WO2015096702A1 - 一种多频阵列天线 - Google Patents

一种多频阵列天线 Download PDF

Info

Publication number
WO2015096702A1
WO2015096702A1 PCT/CN2014/094674 CN2014094674W WO2015096702A1 WO 2015096702 A1 WO2015096702 A1 WO 2015096702A1 CN 2014094674 W CN2014094674 W CN 2014094674W WO 2015096702 A1 WO2015096702 A1 WO 2015096702A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
dual
polarized
low
array
Prior art date
Application number
PCT/CN2014/094674
Other languages
English (en)
French (fr)
Inventor
肖伟宏
王乃彪
谢国庆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14873945.1A priority Critical patent/EP3089270B1/en
Publication of WO2015096702A1 publication Critical patent/WO2015096702A1/zh
Priority to US15/189,883 priority patent/US10243278B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a multi-frequency array antenna.
  • multi-frequency multi-mode base station antenna also provides a more effective solution for the site sharing of mobile communication operators, and meets the requirements for smooth upgrade and green energy-saving requirements of the network devices.
  • a multi-frequency multi-mode base station antenna that is, a multi-frequency array antenna, needs to include a plurality of antenna sub-arrays that can operate in the same or different frequency bands in the same antenna, and the limited installation space and the broadband operation of the antenna sub-array are antennas. Design brings new challenges.
  • a multi-frequency array antenna as shown in FIG. 1 can be used in the prior art, and the antennas are arranged according to the high frequency sub-array 11 low frequency sub-array 12 high frequency sub-array 13. Although the multi-frequency array antenna is compact in size and the two high-frequency sub-arrays have relatively consistent electrical performance specifications, the low-frequency sub-array gain is low.
  • Embodiments of the present invention provide a multi-frequency array antenna capable of increasing the gain of a low frequency sub-array in a multi-frequency array antenna.
  • a multi-frequency array antenna comprising at least one dual-polarized low-frequency sub-array and at least one dual-polarized high-frequency sub-array, the dual-polarized low-frequency sub-array and the dual-polarized high-frequency sub-array Arranging in parallel in the same radome along the axial direction of the multi-frequency array antenna; wherein the dual-polarized low-frequency sub-array includes at least two pairs of dual-polarized low-frequency radiating elements, each of which is paired by a dual-polarized low-frequency radiating element It consists of at least four low frequency radiating elements.
  • each of the dual-polarized low-frequency radiating elements has a different combination of medium- and low-frequency radiating elements.
  • the pair of at least two pairs of dual-polarized low-frequency radiating elements are alternately arranged along an axial direction of the multi-frequency array antenna.
  • the dual-polarized low-frequency radiating element pair is composed of four L-shaped low frequency radiation unit.
  • the number of dual-polarized high frequency sub-arrays is 2 columns or 4 columns.
  • the dual-polarized high frequency sub-array is symmetric about an axis of the multi-frequency array antenna.
  • the number of the dual-polarized high-frequency sub-arrays is three columns.
  • the dual-polarized low-frequency sub-array is composed of a plurality of pairs of dual-polarized low-frequency radiating elements, and each pair of dual-polarized low-frequency radiating elements is composed of a plurality of low-frequency radiating elements, which is directly related to the prior art.
  • the area of the low frequency sub-array composed of a single low-frequency radiating element is larger than the effective working area of the plurality of low-frequency radiating elements in each pair of low-frequency radiating elements, so that the aperture of the dual-polarized low-frequency radiating element pair is utilized. More efficient, the gain of the low frequency sub-array is higher.
  • FIG. 1 is a schematic structural diagram of a multi-frequency array antenna in the prior art
  • FIG. 2 is a schematic structural diagram of a multi-frequency array antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another multi-frequency array antenna according to an embodiment of the present invention.
  • 4a is a schematic structural diagram of a dual-polarized low-frequency sub-array of a multi-frequency array antenna according to an embodiment of the present invention
  • FIG. 4b is a schematic perspective structural view of the dual-polarized low frequency sub-array in the embodiment shown in FIG. 4a;
  • 4c-4h are schematic structural diagrams of a multi-frequency array antenna including the dual-polarized low-frequency sub-array shown in FIG. 4a according to an embodiment of the present invention
  • 5a is a schematic structural diagram of a dual-polarized low-frequency sub-array of another multi-frequency array antenna according to an embodiment of the present invention
  • FIG. 5b is a schematic perspective structural view of the dual-polarized low frequency sub-array in the embodiment shown in FIG. 5a;
  • 5c-5e are schematic structural diagrams of a multi-frequency array antenna including the dual-polarized low-frequency sub-array shown in FIG. 5a according to an embodiment of the present invention
  • 6a is a schematic structural diagram of a dual-polarized low-frequency sub-array of another multi-frequency array antenna according to an embodiment of the present invention
  • FIG. 6b is a schematic perspective structural view of the dual-polarized low frequency sub-array in the embodiment shown in FIG. 6a;
  • 6c-6e are schematic structural diagrams of a multi-frequency array antenna including the dual-polarized low-frequency sub-array shown in FIG. 6a according to an embodiment of the present invention
  • FIG. 7a is a schematic structural diagram of a dual-polarized low-frequency sub-array of another multi-frequency array antenna according to an embodiment of the present invention.
  • Figure 7b is a perspective view showing the structure of the dual-polarized low frequency sub-array in the embodiment shown in Figure 7a;
  • FIG. 7c-7e are schematic structural diagrams of a multi-frequency array antenna including the dual-polarized low-frequency sub-array shown in FIG. 7a according to an embodiment of the present invention
  • 8a is a schematic structural diagram of a dual-polarized low-frequency sub-array of another multi-frequency array antenna according to an embodiment of the present invention.
  • FIG. 8b is a schematic perspective structural view of the dual-polarized low frequency sub-array in the embodiment shown in FIG. 8a; FIG.
  • 8c-8e are schematic structural diagrams of a multi-frequency array antenna including the dual-polarized low-frequency sub-array shown in FIG. 6a according to an embodiment of the present invention
  • 9a is a schematic structural diagram of a dual-polarized low-frequency sub-array of another multi-frequency array antenna according to an embodiment of the present invention.
  • FIG. 9b is a schematic perspective structural view of the dual-polarized low frequency sub-array in the embodiment shown in FIG. 9a;
  • 9c-9e are schematic structural diagrams of a multi-frequency array antenna including the dual-polarized low-frequency sub-array shown in FIG. 9a according to an embodiment of the present invention.
  • 10a is a schematic structural diagram of a dual-polarized low-frequency sub-array of another multi-frequency array antenna according to an embodiment of the present invention
  • Figure 10b is a perspective view showing the structure of the dual-polarized low frequency sub-array in the embodiment shown in Figure 10a;
  • 10c-10e are schematic diagrams showing the structure of a multi-frequency array antenna including the dual-polarized low-frequency sub-array shown in FIG. 10a according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a multi-frequency array antenna according to an embodiment of the present invention.
  • the multi-frequency array antenna includes at least one dual-polarized low frequency sub-array 21 and at least one dual-polarized high frequency sub-array 22, the dual-polarized low-frequency sub-array 21 and the dual-polarized high-frequency sub-array 22 being in the same antenna
  • the cover 23 is arranged in parallel along the axial direction 24 of the multi-frequency array antenna.
  • the axial direction 24 of the multi-frequency array antenna is the direction in which the axis of the multi-frequency array antenna is located.
