WO2015093760A1 - 고성능 숏크리트를 이용한 사면보강방법 - Google Patents

고성능 숏크리트를 이용한 사면보강방법 Download PDF

Info

Publication number
WO2015093760A1
WO2015093760A1 PCT/KR2014/011815 KR2014011815W WO2015093760A1 WO 2015093760 A1 WO2015093760 A1 WO 2015093760A1 KR 2014011815 W KR2014011815 W KR 2014011815W WO 2015093760 A1 WO2015093760 A1 WO 2015093760A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
mixing
shotcrete
mixed
performance
Prior art date
Application number
PCT/KR2014/011815
Other languages
English (en)
French (fr)
Inventor
윤경구
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to CN201480069796.4A priority Critical patent/CN105829612B/zh
Publication of WO2015093760A1 publication Critical patent/WO2015093760A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/066Precipitated or pyrogenic silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/106Kaolin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/40Miscellaneous comprising stabilising elements

Definitions

  • the present invention relates to a slope reinforcement method, and more specifically, in the state of producing fluid with a compressive strength of 21 ⁇ 30MPa in the batcher plant, after transporting the site, by mixing 20-40% of the air bubbles by volume to increase the fluidity
  • High-quality mixed material of any one of fly ash or slag powder or low-grade mixed material of fly ash or slag powder is mixed to form a moderate strength shotcrete, and one of silica fume and metakaolin or silica fume and metakaolin
  • To form high-performance shotcrete and to mix color oxide of iron oxide or carbon black to form color shotcrete, and to construct inner layer part, outer layer part and surface layer part on the slope, respectively, to reduce construction cost and high strength and high durability.
  • Combined type using high-performance shotcrete and reinforcement member to secure and facilitate maintenance If it directed to a reinforcement method.
  • shotcrete is a method of spraying concrete onto a target structure using high pressure air
  • wet shotcrete is mainly used, which is a mixture of cement, aggregate, water, etc. It does not need to install the formwork because it is pumped in and sprayed near the nozzle, and it has excellent applicability to inclined surfaces that are difficult to access.
  • the shotcrete is classified into a normal strength shotcrete having a compressive strength of at least 21 MPa, and a high strength shotcrete having a compressive strength of at least 35 MPa, and a high strength shotcrete having high durability. Also called high performance shotcrete.
  • Table 1 shows the total number of shotcrete holes on the 333 slopes of Korea's highways in Korea. The results showed that 17.4% and 58 slopes showed less than average slope quality such as cracks and whitening. . As a result, 53% of slopes, 89% of whitening and 74% of aggregates were in progress.
  • the slope reinforcement method is to gently adjust the slope slope, or shotcrete ball, retaining wall ball, pile ball to secure the safety rate by cutting the slope This is a method using the resistance of the anchor ball.
  • the artificial rock is manufactured and installed on the existing structure, but the artificial cancer is additionally attached to the outside of the slope, and is constructed with a supporting member connected to and supported by the artificial cancer.
  • the adhesive is applied to the inner side and the artificial cancer panel is formed using the primer, but it has no structural performance.
  • the artificial cancer mainly uses epoxy or polymer as the main binder, and when exposed to ultraviolet rays, the brittleness becomes stronger and the durability is considerably lowered. Therefore, it usually has 3 to 4 years of use and needs periodic maintenance. There was a difficult problem to manage.
  • the present invention is to solve the conventional problems as described above, the object of the present invention is to produce a normal concrete of compressive strength of 21 ⁇ 30MPa in the batcher plant, after the field transfer, 20 to 40% of the bubbles compared to the volume Incorporate either fly ash or slag powder or a low-grade material in which fly ash or slag powder is mixed in the state of increasing fluidity to form a moderate strength shotcrete, and form either silica fume or metakaolin or silica fume and High-performance shotcrete is formed by incorporating metakaolin mixed high-quality materials, and color shotcrete is formed by incorporating iron oxide or carbon black coloring materials, respectively, and the inner layer part, outer layer part, and surface layer part are sequentially installed on the slopes.
  • the object of the present invention is to produce a normal concrete of compressive strength of 21 ⁇ 30MPa in the batcher plant, after the field transfer, 20 to 40% of the bubbles compared to the volume Incorporate either fly ash or slag powder or a low-
  • another object of the present invention is to provide an economic layer and ease of construction by forming the inner layer of the retaining wall by the ordinary shotcrete in which any one of fly ash or slag powder or a low-grade material mixed with fly ash or slag powder is mixed,
  • the outer layer is cast with high performance shotcrete containing any one of silica fume and metakaolin or high-grade mixed material mixed with silica fume and metakaolin to secure high strength and high durability, and the surface layer is cast with color shotcrete to finish in beautiful and natural shape.
