WO2015096349A1 - 发光器件及其制造方法和显示装置 - Google Patents

发光器件及其制造方法和显示装置 Download PDF

Info

Publication number
WO2015096349A1
WO2015096349A1 PCT/CN2014/076953 CN2014076953W WO2015096349A1 WO 2015096349 A1 WO2015096349 A1 WO 2015096349A1 CN 2014076953 W CN2014076953 W CN 2014076953W WO 2015096349 A1 WO2015096349 A1 WO 2015096349A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light
emitting device
organic layer
forming
Prior art date
Application number
PCT/CN2014/076953
Other languages
English (en)
French (fr)
Inventor
吴长晏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/415,683 priority Critical patent/US9748513B2/en
Publication of WO2015096349A1 publication Critical patent/WO2015096349A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a light emitting device, a method of manufacturing the same, and a display device. Background technique
  • OLED organic light-emitting diode
  • OLED display device has a self-luminous property, and when an electric current passes through the OLED, the organic material in the OLED emits light.
  • the OLED display device has a large viewing angle and can save significant power, so the OLED display device has an incomparable advantage of the liquid crystal display.
  • the OLED display device may include: a substrate substrate and a transparent electrode, an organic layer, and a metal electrode formed on an inner surface of the base substrate, the organic layer being over the transparent electrode, and the metal electrode being over the organic layer.
  • a light extraction structure may be added to the structure of the OLED display device.
  • a light extraction structure may be provided on the outer surface of the base substrate or a light extraction structure may be provided between the base substrate and the organic layer, thereby improving the light extraction efficiency of the OLED display device under the action of the light extraction structure.
  • the light extraction structure When the light extraction structure is disposed on the outer surface of the base substrate, the light extraction structure may be a scattering particle, a micro lens array (Micro Lens Array, MLA for short) or a surface roughness structure, wherein the surface roughness structure may be directly fabricated.
  • MLA Micro Lens Array
  • the light extraction structure When the light extraction structure is disposed on the inner surface of the base substrate, the light extraction structure may be a scattering particle, a grating structure or a surface roughness structure, wherein the surface roughness structure may be a structure directly fabricated on the inner surface of the substrate substrate, in the substrate Providing a light extraction structure on the inner surface of the substrate can reduce the substrate mode and the organic mode, thereby increasing the light extraction efficiency.
  • the present invention provides a light emitting device, a method of fabricating the same, and a display device for improving light extraction efficiency of a light emitting device.
  • the present invention provides a light emitting device comprising: a base substrate and a laminated structure formed on the base substrate, the laminated structure including a first electrode, an organic layer, and a second layer formed by lamination An electrode, wherein the organic layer is located between the first electrode and the second electrode, wherein the second electrode is provided with light extraction particles.
  • the first electrode is located on the base substrate, and the layered structure further comprises: a transparent electrode between the organic layer and the second electrode.
  • the second electrode is located on the base substrate, and the illuminating device further comprises: a transparent electrode between the base substrate and the second electrode.
  • the second electrode is a metal electrode
  • the first electrode is a transparent electrode
  • the metal electrode has a reflectance greater than 95%.
  • the metal electrode has a thickness of 50 nm to 300 nm.
  • the transparent electrode has a thickness of 10 nm to 100 nm.
  • the material of the light extraction particles is one or more of a metal oxide, a polymer, a silicon oxide, a zinc telluride, and a zinc selenide.
  • the light extraction particles have a size of 10 nm to 1000 nm.
  • the material of the transparent electrode comprises ⁇ , ⁇ , ⁇ , ⁇ , ⁇ ,
  • One or more of FTO and GITO are present.
  • the material of the transparent electrode comprises ⁇ , ⁇ , ⁇ , ⁇ , ⁇ ,
  • the transparent electrode When there are many kinds of FTO and GITO, the transparent electrode has a multilayer structure.
  • the present invention provides a display device comprising: the above light emitting device.
  • the present invention provides a method of fabricating a light emitting device, comprising:
  • the step of forming the stacked first electrode, the organic layer and the second electrode over the base substrate comprises:
  • a transparent electrode is formed on the organic layer.
  • the step of forming the stacked first electrode, the organic layer and the second electrode over the base substrate comprises:
  • the method further includes the following steps before forming the second electrode:
  • a transparent electrode is formed on the base substrate.
  • the second electrode is formed as a metal electrode
  • the first electrode is formed as a transparent electrode
  • the metal electrode is provided with light extraction particles, which destroy the surface plasmon wave generated by the metal electrode, so as to be trapped in the surface plasmon wave.
  • the light can be taken out, the light extraction efficiency of the metal electrode is improved, and the light extraction efficiency of the light emitting device is improved.
  • FIG. 1 is a schematic structural view of a light emitting device according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of a light emitting device according to a second embodiment of the present invention
  • FIG. 4 is a flow chart showing a method of fabricating a light emitting device according to Embodiment 6 of the present invention. detailed description
  • FIG. 1 is a schematic structural diagram of a light emitting device according to Embodiment 1 of the present invention.
  • the light emitting device includes: a base substrate 1 and a first electrode 2 sequentially stacked on the base substrate 1
  • the organic layer 3 and the metal electrode 4 are disposed between the first electrode 2 and the metal electrode 4, and the light extraction particles 6 are disposed in the metal electrode 4.
  • the first electrode 2 is located above the base substrate 1, the organic layer 3 is located above the first electrode 2, and the metal electrode 4 is located above the organic layer 3, as shown in FIG.
  • the stacked first electrode 2, the organic layer 3, and the metal electrode 4 can be regarded as a laminated structure formed on the base substrate, wherein the side on which the first electrode 2 of the laminated structure is formed is formed On the base substrate.
  • the first electrode 2 is a transparent electrode, and the material forming the first electrode 2 may include: a transparent conductive oxide TCO, for example, the TCO may include ITO, IZO, ITZO, AZO,
  • the first electrode 2 has a multilayer structure.
  • the multi-layer structure may include a plurality of mixture layers arranged in an accumulated manner, and each mixture layer may be made by mixing a plurality of materials of the above-mentioned ITO, IZO, ITZO, AZO, FTO and GITO, and the density of the plurality of mixture layers
  • the multilayer structure may include a plurality of single material layers that are cumulatively disposed, and each of the single material layers may be made of one of the above-described materials of ITO, IZO, ITZO, AZO, FTO, and GITO.
  • the materials of the plurality of single material layers may be the same or different.
  • the metal electrode 4 may have a thickness of 50 nm to 300 nm.
  • the material forming the metal electrode 4 may include one of aluminum, silver, calcium, magnesium, lithium, cesium or a mixture thereof, or
  • the metal electrode 4 is a multilayer structure formed of a plurality of materials of aluminum, silver, calcium, magnesium, lithium, and lanthanum.
  • the reflectance of the metal electrode 4 is more than 95%, in other words, the metal electrode 4 is preferably made of a metal material having a reflectance of more than 95%.
  • the material of the metal electrode 4 is silver.
  • the material constituting the light extraction particles 6 may include one or more of a metal oxide, a high molecular polymer, silicon oxide, zinc telluride, and zinc selenide.
  • the metal electrode 4 forms a rough surface of the undulations due to the action of the light extraction particles 6, and the rough surface of the undulations can effectively destroy the surface generated by the metal electrode.
  • the plasma wave causes the light trapped in the surface plasmon wave to be taken out, thereby improving the light extraction efficiency of the OLED display device.
  • the light extraction particles 6 may have a size of 10 nm to 1000 nm.
  • the light-extracting particles 6 in the above-mentioned size range can make the surface roughness of the metal electrode 4 large, so that the surface plasmon waves generated by the metal electrode 4 can be better destroyed, and the light extraction efficiency of the light-emitting device can be further improved.
  • the shape of the light extraction particles 6 may be any shape, for example:
  • the shape of the light extraction particles 6 may include: a sphere, an ellipsoid, a cube, a cuboid, a prism, a pyramid, a cylinder, or any other regular or irregular shape.
  • the shape of the light extraction particles 6 is set to an arbitrary shape, so that the surface roughness of the metal electrode 4 is large, so that the surface plasmon wave generated by the metal electrode 4 can be better destroyed, thereby further improving the light extraction of the light emitting device. effectiveness.
  • the light extraction efficiency of the light-emitting device can be theoretically increased by up to 150%.
  • a transparent electrode 5 is further included between the organic layer 3 and the metal electrode 4. Specifically, the transparent electrode 5 is positioned above the organic layer 3, and the metal electrode 4 is positioned above the transparent electrode 5.
  • the transparent electrode 5 may have a thickness of 10 nm to 100 nm.
  • the transparent electrode in this embodiment need not be provided with a thick thickness.
  • the material of the transparent electrode 5 may include: TCO, for example: the TCO may include: ITO, One or more of IZO, ITZO, AZO, FTO, and GITO.
  • the transparent electrode 5 has a multilayer structure.
  • the multi-layer structure may comprise a plurality of mixture layers arranged in an accumulated manner, and each mixture layer may be made by mixing a plurality of materials of the above-mentioned lanthanum, cerium, lanthanum, cerium, FTO and GITO, and the density of the plurality of mixture layers
  • the multi-layer structure may include a plurality of single material layers that are cumulatively disposed, and each of the single material layers may be made of one of the above materials of ⁇ , ⁇ , ITZO, AZO, FTO, and GITO.
  • the materials of the plurality of single material layers may be the same or different.
  • the first electrode 2 is an anode
  • the metal electrode 4 is a cathode
  • the first electrode 2 is a cathode
  • the metal electrode 4 is an anode
  • the metal electrode is provided with light extraction particles, which destroy the surface plasmon wave generated by the metal electrode, so that light trapped in the surface plasmon wave can be taken out, and the metal is improved.
  • the light extraction efficiency of the electrode thereby improving the light extraction efficiency of the light emitting device.
  • a transparent electrode is disposed between the metal electrode and the organic layer, and the transparent electrode ensures the injection and transport characteristics of the carrier between the metal electrode and the organic layer.
  • the metal electrode and the organic layer constitute a composite electrode, and the composite electrode can improve the light extraction efficiency of the light-emitting device under the premise of ensuring the injection and transport characteristics of the carrier between the metal electrode and the organic layer.
  • FIG. 2 is a schematic structural diagram of a light emitting device according to Embodiment 2 of the present invention.
  • the light emitting device includes: a base substrate 1 and a metal electrode 4 sequentially stacked on the base substrate 1.
  • the layer 3 and the first electrode 2 the organic layer 3 is located between the first electrode 2 and the metal electrode 4, and the light extraction particles 6 are disposed in the metal electrode 4.
  • the metal electrode 4 is located on the base substrate 1, the organic layer 3 is located above the metal electrode 4, and the first electrode 2 is located above the organic layer 3, as shown in FIG.
  • the first electrode 2, the organic layer 3, and the metal electrode 4 which are formed by lamination may be regarded as a laminated structure formed on a base substrate, wherein one side of the metal electrode 4 of the laminated structure is formed at On the base substrate.
  • the first electrode 2 is a transparent electrode, and the material of the first electrode 2 may include: a transparent conductive oxide TCO, for example: the TCO may include one or more of ⁇ , ⁇ , ⁇ , ⁇ , FTO, and GITO.
  • the first electrode 2 When the material of the first electrode 2 includes a plurality of kinds of IT0, IZ0, ITZ0, AZ0, FTO, and GITO, the first electrode 2 has a multilayer structure.
  • the multilayer structure may include a plurality of mixture layers disposed in an accumulated manner, and each mixture layer may be made of a mixture of a plurality of materials of the above-mentioned ITO, IZO, ITZO, AZO, FTO, and GITO, and a plurality of mixture layers
  • the density may be the same or different; or, the multilayer structure may include a plurality of single material layers that are cumulatively disposed, and each of the single material layers may be made of one of the above materials of ITO, IZO, ITZO, AZO, FTO, and GITO.
  • the materials of the plurality of single material layers may be the same or different.
  • the metal electrode 4 may have a thickness of 50 nm to 300 nm.
  • the material constituting the metal electrode 4 may include one of aluminum, silver, calcium, magnesium, lithium, bismuth or a mixture thereof, or the metal electrode 4 has a plurality of aluminum, silver, calcium, magnesium, lithium, and strontium. Layer structure.
  • the reflectance of the metal electrode 4 is more than 95%, in other words, the metal electrode 4 is preferably made of a metal material having a reflectance of more than 95%.
  • the material of the metal electrode 4 is silver.
  • the material constituting the light extraction particles 6 may include one of a metal oxide, a high molecular polymer, silicon oxide, zinc sulphide, and zinc selenide or a mixture thereof.
  • the metal electrode 4 forms a rough surface of the undulations due to the action of the light extraction particles 6, and the rough surface of the undulations can effectively destroy the surface plasmon waves generated by the metal electrodes.
  • the light trapped in the surface plasmon wave is taken out, thereby improving the light extraction efficiency of the OLED display device.
  • the light extraction particles 6 may have a size of 10 nm to 1000 nm.
  • the light-extracting particles 6 in the above-mentioned size range can make the surface roughness of the metal electrode 4 large, so that the surface plasmon waves generated by the metal electrode 4 can be better destroyed, and the light extraction efficiency of the light-emitting device can be further improved.
  • the shape of the light extraction particles 6 may be any shape, for example:
  • the shape of the light extraction particles 6 may include: a sphere, an ellipsoid, a cube, a cuboid, a prism, an edge Cones, cylinders, or any other regular or irregular shape.
  • the shape of the light extraction particles 6 is set to an arbitrary shape, so that the surface roughness of the metal electrode 4 is large, so that the surface plasmon wave generated by the metal electrode 4 can be better destroyed, thereby further improving the light extraction of the light emitting device. effectiveness.
  • the light extraction efficiency of the light-emitting device can theoretically be increased by up to 150%.
  • the light emitting device in this embodiment further includes a transparent electrode 5 between the base substrate 1 and the metal electrode 4.
  • the transparent electrode 5 is positioned above the base substrate 1
  • the metal electrode 4 is positioned above the transparent electrode 5
  • the organic layer 3 is positioned above the metal electrode 4.
  • the transparent electrode 5 may have a thickness of 10 nm to 100 nm.
  • the transparent electrode in this embodiment need not be provided with a thick thickness.
  • the material of the transparent electrode 5 may include one or more of ITO, IZO, ITZO, AZO, FTO, and GITO.
  • the transparent electrode 5 has a multilayer structure.
  • the multi-layer structure may include a plurality of mixture layers disposed in an accumulated manner, and each mixture layer may be made of a mixture of a plurality of materials of the above-mentioned ITO, IZO, ITZO, AZO, FTO, and GITO, and a plurality of mixture layers
  • the density may be the same or different; or, the multi-layer structure may include a plurality of single material layers that are cumulatively disposed, and each of the single material layers may be made of one of the above materials of ITO, IZO, ITZO, AZO, FTO, and GITO.
  • the materials of the plurality of single material layers may be the same or different.
  • the first electrode 2 is an anode
  • the metal electrode 4 is a cathode
  • the first electrode 2 is a cathode
  • the metal electrode 4 is an anode
  • the metal electrode is provided with light extraction particles, which destroy the surface plasmon wave generated by the metal electrode, so that light trapped in the surface plasmon wave can be taken out, and the metal electrode is improved.
  • the light extraction efficiency thereby improving the light extraction efficiency of the light emitting device.
  • a transparent electrode is disposed between the metal electrode and the organic layer, and the transparent electrode ensures the injection and transport characteristics of the carrier between the metal electrode and the organic layer.
  • the metal electrode and the organic layer constitute a composite electrode, and the composite electrode can ensure the illuminator Under the premise of the carrier injection and transmission characteristics of the device itself, the light extraction efficiency of the light emitting device is improved.
