WO2015096685A1 - 一种制造具有薄壁或细槽等几何结构的金属件的方法 - Google Patents
一种制造具有薄壁或细槽等几何结构的金属件的方法 Download PDFInfo
- Publication number
- WO2015096685A1 WO2015096685A1 PCT/CN2014/094578 CN2014094578W WO2015096685A1 WO 2015096685 A1 WO2015096685 A1 WO 2015096685A1 CN 2014094578 W CN2014094578 W CN 2014094578W WO 2015096685 A1 WO2015096685 A1 WO 2015096685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wax
- metal member
- manufacturing
- thin wall
- geometric structure
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the invention relates to the field of mechanical processing, in particular to the processing of thin-walled structures and thin-groove structural metal parts.
- Thin wall structure or fine groove structure processing is an insurmountable difficulty in traditional machining.
- Additive manufacturing opens up new technological avenues to address such issues.
- Stanford University has proposed the combination of droplet deposition and numerical control processing, namely Shape Deposition Manufacturing (SDM), to produce complex shapes of silicon nitride and stainless steel turbine rotors.
- SDM Shape Deposition Manufacturing
- Gelcasting technology was proposed by O. Omatete et al. at the Oak Ridge National Laboratory in the 1990s. It is the addition of organic monomers to suspensions of powdered granular materials, such as A molding technique in which acrylamide is then added to a certain amount of initiator to promote cross-linking of the organic monomer to achieve in-situ curing.
- Gel injection molding has been successfully applied to the formation of a variety of ceramic materials, such as alumina, zirconia, silicon carbide, silicon nitride and composite materials. In recent years, some scholars at home and abroad have extended the application of gel injection molding to metal powder materials.
- the gel injection molding slurry should have good rheology, that is, the smaller the apparent viscosity of the slurry, the better.
- the viscosity value cannot be higher than 1 Pa ⁇ s.
- Metal pastes require low viscosity, high solids content, which is a contradiction. Therefore, it is especially important to cast thin-walled parts to maximize the content of powder particles while ensuring good fluidity.
- the gel-filled embryo body contains a certain amount of water, and the body body shrinks as the water is removed during the drying process of the embryo body. If the shrinkage is uneven, the body body may be deformed or cracked.
- the traditional drying method is to put the embryo body into Vacuum drying oven to remove moisture by heating. Due to the temperature gradient inside and outside the embryo body, the external water evaporation rate is much larger than the internal, resulting in uneven shrinkage of the embryo body, resulting in internal stress, affecting the strength of the embryo body, and affecting the subsequent sintering quality, causing sintering cracking.
- the main technical problem to be solved by the present invention is to provide a method for manufacturing a metal member, which realizes rapid manufacture of a metal member having a geometrical detail such as a thin wall or a fine groove.
- the secondary technical problem to be solved by the present invention is to solve the problem that the metal member has a warpage deformation during the conventional sintering process.
- the present invention provides a method of manufacturing a metal member having a geometric structure such as a thin wall or a fine groove, using a wax-based material alternate injection and a combination of segment engraving and gel injection molding, mainly Including two kinds of wax-based materials alternately injection and segment engraving to make wax mold, gel injection molding, sintering;
- the two wax-based materials are alternately injected by using an injection additive method, so that the wax material is emitted in a semi-molten state during the stacking process; the two wax-based materials are respectively machineable wax and water-soluble wax;
- the specific steps of the wax-based material alternate injection and segment engraving are as follows: using A wax as a support, engraving and processing the cavity, using B wax to add a cavity material, engraving the support cavity and obtaining a thin-walled support using A wax, using B wax adds cavity material to the engraved support cavity;
- a wax is a water-soluble wax
- B wax is a water-soluble wax
- a wax mold having a thin-wall structure is obtained by water immersion treatment.
- the sintering is performed by microwave sintering.
- the gel injection molding mainly comprises slurry preparation, embryo body drying, and hot melt demolding.
- the slurry is prepared by using a binder, a dispersant, and a mixture of two metal powders having different thicknesses to increase the solid phase content of the slurry.
- the embryo body is dried by vacuum freeze drying.
- the binder is gelatin.
- the dispersing agent is polyvinyl alcohol, sodium alginate, triammonium citrate, ammonium lauryl sulfate.
- the two metal powders having different thicknesses are water atomized 316L stainless steel powder having a median diameter of 11.80 ⁇ m and 24.32 ⁇ m, respectively.
- the mixing ratio of the water atomized 316L stainless steel powder having a median diameter of 1.80 ⁇ m and 24.32 ⁇ m, respectively, is 4:6.