  • Another object of the present invention by integrating the anchor and the high-performance shotcrete installed to secure the stability by reinforcing the slope, integrated slope reinforcement using high-performance shotcrete and reinforcing member to ensure structural stability and economical efficiency In providing a method.
  • each concrete When each concrete is discharged to the shorting guide member, it is characterized in that the slump is reduced while dissipating the bubbles contained in each concrete by blowing high-pressure air of 5 atm or more.
  • the batcher plant after producing the concrete with a compressive strength of 21 ⁇ 30MPa, after the field transfer, by mixing 20 to 40% of the air bubbles by volume to increase the fluidity of either fly ash or slag powder or fly Incorporates low-grade mixed materials of ash or slag fine powder to form moderate-strength shotcrete, and mixes any one of silica fume and metakaolin or high-quality mixed materials of silica fume and metakaolin to form high-performance shotcrete.
  • Color shotcrete is formed by incorporating coloring material of carbon black or carbon black, and the inner layer, outer layer, and surface layer are sequentially installed on the slope, respectively, so that the construction cost can be reduced than when the slope is constructed with high-strength shotcrete. It can have the advantage.
  • the inner layer portion of the retaining wall is formed by the ordinary shotcrete in which any one of fly ash or slag powder or a low-grade material mixed with fly ash or slag powder is mixed to provide economy and ease of construction.
  • High strength and high durability by placing with high performance shotcrete mixed with either silica fume and metakaolin or mixed with silica fume and metakaolin to secure high strength and high durability, and the surface layer is cast with color shotcrete to finish in beautiful and natural shape, maintaining beautiful scenery and maintaining It may have an advantage to facilitate.
  • Figure 2 is a view to stabilize the slope of the present invention
  • FIG. 4 is a view showing the bubble of the present invention.
  • 5 to 6 is a view showing a mixing portion of the present invention
  • Figure 16 is a mixed state of the coloring material in the present invention
  • 17 to 18 is a view showing a state in which the slope is reinforced by the present invention
  • Moderate strength concrete formed by mixing the foam and the low-grade mixed material in the normal concrete in the mixing unit 60 is discharged to the slope 100 through the shorting guide member 70 to the inner layer portion (thicker than the outer layer 300) 200);
  • the high-performance concrete formed by mixing the air bubbles and the high-grade mixed material into the mixing portion 60 in the ordinary concrete is discharged to a thickness thinner than the thickness of the inner layer portion 200 to the upper surface of the inner layer portion 200 through the shorting guide member 70.
  • the air is discharged at a high pressure of 5 atm or more to dissipate bubbles contained in each concrete to reduce the slump.
  • the slope 100 is reinforced with the reinforcing member 20 in consideration of the state of the slope 100, and the slope is received to increase the adhesion and binding force by accommodating the reinforcing member 20.
  • Reinforcing bars and wire mesh is installed in the 100, the reinforcing member 20 is preferably any one of an earth anchor, a nail nail, a rock bolt.
  • the earth anchor (Earth Anchor) to connect the structure of the structure to the ground with high strength steel and introduce a high tension force to apply the binding force in the transverse direction to the structure, exhibiting the effect of tying the ground and the structure as a collective It consists of steel wire, cement and grout.
  • the Soil Nail is a flexible in-situ reinforcement method for the excavation surface, after inserting the reinforcing member 20 which can resist tensile stress, shear stress and bending moment called nail at relatively narrow intervals without prestressing.
  • the installation of the front plate prevents the increase of the overall shear strength and the displacement caused by the base plate, and the relaxation expected during and after the excavation work.
  • the rock bolt is intended to maintain the strength of the rock inherent, its main role is to remain in the exposed rock surface exposed to inhibit the displacement of pumice that can cause falling or cracking, rock cracking It prevents the activity that occurs along the joint and joint.
  • the compressive strength is 21 ⁇ 30MPa, water, cement, aggregate, etc., respectively supplied from the batcher plant 10 so as to form a normal concrete of slump 60 ⁇ 80mm compounded in a certain ratio And after mixing, it is transferred to the construction site by the ready-mixed concrete truck (40).
  • the water-cement ratio is less than 42% for the strength of the final shotcrete, but after the shotcrete is placed, the slump is preferably adjusted by using a water reducing agent or an AE agent to prevent it from flowing down. Do.
