覆する。
 尚、本実施例のカーボンブラックCB06は、他の本実施例のカーボンブラックCB01~CB05と比べると、若干、各特性が劣っている。
 この本実施例のカーボンブラックCB06は、表2から分かるように、DBP吸収量が171(mL/100gカーボンブラック)と、他の本実施例のカーボンブラックCB01~CB05のDBP吸収量と比べると低いものとなっている。
 このDBP吸収量の値が小さくなると、カーボンブラック凝集体2の枝構造の発達が少なく形状が球形に近くなって、電極活物質の表面被覆性が低下する傾向があることが確認されている。
 従って、DBP吸収量は、180(mL/100gカーボンブラック)以上となるようにすることが好ましい。
 尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。

Claims (5)

  1.  一次粒子の数PPA(個)と、前記一次粒子の粒子径d(nm)との比PPA/dが8以上であるカーボンブラック凝集体から成ることを特徴とするカーボンブラック。
  2.  前記一次粒子の数PPA(個)と、前記一次粒子の粒子径d(nm)との比PPA/dが8以上であるカーボンブラック凝集体から成る構成として、二次電池の導電剤として構成したことを特徴とする請求項1記載のカーボンブラック。
  3.  前記一次粒子の粒子径dは、15nm以下であることを特徴とする請求項1,2のいずれか1項に記載のカーボンブラック。
  4.  ジブチルフタレート(DBP)吸収量が180mL/100gカーボンブラック以上であることを特徴とする請求項1,2のいずれか1項に記載のカーボンブラック。
  5.  ジブチルフタレート(DBP)吸収量が180mL/100gカーボンブラック以上であることを特徴とする請求項3記載のカーボンブラック。
PCT/JP2014/079046 2013-12-24 2014-10-31 カーボンブラック WO2015098286A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/107,756 US9979025B2 (en) 2013-12-24 2014-10-31 Carbon black and secondary cell using the carbon black as electroconductive agent
CN201480070298.1A CN105849204B (zh) 2013-12-24 2014-10-31 炭黑和使用该炭黑作为导电剂的二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-265351 2013-12-24
JP2013265351A JP6088418B2 (ja) 2013-12-24 2013-12-24 カーボンブラックおよびこのカーボンブラックを導電剤として用いた二次電池

Publications (1)

Publication Number Publication Date
WO2015098286A1 true WO2015098286A1 (ja) 2015-07-02

Family

ID=53478164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079046 WO2015098286A1 (ja) 2013-12-24 2014-10-31 カーボンブラック

Country Status (4)

Country Link
US (1) US9979025B2 (ja)
JP (1) JP6088418B2 (ja)
CN (1) CN105849204B (ja)
WO (1) WO2015098286A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437348B2 (ja) * 2015-02-27 2018-12-12 旭カーボン株式会社 電極活物質、二次電池用電極、二次電池
JP6848981B2 (ja) * 2016-11-22 2021-03-24 日産自動車株式会社 電気デバイス用負極及びそれを用いた電気デバイス
JP6932589B2 (ja) 2017-09-19 2021-09-08 デンカ株式会社 電池用カーボンブラック、電池用塗工液、非水系電池用正極および非水系電池
CN114284465B (zh) * 2021-12-22 2024-07-19 蜂巢能源科技股份有限公司 正极浆料的制备方法、正极极片及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348537A (ja) * 1999-03-31 2000-12-15 Lion Corp 導電性ペースト及びその製造方法並びに二次電池用導電助剤
WO2001092151A1 (fr) * 2000-05-31 2001-12-06 Showa Denko K.K. Composite a base de carbone electriquement conducteur a fines particules, catalyseur pour pile a combustible a polymere solide et batterie de piles
JP2005307070A (ja) * 2004-04-23 2005-11-04 Denki Kagaku Kogyo Kk カーボンブラック、その製造方法、及びそれを含有した組成物
JP2006052237A (ja) * 2003-08-05 2006-02-23 Mitsubishi Chemicals Corp カーボンブラック
JP2006210007A (ja) * 2005-01-25 2006-08-10 Mitsubishi Chemicals Corp 電気化学素子用電極およびそれを用いたリチウム二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780388B2 (en) 2000-05-31 2004-08-24 Showa Denko K.K. Electrically conducting fine carbon composite powder, catalyst for polymer electrolyte fuel battery and fuel battery
JP2003234099A (ja) 2001-12-03 2003-08-22 Mitsubishi Chemicals Corp 電極活物質含有組成物、並びにそれを用いた電極及びリチウム二次電池
EP1666543B1 (en) 2003-08-05 2012-01-11 Mitsubishi Chemical Corporation Carbon black
JP2010027458A (ja) 2008-07-22 2010-02-04 Toyota Motor Corp 二次電池用正極材料およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348537A (ja) * 1999-03-31 2000-12-15 Lion Corp 導電性ペースト及びその製造方法並びに二次電池用導電助剤
WO2001092151A1 (fr) * 2000-05-31 2001-12-06 Showa Denko K.K. Composite a base de carbone electriquement conducteur a fines particules, catalyseur pour pile a combustible a polymere solide et batterie de piles
JP2006052237A (ja) * 2003-08-05 2006-02-23 Mitsubishi Chemicals Corp カーボンブラック
JP2005307070A (ja) * 2004-04-23 2005-11-04 Denki Kagaku Kogyo Kk カーボンブラック、その製造方法、及びそれを含有した組成物
JP2006210007A (ja) * 2005-01-25 2006-08-10 Mitsubishi Chemicals Corp 電気化学素子用電極およびそれを用いたリチウム二次電池