- the vacuum freeze-drying process comprises: freezing the cast body and the wax mold at -50 ° C for 4 h, completely freezing the embryo body into a solid state; and then placing it on a shelf of the freeze dryer for sublimation Drying, vacuuming at the same time, maintaining a vacuum of about 10 Pa, cold trap temperature -50 ° C, duration of 8 h; after drying of the embryo body, the wax mold is removed by hot melt: the dried embryo body and the wax mold are placed together in a vacuum In a dry box, heat to 150 ° C and hold for 30 minutes, the wax mold can be completely melted, and finally the complete part of the embryo body.
- the microwave sintering uses a microwave high vacuum furnace having a microwave frequency of 2.45 GHz.
- the rotating table of the microwave high vacuum furnace is provided with a high temperature barrel, and the high temperature barrel is provided with mullite.
- the high temperature barrel and the mullite are filled with zirconia, silicon carbide, and heat insulating cotton.
- the present invention provides a method of manufacturing a metal member having a geometric structure such as a thin wall or a fine groove.
- the two wax-based materials are backed by each other by alternately injecting and segmenting engraving during processing using two wax-based materials.
- a wax mold having a geometrical detail such as a thin wall and a fine groove is realized.
- the wax material is ejected in a semi-molten state during the stacking process, thereby avoiding the wax material on the formed solid state line. Hot melt damage to the cavity surface.
- a water-soluble wax for one of the waxes it can be removed by water immersion and conveniently and cleanly separated from the cavity material.
- Vacuum freeze-drying method has low shrinkage rate, high mechanical properties, good quality of embryo body, good shape of embryo body, and effectively solves the defects of traditional dry medium embryo body fracture and deformation.
- microwave sintering method high density and good mechanical properties can be obtained at lower sintering temperature and shorter holding time, and the sintering warpage deformation in the sintering process of complex structural parts is well solved. problem.
- Figure 1 is a diagram showing the steps of alternately injecting and segmenting engraving a wax pattern using two wax-based materials according to the present invention, wherein:
- FIG. 2 is a comparison diagram of an embryo body obtained by using conventional drying and an embryo body obtained by vacuum freeze-drying in the embodiment of the present invention, wherein:
- Fig. 3 is a schematic view showing the use of a high vacuum microwave oven cavity in the present embodiment.
- FIG. 4 is a comparison diagram of a metal member obtained by conventional sintering and a metal member obtained by microwave sintering in the embodiment of the present invention, wherein:
- Example 1 Two wax-based materials were alternately injected and segmented to make a wax pattern.
- the process of combining material stacking and stripping processing enables the rapid manufacture of parts having geometrical details such as thin walls and fine grooves by selecting the mutual backing of the two materials during machining.
- the stacking process of the wax material is emitted in a semi-molten state, the melting point temperature of the solid wax can be avoided, and the surface of the formed cavity is not damaged by the hot melt; the machined wax is processed Appropriate modification to ensure its machinability; the material paired with the machinable wax is water-soluble wax, which can be removed by water immersion and separated from the cavity material conveniently and cleanly.
- the specific steps of alternating injection and segment engraving of the wax-based material are as follows: using water-soluble wax as a support as shown in Fig. 1(a), processing a support cavity, Fig. 1(b); using a machineable wax to add a cavity material, 1(c); engraving the support cavity and obtaining a thin-walled support using water-soluble wax, Figure 1 (d, e, f); adding a cavity material to the engraved support cavity using a machinable wax, Figure 1 (g) ).
- Geometrically detailed features such as thin-walled rib structures or slotted structures can be obtained by alternate backing processing.
- the thin wall processed by the supporting material is a machineable wax, and a wax pattern of a thin-wall structure can be obtained after water immersion; if the thin wall processed is a water-soluble wax, a wax pattern of a fine groove structure can be obtained after water immersion. Whether processing machined wax or water-soluble wax, it is carried out under the backing of another wax.
- Example 2 Gel injection molding.
- a natural, non-toxic gel system is used. Using gelatin as a binder, polyvinyl alcohol, sodium alginate, triammonium citrate, ammonium lauryl sulfate as a dispersing agent were used, and the pH was adjusted with NaOH and HCL solution. Water atomized 316L stainless steel with different median diameters of 11.80 ⁇ m and 24.32 ⁇ m Powder, graded in different mass ratios.
- the viscosity of the slurry is the smallest, and the solid phase content is high, and the strength of the embryo body is the largest.
- the shrinkage rate is also the smallest.
- a low viscosity, high solids content 316L stainless steel slurry was prepared and cast into a wax mold.
- the cast body and the wax mold were placed in a freeze dryer together for freeze drying.
- the specific drying process is: first freezing at -50 ° C for 4 h, the embryo body is completely frozen into a solid state. Then, it is placed on the shelf of the freeze dryer for sublimation drying, while vacuuming is performed to maintain a vacuum of about 10 Pa and a cold trap temperature of -50 ° C. The duration of this phase is 8 h.