  • the amount of bubbles injected into the ready-mixed concrete truck 40 is mixed with 240 L of bubbles generated by operating the bubble generator for about 60 seconds in 1 m 3 of ordinary concrete to mix 30% of the bubbles in the volume of the concrete.
  • the bubble is added to the normal concrete by about 20 to 40% of the total concrete volume, and the ball bearing effect of the bubble is mounted on the shaft 61 of the mixing unit 60.
  • Forming the ordinary strength concrete is uniformly mixed by a plurality of rotating mixing member 62, and as shown in Figure 7, it is supplied to the pump car 50, the shorting detachably mounted to the pressure feed pipe (51) It is to be discharged to the slope 100 through the guide member (70).
  • Table 2 shows 20% of bubbles per unit volume in ordinary concrete with mixing strength of 27MPa and slump of 70 ⁇ 80mm. 27% and 33% of the mixture was mixed, and the result of the experiment was shot at 9 atm using a compressor.
  • the slump was 80 mm in the normal concrete, increased to 250 mm after bubble mixing, and decreased to 90 mm after shortening.
  • water of 6.8kg / m 3 was added, but after the final shot, the slump decreased because the water molecules were partially dissipated into the atmosphere during the normal strength concrete shot.
  • the amount of air bubbles is mixed with 27% and 33%, the amount of additional unit is large, and after shortening, the final slump is larger than that of ordinary concrete, but the final air volume is constant regardless of the air content of the concrete or the amount of additional entrained air. Can be.
  • the normal strength concrete with a slump larger by mixing 20 to 33% of the volume is not only able to be shortened because of its pumping property, but also when the mixed and shorted bubbles are only short, the final slump is too large as 90 to 150 mm.
  • the shot is shorted to the target slope, it is not attached and flows down. Therefore, it is possible to lower the water-bonding ratio by additionally incorporating one of the fly ash or slag powder, which is inexpensive and viscous when mixed, or the low-grade material in which fly ash or slag powder is mixed in the form of powder in the ordinary strength concrete with large slump. After shortening, the adhesiveness can be increased by reducing the final slump.
  • any one of the fly ash or the slag powder or the lower mixed material in which the fly ash or the slag powder is mixed is mixed in an amount of 3 to 30 parts by weight based on 100 parts by weight of the cement forming the normal concrete.
  • the bubble is added to the ready-mixed truck (40) by about 20 to 40% of the total concrete volume, and the ball bearing effect of the bubble and one of silica fume and metakaolin or silica
  • a high-quality mixed material mixed with fume and metakaolin to form a high-performance concrete that is uniformly mixed by a plurality of mixing member 62 is rotated and mounted on the shaft 61 of the mixing unit 60, and this pump car ( 50 to be discharged to the upper surface of the inner layer portion 200 through the shorting guide member 70 detachably mounted to the pressure feed pipe (51).
  • any one of the silica fume and the metakaolin or the advanced mixed material in which the silica fume and the metakaolin are mixed is mixed in an amount of 2 to 20 parts by weight based on 100 parts by weight of the cement for forming the ordinary concrete. This is because when it is smaller than each range of the high-grade mixed material, high strength and high durability falls, and when it exceeds the above range, the city park price rises while the high strength and high durability does not appear higher, and slump is reduced to increase adhesion. .
  • the high performance concrete When the high performance concrete is discharged to the upper surface of the inner layer part 200 through the shorting guide member 70, the high performance concrete is supplied to the shorting guide body 71 formed with a smaller diameter in the center than the diameter of the inlet / outlet as the inside penetrates.
  • the pressure is generated and the high-performance concrete is discharged to the outlet of the shorting guide body 71 having a diameter larger than the diameter of the central portion via the center of the shorting guide body 71, the compressed air of high pressure of 5 atm or more It is supplied to the air supply hole 72 inclined radially on the outer circumferential surface of the shorting guide body 71 and vortexed to the outlet of the shorting guide body 71 to be shorted.
  • the compressed air and the high-performance concrete is spread by the spray method as well as when the compressed air and the high-performance concrete is spread by the spray method, so that a large amount of bubbles contained in the high-performance concrete is dissipated while the compressed air and the high-performance concrete collide, dissipating the bubbles As a result, the slump is reduced and the high performance shotcrete discharged to the slope 100 forms the outer layer part 300.
  • the outer layer part 300 is the same as the structure cast with high-performance concrete even though it is thinner than the thickness of the inner layer part 200. Since high strength and high durability can be secured, it is possible to secure economic feasibility by reducing the city park value than when placing the entire slope 100 with high-performance concrete.
  • Table 3 shows the test results by mixing 27% of the bubbles per unit volume in ordinary concrete with a mixing strength of 27MPa and slump of 70 ⁇ 80mm.