  • a third embodiment of the present invention provides a display device.
  • the display device includes: a light emitting device, which may be the light emitting device described in the first embodiment or the second embodiment, and is not described in detail herein.
  • the light emitting device may include: an OLED.
  • Embodiment 4 of the present invention provides a method of fabricating a light emitting device, the method comprising: forming a stacked first electrode, an organic layer, and a second electrode over a substrate, wherein the organic layer is formed in the first Between the electrode and the second electrode, and the second electrode is formed with light extraction particles.
  • the step of forming the stacked first electrode, the organic layer and the second electrode over the base substrate comprises:
  • a transparent electrode is formed on the organic layer.
  • the step of forming the stacked first electrode, the organic layer and the second electrode over the base substrate comprises:
  • the method further includes the following steps before forming the second electrode:
  • a transparent electrode is formed on the base substrate.
  • the second electrode is formed as a metal electrode
  • the first electrode is formed as a transparent electrode
  • the metal electrode is provided with light-extracting particles, and the light-extracting particles break surface plasmon waves generated by the metal electrodes, so that light trapped in the surface plasmon waves Can be taken out, improving the light extraction efficiency of the metal electrode, thereby improving the light extraction of the light emitting device Out of efficiency.
  • the implantation of the carrier between the metal electrode and the organic layer is ensured by the transparent electrode disposed between the metal electrode and the organic layer or the transparent electrode disposed between the substrate and the metal electrode. Transmission characteristics.
  • the metal electrode and the organic layer constitute a composite electrode, and the composite electrode can improve the light extraction efficiency of the light emitting device under the premise of ensuring the carrier injection and transmission characteristics of the light emitting device itself.
  • FIG. 3 is a flow chart of a method for fabricating a light emitting device according to Embodiment 5 of the present invention. As shown in FIG. 3, the method includes:
  • Step 101 Form a first electrode on the base substrate.
  • a first electrode material layer may be formed on the base substrate, and the first electrode may be formed by a patterning process.
  • forming the first electrode material layer on the base substrate may include: forming a first electrode material layer on the base substrate by a Physical Vapor Deposition (PVD) process or a wet process.
  • PVD Physical Vapor Deposition
  • the PVD process may include: a sputtering process
  • the wet process may include: a spin coating, a slit coating or an ink jet printing process.
  • the patterning process may include: photoresist coating, exposure, development, etching, photoresist stripping, and the like.
  • Step 102 Form an organic layer on the first electrode.
  • the step of forming an organic layer includes: forming an organic layer by an evaporation process.
  • forming the organic layer includes: forming an organic material layer by a wet process, and forming an organic layer by a patterning process.
  • the wet process may include: a spin coating, a slit coating or an ink jet printing process; the patterning process may include: photoresist coating, exposure, development, engraving Etching, photoresist stripping and other processes.
  • Step 103 forming a transparent electrode on the organic layer.
  • forming the transparent electrode on the organic layer includes: forming a transparent electrode by a PVD process.
  • the PVD process may include: a sputtering process.
  • Step 104 forming a metal electrode on the transparent electrode, wherein the metal electrode is provided The light is taken out of the particles.
  • forming the metal electrode may include: forming light extraction particles on the transparent electrode, and forming a metal electrode over the light extraction particles by an evaporation process, so that the light extraction particles are embedded in the formed metal electrode due to the presence of the light extraction particles , causing the metal electrode to form a rough surface that is uneven.
  • forming the light-extracting particles on the transparent electrode comprises: forming a light-out and uneven size on the transparent electrode by a wet process, a chemical vapor deposition (CVD) process or an evaporation process particle.
  • CVD chemical vapor deposition
  • the method of fabricating the light emitting device provided in this embodiment can be used to manufacture the light emitting device provided in the first embodiment.
  • the metal electrode is provided with light-extracting particles, and the light-extracting particles break surface plasmon waves generated by the metal electrodes, so that light trapped in the surface plasmon waves It can be taken out, and the light extraction efficiency of the metal electrode is improved, thereby improving the light extraction efficiency of the light emitting device.
  • a transparent electrode is provided between the metal electrode and the organic layer, and the transparent electrode ensures the injection and transport characteristics of the carrier between the metal electrode and the organic layer.
  • the metal electrode and the organic layer constitute a composite electrode, and the composite electrode can improve the light extraction efficiency of the light emitting device while ensuring the carrier injection and transmission characteristics of the light emitting device itself.
  • FIG. 4 is a flow chart of a method for fabricating a light emitting device according to Embodiment 6 of the present invention. As shown in FIG. 4, the method includes:
  • Step 201 forming a transparent electrode on the base substrate.
  • forming the transparent electrode on the base substrate includes: forming a transparent electrode on the base substrate by a PVD process.
  • the PVD process may include: a sputtering process.
  • Step 202 Form a metal electrode on the transparent electrode, and light extraction particles are formed in the metal electrode.
  • forming the metal electrode may include: forming a light extraction particle on the transparent electrode, and forming a metal electrode over the light extraction particle by an evaporation process, so that the light is taken The particles are embedded in the formed metal electrode, and the metal electrode forms a rough surface which is uneven due to the presence of the light-extracting particles.
  • forming the light-extracting particles on the transparent electrode comprises: forming a light-out and uneven size on the transparent electrode by a wet process, a chemical vapor deposition (CVD) process or an evaporation process particle.
  • CVD chemical vapor deposition
  • Step 203 forming an organic layer on the metal electrode.
  • forming the organic layer includes: forming an organic layer by an evaporation process.
  • forming the organic layer includes: forming an organic material layer on the metal electrode by a wet process, and forming an organic layer by a patterning process.
  • the wet process may include: a spin coating, a slit coating or an ink jet printing process; the patterning process may include: photoresist coating, exposure, development, engraving Etching, photoresist stripping and other processes.
  • Step 204 forming a first electrode on the organic layer.
  • a first electrode material layer may be formed on the organic layer, and the first electrode is formed by a patterning process.
  • forming the first electrode material layer may include: forming a first electrode material layer on the organic layer by a Physical Vapor Deposition (PVD) process or a wet process.
  • PVD Physical Vapor Deposition
  • the PVD process may include: a sputter process; the wet process may include: a spin coating, a slit coating or an ink jet printing process.
  • the patterning process may include: photoresist coating, exposure, development, etching, photoresist stripping, and the like.
  • the manufacturing method of the light emitting device provided in this embodiment can be used to manufacture the light emitting device provided in the second embodiment.
  • the metal electrode is provided with light-extracting particles, and the light-extracting particles break surface plasmon waves generated by the metal electrodes, so that light trapped in the surface plasmon waves It can be taken out, and the light extraction efficiency of the metal electrode is improved, thereby improving the light extraction efficiency of the light emitting device.
  • a setting is provided between the metal electrode and the organic layer
  • There is a transparent electrode which ensures the injection and transport characteristics of the carrier between the metal electrode and the organic layer.
  • the metal electrode and the organic layer constitute a composite electrode, and the composite electrode can improve the light extraction efficiency of the light emitting device under the premise of ensuring the carrier injection and transmission characteristics of the light emitting device itself.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