- the wax mold is removed by hot melt.
- the dried embryo body and the wax mold are placed in a vacuum drying oven, heated to 150 ° C and held for 30 minutes, the wax mold can be completely melted, and finally the complete part embryo body is obtained.
- FIG. 2 is a comparison diagram of the embryo body obtained by using the conventional drying and the embryo body obtained by vacuum freeze-drying in the embodiment of the present invention, and the graph a in FIG. 2 is
- the green body is cracked and vacuum freeze-dried, and the shrinkage rate of the embryo body after vacuum freeze-drying is only 0.44%, which can well maintain the structure and morphology of the embryo body, as shown in Fig. 2(b).
- the water in the embryo body is directly sublimated by the solid state, eliminating the surface tension of solid and liquid existing in the ordinary drying, thereby effectively solving the defects of the traditional dry medium embryo body fracture and deformation.
- the HAMiLab-HV3 microwave high vacuum experimental furnace was used, and the microwave frequency was 2.45 GHz.
- the infrared thermometer is used for temperature measurement, and the workpiece table rotates slowly during operation to ensure the micro-effect on the embryo body.
- the wave field is evenly distributed, and the circular insulated barrel is placed on the rotating table.
- the embryo body is placed in a special mullite, and the high temperature barrel and the crucible are filled with zirconia, silicon carbide and heat preservation cotton to assist the heating and heat preservation. . Because of the good absorbing properties of ceramic materials, it helps to heat up quickly at the beginning of sintering.
- the present invention provides a method of manufacturing a metal member having a geometric structure such as a thin wall or a fine groove, which has the following advantages:
- vacuum freeze-drying has low embryo body shrinkage, high mechanical properties, good quality of embryo body, good shape of embryo body, and effectively solves the fracture and deformation of traditional dry medium embryo body. And other defects.
- the invention provides a method for manufacturing a metal member having a geometric structure such as a thin wall or a fine groove, and adopts a wax pattern of a thin wall structure and a fine groove structure by alternately injecting and segmenting engraving using wax materials of two different properties. Production.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
