WO2015098284A1 - タングステンコンデンサ用陽極体の製造方法 - Google Patents

タングステンコンデンサ用陽極体の製造方法 Download PDF

Info

Publication number
WO2015098284A1
WO2015098284A1 PCT/JP2014/078951 JP2014078951W WO2015098284A1 WO 2015098284 A1 WO2015098284 A1 WO 2015098284A1 JP 2014078951 W JP2014078951 W JP 2014078951W WO 2015098284 A1 WO2015098284 A1 WO 2015098284A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
dielectric layer
sintered body
powder
alkoxide compound
Prior art date
Application number
PCT/JP2014/078951
Other languages
English (en)
French (fr)
Inventor
内藤 一美
竜一 光本
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2015526787A priority Critical patent/JP5779741B1/ja
Priority to US15/107,507 priority patent/US20160322168A1/en
Publication of WO2015098284A1 publication Critical patent/WO2015098284A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a method for manufacturing an anode body of a capacitor made of a tungsten sintered body. More specifically, the present invention relates to a method for manufacturing an anode body of a tungsten capacitor with reduced capacitance change (bias voltage dependency) with respect to a direct current (DC) voltage, and a method for manufacturing a solid electrolytic capacitor.
  • a solid electrolytic capacitor has, for example, a conductive body (anode body) made of a sintered body of valve foil metal powder such as aluminum foil, tantalum, niobium, tungsten, etc. as one electrode, and the surface layer of the electrode is an electrolyte such as phosphoric acid. It is composed of a metal oxide dielectric layer formed on the surface by electrolytic oxidation in an aqueous solution and the other electrode (semiconductor layer) composed of a semiconductor layer formed thereon by electrolytic polymerization or the like.
  • an electrolytic capacitor using a sintered body of tungsten powder as an anode body is more resistant to DC voltage than an electrolytic capacitor using an aluminum foil and a sintered body of tantalum powder or niobium powder as an anode body.
  • An object of the present invention is to provide an anode body of a tungsten capacitor with reduced capacitance change (bias voltage dependency) with respect to a DC voltage in an electrolytic capacitor using the sintered body of tungsten powder as an anode body, and the anode body. It is providing the electrolytic capacitor using this.
  • anode body for an electrolytic capacitor in which a sintered body (anode body) obtained by sintering tungsten powder is formed and a dielectric layer is formed on the surface.
  • a sintered body anode body obtained by sintering tungsten powder
  • a dielectric layer is formed on the surface.
  • this invention relates to the manufacturing method of the anode body of the following tungsten capacitor, and the manufacturing method of a solid electrolytic capacitor.
  • a sintering process for forming a sintered body of tungsten powder, a chemical conversion process for forming a dielectric layer on the surface of the sintered body, and an alkoxide compound of the dielectric layer and the valve metal after forming the dielectric layer The ratio of the mass loss at 100 to 300 ° C. in the differential thermal analysis of the sintered body on which the dielectric layer is formed to the mass before the analysis is 0.
  • a method for producing an anode body for a capacitor characterized by being performed so as to be 0.02% or less.
  • valve metal alkoxide compound is a titanium alkoxide compound or a tungsten alkoxide compound.
  • a sintering process for forming a sintered body of tungsten powder, a chemical conversion process for forming a dielectric layer on the surface of the sintered body, and a valve metal other than the dielectric layer and tungsten after the formation of the dielectric layer A step of bringing the alkoxide compound into contact with the alkoxide compound, wherein the ratio of the number of valve metal atoms other than tungsten to tungsten atoms in the surface layer of the dielectric layer is 0.05 to 0.35.
  • a process for producing a capacitor anode body characterized in that: [4] A sintering process for forming a sintered body of tungsten powder, a chemical conversion process for forming a dielectric layer on the surface of the sintered body, and a valve metal other than the dielectric layer and tungsten after the formation of the dielectric layer A step of contacting the alkoxide compound with a mass reduction at 100 to 300 ° C. in a differential thermal analysis of the sintered body on which the dielectric layer is formed relative to the mass before the analysis.
  • the capacitor is characterized in that the ratio is 0.02% or less, and the atomic ratio of valve metal atoms other than tungsten to tungsten atoms in the surface layer of the dielectric layer is 0.05 to 0.35.
  • a method for producing an anode body [5] The method for producing an anode body for a capacitor as described in [3] or [4] above, wherein the alkoxide compound of the valve metal other than tungsten is an alkoxide compound of titanium. [6] A method for producing a solid electrolytic capacitor using the method for producing an anode body according to any one of 1 to 5 above.
  • the present invention provides a method for manufacturing an anode body in which a dielectric layer is processed with a valve metal alkoxide in the manufacture of a capacitor anode body in which a dielectric layer made of a tungsten oxide compound is formed by forming a tungsten sintered body.
  • the capacitor using the anode body according to the manufacturing method of the present invention can be preferably used in a circuit for precision equipment because the fluctuation of the capacitor capacity (bias voltage dependency) with respect to DC is low.
  • tungsten powder raw tungsten powder, hereinafter referred to as “primary powder” as a raw material of the tungsten sintered body is commercially available with a lower limit of the average particle size of up to about 0.5 ⁇ m.
  • the tungsten powder can produce a sintered body (anode) with smaller pores as the particle size is smaller.
  • Tungsten powder with a particle size smaller than that of commercially available products can be obtained by pulverizing tungsten trioxide powder in a hydrogen atmosphere, or by using a reducing agent such as hydrogen or sodium for tungstic acid or tungsten halide. It can be obtained by appropriately selecting and reducing. It can also be obtained by obtaining directly from a tungsten-containing mineral or a plurality of steps, and selecting and reducing the conditions.
  • the tungsten powder as a raw material may be granulated (hereinafter, the granulated tungsten powder may be simply referred to as “granulated powder”).
  • Granulated powder is preferable because it has good fluidity and is easy to perform operations such as molding.
  • the granulated powder described above may be prepared by adjusting the pore distribution by the same method as disclosed in JP 2003-213302 A for niobium powder, for example.