  • the dual-polarized low frequency sub-array 21 may include two or more pairs of dual-polarized low-frequency radiating elements 211.
  • Each pair of dual polarized low frequency radiating elements 211 is composed of two or more low frequency radiating elements, such as four low frequency radiating elements.
  • the low frequency radiating elements in each of the dual polarized low frequency radiating element pairs 211 may be arranged along the axial direction 24 of the multi-frequency array antenna, or may be arranged perpendicular to the axial direction 24, although other arrangements may be possible.
  • the dual-polarized low-frequency sub-array is composed of a plurality of pairs of dual-polarized low-frequency radiating elements, and each pair of dual-polarized low-frequency radiating elements is composed of a plurality of low-frequency radiating elements, which is directly related to the prior art.
  • the area of the low frequency sub-array composed of a single low-frequency radiating element is larger than the effective working area of the plurality of low-frequency radiating elements in each pair of low-frequency radiating elements, so that the aperture of the dual-polarized low-frequency radiating element pair is utilized. More efficient, the gain of the low frequency sub-array is higher.
  • each of the dual polarized low frequency radiating elements of the dual polarized low frequency sub-array has a different combination of medium and low frequency radiating elements.
  • different pairs of dual-polarized low-frequency radiating elements It is also possible to alternately arrange along the axial direction of the multi-frequency array antenna. Taking two pairs of dual-polarized low-frequency radiating element pairs as an example, as shown in FIG. 3, the multi-frequency array antenna includes at least one dual-polarized low-frequency sub-array 31, and the sub-array includes two kinds of dual-polarized low-frequency radiating elements.
  • the combination of the low-frequency radiating elements in the pair of dual-polarized low-frequency radiating element pairs 311, 312 is different, wherein the low-frequency radiating elements of the dual-polarized low-frequency radiating element pair 311 are arranged along the axial direction of the multi-frequency array antenna.
  • the low frequency radiating elements in the dual polarized low frequency radiating element pair 312 are arranged in an axial direction perpendicular to the multi-frequency array antenna, and the dual polarized low frequency radiating element pairs 311, 312 are alternately arranged along the axial direction of the multi-frequency array antenna.
  • each pair of dual-polarized low-frequency radiating elements may be composed of at least two low-frequency radiating elements, for example, may be composed of two T-shaped low-frequency radiating units, or may be composed of four L-shaped
  • the low-frequency radiation unit is composed of, of course, a low-frequency radiation unit of other shapes.
  • Embodiments of the present invention do not define a dual-polarized high frequency sub-array.
  • the multi-frequency array antenna may comprise a two-polarized high frequency sub-array of two columns, three columns or four columns, and each dual-polarized high frequency sub-array may comprise at least one high frequency radiating element.
  • the dual-polarized high-frequency sub-array is symmetric about the axis of the multi-frequency array antenna, so that the electrical properties of the dual-polarized high-frequency sub-array are relatively uniform.
  • the multi-frequency array antenna in the embodiment of the present invention is described below by way of a specific example.
  • 4a-4c are schematic structural diagrams of another multi-frequency array antenna according to an embodiment of the present invention.
  • the multi-frequency array antenna includes a dual-polarized low frequency sub-array comprising two pairs of dual-polarized low-frequency radiating elements 41, 42 and a pair of dual-polarized low-frequency radiating elements. 41, 42 are alternately arranged along the axis 40 of the multi-frequency array antenna.
  • Each of the dual-polarized low-frequency radiating element pairs includes two T-shaped low-frequency radiating elements 411, wherein the two T-shaped low-frequency radiating elements of the dual-polarized low-frequency radiating element pair 41 are arranged in a manner perpendicular to the multi-frequency array antenna axis
  • the directions of 40 are symmetrically arranged, and the arrangement of the two T-shaped low frequency radiating elements in the dual polarized low frequency radiating element pair 42 is symmetrically arranged with respect to the direction of the multi-frequency array antenna axis 40.
  • the multi-frequency array antenna includes two dual-polarized high frequency sub-arrays 43, 44 that are symmetric about the axis 40 of the multi-frequency array antenna.
  • Each of the dual-polarized high frequency sub-arrays is arranged by independent high-frequency radiating elements in the direction of the axis 40 of the multi-frequency array antenna. to make.
  • the arrangement positions of the two dual-polarized high frequency sub-arrays may also be as shown in Figure 4d, wherein the spacing of the dual-polarized high frequency sub-arrays 45, 46 is relative to the two dual-polarized high frequency sub-arrays 43 of Figure 4c. The spacing between 44 and 44 is larger.
  • the multi-frequency array antenna may further include three or four dual-polarized high-frequency sub-arrays, and the dual-polarized high-frequency sub-array may be arranged as shown in FIG. 4e, 4f, 4g, and 4h. Show. Wherein, when the number of the dual-polarized high-frequency sub-arrays is even, the dual-polarized high-frequency sub-array is symmetric about the axis of the multi-frequency array antenna, so that the electrical properties of the dual-polarized high-frequency sub-array are relatively uniform.
  • 5a-5c are schematic structural diagrams of another multi-frequency array antenna according to an embodiment of the present invention.
  • the multi-frequency array antenna also includes a dual-polarized low-frequency sub-array comprising two pairs of dual-polarized low-frequency radiating elements 51, 52, dual-polarized low-frequency radiation.
  • the pair of cells 51, 52 are alternately arranged along the axis 50 of the multi-frequency array antenna.
  • the two low-frequency radiating element pairs 42 have different arrangement of two T-shaped low-frequency radiating elements, and the two T-shaped low-frequency radiating elements of the dual-polarized low-frequency radiating element pair 42 are arranged opposite each other in a direction perpendicular to the multi-frequency array antenna axis 50, and The two T-shaped low frequency radiating elements in the dual polarized low frequency radiating element pair 52 are arranged back to back.
  • the dual-polarized low-frequency radiating element pair 51 is arranged in the same manner as the low-frequency radiating element in the dual-polarized low-frequency radiating element pair 41.
  • the multi-frequency array antenna includes two dual-polarized high frequency sub-arrays 53, 54 that are symmetric about the axis 50 of the multi-frequency array antenna.
  • Each of the dual-polarized high frequency sub-arrays is formed by independent high-frequency radiating elements arranged in the direction in which the axis 50 of the multi-frequency array antenna is located.
  • the multi-frequency array antenna may further include three or four dual-polarized high frequency sub-arrays, and the dual-polarized high-frequency sub-array may be arranged as shown in FIGS. 5d and 5e.
  • the dual-polarized high-frequency sub-array is symmetric about the axis of the multi-frequency array antenna, so that the electrical properties of the dual-polarized high-frequency sub-array are relatively uniform.
  • 6a-6c are schematic structural diagrams of another multi-frequency array antenna according to an embodiment of the present invention.
  • the multi-frequency array antenna also includes a dual-polarized low-frequency sub-array comprising two pairs of dual-polarized low-frequency radiating elements 61, 62, dual-polarized low-frequency radiation.
  • the pair of cells 61, 62 are alternately arranged along the axis 60 of the multi-frequency array antenna.
  • Each pair of dual-polarized low-frequency radiating elements includes four L-shaped low-frequency radiating elements 611, wherein the four L-shaped low-frequency radiating element pairs 61 are low