一种制造具有薄壁或细槽等几何结构的金属件的方法,通过采用两种不同性质的蜡基材料交替注射和分段雕刻,实现薄壁结构和细槽结构的蜡模制作;然后,应用凝胶注模技术,把充填金属粉末的浆料注入蜡模,制作坯体;然后,采用真空冷冻干燥方法,干燥坯体;最后,应用微波烧结技术,烧结坯体。本方法能解决坯体在干燥过程中容易出现的开裂问题,以及解决坯体烧结过程中容易出现的开裂和翘曲变形问题。
Description
本发明涉及机械加工领域,尤其涉及薄壁结构和细槽结构金属件的加工。
薄壁结构或细槽结构加工是传统机械加工中不可逾越的难点。增材制造为解决此类问题开辟了新的技术途径。斯坦福大学提出将熔滴沉积与数控加工相结合,即形状沉积制造(Shape Deposition Manufacturing,SDM),制造出了复杂形状的氮化硅、不锈钢涡轮转子。
凝胶注模成型(Gelcasting)技术是20世纪90年代美国橡树岭国家实验室(Oak Ridge National Laboratory)O.Omatete等人提出的,它是在粉末颗粒材料的悬浮液中加入有机单体,如丙烯酰胺,然后在加入一定量的引发剂促使有机单体发生交联反应从而达到原位固化的一种成型技术。凝胶注模已经成功应用于多种陶瓷材料的成型,如氧化铝、氧化锆、碳化硅、氮化硅及其复合材料等。近年来,国内外一些学者将凝胶注模的应用领域扩展到金属粉末材料。
为了利于浇注薄壁件、细槽等细节特征,凝胶注模浆料要有良好的流变性,即浆料的表观粘度越小越好。对于金属粉末来说其粘度值不能高于1Pa·s。金属浆料要求低粘度、高固相含量,这是一对矛盾。因此在保证良好流动性的前提下尽量提高粉末颗粒的含量,对浇注薄壁件而言尤为重要。此外,凝胶注模胚体含有一定量的水,随着胚体干燥过程中水分的去除,胚体产生收缩,如果收缩不均匀会导致胚体变形、开裂等缺陷。传统的干燥方法,都是把胚体放入
真空干燥箱,通过加热方式去除水分。由于胚体内部和外部有温度梯度,外部水分蒸发速率远远大于内部,造成胚体收缩不均匀,产生内应力,影响胚体强度,同时会影响后续的烧结质量,造成烧结开裂。
发明内容
本发明要解决的主要技术问题是,提供一种金属件的制造方法,实现对具有薄壁、细槽等几何细节特征的金属件件的快速制造。本发明要解决的次要技术问题是,解决金属件在传统烧结过程中存在烧结翘曲变形的问题。
为了解决上述的技术问题,本发明提供了.一种制造具有薄壁或细槽等几何结构的金属件的方法,使用蜡基材料交替注射和分段雕刻与凝胶注模结合的方法,主要包括两种蜡基材料交替注射和分段雕刻制作蜡模、凝胶注模成型、烧结;
所述两种蜡基材料交替注射采用注射增材的方法,使蜡料在堆积过程中以半熔融态射出;所述两种蜡基材料分别为可机加工蜡与水溶蜡;
所述蜡基材料交替注射和分段雕刻具体步骤为:使用A蜡作为支撑,雕刻加工支撑型腔,使用B蜡添加型腔材料,雕刻支撑型腔并获得使用A蜡的薄壁支撑,使用B蜡对雕刻后的支撑型腔添加型腔材料;
所述A蜡为水溶蜡时,通过水浸处理,得到了细槽结构的蜡模;所述B蜡为水溶蜡时,通过水浸处理,得到了薄壁结构的蜡模。
作为优选,所述烧结采用微波烧结。
作为优选,所述凝胶注模成型主要包括浆料制备、胚体干燥、热熔法脱模。
作为优选,所述浆料制备时使用粘结剂、分散剂和两种粗细不同的金属粉末混合配比来提高浆料的固相含量。
作为优选,所述胚体干燥采用真空冷冻干燥。
作为优选,所述粘结剂为明胶。
作为优选,所述分散剂为聚乙烯醇、海藻酸钠、柠檬酸三铵,十二烷基硫酸铵。
作为优选,所述两种粗细不同的金属粉末为中位径分别为11.80μm和24.32μm的水雾化316L不锈钢粉末。
作为优选,所述中位径分别为1.80μm和24.32μm的水雾化316L不锈钢粉末的混合比例为4:6。
作为优选,所述真空冷冻干燥具体过程为:将浇注的胚体和蜡模在-50℃的条件下冷冻4h,将胚体完全冻结成固态;然后放在冷冻干燥机的搁板上进行升华干燥,同时进行抽真空,保持真空度为10Pa左右,冷阱温度-50℃,持续时间8h;胚体干燥后采用热熔法去除蜡模:将干燥后的胚体和蜡模一起放入真空干燥箱内,加热至150℃并保持30分钟,蜡模即可完全熔化,最后得到完整的零件胚体。
作为优选,所述微波烧结的采用微波频率为2.45GHz微波高真空炉。
作为优选,所述微波高真空炉的旋转台上设有高温桶,所述高温桶内设有莫来石坩埚。
作为优选,所述高温桶和莫来石坩埚之间填充有氧化锆、碳化硅以及保温棉。
本发明提供了一种制造具有薄壁或细槽等几何结构的金属件的方法,通过使用两种蜡基材料在加工过程中交替注射和分段雕刻,使得两种蜡基材料相互背衬,从而实现对具有薄壁、细槽等几何细节特征的蜡模制作。通过注射增材的方法,是蜡料在堆积过程中以半熔融态射出,避免了蜡料对已成型的固态行
腔表面的热熔损坏。通过对其中一种蜡料使用水溶性的蜡料,可以通过水浸去除,方便、清洁地与腔体材料分离。使用两种粗细不同的金属粉末配比混合,在保证浆料具有良好流变性能的前提下,有效提高了浆料的固相密度。采用真空冷冻干燥的方法,胚体收缩率低、力学性能高,胚体成型质量好,能够很好地保持胚体形状,有效解决了传统干燥中胚体断裂、变形的缺陷。使用微波烧结的方式,可以在较低的烧结温度和较短的保温时间下获得较高的致密度和良好的力学性能,并很好地解决了复杂结构件烧结过程中存在烧结翘曲变形的问题。
图1为本发明使用两种蜡基材料交替注射和分段雕刻制作蜡模的步骤图,其中:
(a)使用水溶蜡作为支撑;(b)加工支撑型腔;(c)添加型腔材料;(d)交替加工行腔;(e)加工薄壁支撑;(f)薄壁支撑形成;(g)添加型腔材料;(h)去除水溶蜡。
图2为使用传统干燥得到的胚体与本发明实施例中使用真空冷冻干燥得到的胚体对比图,其中:
(a)为传统干燥,(b)为真空冷冻干燥。
图3为本实施例使用高真空微波炉炉腔示意图。
图4为使用传统烧结得到的金属件与本发明实施例中使用微波烧结得到的金属件对比图,其中:
(a)为传统烧结,(b)为微波烧结。
以下通过结合附图及实施例,对本发明做进一步阐述。
实施例1:两种蜡基材料交替注射和分段雕刻制作蜡模。
参考图1,通过材料堆积与去除加工相结合的过程,通过选用两种材料在机加工过程中相互背衬的作用,实现对具有薄壁、细槽等几何细节特征的零件的快速制造。
通过采用注射增材的方法,使蜡料的堆积过程处在半熔融态射出,可以避开固态蜡的熔点温度,保证了已成型型腔表面不被热融损坏;通过对可机加工蜡料作适当的改性,确保其可机加工性能;与可机加工蜡配对的材料为水溶蜡,可以通过水浸去除,方便、清洁地与腔体材料分离。
所述蜡基材料交替注射和分段雕刻具体步骤为:使用水溶蜡作为支撑如图1(a),加工出支撑型腔,图1(b);使用可机加工蜡添加型腔材料,图1(c);雕刻支撑型腔并获得使用水溶蜡的薄壁支撑,图1(d,e,f);使用可机加工蜡对雕刻后的支撑型腔添加型腔材料,图1(g)。
通过交替背衬加工可以获得薄壁筋条结构或细槽结构等几何细节特征。如依靠支撑材料加工出的薄壁是可机加工蜡,水浸后可得到薄壁结构的蜡模;如加工出的薄壁是可水溶蜡,水浸后可得到细槽结构的蜡模。无论是加工可机加工蜡还是水溶蜡,都是在另一种蜡的背衬下进行的。
实施例2:凝胶注模成型。
(1)浆料制备
采用天然、无毒的凝胶体系。以明胶作为粘结剂,选用聚乙烯醇、海藻酸钠、柠檬酸三铵、十二烷基硫酸铵作为分散剂,用NaOH和HCL溶液调节pH值。采用中位径分别为11.80μm和24.32μm两种粗细不同的水雾化316L不锈钢
粉末,以不同质量比级配。
本实施例中,当中位径分别为1.80μm和24.32μm的水雾化316L不锈钢粉末的混合比例为4:6时,浆料粘度最小,同时具有很高的固相含量,胚体的强度最大,收缩率也最小。
将配制好的低粘度、高固相含量的316L不锈钢浆料,将其浇注到蜡模中。
(2)胚体干燥
将浇注的胚体和蜡模一起放入冷冻干燥机进行冷冻干燥。具体的干燥工艺为:首先在-50℃的条件下冷冻4h,将胚体完全冻结成固态。然后放在冷冻干燥机的搁板上进行升华干燥,同时进行抽真空,保持真空度为10Pa左右,冷阱温度-50℃,这一阶段持续时间为8h。
胚体干燥后采用热熔法去除蜡模。将干燥后的胚体和蜡模一起放入真空干燥箱内,加热至150℃并保持30分钟,蜡模即可完全熔化,最后得到完整的零件胚体。
参考图2,湿态胚体经过真空冷冻干燥后,干燥收缩率大大降低。采用传统箱式干燥方法,胚体干燥收缩率达3.5%,图2为使用传统干燥得到的胚体与本发明实施例中使用真空冷冻干燥得到的胚体对比图,图2中的a图是传统干燥出现坯体开裂,为真空冷冻干燥,而真空冷冻干燥后胚体的收缩率仅为0.44%,能够很好的保持胚体结构和形态,如图2(b)所示。在真空冷冻干燥过程中,胚体中的水分直接由固态升华,消除了普通干燥中存在的固、液表面张力,从而有效解决了传统干燥中胚体断裂、变形的缺陷。
实施例3:微波烧结
采用HAMiLab-HV3型微波高真空实验炉,微波频率为2.45GHz。如图3所示,采用红外测温仪进行测温,工作时工件台缓慢旋转,以保证作用于胚体上的微
波场分布均匀,采用圆形保温桶放在旋转台上,胚体放在特制的莫来石坩埚内,高温桶与坩埚间填充有氧化锆、碳化硅及保温棉,起辅助加热和保温作用。因为陶瓷材料的吸波性能好,在烧结开始阶段,有助于迅速升温。同时,在烧结的最后阶段,粉末颗粒联结在一起,金属胚体逐渐致密化,反射微波变大,吸收微波能力下降,转化为热能变少,这一阶段主要是靠辅助加热材料的保温作用加热的。图4中的a图是传统烧结试件出现翘曲的情况。
使用微波烧结的方式,可以在较低的烧结温度和较短的保温时间下获得较高的致密度和良好的力学性能,并很好地解决了复杂结构件烧结过程中存在烧结翘曲变形的问题。如图4中的(b)所示。
综上所述,本发明提供了一种制造具有薄壁或细槽等几何结构的金属件的方法具备以下优势:
(1)将蜡基材料交替注射和分段雕刻与凝胶注模结合,可以很好地实现对于具有薄壁、细槽等几何细节特征的零件制造,对于复杂和具有几何细节结构特征的金属件的一体化快速制造具有明显的优势。
(2)以316L不锈钢粉末为原料,采用天然无污染的凝胶体系,以1%(相对金属粉末质量分数)明胶为粘结剂,0.8%的海藻酸钠作为分散剂,选择粗细不同的两种不锈钢粉末通过合理的颗粒级配可以保证在具有较高的固相含量下,浆料具备良好的流变性能及成型胚体的力学性能。
(3)真空冷冻干燥与传统干燥方法相比,胚体收缩率低、力学性能高,胚体成型质量好,能够很好地保持胚体形状,有效地解决了传统干燥中胚体断裂、变形等缺陷。
(4)把微波烧结与传统烧结方式对比,可以在较低的烧结温度和较短的保温时间条件下获得较高的致密度和良好的力学性能,并很好地解决了复杂结构
件烧结过程中存在的烧结翘曲变形等问题。
以上实施例仅为说明本发明原理所用,并非本发明仅有的实施方式。上述实施例并不应视为限制本发明的范围。本领域的技术人员在阅读并理解了前述详细说明的同时,可以进行修改和变化。具体的保护范围应以权利要求书为准。
本发明提供的一种制造具有薄壁或细槽等几何结构的金属件的方法,通过采用两种不同性质的蜡基材料交替注射和分段雕刻,实现薄壁结构和细槽结构的蜡模制作。
Claims (13)
- 一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于主要包括两种蜡基材料交替注射和分段雕刻制作蜡模、凝胶注模成型、烧结;所述两种蜡基材料交替注射采用注射增材的方法,使蜡料在堆积过程中以半熔融态射出;所述两种蜡基材料分别为可机加工蜡与水溶蜡;所述蜡基材料交替注射和分段雕刻具体步骤为:使用A蜡作为支撑,雕刻加工支撑型腔,使用B蜡添加型腔材料,雕刻支撑型腔并获得使用A蜡的薄壁支撑,使用B蜡对雕刻后的支撑型腔添加型腔材料;所述A蜡为水溶蜡,B蜡为可机加工蜡时,通过水浸处理,得到了细槽结构的蜡模;所述A蜡为可机加工蜡,B蜡为水溶蜡时,通过水浸处理,得到了薄壁结构的蜡模。