  • the slump increased from 70mm in normal concrete to 260mm after bubble mixing, and decreased to 150mm after adding 8% of silica fume powder to cement. After slumping, it became a high-performance concrete of zero slump.
  • the amount of air was 5% in ordinary concrete, increased to 27% after bubble mixing, and decreased to 21% after adding silica fume powder, and 5% after shortening.
  • high-performance concrete is formed by adding powdered silica fume to ordinary concrete, which has a large slump by foam mixing of 27% by volume, and high-performance concrete having good adhesion by reducing water-binder ratio by adding silica fume of powder. Forming and shorting it to obtain a high performance shotcrete.
  • the bubble is added to the ready-mixed truck (40) by about 20 to 40% of the total concrete volume, and the ball bearing effect of the bubble and the coloring material of iron oxide and carbon black are added.
  • Color concrete that is uniformly mixed by a plurality of rotating mixing members 62 mounted and rotated on the shaft 61 of the mixing unit 60 is formed, and is supplied to the pump car 50 to be detachably attached to the pressure feed pipe 51. It is to be discharged to the upper surface of the outer layer portion 300 through the shorting guide member 70 is mounted.
  • the iron oxide and carbon black of the coloring material is mixed in 1 to 8 parts by weight based on 100 parts by weight of the cement to form the normal concrete, which is from 5 to 8% depending on the type of pigment This is because the saturation point of color development is reached, and the color concentration rapidly rises between 1 to 3%. Since the particle size of the pigment is smaller than that of cement, the amount of concrete is increased by mixing the pigment, and eventually, the water-cement ratio increases, so that the strength is generally decreased, but up to 5-6% of the cement before and after the concrete is hardened. Since there is little effect on the physical properties, it is preferable not to add more than 8% in terms of economical efficiency as the color saturation is 5-8%.
  • the inner concrete is supplied to the shorting guide body 71 formed with a smaller diameter in the center than the diameter of the inlet / outlet.
  • the pressure is generated, and when the colored concrete is discharged to the outlet of the shorting guide body 71 having a diameter larger than the diameter of the center via the center of the shorting guide body 71, the compressed air of high pressure of 5 atm or more It is supplied to the air supply hole 72 inclined radially on the outer circumferential surface of the shorting guide body 71 and vortexed to the outlet of the shorting guide body 71 to be shorted.
  • the compressed air and the colored concrete are spread by the spray method as well as when the compressed air and the colored concrete are spread by the spray method, so that a large amount of bubbles contained in the colored concrete are dissipated while the compressed air and the colored concrete collide with each other.
  • the slump is reduced, and the color shotcrete discharged to the slope 100 forms the surface layer portion 400.
  • the surface layer portion 400 is preferably formed to be thinner than the thickness of the outer layer portion 300.
  • the inner layer part 200, outer layer part 300, and surface layer part 400 may be formed after the inner layer part 200 is cured in general concrete for 14 to 28 days, and then form the outer layer part 300, but shot short. Therefore, when the inner layer part 200 does not flow down, the outer layer part 300 may be formed by shorting the inner layer part 200, thereby shortening the construction period.
  • the reinforcing member 20 protruding to the surface layer part 400 is formed.
  • An anchor head is used to fix the head, which is necessary to fix the high load exerted on the reinforcing member 20, and is generally fixed by a wedge anchorage 30 to finish the construction.
  • the surface layer portion 400 may be formed in the state where the reinforcing member 20 is fixed to the fixing unit 30 to finish the construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

본 발명은 배처플랜트에서 압축강도 21~30MPa의 보통콘크리트를 생산하여 현장 이송 후, 체적 대비 20~40%의 기포를 혼입하여 유동성을 증가시킨 상태에서 플라이애쉬나 슬래그미분말 중 어느 하나 또는 플라이애쉬나 슬래그미분말을 혼합한 저급 혼합재료를 혼입하여 보통강도 숏크리트를 형성하고, 실리카퓸과 메타카올린 중 어느 하나 또는 실리카퓸과 메타카올린을 혼합한 고급 혼합재료를 혼입하여 고성능 숏크리트를 형성하며, 산화철이나 카본블랙의 착색재료를 혼입하여 칼라 숏크리트를 각각 형성하여 사면에 각각 내층부, 외층부, 표층부를 순차적으로 시공함으로, 시공비용 절감 및 고강도와 고내구성을 확보하여 유지관리를 용이하게 할 수 있는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법에 관한 것이다.