  • Two sets of C-shaped structures are synthesized in the frequency radiating unit, and the opening directions of the two C-shaped structures are arranged along the axis 60 of the multi-frequency array antenna, and the two L-shaped low-frequency radiating elements of the dual-polarized low-frequency radiating unit pair 62 are also two.
  • the two sets synthesize a C-shaped structure with the opening directions of the two C-shaped structures being aligned relative to the axis 60 of the multi-frequency array antenna.
  • the multi-frequency array antenna includes two dual-polarized high frequency sub-arrays 63, 64 that are symmetric about the axis 60 of the multi-frequency array antenna.
  • Each of the dual-polarized high frequency sub-arrays is formed by independent high frequency radiating elements arranged in the direction in which the axis 60 of the multi-frequency array antenna is located.
  • the multi-frequency array antenna may further include three or four dual-polarized high frequency sub-arrays, which may be arranged as shown in FIGS. 6d and 6e. Wherein, when the number of the dual-polarized high-frequency sub-arrays is even, the dual-polarized high-frequency sub-array is symmetric about the axis of the multi-frequency array antenna, so that the electrical properties of the dual-polarized high-frequency sub-array are relatively uniform.
  • FIGS. 7a-7c are schematic structural diagrams of another multi-frequency array antenna according to an embodiment of the present invention.
  • the multi-frequency array antenna also includes a dual-polarized low-frequency sub-array comprising two pairs of dual-polarized low-frequency radiating elements 71, 72, dual-polarized low-frequency radiation.
  • the pair of cells 71, 72 are alternately arranged along the axis 70 of the multi-frequency array antenna.
  • the arrangement of the four L-shaped low-frequency radiating elements in the dual-polarized low-frequency radiating element pair 71 and the bipolar The arrangement of the four L-shaped low-frequency radiating elements in the pair of low-frequency radiating elements 61 is different.
  • Two of the four L-shaped low-frequency radiating elements in the pair of dual-polarized radiating elements 61 synthesize a C-shaped structure, and two C-shaped structures
  • the opening directions are arranged along the axis 60 of the multi-frequency array antenna, and the four L-shaped low-frequency radiating elements in the dual-polarized low-frequency radiating unit pair 71 are arranged in a cross shape, and the opening directions of L are respectively oriented in four directions.
  • the dual polarized low frequency radiating element pair 72 is arranged in the same manner as the low frequency radiating element in the dual polarized low frequency radiating element pair 62.
  • the multi-frequency array antenna includes two dual-polarized high frequency sub-arrays 73, 74 that are symmetric about the axis 70 of the multi-frequency array antenna.
  • Each of the dual-polarized high frequency sub-arrays is formed by independent high frequency radiating elements arranged in the direction in which the axis 70 of the multi-frequency array antenna is located.
  • the multi-frequency array antenna may further include three or four dual-polarized high frequency sub-arrays, which may be arranged as shown in FIGS. 7d and 7e. Wherein, when the number of the dual-polarized high-frequency sub-arrays is even, the dual-polarized high-frequency sub-array is symmetric about the axis of the multi-frequency array antenna, so that the electrical properties of the dual-polarized high-frequency sub-array are relatively uniform.
  • the multi-frequency array antenna includes a dual-polarized low frequency sub-array similar to that shown in Figures 7a, 7b, wherein the dual-polarized low-frequency radiating element pair 81, 82 and the dual-polarized low-frequency radiating element pair 71, 72 have a similar structure, except that the distance between the low-frequency radiating element of the dual-polarized low-frequency radiating element pair 81 in the direction of the multi-frequency array antenna axis 80 becomes smaller, and the double The spacing of the low frequency radiating elements in the pair of polarized low frequency radiating elements 82 in the direction of the multi-frequency array antenna axis 80 becomes large.
  • the multi-frequency array antenna may also include two, three or four dual-polarized high-frequency sub-arrays.
  • the bipolar The high frequency sub-array is symmetric about the axis of the multi-frequency array antenna, so that the electrical properties of the dual-polarized high-frequency sub-array are relatively uniform.
  • the multi-frequency array antenna also includes a dual-polarized low frequency sub-array, wherein the dual-polarized low-frequency radiating element pair 91 and the dual-polarized low-frequency radiation
  • the unit pair 81 is the same
  • the dual-polarized low-frequency radiating element pair 92 is the same as the dual-polarized low-frequency radiating element pair 61
  • the two dual-polarized low-frequency radiating element pairs 91, 91 are along the axis of the multi-frequency array antenna in the dual-polarized low-frequency sub-array. 90 alternately arranged.
  • the multi-frequency array antenna may also include two, three or four dual-polarized high-frequency sub-arrays.
  • the bipolar The high frequency sub-array is symmetric about the axis of the multi-frequency array antenna, so that the electrical properties of the dual-polarized high-frequency sub-array are relatively uniform.
  • 10a-10c are schematic structural diagrams of another multi-frequency array antenna according to an embodiment of the present invention.
  • the multi-frequency array antenna includes a dual-polarized low frequency sub-array comprising two pairs of dual-polarized low-frequency radiating elements, 101, 102, and dual-polarized low-frequency radiating element pairs. 101, 102 are alternately arranged along the axis 100 of the multi-frequency array antenna.
  • Each of the dual-polarized low-frequency radiating element pairs includes four L-shaped low-frequency radiating elements, wherein the four L-shaped low-frequency radiating elements in the dual-polarized low-frequency radiating element pair 102 are arranged in the same manner as the dual-polarized low-frequency radiating element pair 61
  • Another two sets of four L-shaped low-frequency radiating elements of the dual-polarized low-frequency radiating element pair 101 are combined into a C-shaped structure, and the two C-shaped structures are oppositely oriented in a direction perpendicular to the axis 60 of the multi-frequency array antenna. Symmetrical arrangement.
  • the multi-frequency array antenna may also include two, three or four dual-polarized high frequency sub-arrays.
  • the bipolar The high frequency sub-array is symmetric about the axis of the multi-frequency array antenna, so that the electrical properties of the dual-polarized high-frequency sub-array are relatively uniform.
  • the dual-polarized low frequency sub-array may also include other types of dual-polarized low-frequency radiating element pairs, the above being merely examples.
  • the embodiment of the present invention not only increases the aperture utilization efficiency, but also increases the gain of the low frequency sub-array by including a pair of dual-polarized low-frequency radiation units composed of a plurality of low-frequency radiation units in the dual-polarized low-frequency sub-array, and the above-mentioned multi-frequency
  • the array in the array antenna is designed to be more compact, and the two or more types of low-frequency radiation unit pairs are various in form and flexible in arrangement, so that the arrangement can be avoided according to the structure of the low-frequency radiation unit and the high-frequency radiation unit pair, thereby increasing the arrangement.
  • the spacing of the radiating elements reduces the mutual coupling of the low frequency and the high frequency, and further sets the dual-polarized high-frequency sub-array to be symmetric with respect to the axis of the multi-frequency array antenna, so that the electrical performance indexes of the high-frequency sub-array are relatively compared. Consistent.
  • the disclosed system and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供一种多频阵列天线。多频阵列天线包括至少一个双极化低频子阵列(21)和至少一个双极化高频子阵列(22),所述双极化低频子阵列(21)与所述双极化高频子阵列(22)在同一天线罩(23)中沿多频阵列天线的轴向(24)并行排列;其中,所述双极化低频子阵列包括至少两种双极化低频辐射单元对(211),每个所述双极化低频辐射单元对由至少四个低频辐射单元组成。该结构与现有技术相比,每个双极化低频辐射单元对中的多个低频辐射单元的有效工作区所包围的面积更大,从而双极化低频辐射单元对的口径利用效率更高,低频子阵列的增益也就更高。