- 根据权利要求1所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述烧结采用微波烧结。
- 根据权利要求1所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述凝胶注模成型主要包括浆料制备、胚体干燥、热熔法脱模。
- 根据权利要求3所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述浆料制备时使用粘结剂、分散剂和两种粗细不同的金属粉末混合配比来提高浆料的固相含量。
- 根据权利要求3所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述胚体干燥采用真空冷冻干燥。
- 根据权利要求4所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述粘结剂为明胶。
- 根据权利要求4所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述分散剂为聚乙烯醇、海藻酸钠、柠檬酸三铵,十二烷基硫酸铵。
- 根据权利要求4所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述两种粗细不同的金属粉末为中位径分别为11.80μm和24.32μm的水雾化316L不锈钢粉末。
- 根据权利要求8所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述中位径分别为1.80μm和24.32μm的水雾化316L不锈钢粉末的混合比例为4:6。
- 根据权利要求5所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述真空冷冻干燥具体过程为:将浇注的胚体和蜡模在-50℃的条件下冷冻4h,将胚体完全冻结成固态;然后放在冷冻干燥机的搁板上进行升华干燥,同时进行抽真空,保持真空度为10Pa左右,冷阱温度-50℃,持续时间8h;胚体干燥后采用热熔法去除蜡模:将干燥后的胚体和蜡模一起放入真空干燥箱内,加热至150℃并保持30分钟,蜡模即可完全熔化,最后得到完整的零件胚体。
- 根据权利要求2所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述微波烧结的采用微波频率为2.45GHz 微波高真空炉。
- 根据权利要求11所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述微波高真空炉的旋转台上设有高温桶,所述高温桶内设有莫来石坩埚。
- 根据权利要求12所述的一种制造具有薄壁或细槽等几何结构的金属件的方法,其特征在于所述高温桶和莫来石坩埚之间填充有氧化锆、碳化硅以及保温棉。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310725870.0 | 2013-12-25 | ||
CN201310725870.0A CN103878372B (zh) | 2013-12-25 | 2013-12-25 | 一种制造具有薄壁或细槽等几何结构的金属件的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015096685A1 true WO2015096685A1 (zh) | 2015-07-02 |
Family
ID=50947685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/094578 WO2015096685A1 (zh) | 2013-12-25 | 2014-12-23 | 一种制造具有薄壁或细槽等几何结构的金属件的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103878372B (zh) |
WO (1) | WO2015096685A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109834266A (zh) * | 2019-01-24 | 2019-06-04 | 北京工业大学 | 一种微波烧结制备浸渍型含钪扩散阴极的方法 |
CN110577822A (zh) * | 2019-09-26 | 2019-12-17 | 北京环境特性研究所 | 一种介电梯度渐变的耐高温宽频吸波材料及其制备方法 |
CN114110350A (zh) * | 2021-12-02 | 2022-03-01 | 浙江天铂云科光电股份有限公司 | 基于温度视觉的智能识别装置 |
CN114406196A (zh) * | 2021-12-31 | 2022-04-29 | 北京航空材料研究院股份有限公司 | 含异型内腔的钛及钛合金铸件制备方法 |
CN114425598A (zh) * | 2021-12-31 | 2022-05-03 | 北京航空材料研究院股份有限公司 | 一种含异型缝隙孔的钛及钛合金铸件制备方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103878372B (zh) * | 2013-12-25 | 2016-08-17 | 华侨大学 | 一种制造具有薄壁或细槽等几何结构的金属件的方法 |