  • the granulated powder can also be obtained, for example, by adding at least one liquid such as water or liquid resin to the primary powder to form granules of an appropriate size, and then heating and sintering under reduced pressure.
  • Easy to handle granulated granulated powder under reduced pressure conditions for example, 10 kPa or less in a non-oxidizing gas atmosphere such as hydrogen
  • high temperature conditions for example, 1100 to 2600 ° C., 0.1 to 100 hours
  • Such granulated powder can be classified by sieving to make the particle size uniform. If the average particle size is preferably in the range of 50 to 200 ⁇ m, more preferably 100 to 200 ⁇ m, it is convenient for smooth flow from the hopper of the molding machine to the mold.
  • the capacity of the electrolytic capacitor made from the granulated powder can be particularly increased.
  • the specific surface area (by the BET method) of the granulated powder is preferably 0.2 to 20 m 2 / g, more preferably 1.
  • the capacity of the electrolytic capacitor can be increased, which is preferable.
  • the tungsten material may contain some impurities described later.
  • tungsten powder having tungsten silicide in the surface layer so that the silicon content is in a specific range is preferably used.
  • the tungsten powder having tungsten silicide in the surface layer is mixed with, for example, 0.05 to 7% by mass of silicon powder and heated under reduced pressure to react at 1100 to 2600 ° C. or in a hydrogen stream. After pulverizing tungsten with, and further mixing silicon powder, it can be prepared by heating at 1100-2600 ° C. under reduced pressure for reaction.
  • tungsten powder those having at least one selected from tungsten nitride, tungsten carbide, and tungsten boride in the surface layer are also preferably used.
  • the above tungsten powder is preferably formed into a molded body having a density of 8 g / cm 3 or more, and the molded body is preferably heated at a temperature of 1480 to 2600 ° C., preferably for 10 minutes to 100 hours.
  • a sintered body is formed (sintering process).
  • the surface layer of the sintered body is subjected to electrolytic oxidation (chemical conversion) in an aqueous electrolyte solution (chemical conversion step).
  • tungsten oxide (VI) that is, tungsten trioxide (WO 3 ) is formed on the surface of the sintered body (outer surface and inner surface of the void portion), and this becomes a dielectric coating (dielectric layer).
  • the three in the tungsten oxide compound in addition to WO 3, tungstic acid (e.g., H 2 WO 4, H 4 WO 5) the WO 3 is a hydrated compound hydrated water with exists.
  • Tungsten trioxide (WO 3 ) is industrially produced by thermally decomposing tungstic acid in the atmosphere at 900 to 1000 K (powder powder metallurgy glossary, page 312, Nikkan Kogyo Shimbun, 2001). ). Tungstic acid is also commercially available as a powder.
  • H 2 WO 4 , H 4 WO 5 and the like which are hydrated compounds of tungsten trioxide (WO 3 ), are formed during the chemical conversion.
  • the inventors of the present invention have immersed a tungsten anode body in which a dielectric layer is formed in an ethanol solution of titanium ethoxide for 1 hour, that is, performed a process of bringing the dielectric layer into contact with an alkoxide compound of titanium.
  • the capacitance at the bias voltage of 3V was almost the same as the capacitance at the bias voltage of 0V, and it was confirmed that the bias dependence as normally seen was not observed. It was also confirmed that when titanium ethoxide was allowed to act, titanium (IV) oxide was generated on the surface layer of the dielectric coating.
  • the surface layer said here is an area
  • the reason why the hydration water exists and causes the bias voltage dependency is that, for example, a dielectric made of tungstic acid has a distortion in symmetry due to the presence of hydration water and exhibits spontaneous polarization. Conceivable. On the other hand, it is considered that tungsten trioxide from which hydration water has been removed has no distortion in symmetry and does not exhibit bias voltage dependency.
  • titanium tetraethoxide titanium tethoxide
  • titanium tetraisopropoxide titanium isopropoxide
  • titanium tetrabutoxide titanium butoxide
  • Titanium ethoxide and titanium propoxide are liquid at room temperature, and can be suitably acted upon by immersing the anode body, and can be appropriately diluted with ethanol, so that ethoxide and propoxide are preferred. It is preferable that the titanium alkoxide compound solution is easily used before it is immersed in absolute ethanol before the anode body is immersed.
  • titanium remains in the dielectric coating as an oxide.
  • the hydrated compound of tungsten trioxide has a great influence on the capacitor characteristics, the amount of titanium oxide is very small, and titanium is a valve metal, and the influence of the oxide on the capacitor characteristics is small.
  • the temperature for immersing in the titanium alkoxide solution may be at least the melting point of the titanium alkoxide compound and the solvent and less than the boiling point. From the viewpoint of ease of handling, it is preferable to act at room temperature, and from the viewpoint of accelerating the reaction, it can be carried out by heating to about 50 to 70 ° C.
  • the treatment time can be appropriately adjusted according to the temperature. If it is too short, there is no effect, but if it is too long, the effect is not added.
  • the anode body after the titanium alkoxide treatment is preferably subjected to heat treatment.
  • the heat treatment temperature is preferably 100 to 250 ° C, more preferably 160 to 230 ° C.
  • the alkoxide compound used by embodiment of this invention is not limited to this,
  • the alkoxide compound of a valve metal can be used.
  • examples of the valve metal include aluminum, tantalum, niobium, titanium, hafnium, vanadium, zirconium, zinc, molybdenum, tungsten, bismuth, and antimony.
  • a tungsten alkoxide compound, which is the same metal as the anode body, is preferable, and a titanium alkoxide compound is preferable because the oxide has a high dielectric constant and is easy to handle.
  • the hydrolysis reaction of metal alkoxide compounds is used for the synthesis of metal oxides by the sol-gel method.
  • the metal alkoxide deprives the hydrated water of the hydrated compound of tungsten trioxide in the dielectric layer and hydrolyzes it, and the metal oxide is finally converted by heating through a reaction similar to the sol-gel method. It is thought that it is generated and remains in the dielectric layer.
  • the metal of the metal alkoxide is a valve metal
  • the generated metal oxide becomes an oxide of the valve metal, so that the characteristics as a capacitor are not impaired.
  • the higher the dielectric constant of the metal oxide that is produced the higher the dielectric constant of tungsten trioxide is not impaired.