公开了一种发光器件及其制造方法和显示装置。该发光器件包括:衬底基板(1)和形成于所述衬底基板(1)之上的层叠结构,所述层叠结构包括层叠形成的第一电极(2)、有机层(3)和第二电极(4),其中,所述有机层(3)位于所述第一电极(2)和所述第二电极(4)之间,所述第二电极(4)中设置有光取出粒子(42)。在发光器件及其制造方法和显示装置的技术方案中,金属电极(41)中设置有光取出粒子(42),该光取出粒子(42)破坏了金属电极(41)产生的表面等离子体波,使得陷入表面等离子体波中的光能够被取出,提高了金属电极(41)的光取出效率,从而提高了发光器件的光取出效率。

Description

发光器件及其制造方法和显示装置 技术领域
本发明涉及显示技术领域, 特别涉及发光器件及其制造方法 和显示装置。 背景技术
有机发光二极管( Organic Light-Emitting Diode,简称: OLED ) 具有自发光的特性, 当 OLED中有电流通过时, OLED中的有机 材料就会发光。 与传统的液晶显示器相比, OLED显示装置的屏 幕可视角度大且能够显著节省电能, 因此 OLED显示装置具有液 晶显示器所不可比拟的优势。
OLED显示装置可包括: 衬底基板和形成于衬底基板内表面 之上的透明电极、 有机层和金属电极, 有机层位于透明电极之上, 金属电极位于有机层之上。为提高 OLED显示装置的光取出效率, 可在 OLED显示装置的结构中增设光取出结构。 现有技术中可在 衬底基板的外表面设置光取出结构或者在衬底基板和有机层之间 设置光取出结构, 从而在光取出结构的作用下提高 OLED显示装 置的光取出效率。 在衬底基板外表面上设置光取出结构时, 光取 出结构可以为散射粒子( particle )、微透镜阵列( Micro Lens Array , 简称: MLA )或者表面粗糙结构, 其中, 表面粗糙结构可以为直 接制作在衬底基板外表面上的结构, 在衬底基板的外表面上设置 光取出结构可减少基板模态 ( Substrate mode ) , 从而增加光取出 效率。 在衬底基板内表面上设置光取出结构时, 光取出结构可以 为散射粒子、 光栅结构或者表面粗糙结构, 其中, 表面粗糙结构 可以为直接制作在衬底基板内表面上的结构, 在衬底基板的内表 面上设置光取出结构可减少基板模态和有机模态( Organic mode ), 从而增加光取出效率。
但是, 现有技术中的上述方案仅能在一定程度上提高 OLED 的光取出效率, 实际应用中 OLED的光取出效率仍然较低。 发明内容
本发明提供了发光器件及其制造方法和显示装置, 用于提高 发光器件的光取出效率。
为实现上述目的, 本发明提供了一种发光器件, 包括: 衬底 基板和形成于所述衬底基板之上的层叠结构, 所述层叠结构包括 层叠形成的第一电极、 有机层和第二电极, 其中, 所述有机层位 于所述第一电极和所述第二电极之间, 其中, 所述第二电极中设 置有光取出粒子。
可选地, 所述第一电极位于所述衬底基板上, 且所述层叠结 构还包括: 位于所述有机层和所述第二电极之间的透明电极。
可选地, 所述第二电极位于所述衬底基板上, 且所述发光器 件还包括: 位于所述衬底基板和所述第二电极之间的透明电极。
可选地, 所述第二电极为金属电极, 所述第一电极为透明电 极。
可选地, 所述金属电极的反射率大于 95%。
可选地, 所述金属电极的厚度为 50nm至 300nm。
可选地, 所述透明电极的厚度为 10nm至 100nm。
可选地, 所述光取出粒子的材料为金属氧化物、 高分子聚合 物、 氧化硅、 ^琉化锌和硒化锌中的一种或多种。
可选地, 所述光取出粒子的尺寸为 10nm至 1000nm。
可选地, 所述透明电极的材料包括 ΙΤΟ、 ΙΖΟ、 ΙΤΖΟ、 ΑΖΟ、
FTO和 GITO中的一种或多种。
可选地, 当所述透明电极的材料包括 ΙΤΟ、 ΙΖΟ、 ΙΤΖΟ、 ΑΖΟ、
FTO和 GITO中的多种时, 所述透明电极为多层结构。
为实现上述目的, 本发明提供了一种显示装置, 包括: 上述 发光器件。
为实现上述目的, 本发明提供了一种发光器件的制造方法, 包括:
在衬底基板之上形成层叠的第一电极、 有机层和第二电极, 其中所述有机层形成在第一电极和第二电极之间, 且所述第二电 极中形成有光取出粒子。
可选地, 在衬底基板之上形成层叠的第一电极、 有机层和第 二电极的步骤包括:
在衬底基板上形成所述第一电极;
在所述第一电极上形成所述有机层;
在所述有机层上形成所述第二电极, 并且
在形成所述有机层之后且形成所述第二电极之前还包括以下 步骤:
在所述有机层上形成透明电极。
可选地, 在衬底基板之上形成层叠的第一电极、 有机层和第 二电极的步骤包括:
在衬底基板上形成所述第二电极;
在所述第二电极上形成所述有机层;
在所述有机层上形成所述第一电极, 并且
在形成所述第二电极之前还包括以下步骤:
在所述衬底基板上形成透明电极。
可选地, 所述第二电极形成为金属电极, 以及所述第一电极 形成为透明电极。
本发明具有以下有益效果:
本发明提供的发光器件及其制造方法和显示装置的技术方案 中, 金属电极中设置有光取出粒子, 该光取出粒子破坏了金属电 极产生的表面等离子体波, 使得陷入表面等离子体波中的光能够 被取出, 提高了金属电极的光取出效率, 从而提高了发光器件的 光取出效率。 附图说明
图 1为本发明实施例一提供的一种发光器件的结构示意图; 图 2为本发明实施例二提供的一种发光器件的结构示意图; 图 3为本发明实施例五提供的一种发光器件的制造方法的流 程图;
图 4为本发明实施例六提供的一种发光器件的制造方法的流 程图。 具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案, 下面 结合附图对本发明提供的发光器件及其制造方法和显示装置进行 详细描述。
图 1为本发明实施例一提供的一种发光器件的结构示意图, 如图 1所示, 该发光器件包括: 衬底基板 1和依次层叠形成于衬 底基板 1之上的第一电极 2、 有机层 3和金属电极 4, 有机层 3位 于第一电极 2和金属电极 4之间, 且金属电极 4中设置有光取出 粒子 6。
本实施例中, 第一电极 2位于衬底基板 1之上, 有机层 3位 于第一电极 2之上, 金属电极 4位于有机层 3之上, 如图 1所示。 在本实施例中, 可以将层叠形成的第一电极 2、有机层 3和金属电 极 4看作形成在衬底基板上的一个层叠结构, 其中该层叠结构的 第一电极 2所在的一侧形成在衬底基板上。
第一电极 2为透明电极, 形成第一电极 2的材料可包括: 透 明导电氧化物 TCO ,例如:该 TCO可包括 ITO、 IZO、 ITZO、 AZO、
FTO和 GITO中的一种或者多种。 当第一电极 2的材料包括 ITO、 IZO、 ITZO, AZO、 FTO和 GITO中的多种时, 该第一电极 2为 多层结构。 其中, 该多层结构可包括累加设置的多个混合物层, 每个混合物层可以为由上述 ITO、 IZO、 ITZO, AZO、 FTO和 GITO 中的多种材料混合制成, 多个混合物层的密度可以相同或者不同; 或者, 该多层结构可包括累加设置的多个单一材料层, 每个单一 材料层可以为由上述 ITO、 IZO、 ITZO, AZO、 FTO和 GITO中 的一种材料制成, 多个单一材料层的材料可以相同或者不同。
金属电极 4的厚度可以为 50nm至 300nm。 形成金属电极 4 的材料可包括铝、 银、 钙、 镁、 锂、 镱中之一或其混合物, 或者 金属电极 4是由铝、 银、 钙、 镁、 锂、 镱中的多种材料形成的多 层结构。
本实施例中, 优选地, 金属电极 4的反射率大于 95%, 换言 之, 金属电极 4优选采用反射率大于 95%的金属材料。 为了实现 金属电极 4的反射率大于 95%, 优选地, 金属电极 4的材料为银。
构成光取出粒子 6的材料可包括金属氧化物、高分子聚合物、 氧化硅、 ^琉化锌和硒化锌中的一种或者多种。