CN105750551A (zh) * | 2016-04-07 | 2016-07-13 | 惠州威博精密科技有限公司 | 一种头戴耳机滑轮片的制造方法 |
CN110434277A (zh) * | 2019-09-11 | 2019-11-12 | 武汉工控艺术制造有限公司 | 提高陶瓷型精密熔模表面光洁度、精度和使用寿命的方法 |
CN111136275A (zh) * | 2020-01-20 | 2020-05-12 | 江苏精研科技股份有限公司 | 一种注射成形制备大面积薄壁件的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5824250A (en) * | 1996-06-28 | 1998-10-20 | Alliedsignal Inc. | Gel cast molding with fugitive molds |
US6375880B1 (en) * | 1997-09-30 | 2002-04-23 | The Board Of Trustees Of The Leland Stanford Junior University | Mold shape deposition manufacturing |
WO2006027593A2 (en) * | 2004-09-10 | 2006-03-16 | Dytech Corporation Limited | Gelcasting of a ceramic catalyst carrier |
CN100999123A (zh) * | 2006-12-31 | 2007-07-18 | 华侨大学 | 分段注射/雕刻复合快速成形工艺 |
CN102875150A (zh) * | 2012-10-16 | 2013-01-16 | 北京科技大学 | 一种凝胶注模成型、无压烧结制备碳化硅陶瓷叶轮的方法 |
CN103878372A (zh) * | 2013-12-25 | 2014-06-25 | 华侨大学 | 一种制造具有薄壁或细槽等几何结构的金属件的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6242163B1 (en) * | 1998-08-31 | 2001-06-05 | Board Of Trustees Of The Leland Stanford Junior University | Shape deposition manufacturing of microscopic ceramic and metallic parts using silicon molds |
CN100408512C (zh) * | 2006-12-06 | 2008-08-06 | 中国科学院上海硅酸盐研究所 | 溶胶凝胶-冷冻干燥工艺制备氧化铝多孔陶瓷的方法 |
CN101397210B (zh) * | 2007-09-24 | 2011-08-17 | 深圳市金科特种材料股份有限公司 | 制备氮化硅陶瓷发热体的凝胶注模成型工艺方法 |
CN101456075B (zh) * | 2007-12-14 | 2010-11-24 | 比亚迪股份有限公司 | 一种纳米晶软磁合金元件的制备方法 |
CN101520287A (zh) * | 2009-03-31 | 2009-09-02 | 北京科技大学 | 一种复杂形状散热器元件的制备方法 |
CN103113112B (zh) * | 2013-02-04 | 2014-06-04 | 西安交通大学 | 一种金属增韧陶瓷基复合材料涡轮叶片的制备方法 |
CN103360079B (zh) * | 2013-07-10 | 2015-04-29 | 西安交通大学 | 一种空心涡轮叶片一体化陶瓷铸型的型芯型壳定制方法 |
-
2013
- 2013-12-25 CN CN201310725870.0A patent/CN103878372B/zh active Active
-
2014
- 2014-12-23 WO PCT/CN2014/094578 patent/WO2015096685A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5824250A (en) * | 1996-06-28 | 1998-10-20 | Alliedsignal Inc. | Gel cast molding with fugitive molds |
US6375880B1 (en) * | 1997-09-30 | 2002-04-23 | The Board Of Trustees Of The Leland Stanford Junior University | Mold shape deposition manufacturing |
WO2006027593A2 (en) * | 2004-09-10 | 2006-03-16 | Dytech Corporation Limited | Gelcasting of a ceramic catalyst carrier |
CN100999123A (zh) * | 2006-12-31 | 2007-07-18 | 华侨大学 | 分段注射/雕刻复合快速成形工艺 |
CN102875150A (zh) * | 2012-10-16 | 2013-01-16 | 北京科技大学 | 一种凝胶注模成型、无压烧结制备碳化硅陶瓷叶轮的方法 |