  • the hydration water of the hydrated compound of tungsten trioxide in the dielectric layer is removed by performing the treatment of bringing the dielectric layer of the tungsten anode body into contact with the metal alkoxide compound.
  • the degree of removal of the hydrated water can be evaluated by differential thermal analysis (TG-DTA).
  • TG-DTA differential thermal analysis
  • the mass reduction at room temperature ⁇ 100 °C (W RT -W 100 ) corresponds to a desorption amount of adsorbed water
  • mass loss at 100 ⁇ 300 °C (W 100 -W 300) is de-waters of hydration This is considered to correspond to the separation amount (amount of hydrated water remaining in the dielectric layer). Therefore, the remaining amount of hydrated water in the dielectric layer can be known from the ratio of mass reduction at 100 to 300 ° C. with respect to the mass before heating “(W 100 ⁇ W 300 ) / W RT ”.
  • the value of (W 100 -W 300 ) / W RT (mass reduction rate) needs to be 0.02% or less for the dielectric layer of the anode body treated with the metal alkoxide. It is. When this value exceeds 0.02%, the bias voltage dependency of the capacity increases.
  • metal atoms of the metal alkoxide finally remain on the surface of the dielectric layer.
  • the atomic ratio of metal atoms derived from metal alkoxide and tungsten atoms remaining in the surface layer of the dielectric layer is determined by X-ray photoelectron spectroscopy (XPS) as described later. Can be measured.
  • the metal alkoxide treatment is performed so that the atomic ratio of the metal atom to the tungsten atom (the number of metal atoms / the number of tungsten atoms) is in the range of 0.05 to 0.35. Do. When the ratio of the number of metal atoms to tungsten atoms is less than 0.05, the capacity dependency of the bias voltage increases.
  • the (W 100 -W 300 ) / W RT value (mass reduction rate) of the anode dielectric layer treated with metal alkoxide is 0.02% or less.
  • the atomic ratio of the metal alkoxide-derived metal atoms and tungsten atoms remaining on the surface of the dielectric layer is in the range of 0.05 to 0.35. Treatment with metal alkoxide is performed.
  • Ti / W ratio When the XPS spectrum of the anode dielectric layer was measured using an XPS analyzer (Shimadzu Corporation AXIS-NOVA), most of titanium ( ⁇ i) was tetravalent. The atomic ratio was calculated from the peak intensity ratio with the peak near 35 eV as the hexavalent tungsten peak and the peak near 460 eV as the tetravalent titanium peak. Further, by analyzing the dielectric layer while performing argon etching, it was found that titanium exists in a range from the particle surface of the granulated powder to 30 nm. When argon etching was performed, partial reduction occurred and the peak position changed.
  • the detection depth without etching was about 15 nm, and it was assumed that the atomic ratio did not change up to a depth of 30 nm. Note that the Ti peak is weak because the number of atoms is small, and overlaps with the W background, so the measured value has an error of calculated value ⁇ 0.05.
  • Examples 1-5, Comparative Examples 1-2 A commercial tungsten powder with a volume average particle size of 0.65 ⁇ m was left in a vacuum furnace at 1400 ° C. for 30 minutes and then taken out to room temperature to break up the agglomerate to produce a granulated powder with a volume average particle size of 75 ⁇ m did. This powder was formed by planting a tantalum wire having a diameter of 0.29 mm using a molding machine, and further sintered in a vacuum furnace at 1470 ° C.
  • An 80% by volume solution was prepared by adding absolute ethanol as a solvent to titanium ethoxide.
  • the formed sintered body was immersed in a titanium ethoxide solution stirred with a magnetic stirrer under an argon atmosphere under the temperature and time conditions described in Examples 1 to 5 and Comparative Example 1 in Table 1. After removing from the titanium ethoxide solution, it was dried at 190 ° C. for 30 minutes in an argon atmosphere and washed with ethanol. 50 masses of the formed sintered body (anode body) prepared in each Example and Comparative Example 1 and the formed sintered body (anode body) of Comparative Example 2 that was not immersed in the titanium ethoxide solution.
  • Capacitor capacity was measured with 0%, 2V, and 3V bias voltages using a 1% sulfuric acid aqueous solution as an electrolyte.
  • Table 1 shows the measurement results (average value of 30 samples for each example) together with the presence or absence of mass loss determined by TG-DTA and the Ti / W atomic ratio (average value of 2 samples for each example) determined from XPS measurement. Show.
  • “mass loss by TG-DTA” is the ratio of the mass reduction at 100 to 300 ° C. with respect to the mass before heating (the value of (W 100 ⁇ W 300 ) / W RT described above) is 0. The case of 02% or less is indicated as “none”, and the case of exceeding 0.02% is indicated as “present”.
  • Example 1 commercial tungsten powder was mixed with 0.4 mass% of commercially available silicon powder having an average particle size of 1 ⁇ m to produce granulated powder at 1450 ° C., and further, the sintering temperature was changed to 1540 ° C. Sintering was carried out in the same manner as in Example 1. Further, in Example 1, conversion was performed in the same manner as in Example 1 except that 4% by mass of potassium persulfate aqueous solution was used as a chemical conversion solution, and the initial current density per sintered body was 5 mA, the voltage was 15 V, and the temperature was 40 ° C. went.
  • Example 2 shows the measurement results (average value of 30 samples for each example) together with the presence or absence of mass loss determined by TG-DTA and the Ti / W atomic ratio (average value of 2 samples for each example) determined from XPS measurement. Show. The notation of “mass loss by TG-DTA” in the table is the same as in Table 1.
  • the anode body processed under the conditions of the example has a smaller capacity change when a DC bias voltage is applied than the anode body processed under the conditions of the comparative example. Good results were shown.
  • the anode body treated under the conditions of the example shows no mass reduction corresponding to desorption of hydrated water as evaluated by TG-DTA, and the water in the dielectric layer is treated by treatment with titanium alkoxide. It can be seen that the Japanese water has been removed. Further, the bias voltage dependency is small when the atomic ratio Ti / W of titanium to tungsten in the surface layer of the dielectric layer is 0.05 to 0.35 (considering an error of 0.05). was gotten.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明は、タングステン粉の焼結体を形成する焼結工程、前記焼結体の表面に誘電体層を形成する化成工程、及び前記誘電体層を形成後に当該誘電体層と弁金属のアルコキシド化合物とを接触させる処理工程を有し、前記処理工程を、(A)前記誘電体層が形成された焼結体についての示差熱分析における100~300℃での質量減少の当該分析前の質量に対する割合が0.02%以下となるように行うか、(B)前記誘電体層の表層中におけるタングステン原子に対するタングステン以外の弁金属原子の原子数比が0.05~0.35となるように行うか、または(C)前記(A)及び(B)の要件を満たすように行うコンデンサ陽極体の製造方法を提供する。本発明によれば、タングステン粉の焼結体を陽極体とするコンデンサのバイアス電圧依存性を低減することができる。