Description

[규칙 제37.2조에 의해 ISA가 부여한 발명의 명칭] 고성능 숏크리트를 이용한 사면보강방법
본 발명은 사면 보강방법에 관한 것으로, 보다 상세하게는, 배처플랜트에서 압축강도 21~30MPa의 보통콘크리트를 생산하여 현장 이송 후, 체적 대비 20~40%의 기포를 혼입하여 유동성을 증가시킨 상태에서 플라이애쉬나 슬래그미분말 중 어느 하나 또는 플라이애쉬나 슬래그미분말을 혼합한 저급 혼합재료를 혼입하여 보통강도 숏크리트를 형성하고, 실리카퓸과 메타카올린 중 어느 하나 또는 실리카퓸과 메타카올린을 혼합한 고급 혼합재료를 혼입하여 고성능 숏크리트를 형성하며, 산화철이나 카본블랙의 착색재료를 혼입하여 칼라 숏크리트를 각각 형성하여 사면에 각각 내층부, 외층부, 표층부를 순차적으로 시공함으로, 시공비용 절감 및 고강도와 고내구성을 확보하여 유지관리를 용이하게 할 수 있는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법에 관한 것이다.
일반적으로 숏크리트는, 고압의 공기를 이용해 콘크리트를 대상 구조물에 뿜어 붙이는 공법으로, 최근에는 습식 숏크리트가 주로 사용되는데, 이는 시멘트, 골재, 물 등을 반죽하여 습한 상태의 혼합된 재료를 펌프 또는 압축공기로 압송하여 노즐 부근에서 뿜어 붙이는 방식으로 거푸집설치가 필요 없으며, 접근이 어려운 비탈면 등에 적용성이 뛰어나다.
상기 숏크리트는, 재령 28일 압축강도가 21MPa 이상으로 규정하고 있는 보통강도 숏크리트와 재령 28일 압축강도가 35MPa 이상으로 규정하고 있는 고강도 숏크리트로 분류되며, 상기 고강도 숏크리트는 고내구성을 함께 지니고 있으므로 일반적으로 고성능 숏크리트로 불리기도 한다.
국내에서는 보통강도 숏크리트가 적용되는 경우가 대부분으로 이는 낮은 강도와 낮은 내구성으로 조기에 파손되는 문제점이 있었다.
표 1은 한국도로공사에서 국내의 고속도로 상에 333개소에 이르는 비탈면에 숏크리트공이 시공되어 있는 것을 전수조사하여 발표한 것으로, 균열과 백화 등 보통 이하의 품질을 나타낸 비탈면이 17.4%, 58개소로 나타났다. 조사결과, 비탈면의 균열은 53%, 백화는 89%, 골재화는 74%에서 진행중인 것으로 조사되었다.
표 1 숏크리트 품질조사 현황(한국도로공사 연구보고서, 2011)
구분 균열(EA) 박리(EA) 백화(EA) 공동(EA) 용수출(EA) 골재화면적(㎡) 최대S/C두께(mm) 최대S/C두께(mm) 평균압축강도(MPa)
평균 3.31 0.77 5.03 0.14 4.17 176.1 86.98 46.15 17.93
표준편차 4.83 1.56 4.72 0.43 6.21 395.9 11.75 11.21 4.65
한편, 사면의 보호 및 보강을 목적으로 사면보호공법과 사면보강공법이 있는데, 상기 사면보강공법은 비탈면의 절취로 안전율을 확보하기 위하여 비탈면 구배를 완만하게 조정하거나, 숏크리트공, 옹벽공, 말뚝공, 앵커공의 저항력을 이용하는 공법이다.
이들 공법은 비탈면의 용도, 토질 및 암반특성, 지반여건, 유지보수조건, 경관 등을 종합적으로 고려하여 선정하는 것이 일반적이나, 현재까지는 기능성만을 중요시하고 경관을 도외시하여 주변의 경관을 해치는 경우가 많았다.
상기 경관을 중요시하여 기존 구조물인 사면에 인공암을 제작 및 설치하나, 인공암은 사면 외부에 추가 부착하여 시공하는 것으로, 내측에 인공암과 연결 및 지지하는 지지부재를 가지고 시공되며, 인공암의 내측부에 접착제를 도포하고 프라이머를 사용하여 인공암패널을 형성하나, 이는 구조적인 성능은 지니지 못한다.
또한, 인공암은 주로 에폭시나 폴리머를 주요 결합재로 사용함으로써, 자외선에 노출될 시, 취성이 강해져 내구성이 현저히 떨어지므로, 보통 3~4년을 사용연한으로 가지고 있어 주기적인 유지보수가 필요하므로 유지관리가 어려운 문제점이 있었다.