Also Published As

Publication number Publication date
JP2015120822A (ja) 2015-07-02
JP6088418B2 (ja) 2017-03-01
US9979025B2 (en) 2018-05-22
US20160322640A1 (en) 2016-11-03
CN105849204A (zh) 2016-08-10
CN105849204B (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
Wei et al. A new generation of energy storage electrode materials constructed from carbon dots
JP6017432B2 (ja) セルロースファイバーをバインダーとして含有するリチウム二次電池電極形成用スラリー組成物及びリチウム二次電池用電極
Li et al. TiNb 2 O 7/graphene composites as high-rate anode materials for lithium/sodium ion batteries
Jian et al. Monodispersed hierarchical Co 3 O 4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries
Zhang et al. Electrospun Fe 2 O 3–carbon composite nanofibers as durable anode materials for lithium ion batteries
Kakaei et al. Graphene-based electrochemical supercapacitors
JP7067118B2 (ja) リチウムイオン電池用バインダー水溶液、リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池
JP7027955B2 (ja) リチウムイオン電池用バインダー水溶液、リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池
Yao et al. Zinc ferrite nanorods coated with polydopamine-derived carbon for high-rate lithium ion batteries
Li et al. Silicon/graphite/carbon nanotubes composite as anode for lithium ion battery
JP6543428B1 (ja) 二次電池用負極活物質および二次電池
WO2015098286A1 (ja) カーボンブラック
KR20160013867A (ko) 전기 화학 소자 전극용 바인더, 전기 화학 소자 전극용 입자 복합체, 전기 화학 소자 전극, 전기 화학 소자 및 전기 화학 소자 전극의 제조 방법
JP2021158125A (ja) リチウムイオン電池負極用スラリー及びその製造方法、リチウムイオン電池用負極、並びにリチウムイオン電池
JP2018125077A (ja) リチウムイオン二次電池用負極
WO2015051627A1 (zh) 棒状纳米氧化铁电极材料及其制备方法和应用
CN110311091A (zh) 一种导热极片、及其制备方法和用途
JP2015120822A5 (ja)
CN110571406B (zh) 一种用于锂离子电池的碳材料负极的制备方法
KR101795778B1 (ko) 탄소 복합 실리콘 음극 활물질의 제조 방법, 이에 의하여 제조된 탄소 복합 실리콘 음극 활물질 및 이를 포함하는 리튬 이차전지
JP6437348B2 (ja) 電極活物質、二次電池用電極、二次電池
JP6740566B2 (ja) 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
KR101620195B1 (ko) 주석-탄소 나노복합체 및 그 제조방법, 이를 포함하는 이차전지
US20240105958A1 (en) Carbon nanotube dispersion liquid for electrode slurry, negative electrode slurry, nonaqueous electrolyte secondary battery, and manufacturing method for carbon nanotube dispersion liquid for electrode slurry
JP2016046130A (ja) 二次電池用電極、二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875566

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15107756

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875566

Country of ref document: EP

Kind code of ref document: A1