Description

タングステンコンデンサ用陽極体の製造方法
 本発明は、タングステン焼結体からなるコンデンサの陽極体の製造方法に関する。さらに詳しく言えば、直流(DC)電圧に対する容量変化(バイアス電圧依存性)の低減したタングステンコンデンサの陽極体の製造方法、及び固体電解コンデンサの製造方法に関する。
 携帯電話やパーソナルコンピュータ等の電子機器の形状の小型化、高速化、軽量化に伴い、これらの電子機器に使用されるコンデンサは、より小型で、より軽く、より大きな容量、より低いESRが求められている。
 固体電解コンデンサは、例えば、アルミニウム箔や、タンタル、ニオブ、タングステンなどの弁作用金属粉の焼結体からなる導電体(陽極体)を一方の電極とし、その電極の表層をリン酸などの電解質水溶液中で電解酸化して表面に形成した金属酸化物の誘電体層とその上に電解重合等により形成した半導体層からなる他方の電極(半導体層)とで構成される。
 上記弁作用金属の中で、タングステン粉の焼結体を陽極体とする電解コンデンサは、アルミニウム箔、及びタンタル粉やニオブ粉の焼結体を陽極体とする電解コンデンサに比べて、DC電圧に対する容量変化(バイアス電圧依存性)が極めて大きく、コンデンサ容量の変動が小さいことが要求される精密機器用の回路には使用しにくいという問題があった。
 本発明の課題は、上記タングステン粉の焼結体を陽極体とする電解コンデンサにおけるDC電圧に対する容量変化(バイアス電圧依存性)の低減されたタングステンコンデンサの陽極体を提供すること、及びその陽極体を用いた電解コンデンサを提供することにある。
 本発明者らは、上記課題に鑑み鋭意検討の結果、タングステン粉を焼結して得られた焼結体(陽極体)を化成して表面に誘電体層を形成した電解コンデンサ用陽極体をチタンエトキシド溶液で処理したところ、コンデンサ特性のうちDC電圧に対する容量変化(バイアス電圧依存性)が低減することを見出し、また、チタンが誘電体層の表層中に残存していることを確認し、本発明を完成した。
 すなわち、本発明は下記のタングステンコンデンサの陽極体の製造方法、及び固体電解コンデンサの製造方法に関する。
[1]タングステン粉の焼結体を形成する焼結工程、前記焼結体の表面に誘電体層を形成する化成工程、及び前記誘電体層の形成後に当該誘電体層と弁金属のアルコキシド化合物とを接触させる処理工程を有し、前記処理工程を、前記誘電体層が形成された焼結体についての示差熱分析における100~300℃での質量減少の当該分析前の質量に対する割合が0.02%以下となるように行うことを特徴とするコンデンサの陽極体の製造方法。
[2]前記弁金属のアルコキシド化合物がチタンのアルコキシド化合物またはタングステンのアルコキシド化合物である前項1に記載のコンデンサの陽極体の製造方法。
[3]タングステン粉の焼結体を形成する焼結工程、前記焼結体の表面に誘電体層を形成する化成工程、及び前記誘電体層の形成後に当該誘電体層とタングステン以外の弁金属のアルコキシド化合物とを接触させる処理工程を有し、前記処理工程を、前記誘電体層の表層中におけるタングステン原子に対するタングステン以外の弁金属原子の原子数比が0.05~0.35となるように行うことを特徴とするコンデンサ陽極体の製造方法。
[4]タングステン粉の焼結体を形成する焼結工程、前記焼結体の表面に誘電体層を形成する化成工程、及び前記誘電体層の形成後に当該誘電体層とタングステン以外の弁金属のアルコキシド化合物とを接触させる処理工程を有し、前記処理工程を、前記誘電体層が形成された焼結体についての示差熱分析における100~300℃での質量減少の当該分析前の質量に対する割合が0.02%以下となり、かつ前記誘電体層の表層中におけるタングステン原子に対するタングステン以外の弁金属原子の原子数比が0.05~0.35となるように行うことを特徴とするコンデンサ陽極体の製造方法。
[5]前記タングステン以外の弁金属のアルコキシド化合物がチタンのアルコキシド化合物である前項3または4に記載のコンデンサの陽極体の製造方法。
[6]前項1~5のいずれかに記載の陽極体の製造方法を用いる固体電解コンデンサの製造方法。
 本発明は、タングステン焼結体を化成することにより酸化タングステン化合物からなる誘電体層を形成したコンデンサの陽極体の製造において、誘電体層を弁金属のアルコキシドで処理する陽極体の製造方法を提供するものである。
 本発明の製造方法による陽極体を用いたコンデンサは、DCに対するコンデンサ容量の変動(バイアス電圧依存性)が低いため精密機器用の回路に好ましく使用できる。
 本発明において、タングステン焼結体の原料としてのタングステン粉(未加工のタングステン粉。以下、「一次粉」ということがある。)は、平均粒径の下限が約0.5μmまでのものが市販されている。タングステン粉は、粒径が小さいほど細孔の小さな焼結体(陽極)を作製できる。市販品よりもさらに粒径の小さいタングステン粉は、例えば、三酸化タングステン粉を水素雰囲気下で粉砕することによって、あるいはタングステン酸やハロゲン化タングステンを水素やナトリウム等の還元剤を使用し、条件を適宜選択して還元することによって得ることができる。
 また、タングステン含有鉱物から直接または複数の工程を得て、条件を選択して還元することによっても得ることもできる。