[선행기술문헌]
대한민국 등록특허 제10-1157874호
이에 본 발명은 상기와 같은 종래의 제반 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 배처플랜트에서 압축강도 21~30MPa의 보통콘크리트를 생산하여 현장 이송 후, 체적 대비 20~40%의 기포를 혼입하여 유동성을 증가시킨 상태에서 플라이애쉬나 슬래그미분말 중 어느 하나 또는 플라이애쉬나 슬래그미분말을 혼합한 저급 혼합재료를 혼입하여 보통강도 숏크리트를 형성하고, 실리카퓸과 메타카올린 중 어느 하나 또는 실리카퓸과 메타카올린을 혼합한 고급 혼합재료를 혼입하여 고성능 숏크리트를 형성하며, 산화철이나 카본블랙의 착색재료를 혼입하여 칼라 숏크리트를 각각 형성하여 사면에 각각 내층부, 외층부, 표층부를 순차적으로 시공하여 시공비용을 절감할 수 있는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법을 제공함에 있다.
또한, 본 발명의 다른 목적은, 플라이애쉬나 슬래그미분말 중 어느 하나 또는 플라이애쉬나 슬래그미분말을 혼합한 저급 혼합재료가 혼입된 보통 숏크리트로 옹벽의 내층부를 형성하여 경제성과 시공의 수월성을 제공하고, 외층부는 실리카퓸과 메타카올린 중 어느 하나 또는 실리카퓸과 메타카올린을 혼합한 고급 혼합재료가 혼입된 고성능 숏크리트로 타설하여 고강도 및 고내구성을 확보하며, 표층부는 칼라 숏크리트로 타설하여 아름답고 자연스러운 모양으로 마무리함으로써, 경관이 미려하면서도 유지관리가 용이한 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법을 제공함에 있다.
또한, 본 발명의 또 다른 목적은, 사면을 보강하여 안정성을 확보하기 위해 설치된 앵커와 고성능 숏크리트를 타설하여 일체화함으로써, 구조적 안정성과 경제성을 확보할 수 있는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법을 제공함에 있다.
본 발명 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법은,
내층부를 형성하기 전, 사면을 보강부재로 안정화하는 단계와;
물, 시멘트, 골재를 일정비율로 배합하여 압축강도가 21~30MPa의 보통콘크리트를 생산 및 현장 이송하는 단계와;
상기 보통콘크리트에 기포 및 저급 혼합재료를 혼합부로 혼합하여 형성된 보통강도 콘크리트가 숏팅안내부재를 통해 사면으로 배출되어 외층부보다 두꺼운 두께로 내층부를 형성하는 단계와;
상기 보통콘크리트에 기포 및 고급 혼합재료를 혼합부로 혼합하여 형성된 고성능 콘크리트가 숏팅안내부재를 통해 내층부 상면으로 내층부의 두께보다 얇은 두께로 배출되어 외층부를 형성하는 단계와;
상기 보통콘크리트에 기포 및 착색재료를 혼합부로 혼합하여 형성된 칼라 콘크리트가 숏팅안내부재를 통해 외층부 상면으로 배출되어 표층부를 형성하는 단계와;
상기 숏팅안내부재로 각 콘크리트가 배출될 때, 5기압 이상의 고압의 공기를 뿜어 각 콘크리트에 포함된 기포를 소산시키면서 슬럼프가 감소되도록 하는 것을 특징으로 하는 것이다.
본 발명에 의하면, 배처플랜트에서 압축강도 21~30MPa의 보통콘크리트를 생산하여 현장 이송 후, 체적 대비 20~40%의 기포를 혼입하여 유동성을 증가시킨 상태에서 플라이애쉬나 슬래그미분말 중 어느 하나 또는 플라이애쉬나 슬래그미분말을 혼합한 저급 혼합재료를 혼입하여 보통강도 숏크리트를 형성하고, 실리카퓸과 메타카올린 중 어느 하나 또는 실리카퓸과 메타카올린을 혼합한 고급 혼합재료를 혼입하여 고성능 숏크리트를 형성하며, 산화철이나 카본블랙의 착색재료를 혼입하여 칼라 숏크리트를 각각 형성하여 사면에 각각 내층부, 외층부, 표층부를 순차적으로 시공하여 고강도 숏크리트로 사면을 시공할 때보다 시공비용을 절감할 수 있으므로 경제성을 향상시킬 수 있는 이점을 가질 수 있는 것이다.