如图 1所示, 通过在金属电极 4中设置光取出粒子 6, 金属 电极 4由于光取出粒子 6的作用而形成凹凸起伏的粗糙表面, 该 凹凸起伏的粗糙表面可有效破坏金属电极产生的表面等离子体 波, 使得陷入表面等离子体波中的光被取出, 从而提高 OLED显 示装置的光取出效率。
优选地, 光取出粒子 6的尺寸可以为 10nm至 1000nm。 采用 上述尺寸范围的光取出粒子 6可使得金属电极 4的表面的粗糙度 较大, 从而能够更好的破坏金属电极 4产生的表面等离子体波, 进而进一步提高了发光器件的光取出效率。
光取出粒子 6的形状可以为任意形状, 例如: 该光取出粒子 6的形状可以包括: 球形、 椭球形、 正方体、 长方体、 棱柱体、 棱 锥体、 圆柱体或者其它任意规则或者不规则形状。将光取出粒子 6 的形状设置为任意形状, 可使得金属电极 4的表面的粗糙度较大, 从而能够更好的破坏金属电极 4产生的表面等离子体波, 进而进 一步提高了发光器件的光取出效率。
与现有技术相比, 金属电极 4中设置光取出粒子 6后, 发光 器件的光取出效率在理论上最大可提升 150%。
可选地, 在有机层 3和金属电极 4之间还包括透明电极 5。 具体地, 透明电极 5位于有机层 3之上, 金属电极 4位于透明电 极 5之上。
透明电极 5的厚度可以为 10nm至 100nm。 本实施例中透明 电极无需设置较厚的厚度。
透明电极 5的材料可包括: TCO,例如:该 TCO可包括: ITO、 IZO、 ITZO、 AZO、 FTO和 GITO中的一种或者多种。 当透明电 极 5的材料包括 ITO、 IZO、 ITZO、 AZO、 FTO和 GITO中的多 种时, 该透明电极 5为多层结构。 其中, 该多层结构可包括累加 设置的多个混合物层, 每个混合物层可以为由上述 ΙΤΟ、 ΙΖΟ、 ΙΤΖΟ、 ΑΖΟ、 FTO和 GITO中的多种材料混合制成, 多个混合物 层的密度可以相同或者不同; 或者, 该多层结构可包括累加设置 的多个单一材料层, 每个单一材料层可以为由上述 ΙΤΟ、 ΙΖΟ、 ITZO、 AZO、 FTO和 GITO中的一种材料制成, 多个单一材料层 的材料可以相同或者不同。
在该实施例中, 第一电极 2为阳极、 金属电极 4为阴极; 或 者第一电极 2为阴极, 金属电极 4为阳极。
在本实施例提供的发光器件中, 金属电极中设置有光取出粒 子, 该光取出粒子破坏了金属电极产生的表面等离子体波, 使得 陷入表面等离子体波中的光能够被取出, 提高了金属电极的光取 出效率, 从而提高了发光器件的光取出效率。 本实施例提供的发 光器件中, 在金属电极和有机层之间设置有透明电极, 该透明电 极保证了金属电极和有机层之间载子的注入及传输特性。 本实施 例中, 金属电极和有机层组成复合电极, 该复合电极可以在保证 金属电极和有机层之间载子的注入及传输特性的前提下, 提高发 光器件的光取出效率。
图 2为本发明实施例二提供的一种发光器件的结构示意图, 如图 2所示, 该发光器件包括: 衬底基板 1和依次层叠形成于衬 底基板 1之上的金属电极 4、 有机层 3和第一电极 2, 有机层 3位 于第一电极 2和金属电极 4之间, 且金属电极 4中设置有光取出 粒子 6。
本实施例中, 金属电极 4位于衬底基板 1之上, 有机层 3位 于金属电极 4之上, 第一电极 2位于有机层 3之上, 如图 2所示。 在本实施例中, 可以将层叠形成的第一电极 2、有机层 3和金属电 极 4看作形成在衬底基板上的一个层叠结构, 其中该层叠结构的 金属电极 4所在的一侧形成在衬底基板上。 第一电极 2为透明电极, 则第一电极 2的材料可包括: 透明 导电氧化物 TCO, 例如: 该 TCO可包括 ΙΤΟ、 ΙΖΟ、 ΙΤΖΟ、 ΑΖΟ、 FTO和 GITO中的一种或者多种。 当第一电极 2的材料包括 IT0、 IZ0、 ITZ0、 AZ0、 FTO和 GITO中的多种时, 该第一电极 2为 多层结构。 其中, 该多层结构可包括累加设置的多个混合物层, 每个混合物层可以为由上述 ITO、 IZO、 ITZO、 AZO、 FTO和 GITO 中的多种材料的混合制成, 多个混合物层的密度可以相同或者不 同; 或者, 该多层结构可包括累加设置的多个单一材料层, 每个 单一材料层可以为由上述 ITO、 IZO、 ITZO、 AZO、 FTO和 GITO 中的一种材料制成, 多个单一材料层的材料可以相同或者不同。
金属电极 4的厚度可以为 50nm至 300nm。 构成金属电极 4 的材料可包括铝、 银、 钙、 镁、 锂、 镱中之一或其混合物, 或者 金属电极 4具有由铝、 银、 钙、 镁、 锂、 镱中的多种形成的多层 结构。
本实施例中, 优选地, 金属电极 4的反射率大于 95%, 换言 之, 金属电极 4优选采用反射率大于 95%的金属材料。 为了实现 金属电极 4的反射率大于 95%, 金属电极 4的材料为银。
构成光取出粒子 6的材料可包括金属氧化物、高分子聚合物、 氧化硅、 石克化锌和硒化锌中之一或其混合物。
如图 2所示, 设置了光取出粒子 6之后, 金属电极 4由于光 取出粒子 6的作用而形成凹凸起伏的粗糙表面, 该凹凸起伏的粗 糙表面可有效破坏金属电极产生的表面等离子体波, 使得陷入表 面等离子体波中的光被取出, 从而提高 OLED显示装置的光取出 效率。
优选地, 光取出粒子 6的尺寸可以为 10nm至 1000nm。 采用 上述尺寸范围的光取出粒子 6可使得金属电极 4的表面的粗糙度 较大, 从而能够更好的破坏金属电极 4产生的表面等离子体波, 进而进一步提高了发光器件的光取出效率。
光取出粒子 6的形状可以为任意形状, 例如: 该光取出粒子 6的形状可以包括: 球形、 椭球形、 正方体、 长方体、 棱柱体、 棱 锥体、 圆柱体或者其它任意规则或者不规则形状。将光取出粒子 6 的形状设置为任意形状, 可使得金属电极 4的表面的粗糙度较大, 从而能够更好的破坏金属电极 4产生的表面等离子体波, 进而进 一步提高了发光器件的光取出效率。
与现有技术相比, 在金属电极 4中设置了光取出粒子 6后, 发光器件的光取出效率在理论上最大可提升 150%。
可选地, 本实施例中的发光器件还包括位于衬底基板 1和金 属电极 4之间的透明电极 5。 具体地, 透明电极 5位于衬底基板 1 之上,金属电极 4位于透明电极 5之上,有机层 3位于金属电极 4 之上。
透明电极 5的厚度可以为 10nm至 100nm。 本实施例中透明 电极无需设置较厚的厚度。
透明电极 5的材料可包括: ITO、 IZO、 ITZO、 AZO、 FTO 和 GITO中的一种或者多种。当透明电极 5的材料包括 ITO、 ΙΖΟ、 ITZO、 AZO、 FTO和 GITO中的多种时, 该透明电极 5为多层结 构。 其中, 该多层结构可包括累加设置的多个混合物层, 每个混 合物层可以为由上述 ITO、 IZO、 ITZO、 AZO、 FTO和 GITO中 的多种材料的混合制成, 多个混合物层的密度可以相同或者不同; 或者, 该多层结构可包括累加设置的多个单一材料层, 每个单一 材料层可以为由上述 ITO、 IZO、 ITZO、 AZO、 FTO和 GITO中 的一种材料制成, 多个单一材料层的材料可以相同或者不同。
在该实施例中, 第一电极 2为阳极、 金属电极 4为阴极; 或 者第一电极 2为阴极, 金属电极 4为阳极。
本实施例提供的发光器件中,金属电极中设置有光取出粒子, 该光取出粒子破坏了金属电极产生的表面等离子体波, 使得陷入 表面等离子体波中的光能够被取出, 提高了金属电极的光取出效 率, 从而提高了发光器件的光取出效率。 本实施例提供的发光器 件中, 在金属电极和有机层之间设置有透明电极, 该透明电极保 证了金属电极和有机层之间载子的注入及传输特性。 本实施例中, 金属电极和有机层组成复合电极, 该复合电极可以在保证发光器 件本身的载子注入及传输特性的前提下, 提高发光器件的光取出 效率。