 本発明では、原料となるタングステン粉は、造粒されたものであってもよい(以下、造粒されたタングステン粉を単に「造粒粉」ということがある。)。造粒粉は、流動性が良好で成形等の操作がしやすいので好ましい。
 前述の造粒粉は、例えばニオブ粉について特開2003-213302号公報に開示されている方法と同様の方法により細孔分布を調整したものでもよい。
 造粒粉は、例えば一次粉に水等の液体や液状樹脂等の少なくとも1種を加えて適当な大きさの顆粒状とした後に、減圧下に加熱し、焼結して得ることもできる。取り扱い易い顆粒状の造粒粉は、減圧条件(例えば、水素等の非酸化性ガス雰囲気中、10kPa以下)や高温放置条件(例えば、1100~2600℃,0.1~100時間)を、例えば予備実験などにより適切に定めることで得ることができる。造粒後に顆粒同士の凝集がなければ、解砕の必要はない。
 このような造粒粉は、ふるいで分級して粒径を揃えることができる。平均粒径が好ましくは50~200μm、より好ましくは100~200μmの範囲であれば、成形機のホッパーから金型にスムーズに流れるために好都合である。
 一次粉の平均一次粒子径を0.1~1μm、好ましくは0.1~0.3μmの範囲にしておくと、特にその造粒粉から作製した電解コンデンサの容量を大きくすることができ好ましい。
 このような造粒粉を得る場合、例えば、前記一次粒子径を調整して、造粒粉の比表面積(BET法による)が、好ましくは0.2~20m2/g、より好ましくは1.5~20m2/gになるようにすると、電解コンデンサの容量をより大きくすることができ好ましい。
 本発明では、得られるコンデンサの漏れ電流特性等の改善のために、タングステン材料(一次粉、造粒粉及び焼結体を含む)に、後述するいくつかの不純物を含有させておいてもよい。
 例えば、ケイ素含有量が特定の範囲となるよう表層中にケイ化タングステンとしたタングステン粉が好ましく用いられる。表層中にケイ化タングステンとしたタングステン粉は、例えばタングステン粉に0.05~7質量%のケイ素粉を混合し、減圧下で加熱して1100~2600℃で反応させることにより、あるいは水素気流中でタングステンを粉砕後、さらに、ケイ素粉を混合した後、減圧下で1100~2600℃の温度にて加熱して反応させることにより調製することができる。
 タングステン粉としては、さらに、表層中に、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1つを有するものも好ましく用いられる。
 本発明においては、上記のタングステン粉を好ましくは8g/cm3以上の密度の成形体に成形し、その成形体を好ましくは1480~2600℃の温度で、好ましくは10分~100時間加熱して焼結体を形成する(焼結工程)。
 次いで、焼結体の表層を電解質水溶液中にて電解酸化(化成)する(化成工程)。この化成により、焼結体の表面(外表面と空孔部の内表面)に酸化タングステン(VI)つまり三酸化タングステン(WO3)が形成され、これが誘電体被膜(誘電体層)となる。
 ところで、三酸化タングステン化合物には、WO3の他に、WO3に水和水が付いた水和化合物であるタングステン酸(例えば、H2WO4、H4WO5など)が存在する。三酸化タングステン(WO3)は、工業的には、タングステン酸を大気中900~1000Kで加熱分解することにより製造されている(粉体粉末冶金用語事典、312頁、日刊工業新聞社、2001年)。また、タングステン酸は、粉体が試薬としても市販されている。
 タングステンコンデンサの作製過程においては、金属のタングステン焼結体を陽極体として酸化剤水溶液を用いて化成を行っている。従って、化成の際に三酸化タングステン(WO3)の水和化合物であるH2WO4、H4WO5などが生じていると考えられる。
 本発明者らは、誘電体層を形成したタングステン陽極体を、チタンエトキシドのエタノール溶液に漬け1時間置いたところ、すなわち、誘電体層とチタンのアルコキシド化合物とを接触させる処理を行ったところ、バイアス電圧3Vにおける容量はバイアス電圧0Vにおける容量とほぼ同じとなり、通常見られるようなバイアス依存性が見られないことが確認された。
 チタンエトキシドを作用させると、誘電体被膜の表層に酸化チタン(IV)が生じていることも確認された。なお、ここで言う表層とは、後述のように、誘電体被膜(誘電体層)の表面から30nmの深さまでの領域である。また、チタンエトキシドで処理を行った陽極体について、後述する示差熱質量分析(TG-DTA)で加熱時の質量減少を調べたところ、水和水の脱離に相当する質量減少は確認できなかった。すなわち、化成後にチタンエトキシドを作用させることにより、誘電体層中に存在するタングステン酸から水和水が除去された三酸化タングステン(WO3)となることによりコンデンサとしての特性が良くなっていると考えられる。また、チタンエトキシド処理を行うと水和水が脱離するが、大気下放置しても吸着水が付着することはあっても、再び水和水が入って特性を落とすことはない。