Description

一种多频阵列天线
本申请要求了2013年12月23日提交的、申请号为201320854759.7、实用新型名称为“一种多频阵列天线”的中国申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种多频阵列天线。
背景技术
随着移动通信的发展,用户对高速数据传输越来越高的要求,以及用户需求类型的日益多样化,现代移动通信正在向着多频多模方向发展。移动通信设备的更新换代速度正逐步加快,而城区可用站点资源的获取却越来越难,因此多频多模工作成为基站天线未来的发展方向之一。多频多模基站天线也为移动通信运营商的站点共用提供了更有效的解决手段,符合在网设备平滑升级和绿色节能要求。
多频多模基站天线,也即多频阵列天线,需要在同一个天线中包含多个可工作于相同或不同频段的天线子阵列,而有限的安装空间和天线子阵列的宽带工作都为天线设计带来了新的挑战。
现有技术中可以采用如图1所示的多频阵列天线,该天线按照高频子阵列11低频子阵列12高频子阵列13进行排布。虽然该多频阵列天线尺寸紧凑,两个高频子阵列也具有比较一致的电性能指标,但是,低频子阵列增益较低。
发明内容
本发明实施例提供了一种多频阵列天线,能够增大多频阵列天线中低频子阵列的增益。
为了解决上述技术问题,本发明实施例公开了如下技术方案:
第一方面,提供一种多频阵列天线,包括至少一个双极化低频子阵列和至少一个双极化高频子阵列,所述双极化低频子阵列与所述双极化高频子阵列在同一天线罩中沿多频阵列天线的轴向并行排列;其中,所述双极化低频子阵列包括至少两种双极化低频辐射单元对,每个所述双极化低频辐射单元对由至少四个低频辐射单元组成。
结合上述第一方面,在第一种可能的实现方式中,每种所述双极化低频辐射单元对中低频辐射单元的组合方式不同。
结合上述第一方面,和/或第一种可能的实现方式,在第二种可能的实现方式中,
所述至少两种双极化低频辐射单元对沿所述多频阵列天线的轴向交替排列。
结合上述第一方面,和/或第一种可能的实现方式,和/或第二种可能的实现方式,在第三种可能的实现方式中,所述双极化低频辐射单元对由四个L形低频辐射单元组成。
结合上述第一方面,和/或第一种可能的实现方式,和/或第二种可能的实现方式,和/或第三种可能的实现方式,在第四种可能的实现方式中,所述双极化高频子阵列的数目为2列或4列。
结合上述第一方面,和/或第一种可能的实现方式,和/或第二种可能的实现方式,和/或第三种可能的实现方式,和/或第四种可能的实现方式,在第五种可能的实现方式中,所述双极化高频子阵列关于所述多频阵列天线的轴线对称。
结合上述第一方面,和/或第一种可能的实现方式,和/或第二种可能的实现方式,和/或第三种可能的实现方式,和/或第四种可能的实现方式,和/或第五种可能的实现方式,在第六种可能的实现方式中,所述双极化高频子阵列的数目为3列。
本发明实施例中双极化低频子阵列由多个双极化低频辐射单元对组成,每个双极化低频辐射单元对又由多个低频辐射单元组成,该结构与现有技术中直接由单个低频辐射单元组成的低频子阵列相比,每个双极化低频辐射单元对中的多个低频辐射单元的有效工作区所包围的面积更大,从而双极化低频辐射单元对的口径利用效率更高,低频子阵列的增益也就更高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中多频阵列天线的结构示意图;
图2为本发明实施例一种多频阵列天线的结构示意图;
图3为本发明实施例另一种多频阵列天线的结构示意图;
图4a为本发明实施例一种多频阵列天线的双极化低频子阵列的结构示意图;
图4b为图4a所示实施例中的双极化低频子阵列的立体结构示意图;
图4c-4h为本发明实施例中包含图4a所示双极化低频子阵列的多频阵列天线的结构示意图;
图5a为本发明实施例另一种多频阵列天线的双极化低频子阵列的结构示意图;
图5b为图5a所示实施例中的双极化低频子阵列的立体结构示意图;
图5c-5e为本发明实施例中包含图5a所示双极化低频子阵列的多频阵列天线的结构示意图;
图6a为本发明实施例另一种多频阵列天线的双极化低频子阵列的结构示意图;
图6b为图6a所示实施例中的双极化低频子阵列的立体结构示意图;
图6c-6e为本发明实施例中包含图6a所示双极化低频子阵列的多频阵列天线的结构示意图;
图7a为本发明实施例另一种多频阵列天线的双极化低频子阵列的结构示意图;
图7b为图7a所示实施例中的双极化低频子阵列的立体结构示意图;
图7c-7e为本发明实施例中包含图7a所示双极化低频子阵列的多频阵列天线的结构示意图;
图8a为本发明实施例另一种多频阵列天线的双极化低频子阵列的结构示意图;
图8b为图8a所示实施例中的双极化低频子阵列的立体结构示意图;
图8c-8e为本发明实施例中包含图6a所示双极化低频子阵列的多频阵列天线的结构示意图;
图9a为本发明实施例另一种多频阵列天线的双极化低频子阵列的结构示意图;
图9b为图9a所示实施例中的双极化低频子阵列的立体结构示意图;
图9c-9e为本发明实施例中包含图9a所示双极化低频子阵列的多频阵列天线的结构示意图;
图10a为本发明实施例另一种多频阵列天线的双极化低频子阵列的结构示意图;
图10b为图10a所示实施例中的双极化低频子阵列的立体结构示意图;
图10c-10e为本发明实施例中包含图10a所示双极化低频子阵列的多频阵列天线的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明实施例中技术方案作进一步详细的说明。
参见图2,为本发明实施例一种多频阵列天线的结构示意图。
该多频阵列天线包括至少一个双极化低频子阵列21和至少一个双极化高频子阵列22,所述双极化低频子阵列21与所述双极化高频子阵列22在同一天线罩23中沿多频阵列天线的轴向24并行排列。该多频阵列天线的轴向24即多频阵列天线的轴线所在的方向。
其中,双极化低频子阵列21可以包括两种或两种以上的双极化低频辐射单元对211。每个双极化低频辐射单元对211由两个或两个以上的低频辐射单元组成,例如四个低频辐射单元。每个双极化低频辐射单元对211中的低频辐射单元可以沿多频阵列天线的轴向24排列,也可以垂直该轴向24排列,当然还可以有其他排列方式。
本发明实施例中双极化低频子阵列由多个双极化低频辐射单元对组成,每个双极化低频辐射单元对又由多个低频辐射单元组成,该结构与现有技术中直接由单个低频辐射单元组成的低频子阵列相比,每个双极化低频辐射单元对中的多个低频辐射单元的有效工作区所包围的面积更大,从而双极化低频辐射单元对的口径利用效率更高,低频子阵列的增益也就更高。
在本发明的另一实施例中,该双极化低频子阵列的每种双极化低频辐射单元对中低频辐射单元的组合方式不同。优选的,不同的双极化低频辐射单元对 还可以沿该多频阵列天线的轴向交替排列。以两种双极化低频辐射单元对为例进行说明,如图3所示,该多频阵列天线包含至少一个双极化低频子阵列31,该子阵列中包含两种双极化低频辐射单元对311、312,两双极化低频辐射单元对311、312中的低频辐射单元的组合方式不同,其中,双极化低频辐射单元对311中的低频辐射单元沿多频阵列天线的轴向排列,双极化低频辐射单元对312中的低频辐射单元沿垂直于多频阵列天线的轴向方向排列,且双极化低频辐射单元对311、312沿多频阵列天线的轴向交替排列。
本实施例中,每个双极化低频辐射单元对中的多个低频辐射单元的有效工作区所包围的面积更大,从而双极化低频辐射单元对的口径利用效率更高,低频子阵列的增益也就更高。在本发明的另一实施例中,每个双极化低频辐射单元对可以由至少两个低频辐射单元组成,例如可以由两个T形的低频辐射单元组成,也可以由四个L形的低频辐射单元组成,当然还可以由其他形状的低频辐射单元组成。
本发明实施例不对双极化高频子阵列进行限定。该多频阵列天线可以包括2列、3列或4列等双极化高频子阵列,每个双极化高频子阵列可以包括至少一个高频辐射单元。优选的,当双极化高频子阵列的数目为偶数时,双极化高频子阵列关于该多频阵列天线的轴线对称,这样可以使得双极化高频子阵列的电性能较为一致。
下面通过具体实例说明本发明实施例中的多频阵列天线。
参见图4a-4c,为本发明实施例另一种多频阵列天线的结构示意图。