本发明实施例三提供了一种显示装置, 该显示装置包括: 发 光器件, 该发光器件可采用上述实施例一或者实施例二中所述的 发光器件, 此处不再具体描述。 发光器件可包括: OLED。
本发明实施例四提供了一种发光器件的制造方法, 该方法包 括: 在衬底基板之上形成层叠的第一电极、 有机层和第二电极, 其中所述有机层形成在所述第一电极和第二电极之间, 且所述第 二电极形成有光取出粒子。
可选地, 在衬底基板之上形成层叠的第一电极、 有机层和第 二电极的步骤包括:
在衬底基板上形成所述第一电极;
在所述第一电极上形成所述有机层;
在所述有机层上形成所述第二电极, 并且
在形成所述有机层之后且形成所述第二电极之前还包括以下 步骤:
在所述有机层上形成透明电极。
可选地, 在衬底基板之上形成层叠的第一电极、 有机层和第 二电极的步骤包括:
在衬底基板上形成所述第二电极;
在所述第二电极上形成所述有机层;
在所述有机层上形成所述第一电极, 并且
在形成所述第二电极之前还包括以下步骤:
在所述衬底基板上形成透明电极。
可选地, 所述第二电极被形成为金属电极, 以及所述第一电 极形成为透明电极。
本实施例提供的发光器件的制造方法制造出的发光器件中, 金属电极中设置有光取出粒子, 该光取出粒子破坏了金属电极产 生的表面等离子体波, 使得陷入表面等离子体波中的光能够被取 出, 提高了金属电极的光取出效率, 从而提高了发光器件的光取 出效率。 本实施例的发光器件中, 通过在金属电极和有机层之间 设置的透明电极或者在衬底基板和金属电极之间设置的透明电 极, 保证了金属电极和有机层之间载子的注入及传输特性。 本实 施例中, 优选地, 金属电极和有机层组成复合电极, 该复合电极 可以在保证发光器件本身的载子注入及传输特性的前提下, 提高 发光器件的光取出效率。
图 3为本发明实施例五提供的一种发光器件的制造方法的流 程图, 如图 3所示, 该方法包括:
步骤 101、 在衬底基板上形成第一电极。
本实施例中, 可在衬底基板上形成第一电极材料层, 并通过 构图工艺形成第一电极。
具体地, 在衬底基板上形成第一电极材料层可包括: 通过物 理气相沉积 (Physical Vapor Deposition, 简称: PVD ) 工艺或者 湿式工艺在衬底基板上形成第一电极材料层。 其中, PVD工艺可 包括: 溅射 (sputter ) 工艺; 湿式工艺可包括: 旋转涂覆 ( spin coating )、 狭缝涂覆 ( slit coating )或者喷墨打印( ink jet printing ) 工艺。
具体地, 构图工艺可包括: 光刻胶涂覆、 曝光、 显影、 刻蚀、 光刻胶剥离等工艺。
步骤 102、 在第一电极上形成有机层。
具体地, 形成有机层的步骤包括: 通过蒸镀工艺形成有机层。 或者, 具体地, 形成有机层包括: 通过湿式工艺形成有机材 料层, 并通过构图工艺形成有机层。 其中, 湿式工艺可包括: 旋 转涂覆 ( spin coating )、狭缝涂覆 ( slit coating )或者喷墨打印( ink jet printing ) 工艺; 构图工艺可包括: 光刻胶涂覆、 曝光、 显影、 刻蚀、 光刻胶剥离等工艺。
步骤 103、 在有机层上形成透明电极。
具体地, 在有机层上形成透明电极包括: 通过 PVD工艺形成 透明电极。 其中, PVD工艺可包括: 溅射 (sputter ) 工艺。
步骤 104、 在透明电极上形成金属电极, 其中金属电极中设 置有光取出粒子。
具体地, 形成金属电极可包括: 在透明电极上形成光取出粒 子, 并通过蒸镀工艺在光取出粒子上方形成金属电极, 使得光取 出粒子嵌入在形成的金属电极中, 由于光取出粒子的存在, 致使 金属电极形成凹凸不平的粗糙表面。
其中, 在透明电极上形成光取出粒子包括: 通过湿式工艺、 化学气相沉积 ( Chemical Vapor Deposition, 简称: CVD ) 工艺或 者蒸镀工艺, 在透明电极上形成形貌不均、 大小不一的光取出粒 子。
本实施例提供的发光器件的制造方法可用于制造上述实施例 一提供的发光器件。
本实施例提供的发光器件的制造方法制造出的发光器件中, 金属电极中设置有光取出粒子, 该光取出粒子破坏了金属电极产 生的表面等离子体波, 使得陷入表面等离子体波中的光能够被取 出, 提高了金属电极的光取出效率, 从而提高了发光器件的光取 出效率。 本实施例的发光器件中, 在金属电极和有机层之间设置 有透明电极, 该透明电极保证了金属电极和有机层之间载子的注 入及传输特性。 本实施例中, 金属电极和有机层组成复合电极, 该复合电极可以在保证发光器件本身的载子注入及传输特性的前 提下, 提高发光器件的光取出效率。
图 4为本发明实施例六提供的一种发光器件的制造方法的流 程图, 如图 4所示, 该方法包括:
步骤 201、 在衬底基板上形成透明电极。
具体地, 在衬底基板上形成透明电极包括: 通过 PVD工艺在 衬底基板上形成透明电极。其中, PVD工艺可包括:溅射(sputter ) 工艺。
步骤 202、 在透明电极上形成金属电极, 金属电极中形成有 光取出粒子。
具体地, 形成金属电极可包括: 在透明电极上形成光取出粒 子, 并通过蒸镀工艺在光取出粒子上方形成金属电极, 使得光取 出粒子嵌入在形成的金属电极中, 由于光取出粒子的存在, 致使 金属电极形成凹凸不平的粗糙表面。
其中, 在透明电极上形成光取出粒子包括: 通过湿式工艺、 化学气相沉积 ( Chemical Vapor Deposition, 简称: CVD ) 工艺或 者蒸镀工艺, 在透明电极上形成形貌不均、 大小不一的光取出粒 子。
步骤 203、 在金属电极上形成有机层。
具体地, 形成有机层包括: 通过蒸镀工艺来形成有机层。 或者, 具体地, 形成有机层包括: 通过湿式工艺在金属电极 上形成有机材料层, 并通过构图工艺形成有机层。 其中, 湿式工 艺可包括: 旋转涂覆 ( spin coating ) 、 狭缝涂覆 ( slit coating )或 者喷墨打印 (ink jet printing ) 工艺; 构图工艺可包括: 光刻胶涂 覆、 曝光、 显影、 刻蚀、 光刻胶剥离等工艺。
步骤 204、 在有机层上形成第一电极。
本实施例中, 可在有机层上形成第一电极材料层, 并通过构 图工艺形成第一电极。
具体地, 形成第一电极材料层可包括: 通过物理气相沉积 ( Physical Vapor Deposition, 简称: PVD ) 工艺或者湿式工艺在 有机层上形成第一电极材料层。 其中, PVD工艺可包括: 溅射 ( sputter )工艺; 湿式工艺可包括: 旋转涂覆 ( spin coating ) 、 狭 缝涂覆 ( slit coating )或者喷墨打印 ( ink jet printing ) 工艺。
具体地, 构图工艺可包括: 光刻胶涂覆、 曝光、 显影、 刻蚀、 光刻胶剥离等工艺。
本实施例提供的发光器件的制造方法可用于制造上述实施例 二提供的发光器件。
本实施例提供的发光器件的制造方法制造出的发光器件中, 金属电极中设置有光取出粒子, 该光取出粒子破坏了金属电极产 生的表面等离子体波, 使得陷入表面等离子体波中的光能够被取 出, 提高了金属电极的光取出效率, 从而提高了发光器件的光取 出效率。 本实施例的发光器件中, 在金属电极和有机层之间设置 有透明电极, 该透明电极保证了金属电极和有机层之间载子的注 入及传输特性。 本实施例中, 金属电极和有机层组成复合电极, 该复合电极可以在保证发光器件本身的载子注入及传输特性的前 提下, 提高发光器件的光取出效率。
可以理解的是, 以上实施方式仅仅是为了说明本发明的原理 而采用的示例性实施方式, 然而本发明并不局限于此。 对于本领 域内的普通技术人员而言, 在不脱离本发明的精神和实质的情况 下, 可以做出各种变型和改进, 这些变型和改进也视为本发明的 保护范围。