 なお、水和水が存在してバイアス電圧依存性を引き起こしている理由として、例えばタングステン酸からなる誘電体が水和水の存在により対称性に歪みを持っていて自発分極を示していることが考えられる。一方、水和水が除去された三酸化タングステンは対称性に歪みがなく、バイアス電圧依存性を示さないと考えられる。
本発明の実施形態で使用されるチタンのアルコキシド化合物としては、特に限定はされないが、例えば、チタニウムテトラエトキシド(チタンエトキシド)、チタニウムテトライソプロポキシド(チタンイソプロポキシド)、チタニウムテトラブトキシド(チタンブトキシド)等が挙げられる。チタンエトキシド、チタンプロポキシドは室温で液体であり、陽極体を浸漬させて好適に作用させることができ、また適宜エタノールで希釈して用いることができることから、エトキシド及びプロポキシドが好ましい。
 陽極体を浸漬させる前に予め無水エタノールに浸漬させておくとチタンアルコキシド化合物溶液がなじみやすく好ましい。
 チタンアルコキシド処理後、チタンは酸化物として誘電体被膜に留まる。三酸化タングステンの水和化合物はコンデンサ特性に与える影響が大きいが、チタン酸化物の量は微量であり、またチタンは弁金属であって、その酸化物のコンデンサ特性に与える影響は小さい。
 チタンアルコキシド溶液に浸漬させる際の温度はチタンアルコキシド化合物及び溶媒の融点以上沸点未満であればよい。扱いやすさの点から室温付近で作用させることが好ましく、また反応を加速させる点から50~70℃程度に加熱して行うことができる。
 処理時間は温度に応じて適宜調節することができる。短すぎると効果がないが、長すぎても効果は上乗せされない。
 チタンアルコキシド処理後の陽極体は熱処理を行うことが好ましい。熱処理温度は100~250℃が好ましく、160~230℃がより好ましい。
 なお、上記の例では、チタンのアルコキシド化合物で処理を行う場合を挙げたが、本発明の実施形態で使用されるアルコキシド化合物はこれに限定されず、弁金属のアルコキシド化合物を用いることができる。ここで、弁金属としては、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、バナジウム、ジルコニウム、亜鉛、モリブデン、タングステン、ビスマス、アンチモン等が挙げられる。このうち、陽極体と同じ金属であるタングステンのアルコキシド化合物が好ましく、また、酸化物の誘電率が高く、扱い易いという点でチタンのアルコキシド化合物が好ましい。
 金属アルコキシド化合物は、その加水分解反応がゾル-ゲル法による金属酸化物の合成に利用されている。本発明の実施形態においても、このゾル-ゲル法による金属酸化物の合成反応と同様の反応が起こっていると考えられる。すなわち、誘電体層中の三酸化タングステンの水和化合物の水和水を金属アルコキシドが奪って加水分解し、加熱によりゾル-ゲル法と同様の反応を経由して、最終的に金属酸化物が生成して誘電体層に残留すると考えられる。ここで金属アルコキシドの金属が弁金属であれば、生成する金属酸化物は弁金属の酸化物となるため、コンデンサとしての特性を損なうことがない。また、生成する金属酸化物の誘電率が高いほど、三酸化タングステンの高い誘電率を損なうことがない。
 上記のように、タングステン陽極体の誘電体層と金属アルコキシド化合物を接触させる処理を行うことにより、誘電体層中の三酸化タングステンの水和化合物の水和水が除去される。この水和水の除去の程度は示差熱分析(TG-DTA)で評価することができる。ここで、金属アルコキシドで処理した陽極体の室温での質量をWRTとし、TG-DTAで100℃に加熱したときの質量をW100、300℃に加熱したときの質量をW300とする。この場合、室温~100℃での質量減少(WRT-W100)は吸着水の脱離量に相当し、100~300℃での質量減少(W100-W300)は水和水の脱離量(誘電体層中に残存する水和水の量)に相当すると考えられる。従って、加熱前の質量に対する100~300℃での質量減少の割合「(W100-W300)/WRT」で誘電体層中における水和水の残存の程度を知ることができる。本発明の実施形態においては、金属アルコキシドで処理した陽極体の誘電体層について、この(W100-W300)/WRTの値(質量減少率)が0.02%以下であることが必要である。この値が0.02%を超えると、容量のバイアス電圧依存性が大きくなる。
 また、金属アルコキシドの金属原子は最終的には誘電体層の表層に残る。ここで、誘電体層の表層において残留する金属アルコキシド由来の金属原子とタングステン原子の原子数比(金属の原子数/タングステンの原子数)は、後述のようにX線光電子分光分析(XPS)によって測定することができる。本発明の他の実施形態においては、この金属原子とタングステン原子の原子数比(金属の原子数/タングステンの原子数)が0.05~0.35の範囲となるように金属アルコキシドによる処理を行う。この金属原子とタングステン原子の原子数比が0.05未満の場合には、容量のバイアス電圧依存性が大きくなる。
 さらに、本発明の別の実施形態においては、金属アルコキシドで処理した陽極体の誘電体層について、前記(W100-W300)/WRTの値(質量減少率)が0.02%以下で、かつ前記誘電体層の表層に残留する金属アルコキシド由来の金属原子とタングステン原子の原子数比(金属の原子数/タングステンの原子数)が、0.05~0.35の範囲となるように金属アルコキシドによる処理を行う。