CN103878372A (zh) * | 2013-12-25 | 2014-06-25 | 华侨大学 | 一种制造具有薄壁或细槽等几何结构的金属件的方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109834266A (zh) * | 2019-01-24 | 2019-06-04 | 北京工业大学 | 一种微波烧结制备浸渍型含钪扩散阴极的方法 |
CN110577822A (zh) * | 2019-09-26 | 2019-12-17 | 北京环境特性研究所 | 一种介电梯度渐变的耐高温宽频吸波材料及其制备方法 |
CN110577822B (zh) * | 2019-09-26 | 2022-05-06 | 北京环境特性研究所 | 一种介电梯度渐变的耐高温宽频吸波材料及其制备方法 |
CN114110350A (zh) * | 2021-12-02 | 2022-03-01 | 浙江天铂云科光电股份有限公司 | 基于温度视觉的智能识别装置 |
CN114406196A (zh) * | 2021-12-31 | 2022-04-29 | 北京航空材料研究院股份有限公司 | 含异型内腔的钛及钛合金铸件制备方法 |
CN114425598A (zh) * | 2021-12-31 | 2022-05-03 | 北京航空材料研究院股份有限公司 | 一种含异型缝隙孔的钛及钛合金铸件制备方法 |
CN114425598B (zh) * | 2021-12-31 | 2023-10-27 | 北京航空材料研究院股份有限公司 | 一种含异型缝隙孔的钛及钛合金铸件制备方法 |
CN114406196B (zh) * | 2021-12-31 | 2023-12-15 | 北京航空材料研究院股份有限公司 | 含异型内腔的钛及钛合金铸件制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103878372B (zh) | 2016-08-17 |
CN103878372A (zh) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015096685A1 (zh) | 一种制造具有薄壁或细槽等几何结构的金属件的方法 | |
CN105541324B (zh) | 手机外壳的制备方法 | |
Liu et al. | Research on selective laser sintering of Kaolin–epoxy resin ceramic powders combined with cold isostatic pressing and sintering | |
CN106187195B (zh) | 采用激光选区烧结工艺制备碳化硅陶瓷件的方法 | |
US6368525B1 (en) | Method for removing volatile components from a ceramic article, and related processes | |
CN103223689B (zh) | 一种梯度功能材料型芯型壳一体化陶瓷铸型的制备方法 | |
CN102173815B (zh) | 一种陶瓷材料粉末坯体浸渍-先驱体裂解制备方法 | |
CN104529497B (zh) | 一种采用真空冷冻干燥技术提高陶瓷铸型精度的方法 | |
CN110228996B (zh) | 一种基于浆料直写成型的陶瓷型芯制备方法 | |
CN103833403B (zh) | 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品 | |
EP0356461B1 (en) | Forming of complex high performance ceramic and metallic shapes | |
CN105777082B (zh) | 一种淀粉预凝胶原位凝固成型制备纳米氧化铝陶瓷的方法 | |
KR20090044628A (ko) | 동결성형을 이용한 거대기공 다공체의 제조방법 및 그에의해 제조된 다공체 | |
CN105272223B (zh) | 一种大尺寸氧化锆基隔热材料的制备方法 | |
CN113878113B (zh) | 一种陶瓷-不锈钢复合材料及其制备方法 | |
JPS61287702A (ja) | 粉体の成形方法 | |
JPS61261274A (ja) | 粉体の成形方法 | |
CN110253735B (zh) | 陶瓷坯体、陶瓷制品及其相应的制备方法 | |
CN112479687A (zh) | 一种陶瓷3d打印产品及其脱脂焙烧一体化工艺方法 | |
KR101928998B1 (ko) | 세라믹스 판상체 및 그 제조 방법 | |
KR101011044B1 (ko) | 개선된 인베스트먼트 주조 방법 | |
CN102335950A (zh) | 一种抗冲击结构陶瓷素坯的成型方法 | |
CN109227886A (zh) | 一种带内腔结构的陶瓷构件及其制备方法 | |
CN106747556B (zh) | 一种纳米闭孔轻量刚玉复相耐火骨料及其制备方法 | |
JP4095149B2 (ja) | Itoリサイクル粉を利用した高密度ito焼結体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14875360 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14875360 Country of ref document: EP Kind code of ref document: A1 |