Claims

权利要求书
1、 一种发光器件, 包括: 衬底基板和形成于所述衬底基板之 上的层叠结构, 所述层叠结构包括层叠形成的第一电极、 有机层 和第二电极, 其中, 所述有机层位于所述第一电极和所述第二电 极之间, 其特征在于, 所述第二电极中设置有光取出粒子。
2、 根据权利要求 1所述的发光器件, 其特征在于, 所述第一 电极位于所述衬底基板上, 所述层叠结构还包括: 位于所述有机 层和所述第二电极之间的透明电极。
3、 根据权利要求 1所述的发光器件, 其特征在于, 所述第二 电极位于所述衬底基板上, 所述层叠结构还包括: 位于所述衬底 基板和所述第二电极之间的透明电极。
4、根据权利要求 1至 3中任一项所述的发光器件, 其特征在 于, 所述第二电极为金属电极。
5、根据权利要求 1至 3中任一项所述的发光器件, 其特征在 于, 所述第一电极为透明电极。
6、 根据权利要求 4所述的发光器件, 其特征在于, 所述金属 电极的反射率大于 95%。
7、 根据权利要求 4所述的发光器件, 其特征在于, 所述金属 电极的厚度为 50nm至 300nm。
8、 根据权利要求 2或 3所述的发光器件, 其特征在于, 所述 透明电极的厚度为 10nm至 100nm。
9、 根据权利要求 1所述的发光器件, 其特征在于, 所述光取 出粒子的材料为金属氧化物、 高分子聚合物、 氧化硅、 硫化锌和 石西化锌中的一种或多种。
10、 根据权利要求 1所述的发光器件, 其特征在于, 所述光 取出粒子的尺寸为 10nm至 1000nm。
11、 根据权利要求 2或 3所述的发光器件, 其特征在于, 所 述透明电极的材料包括 ITO、 IZO、 ITZO、 AZO、 FTO 和 GITO 中的一种或多种。
12、 根据权利要求 11所述的发光器件, 其特征在于, 当所述 透明电极的材料包括 ITO、 IZO、 ITZO、 AZO、 FTO和 GITO 中 的多种时, 所述透明电极为多层结构。
13、 一种显示装置, 其特征在于, 包括: 上述权利要求 1至 12任一所述的发光器件。
14、 一种发光器件的制造方法, 其特征在于, 包括以下步骤: 在衬底基板之上形成层叠的第一电极、 有机层和第二电极, 其中所述有机层形成在所述第一电极和第二电极之间, 且所述第 二电极中形成有光取出粒子。
14、根据权利要求 13所述的发光器件的制造方法, 其特征在 于, 在衬底基板之上形成层叠的第一电极、 有机层和第二电极的 步骤包括:
在衬底基板上形成所述第一电极;
在所述第一电极上形成所述有机层;
在所述有机层上形成所述第二电极, 并且
在形成所述有机层之后且形成所述第二电极之前还包括以下 步骤:
在所述有机层上形成透明电极。
15、根据权利要求 13所述的发光器件的制造方法, 其特征在 于, 在衬底基板之上形成层叠的第一电极、 有机层和第二电极的 步骤包括:
在衬底基板上形成所述第二电极;
在所述第二电极上形成所述有机层;
在所述有机层上形成所述第一电极, 并且
在形成所述第二电极之前还包括以下步骤:
在所述衬底基板上形成透明电极。
16、 根据权利要求 13至 15中任一项所述的发光器件的制造 方法, 其特征在于, 所述第二电极形成为金属电极, 以及所述第 一电极形成为透明电极。
PCT/CN2014/076953 2013-12-27 2014-05-07 发光器件及其制造方法和显示装置 WO2015096349A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/415,683 US9748513B2 (en) 2013-12-27 2014-05-07 Light emitting device and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310741732.1 2013-12-27
CN201310741732.1A CN103715368A (zh) 2013-12-27 2013-12-27 发光器件及其制造方法和显示装置