 以下に実施例及び比較例を挙げて説明するが、本発明はこれらに限定されるものではない。
 陽極体の誘電体層から水和水が除去されたことの確認は、示差熱分析(TG-DTA)によりアルゴン雰囲気で陽極体を300℃まで加熱して行った。ここで、前述のように、室温から100℃における質量減少は吸着水の脱離量に相当し、100℃から300℃における質量減少がタングステン酸の水和水の脱離量に相当するとした。そして、加熱前の陽極体の質量に対する100~300℃での質量減少の割合(質量減少率)を求めた。
Ti/W比:
 XPS分析装置(島津製作所AXIS-NOVA)を用いて陽極体誘電体層のXPSスペクトルを測定したところ、チタン(Тi)の殆どは4価であった。35eV付近のピークを6価のタングステンピークとして、460eV付近のピークを4価のチタンピークとしてピークの強度比から原子数比を算出した。また、誘電体層をアルゴンエッチングしながら分析することにより、チタンは造粒粉の粒子表面から30nmまでの範囲に存在することが分かった。アルゴンエッチングすると部分的に還元され、ピーク位置が変化した。エッチングなしの状態での検出深さは15nm程度であり、30nmの深さまで原子数比は変わらないものと仮定した。なお、Tiのピークは原子数が少ないため弱く、かつWのバックグラウンドに重なるため測定値には算出値±0.05の誤差がある。
実施例1~5、比較例1~2:
 体積平均粒子径0.65μmの市販タングステン粉を1400℃で30分、真空炉中に放置した後に室温に取り出して得た塊状物を解砕して、体積平均粒子径75μmの造粒粉を作製した。この粉を成形機を使用して直径0.29mmのタンタル線を植立させて成形し、さらに1470℃で20分真空炉中で焼結して、大きさ1.0×3.0×4.4mm(質量120mg、タンタル線は、1.0×3.0mmの面中央で内部に3.4mm侵入し、外部に6mm突出している)の焼結体を1000個作製した。3質量%の過硫酸アンモニウム水溶液を化成液として、焼結体1個あたり初期電流密度2mA、電圧10V、温度50℃で5時間化成し、焼結体の表面(外表面と空孔部の内表面)に誘電体層を形成し、水洗、次いでエタノール洗浄し、化成済み焼結体を作製した。チタンエトキシドに無水エタノールを溶媒として加えて80体積%溶液を作製した。表1の実施例1~5及び比較例1に記載した温度及び時間条件でアルゴン雰囲気下マグネティックスターラーで撹拌したチタンエトキシド溶液に化成済み焼結体を浸漬させた。チタンエトキシド溶液から取り出した後、アルゴン雰囲気下190℃で30分間乾燥させ、エタノール洗浄した。
 各実施例及び比較例1で作製した化成済み焼結体(陽極体)、及びチタンエトキシド溶液への浸漬処理を行わなかった比較例2の化成済み焼結体(陽極体)について、50質量%の硫酸水溶液を電解液として、0V、2V、3Vの各バイアス電圧でコンデンサ容量を測定した。この測定結果(各例30個の平均値)を、TG-DTAにより調べた質量減少の有無、XPS測定から求めたTi/Wの原子数比(各例2個の平均値)と共に表1に示す。なお、表中の「TG-DTAでの質量減少」は、加熱前の質量に対する100~300℃における質量減少分の割合(前述の(W100-W300)/WRTの値)が0.02%以下の場合を「なし」と表記し、0.02%を超える場合を「あり」と表記している。
Figure JPOXMLDOC01-appb-T000001
 実施例6~9、比較例3~4:
 実施例1で、市販のタングステン粉に平均粒径1μmの市販ケイ素粉を0.4質量%混合して1450℃で造粒粉を作製し、さらに、焼結温度を1540℃にした以外は実施例1と同様にして焼結を行った。また、実施例1で、4質量%の過硫酸カリウム水溶液を化成液として、焼結体1個あたり初期電流密度5mA、電圧15V、温度40℃とした以外は実施例1と同様にして化成を行った。続いて、実施例1で、チタンアルコキシドとしてチタンイソプロポキシドを用いた以外は実施例1と同様にして、表2の実施例6~9及び比較例3、4に記載した処理条件でチタンアルコキシドによる処理を行った。その後、各バイアス電圧での容量を測定した。この測定結果(各例30個の平均値)を、TG-DTAにより調べた質量減少の有無、XPS測定から求めたTi/Wの原子数比(各例2個の平均値)と共に表2に示す。なお、表中の「TG-DTAでの質量減少」の表記については表1と同様である。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示される通り、実施例の条件で処理を行った陽極体は、比較例の条件で処理を行った陽極体に比べてDCバイアス電圧をかけた場合の容量変化が小さく、良好な結果を示した。また、実施例の条件で処理を行った陽極体は、TG-DTAによる評価で水和水の脱離に相当する質量減少が見られず、チタンアルコキシドで処理することにより誘電体層中の水和水が除去されていることが分かる。さらに、誘電体層の表層中におけるタングステンに対するチタンの原子比Ti/Wの値が0.05~0.35(0.05の誤差を考慮している)の場合にバイアス電圧依存性が小さい結果が得られた。