또한, 본 발명에 의하면, 플라이애쉬나 슬래그미분말 중 어느 하나 또는 플라이애쉬나 슬래그미분말을 혼합한 저급 혼합재료가 혼입된 보통 숏크리트로 옹벽의 내층부를 형성하여 경제성과 시공의 수월성을 제공하고, 외층부는 실리카퓸과 메타카올린 중 어느 하나 또는 실리카퓸과 메타카올린을 혼합한 고성능 숏크리트로 타설하여 고강도 및 고내구성을 확보하며, 표층부는 칼라 숏크리트로 타설하여 아름답고 자연스러운 모양으로 마무리함으로써, 경관이 미려하면서도 유지관리를 용이하게 할 수 있는 이점을 가질 수 있는 것이다.
또한, 본 발명에 의하면, 사면을 보강하여 안정성을 확보하기 위해 설치된 앵커와 고성능 숏크리트를 타설하여 일체화함으로써, 구조적 안정성과 경제성을 확보할 수 있는 이점을 가질 수 있는 것이다.
도 1은 본 발명의 흐름도이다.
도 2는 본 발명의 사면을 안정화하는 도면
도 3은 본 발명이 보통콘크리트를 형성하는 도면
도 4는 본 발명의 기포를 나타낸 도면
도 5 내지 도 6은 본 발명의 혼합부를 나타낸 도면
도 7 내지 도 12는 본 발명 보통콘크리트, 고성능 콘크리트 및 숏팅콘크리트의 슬럼프 사진
도 13 내지 도 15는 본 발명의 숏팅과정도
도 16은 본 발명에 착색재료를 혼합상태 도면
도 17 내지 도 18은 본 발명에 의해 사면이 보강된 상태를 나타낸 도면
*도면의 주요 부분에 대한 부호의 설명*
10: 배처플랜트 20: 보강부재
30: 정착구 40: 레미콘 트럭
50: 펌프카 60: 혼합부
70: 숏팅안내부재 100: 사면
200: 내층부 300: 외층부
400: 표층부
이하, 첨부된 도면에 의거하여 본 발명을 상세히 설명한다. 도 1은 본 발명의 흐름도이다.
본 발명 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법은,
내층부(200)를 형성하기 전, 사면(100)을 보강부재(20)로 안정화하는 단계와;
물, 시멘트, 골재를 일정비율로 배합하여 압축강도가 21~30MPa의 보통콘크리트를 생산 및 현장 이송하는 단계와;
상기 보통콘크리트에 기포 및 저급 혼합재료를 혼합부(60)로 혼합하여 형성된 보통강도 콘크리트가 숏팅안내부재(70)를 통해 사면(100)으로 배출되어 외층부(300)보다 두꺼운 두께로 내층부(200)를 형성하는 단계와;
상기 보통콘크리트에 기포 및 고급 혼합재료를 혼합부(60)로 혼합하여 형성된 고성능 콘크리트가 숏팅안내부재(70)를 통해 내층부(200) 상면으로 내층부(200)의 두께보다 얇은 두께로 배출되어 외층부(300)를 형성하는 단계와;
상기 보통콘크리트에 기포 및 착색재료를 혼합부(60)로 혼합하여 형성된 칼라 콘크리트가 숏팅안내부재(70)를 통해 외층부(300) 상면으로 배출되어 표층부(400)를 형성하는 단계와;
상기 숏팅안내부재(70)로 각 콘크리트가 배출될 때, 5기압 이상의 고압의 공기를 뿜어 각 콘크리트에 포함된 기포를 소산시키면서 슬럼프가 감소되도록 하는 것이다.
다음은 상기와 같이 구성된 본 발명의 시공과정을 설명한다.
먼저, 도 2에 도시된 바와 같이, 사면(100)의 상태를 고려하여 사면(100)을 보강부재(20)로 보강하고, 이 보강부재(20)를 수용하여 부착성 및 결속력을 높이도록 사면(100)에 철근 및 와이어메쉬를 설치하는데, 상기 보강부재(20)는 어스앵커, 쏘일네일, 락볼트 중 어느 하나임이 바람직하다.
상기 어스앵커(Earth Anchor)는 구조물을 지반에 정착시키기 위하여 고강도의 강재로 연결하고 높은 긴장력을 도입하여 구조물에 횡방향의 구속력을 가하기 위한 것으로, 지반과 구조물을 하나의 집합체로 묶는 효과를 발휘하며, 강선과 시멘트, 그라우트로 구성된다.