如图4a、4b所示,该多频阵列天线包括一个双极化低频子阵列,该双极化低频子阵列包括两种双极化低频辐射单元对41、42,双极化低频辐射单元对41、42沿多频阵列天线的轴线40交替排列。每种双极化低频辐射单元对包含两个T形低频辐射单元411,其中,双极化低频辐射单元对41中的两个T形低频辐射单元的排列方式为关于垂直于多频阵列天线轴线40的方向对称排列,双极化低频辐射单元对42中的两个T形低频辐射单元的排列方式为关于多频阵列天线轴线40的方向对称排列。
如图4c所示,该多频阵列天线包括两个双极化高频子阵列43、44,,两双极化高频子阵列43、44关于该多频阵列天线的轴线40对称。每个双极化高频子阵列均由独立的高频辐射单元沿多频阵列天线的轴线40所在的方向排列形 成。该两个双极化高频子阵列的排列位置还可以如图4d所示,其中,双极化高频子阵列45、46的间距相对于图4c中两个双极化高频子阵列43、44的间距更大。
在另一实施例中,该多频阵列天线还可以包括3个或4个双极化高频子阵列,该双极化高频子阵列的排列方式可以如图4e、4f、4g、4h所示。其中,当双极化高频子阵列的数目为偶数时,双极化高频子阵列关于该多频阵列天线的轴线对称,这样可以使得双极化高频子阵列的电性能较为一致。
参见图5a-5c,为本发明实施例另一种多频阵列天线的结构示意图。
如图5a、5b所示,该多频阵列天线中也包括一个双极化低频子阵列,该双极化低频子阵列包括两种双极化低频辐射单元对51、52,双极化低频辐射单元对51、52沿多频阵列天线的轴线50交替排列。该双极化低频子阵列与前述图4a、4b所示的双极化低频子阵列之间的区别在于,双极化低频辐射单元对52中两个T形低频辐射单元的排列方式与双极化低频辐射单元对42中两个T形低频辐射单元的排列方式不同,双极化低频辐射单元对42中两个T形低频辐射单元沿垂直于多频阵列天线轴线50的方向相对排列,而双极化低频辐射单元对52中两个T形低频辐射单元背对背排列。双极化低频辐射单元对51与双极化低频辐射单元对41中低频辐射单元的排列方式相同。
如图5c所示,该多频阵列天线包括两个双极化高频子阵列53、54,,两双极化高频子阵列53、54关于该多频阵列天线的轴线50对称。每个双极化高频子阵列均由独立的高频辐射单元沿多频阵列天线的轴线50所在的方向排列形成。
在另一实施例中,该多频阵列天线还可以包括3个或4个双极化高频子阵列,该双极化高频子阵列的排列方式可以如图5d、5e所示。其中,当双极化高频子阵列的数目为偶数时,双极化高频子阵列关于该多频阵列天线的轴线对称,这样可以使得双极化高频子阵列的电性能较为一致。
参见图6a-6c,为本发明实施例另一种多频阵列天线的结构示意图。
如图6a、6b所示,该多频阵列天线中也包括一个双极化低频子阵列,该双极化低频子阵列包括两种双极化低频辐射单元对61、62,双极化低频辐射单元对61、62沿多频阵列天线的轴线60交替排列。每种双极化低频辐射单元对包含四个L形低频辐射单元611,其中,双极化低频辐射单元对61的四个L形低 频辐射单元中两两组合成C形结构,两个C形结构开口方向相背沿多频阵列天线的轴线60排列,双极化低频辐射单元对62的四个L形低频辐射单元中也两两组合成C形结构,两个C形结构开口方向相对沿多频阵列天线的轴线60排列。
如图6c所示,该多频阵列天线包括两个双极化高频子阵列63、64,,两双极化高频子阵列63、64关于该多频阵列天线的轴线60对称。每个双极化高频子阵列均由独立的高频辐射单元沿多频阵列天线的轴线60所在的方向排列形成。
在另一实施例中,该多频阵列天线还可以包括3个或4个双极化高频子阵列,该双极化高频子阵列的排列方式可以如图6d、6e所示。其中,当双极化高频子阵列的数目为偶数时,双极化高频子阵列关于该多频阵列天线的轴线对称,这样可以使得双极化高频子阵列的电性能较为一致。
参见图7a-7c,为本发明实施例另一种多频阵列天线的结构示意图。
如图7a、7b所示,该多频阵列天线中也包括一个双极化低频子阵列,该双极化低频子阵列包括两种双极化低频辐射单元对71、72,双极化低频辐射单元对71、72沿多频阵列天线的轴线70交替排列。该双极化低频子阵列与前述图6a、6b所示的双极化低频子阵列之间的区别在于,双极化低频辐射单元对71中四个L形低频辐射单元的排列方式与双极化低频辐射单元对61中四个L形低频辐射单元的排列方式不同,双极化低频辐射单元对61中的四个L形低频辐射单元中两两组合成C形结构,两个C形结构开口方向相背沿多频阵列天线的轴线60排列,而双极化低频辐射单元对71中四个L形低频辐射单元排列成十字形,L的开口方向分别朝向四个方向。双极化低频辐射单元对72与双极化低频辐射单元对62中低频辐射单元的排列方式相同。
如图7c所示,该多频阵列天线包括两个双极化高频子阵列73、74,,两双极化高频子阵列73、74关于该多频阵列天线的轴线70对称。每个双极化高频子阵列均由独立的高频辐射单元沿多频阵列天线的轴线70所在的方向排列形成。
在另一实施例中,该多频阵列天线还可以包括3个或4个双极化高频子阵列,该双极化高频子阵列的排列方式可以如图7d、7e所示。其中,当双极化高频子阵列的数目为偶数时,双极化高频子阵列关于该多频阵列天线的轴线对称,这样可以使得双极化高频子阵列的电性能较为一致。
在本发明的另一实施例中,如图8a、8b所示,该多频阵列天线中包含与图7a、7b所示类似的双极化低频子阵列,其中,双极化低频辐射单元对81、82与双极化低频辐射单元对71、72的结构类似,区别仅在于,双极化低频辐射单元对81中低频辐射单元在多频阵列天线轴线80方向上的间距变小,而双极化低频辐射单元对82中的低频辐射单元在多频阵列天线轴线80方向上的间距变大。如图8c、8d、8e所示,该多频阵列天线也可以包括2个、3个或4个双极化高频子阵列,当双极化高频子阵列的数目为偶数时,双极化高频子阵列关于该多频阵列天线的轴线对称,这样可以使得双极化高频子阵列的电性能较为一致。
在本发明的另一实施例中,如图9a、9b所示,该多频阵列天线中也包含一个双极化低频子阵列,其中,双极化低频辐射单元对91与双极化低频辐射单元对81相同,双极化低频辐射单元对92与双极化低频辐射单元对61相同,两双极化低频辐射单元对91、91在双极化低频子阵列中沿多频阵列天线的轴线90交替排列。如图9c、9d、9e所示,该多频阵列天线也可以包括2个、3个或4个双极化高频子阵列,当双极化高频子阵列的数目为偶数时,双极化高频子阵列关于该多频阵列天线的轴线对称,这样可以使得双极化高频子阵列的电性能较为一致。
参见图10a-10c,为本发明实施例另一种多频阵列天线的结构示意图。
如图10a、10b所示,该多频阵列天线包括一个双极化低频子阵列,该双极化低频子阵列包括两种双极化低频辐射单元对101、102,双极化低频辐射单元对101、102沿多频阵列天线的轴线100交替排列。每种双极化低频辐射单元对包含四个L形低频辐射单元,其中,双极化低频辐射单元对102中的四个L形低频辐射单元的排列方式与双极化低频辐射单元对61相同,另一种双极化低频辐射单元对101的四个L形低频辐射单元中两两组合成C形结构,两个C形结构开口方向相背沿垂直于多频阵列天线的轴线60的方向对称排列。
如图10c、10d、10e所示,该多频阵列天线也可以包括2个、3个或4个双极化高频子阵列,当双极化高频子阵列的数目为偶数时,双极化高频子阵列关于该多频阵列天线的轴线对称,这样可以使得双极化高频子阵列的电性能较为一致。
当然,在本发明的其他实施例中,该双极化低频子阵列还可以包含其他类型的双极化低频辐射单元对,以上仅为示例。
本发明实施例不仅通过在双极化低频子阵列中包含由多个低频辐射单元构成的双极化低频辐射单元对,增大了口径利用效率,提高了低频子阵列的增益,而且上述多频阵列天线中阵列设计得更加紧凑,两种或者两种以上低频辐射单元对形式多样,排布灵活度大,因此能够根据低频辐射单元、高频辐射单元对的结构形式避让排布,增大了辐射单元的间距,减小了低频、高频的互耦,并进一步通过将双极化高频子阵列设置为关于多频阵列天线的轴线对称,使得高频子阵列的电性能指标也相对比较一致。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (7)