Publications (1)

Publication Number Publication Date
WO2015096349A1 true WO2015096349A1 (zh) 2015-07-02

Family

ID=50408157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076953 WO2015096349A1 (zh) 2013-12-27 2014-05-07 发光器件及其制造方法和显示装置

Country Status (3)

Country Link
US (1) US9748513B2 (zh)
CN (1) CN103715368A (zh)
WO (1) WO2015096349A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600980B1 (en) 2018-12-18 2020-03-24 Sharp Kabushiki Kaisha Quantum dot light-emitting diode (LED) with roughened electrode

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715368A (zh) 2013-12-27 2014-04-09 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置
US20170040573A1 (en) * 2014-04-16 2017-02-09 Merck Patent Gmbh Electronic device with thin porous layers of mixed metal oxides
CN105977393B (zh) * 2016-05-27 2019-03-08 纳晶科技股份有限公司 一种电致发光器件及其制作方法
CN106992268A (zh) * 2017-04-28 2017-07-28 京东方科技集团股份有限公司 一种有机发光二极管器件及其制造方法、显示装置
CN108963106B (zh) * 2018-07-24 2020-11-13 云谷(固安)科技有限公司 显示面板及其制作方法、显示装置
CN111416052A (zh) * 2020-05-09 2020-07-14 合肥维信诺科技有限公司 显示面板和显示装置
CN111584751B (zh) * 2020-05-26 2023-04-11 京东方科技集团股份有限公司 封装结构及封装方法、电致发光器件、显示设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498046A (zh) * 2002-10-01 2004-05-19 ��˹���´﹫˾ 具有增强的光提取效率的有机发光器件
CN102620235A (zh) * 2011-12-20 2012-08-01 友达光电股份有限公司 光取出膜及应用其的发光元件
US20130105770A1 (en) * 2011-10-13 2013-05-02 Cambrios Technologies Corporation Opto-electrical devices incorporating metal nanowires
CN103715368A (zh) * 2013-12-27 2014-04-09 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872472B2 (en) * 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
JP4001118B2 (ja) * 2003-03-24 2007-10-31 ソニー株式会社 有機電界発光素子及びアミノモノスチリルナフタレン化合物
JP2007165284A (ja) * 2005-11-18 2007-06-28 Seiko Instruments Inc エレクトロルミネッセンス素子及びこれを用いた表示装置
US7851995B2 (en) * 2006-05-05 2010-12-14 Global Oled Technology Llc Electroluminescent device having improved light output
CN100573964C (zh) * 2006-12-30 2009-12-23 财团法人工业技术研究院 有机发光二极管
KR100833775B1 (ko) * 2007-08-03 2008-05-29 삼성에스디아이 주식회사 유기 전계 발광 표시 장치
EP2287939A4 (en) * 2008-05-21 2011-08-10 Pioneer Corp ORGANIC ELECTROLUMINESCENT ELEMENT
KR101352118B1 (ko) * 2008-08-08 2014-01-14 엘지디스플레이 주식회사 발광 표시장치 및 이의 제조방법
CN101359721A (zh) * 2008-09-23 2009-02-04 吉林大学 光谱可调的顶发射有机电致发光器件
JP2010186613A (ja) * 2009-02-12 2010-08-26 Hitachi Displays Ltd 有機発光素子及びその作製方法、並びに表示装置
KR20130143547A (ko) * 2010-07-16 2013-12-31 에이쥐씨 글래스 유럽 유기발광소자용 반투명 전도성 기재
US8693081B2 (en) * 2010-09-30 2014-04-08 University Of Cincinnati Electrofluidic imaging film, devices, and displays, and methods of making and using the same
JP5979932B2 (ja) * 2011-03-31 2016-08-31 住友化学株式会社 有機エレクトロルミネッセンス素子
CN103503571B (zh) * 2011-06-28 2016-03-30 松下知识产权经营株式会社 有机电致发光元件
KR101901350B1 (ko) * 2011-11-09 2018-09-27 엘지디스플레이 주식회사 유기전계발광표시장치
WO2013147573A1 (ko) * 2012-03-30 2013-10-03 주식회사 엘지화학 유기전자소자용 기판
TWI581458B (zh) * 2012-12-07 2017-05-01 晶元光電股份有限公司 發光元件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498046A (zh) * 2002-10-01 2004-05-19 ��˹���´﹫˾ 具有增强的光提取效率的有机发光器件
US20130105770A1 (en) * 2011-10-13 2013-05-02 Cambrios Technologies Corporation Opto-electrical devices incorporating metal nanowires
CN102620235A (zh) * 2011-12-20 2012-08-01 友达光电股份有限公司 光取出膜及应用其的发光元件
CN103715368A (zh) * 2013-12-27 2014-04-09 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600980B1 (en) 2018-12-18 2020-03-24 Sharp Kabushiki Kaisha Quantum dot light-emitting diode (LED) with roughened electrode

Also Published As

Publication number Publication date
US20150380677A1 (en) 2015-12-31
US9748513B2 (en) 2017-08-29
CN103715368A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2015096349A1 (zh) 发光器件及其制造方法和显示装置
US9083003B2 (en) Organic light emitting diode display and method for manufacturing the same
JP2022130536A (ja) 発光装置
KR102150011B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
CN202977534U (zh) 有机发光装置
KR102012046B1 (ko) 유기발광 표시장치 및 그의 제조방법
KR101081710B1 (ko) 적어도 하나의 유기층을 갖는 상부-발광 전계발광 컴포넌트
JP5808905B2 (ja) 有機発光素子、これを含む照明装置、およびこれを備える有機発光ディスプレイ装置
CN102842582B (zh) 平板显示设备的底板、平板显示设备及制造该底板的方法
TWI674689B (zh) 顯示裝置及其製造方法
CN103337594B (zh) 一种oled基板和显示装置
KR102531868B1 (ko) 유기 발광 표시 장치 및 그 제조방법
WO2018149106A1 (zh) 复合透明电极、oled及其制备方法、阵列基板和显示装置
CN104867955A (zh) 有机发光显示器及制造有机发光显示器的方法
CN103887322A (zh) 有机发光显示装置及其制造方法
WO2011161998A1 (ja) 有機el素子
WO2013088904A1 (ja) 有機エレクトロルミネッセンス素子
US9863037B2 (en) Deposition mask and method of fabricating the same
JP2010186613A (ja) 有機発光素子及びその作製方法、並びに表示装置
WO2019196629A1 (zh) Oled器件及其制作方法、显示装置
JP2013545230A5 (zh)
CN104701460A (zh) 一种反射电极及其制备方法和应用
TW201419518A (zh) 有機發光裝置及其製造方法
US20130149803A1 (en) Method of fabricating organic light emitting diode
CN113871542B (zh) 发光二极管器件及其制备方法、显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14415683

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/12/2016)