Claims (6)

  1.  タングステン粉の焼結体を形成する焼結工程、前記焼結体の表面に誘電体層を形成する化成工程、及び前記誘電体層の形成後に当該誘電体層と弁金属のアルコキシド化合物とを接触させる処理工程を有し、前記処理工程を、前記誘電体層が形成された焼結体についての示差熱分析における100~300℃での質量減少の当該分析前の質量に対する割合が0.02%以下となるように行うことを特徴とするコンデンサの陽極体の製造方法。
  2.  前記弁金属のアルコキシド化合物がチタンのアルコキシド化合物またはタングステンのアルコキシド化合物である請求項1に記載のコンデンサの陽極体の製造方法。
  3.  タングステン粉の焼結体を形成する焼結工程、前記焼結体の表面に誘電体層を形成する化成工程、及び前記誘電体層の形成後に当該誘電体層とタングステン以外の弁金属のアルコキシド化合物とを接触させる処理工程を有し、前記処理工程を、前記誘電体層の表層中におけるタングステン原子に対するタングステン以外の弁金属原子の原子数比が0.05~0.35となるように行うことを特徴とするコンデンサ陽極体の製造方法。
  4.  タングステン粉の焼結体を形成する焼結工程、前記焼結体の表面に誘電体層を形成する化成工程、及び前記誘電体層の形成後に当該誘電体層とタングステン以外の弁金属のアルコキシド化合物とを接触させる処理工程を有し、前記処理工程を、前記誘電体層が形成された焼結体についての示差熱分析における100~300℃での質量減少の当該分析前の質量に対する割合が0.02%以下となり、かつ前記誘電体層の表層中におけるタングステン原子に対するタングステン以外の弁金属原子の原子数比が0.05~0.35となるように行うことを特徴とするコンデンサ陽極体の製造方法。
  5.  前記タングステン以外の弁金属のアルコキシド化合物がチタンのアルコキシド化合物である請求項3または4に記載のコンデンサの陽極体の製造方法。
  6.  請求項1~5のいずれかに記載の陽極体の製造方法を用いる固体電解コンデンサの製造方法。
PCT/JP2014/078951 2013-12-27 2014-10-30 タングステンコンデンサ用陽極体の製造方法 WO2015098284A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015526787A JP5779741B1 (ja) 2013-12-27 2014-10-30 タングステンコンデンサ用陽極体の製造方法
US15/107,507 US20160322168A1 (en) 2013-12-27 2014-10-30 Process for producing anode body for tungsten capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013272296 2013-12-27
JP2013-272296 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098284A1 true WO2015098284A1 (ja) 2015-07-02

Family

ID=53478162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078951 WO2015098284A1 (ja) 2013-12-27 2014-10-30 タングステンコンデンサ用陽極体の製造方法

Country Status (3)

Country Link
US (1) US20160322168A1 (ja)
JP (1) JP5779741B1 (ja)
WO (1) WO2015098284A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442519A (ja) * 1990-06-08 1992-02-13 Toyo Alum Kk アルミニウム電解コンデンサの電極およびその製造方法
JP2002158141A (ja) * 2000-11-20 2002-05-31 Hitachi Maxell Ltd 電気化学キャパシタ用の電極材料、およびこれを用いた電気化学キャパシタ、ならびにその電極材料の製造方法
JP2013530908A (ja) * 2010-04-22 2013-08-01 ビーエーエスエフ ソシエタス・ヨーロピア グラフェンに基づいた2次元サンドウィッチナノ材料の製造方法
JP2013232403A (ja) * 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd 蓄電装置用負極、その製造方法及び蓄電装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442519A (ja) * 1990-06-08 1992-02-13 Toyo Alum Kk アルミニウム電解コンデンサの電極およびその製造方法
JP2002158141A (ja) * 2000-11-20 2002-05-31 Hitachi Maxell Ltd 電気化学キャパシタ用の電極材料、およびこれを用いた電気化学キャパシタ、ならびにその電極材料の製造方法
JP2013530908A (ja) * 2010-04-22 2013-08-01 ビーエーエスエフ ソシエタス・ヨーロピア グラフェンに基づいた2次元サンドウィッチナノ材料の製造方法
JP2013232403A (ja) * 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd 蓄電装置用負極、その製造方法及び蓄電装置

Also Published As

Publication number Publication date
US20160322168A1 (en) 2016-11-03
JPWO2015098284A1 (ja) 2017-03-23
JP5779741B1 (ja) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5698882B1 (ja) コンデンサ陽極体およびその製造方法
US9789538B2 (en) Method for producing ultrafine tungsten powder
JP5222438B1 (ja) タングステン細粉の製造方法
US20170232508A1 (en) Method for producing fine tungsten powder
WO2016038959A1 (ja) タングステンコンデンサ素子及びその製造方法
CA3041256A1 (en) Tantalum powder, anode, and capacitor including same, and manufacturing methods thereof
JPWO2013058018A1 (ja) コンデンサの陽極体の製造方法
JP5844953B2 (ja) タングステンコンデンサ用陽極体
JP6412501B2 (ja) ニオブ造粒粉末の製造方法
JP5779741B1 (ja) タングステンコンデンサ用陽極体の製造方法
JP5793635B2 (ja) タングステン粉及びコンデンサの陽極体
JP5750201B1 (ja) タングステン粉、コンデンサの陽極体、及び電解コンデンサ
JP2010265549A (ja) コンデンサ用ニオブ粉
JP5840821B1 (ja) タングステンコンデンサ素子及びその製造方法
JP2019096638A (ja) 電解コンデンサ
WO2013190886A1 (ja) コンデンサの陽極体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015526787

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15107507

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873992

Country of ref document: EP

Kind code of ref document: A1