  1. 一种多频阵列天线,其特征在于,包括至少一个双极化低频子阵列和至少一个双极化高频子阵列,所述双极化低频子阵列与所述双极化高频子阵列在同一天线罩中沿多频阵列天线的轴向并行排列;其中,所述双极化低频子阵列包括至少两种双极化低频辐射单元对,每个所述双极化低频辐射单元对由至少四个低频辐射单元组成。
  2. 根据权利要求1所述的多频阵列天线,其特征在于,每种所述双极化低频辐射单元对中低频辐射单元的组合方式不同。
  3. 根据权利要求2所述的多频阵列天线,其特征在于,所述至少两种双极化低频辐射单元对沿所述多频阵列天线的轴向交替排列。
  4. 根据权利要求1至3中任意一项所述的多频阵列天线,其特征在于,所述双极化低频辐射单元对由四个L形低频辐射单元组成。
  5. 根据权利要求1至4中任意一项所述的多频阵列天线,其特征在于,所述双极化高频子阵列的数目为2列或4列。
  6. 根据权利要求5所述的多频阵列天线,其特征在于,所述双极化高频子阵列关于所述多频阵列天线的轴线对称。
  7. 根据权利要求1至4中任意一项所述的多频阵列天线,其特征在于,所述双极化高频子阵列的数目为3列。
PCT/CN2014/094674 2013-12-23 2014-12-23 一种多频阵列天线 WO2015096702A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14873945.1A EP3089270B1 (en) 2013-12-23 2014-12-23 Multi-frequency array antenna
US15/189,883 US10243278B2 (en) 2013-12-23 2016-06-22 Multi-frequency array antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320854759.7U CN203813033U (zh) 2013-12-23 2013-12-23 一种多频阵列天线
CN201320854759.7 2013-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/189,883 Continuation US10243278B2 (en) 2013-12-23 2016-06-22 Multi-frequency array antenna

Publications (1)

Publication Number Publication Date
WO2015096702A1 true WO2015096702A1 (zh) 2015-07-02

Family

ID=51451749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094674 WO2015096702A1 (zh) 2013-12-23 2014-12-23 一种多频阵列天线

Country Status (4)

Country Link
US (1) US10243278B2 (zh)
EP (1) EP3089270B1 (zh)
CN (1) CN203813033U (zh)
WO (1) WO2015096702A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207490A (zh) * 2016-08-18 2016-12-07 京信通信技术(广州)有限公司 多系统共体天线
WO2018023071A1 (en) * 2016-07-29 2018-02-01 John Mezzaligua Associates, Llc Low profile telecommunications antenna
CN107959127A (zh) * 2017-11-13 2018-04-24 中山香山微波科技有限公司 射频仿真系统及其球面阵列天线模块
TWI625894B (zh) * 2016-08-12 2018-06-01 耀登科技股份有限公司 多輸入多輸出天線裝置及天線陣列
CN110492254A (zh) * 2019-08-09 2019-11-22 摩比科技(深圳)有限公司 多频天线阵列
CN112736470A (zh) * 2020-12-01 2021-04-30 武汉虹信科技发展有限责任公司 多频阵列天线及基站
US11569566B2 (en) 2017-03-06 2023-01-31 John Mezzalingua Associates, LLC Cloaking arrangement for low profile telecommunications antenna

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203813033U (zh) * 2013-12-23 2014-09-03 华为技术有限公司 一种多频阵列天线
CN105244632B (zh) * 2015-10-22 2019-04-26 京信通信技术(广州)有限公司 多系统共体天线
CN106356626B (zh) * 2016-08-24 2019-08-16 江苏省东方世纪网络信息有限公司 阵列天线
EP3553885B1 (en) * 2016-12-29 2023-03-01 Huawei Technologies Co., Ltd. Array antenna and network apparatus
US10505285B2 (en) 2017-09-14 2019-12-10 Mediatek Inc. Multi-band antenna array
US10892561B2 (en) * 2017-11-15 2021-01-12 Mediatek Inc. Multi-band dual-polarization antenna arrays
CN108232433B (zh) * 2017-12-11 2024-07-05 广东盛路通信科技股份有限公司 双频双极化小基站天线
US11101562B2 (en) * 2018-06-13 2021-08-24 Mediatek Inc. Multi-band dual-polarized antenna structure and wireless communication device using the same
CN112368885B (zh) * 2018-06-29 2023-08-15 上海诺基亚贝尔股份有限公司 多频带天线结构
CN112335120B (zh) * 2018-06-29 2023-09-19 上海诺基亚贝尔股份有限公司 多频带天线结构
EP3787112A1 (en) * 2019-09-02 2021-03-03 Nokia Solutions and Networks Oy A polarized antenna array
EP3972049A1 (en) * 2020-09-18 2022-03-23 Nokia Shanghai Bell Co., Ltd. A dual-polarized antenna array

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280879A1 (en) * 2011-05-02 2012-11-08 Andrew Llc Tri-Pole Antenna Element And Antenna Array
CN102832455A (zh) * 2012-08-31 2012-12-19 华为技术有限公司 天线阵列和天线装置
CN202749516U (zh) * 2012-07-13 2013-02-20 广东通宇通讯股份有限公司 一种天线
CN103036019A (zh) * 2011-09-30 2013-04-10 深圳国人通信有限公司 多频天线
CN203813033U (zh) * 2013-12-23 2014-09-03 华为技术有限公司 一种多频阵列天线

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507470B2 (ja) * 2001-07-13 2010-07-21 株式会社日立製作所 プラズマディスプレイパネル表示装置
DE102004025904B4 (de) * 2004-05-27 2007-04-05 Kathrein-Werke Kg Antenne
US7868843B2 (en) * 2004-08-31 2011-01-11 Fractus, S.A. Slim multi-band antenna array for cellular base stations
US20070008236A1 (en) * 2005-07-06 2007-01-11 Ems Technologies, Inc. Compact dual-band antenna system
KR100883408B1 (ko) * 2006-09-11 2009-03-03 주식회사 케이엠더블유 이동통신 기지국용 이중대역 이중편파 안테나
US8508424B2 (en) * 2008-11-26 2013-08-13 Andrew Llc Dual band base station antenna
US8217848B2 (en) * 2009-02-11 2012-07-10 Amphenol Corporation Remote electrical tilt antenna with motor and clutch assembly
US9472845B2 (en) * 2011-12-15 2016-10-18 Intel Corporation Multiband 40 degree split beam antenna for wireless network
FR2985099B1 (fr) * 2011-12-23 2014-01-17 Alcatel Lucent Antenne panneau multibande a polarisation croisee
EP2804260B1 (en) * 2012-01-13 2018-03-21 Comba Telecom System (China) Ltd. Aerial control system and multi-frequency common aerial
US9276329B2 (en) * 2012-11-22 2016-03-01 Commscope Technologies Llc Ultra-wideband dual-band cellular basestation antenna
CN102969575A (zh) * 2012-11-30 2013-03-13 京信通信系统(中国)有限公司 多频阵列天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280879A1 (en) * 2011-05-02 2012-11-08 Andrew Llc Tri-Pole Antenna Element And Antenna Array
CN103036019A (zh) * 2011-09-30 2013-04-10 深圳国人通信有限公司 多频天线
CN202749516U (zh) * 2012-07-13 2013-02-20 广东通宇通讯股份有限公司 一种天线
CN102832455A (zh) * 2012-08-31 2012-12-19 华为技术有限公司 天线阵列和天线装置
CN203813033U (zh) * 2013-12-23 2014-09-03 华为技术有限公司 一种多频阵列天线

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10680347B2 (en) 2016-07-29 2020-06-09 John Mezzalingua Associates, LLC Low profile telecommunications antenna
WO2018023071A1 (en) * 2016-07-29 2018-02-01 John Mezzaligua Associates, Llc Low profile telecommunications antenna
US20180034161A1 (en) * 2016-07-29 2018-02-01 John Mezzalingua Associates, LLC Modular unit cell construction for a high performance, low profile (hplp) telecommunications antenna
US11804662B2 (en) 2016-07-29 2023-10-31 John Mezzalingua Associates, LLC Low profile telecommunications antenna
US11043752B2 (en) 2016-07-29 2021-06-22 John Mezzalingua Associates, LLC Low profile telecommunications antenna
US10320092B2 (en) 2016-07-29 2019-06-11 John Mezzalingua Associates, LLC Modular unit cell construction for a high performance, low profile (HPLP) telecommunications antenna
TWI625894B (zh) * 2016-08-12 2018-06-01 耀登科技股份有限公司 多輸入多輸出天線裝置及天線陣列
EP3503300A4 (en) * 2016-08-18 2020-04-08 Comba Telecom Technology (Guangzhou) Ltd. MULTI-SYSTEM INTEGRATED ANTENNA
CN106207490A (zh) * 2016-08-18 2016-12-07 京信通信技术(广州)有限公司 多系统共体天线
CN106207490B (zh) * 2016-08-18 2021-06-25 京信通信技术(广州)有限公司 多系统共体天线
US11569566B2 (en) 2017-03-06 2023-01-31 John Mezzalingua Associates, LLC Cloaking arrangement for low profile telecommunications antenna
CN107959127A (zh) * 2017-11-13 2018-04-24 中山香山微波科技有限公司 射频仿真系统及其球面阵列天线模块
CN110492254A (zh) * 2019-08-09 2019-11-22 摩比科技(深圳)有限公司 多频天线阵列
CN110492254B (zh) * 2019-08-09 2024-02-23 摩比科技(深圳)有限公司 多频天线阵列
CN112736470A (zh) * 2020-12-01 2021-04-30 武汉虹信科技发展有限责任公司 多频阵列天线及基站
CN112736470B (zh) * 2020-12-01 2023-08-25 中信科移动通信技术股份有限公司 多频阵列天线及基站

Also Published As

Publication number Publication date
EP3089270A4 (en) 2016-12-28
CN203813033U (zh) 2014-09-03
US10243278B2 (en) 2019-03-26
EP3089270B1 (en) 2024-04-03
US20160301144A1 (en) 2016-10-13
EP3089270A1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
WO2015096702A1 (zh) 一种多频阵列天线
CN102570058B (zh) 复合式多天线系统及其无线通信装置
CN204857971U (zh) 一种三频双极化天线
CN203386887U (zh) 天线振子及具有该天线振子的天线
US10957991B2 (en) Planar array antenna and communications device
WO2016065830A1 (zh) 一种天线阵耦合校准网络装置及校准方法、存储介质
CN108565543B (zh) Mimo天线结构及具有该mimo天线结构的手持设备
CN108493590B (zh) 天线单元、mimo天线及手持设备
CN102790284A (zh) 一种具有多重边界的天线装置及其反射板
CN102377017A (zh) 多回圈天线系统及具有该多回圈天线系统的电子装置
CN202712437U (zh) 一种双频多输入多输出天线及接入点设备
CN105870632A (zh) 一种具有边射特性的电小、低剖面惠更斯源天线
CN102694275B (zh) 天线阵列和天线
US20200044698A1 (en) Massive mimo array antenna
WO2020134467A1 (zh) 移动终端用天线系统、移动终端
CN203760660U (zh) 多制式多频段双极化天线
CN205406737U (zh) 一种5g全向天线系统
SG189459A1 (en) An antenna arrangement
WO2019100376A1 (zh) 全向阵列天线及其波束赋形方法
CN107317120A (zh) 一种紧凑型双极化多频天线、阵列及其构造方法
CN204407467U (zh) 一种无线音响的mimo天线
CN203631740U (zh) 多频段阵列天线
CN103050775A (zh) 一种加载介质透镜的高增益高效率平板天线
CN205282640U (zh) 一种新型的天线辐射单元及天线
CN203071223U (zh) 一种超宽带双极化天线辐射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014873945

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873945

Country of ref document: EP