상기 쏘일네일(Soil Nailing)은, 굴착면에 대한 원위치 보강공법으로 Nail 이라 불리우는 인장응력, 전단응력 및 휨모멘트에 저항할 수 있는 보강부재(20)를 프리스트레싱 없이 비교적 좁은 간격으로 삽입한 후, 유연한 전면판을 설치하여 원지반의 전체적인 전단강도 증대 및 발생변위를 가능한 억제하고 굴착공사 도중 및 완료 후에 예상되는 이완을 억제하는 공법이다.
상기 락볼트(Rock Bolt)는 암반이 본래 가지고 있는 강도를 유지시키는데 목적이 있으며, 그 주요역할은 절취된 암반 노출면에 잔존해 있으면서 낙하 혹은 활동을 야기시킬 수 있는 부석의 변위억제, 암반의 균열과 절리를 따라 발생하는 활동방지 등의 역할을 한다.
또한, 도 3에 도시된 바와 같이, 압축강도가 21~30MPa이고, 슬럼프 60~80mm의 보통콘크리트를 형성할 수 있도록 배처플랜트(10)에서 각각 공급되는 물, 시멘트, 골재 등을 일정비율로 배합 및 혼합한 후, 레미콘 트럭(40)에 의해 시공현장으로 이송한다.
여기서 최종 숏크리트의 강도를 위해 물-시멘트 비는 42% 이하로 생산하되, 숏크리트 타설 후, 흘러내림을 방지하기 위하여 슬럼프는 물-시멘트 비로 조정하지 않고, 감수제나 AE제를 사용하여 조정하는 것이 바람직하다.
상기 레미콘 트럭(40)이 현장 이송되면, 레미콘 트럭(40)에 투입된 보통콘크리트는 이송중 슬럼프의 추가 손실로 펌핑성이 나빠 펌핑이 어려워지기 때문에 도 4에 도시된 바와 같이, 발포제 및 기포제 또는 기포발생기로부터 생산된 기포를 상기 레미콘 트럭(40)에 투입한다.
이때, 상기 레미콘 트럭(40)에 투입되는 기포량은, 보통콘크리트에 체적대비 30%의 기포를 혼입시키기 위해 1㎥의 보통콘크리트에 기포발생기를 약 60초 가동하여 생성된 240ℓ의 기포를 혼입하는 것이 바람직하나, 도 5 내지 도 6에 도시된 바와 같이, 상기 보통콘크리트에 기포를 전체 콘크리트 체적대비 20~40% 정도 추가하여 기포의 볼베어링 효과 및 혼합부(60)의 축(61)에 장착되어 회전하는 다수의 혼합부재(62)에 의해 균일하게 혼합되는 보통강도 콘크리트를 형성하고, 이를 도 7에 도시된 바와 같이, 펌프카(50)로 공급하여 압송관(51)에 착탈가능하게 장착된 숏팅안내부재(70)를 통해 사면(100)으로 배출되도록 한다.
여기서, 도 8 내지 도 10에 도시된 바와 같이, 상기 보통강도 콘크리트가 숏팅안내부재(70)로 공급되면, 내부가 관통되면서 입/출구의 직경보다 중앙부의 직경이 작게 형성된 숏팅안내몸체(71)로 공급됨과 동시에 보통강도 콘크리트는 압축되면서 압력이 발생한다.
또한, 상기 숏팅안내몸체(71)의 중앙부를 경유하여 중앙부의 직경보다 큰 직경의 숏팅안내몸체(71) 출구로 보통강도 콘크리트가 배출될 때, 5기압 이상의 고압의 압축공기가 숏팅안내몸체(71)의 외주면에 방사상으로 경사지게 형성된 공기공급공(72)으로 공급되면서 숏팅안내몸체(71)의 출구로 와류되어 숏팅되는데, 상기 압축공기와 보통강도 콘크리트는 스프레이방식으로 펼쳐짐은 물론 스프레이방식으로 압축공기와 보통강도 콘크리트가 펼쳐질 때, 압축공기와 보통강도 콘크리트가 부딪히면서 보통강도 콘크리트에 포함된 다량의 기포가 소산되도록 하고, 기포의 소산으로 슬럼프가 줄어들어 사면(100)으로 배출되는 보통강도 숏크리트는 도 11 내지 도 12에 도시된 바와 같이, 보통강도 숏크리트가 내층부(200)을 형성하며, 붙임성이 좋음을 알 수 있다.
표 2는 배합강도 27MPa, 슬럼프 70~80mm의 보통콘크리트에 단위체적당 기포를 20%. 27%, 33% 혼입하고, 컴프레샤를 이용해 9기압으로 숏팅 한 실험결과를 보여주고 있다. 도 13 내지 도 15에 도시된 바와 같이, 기포량 20%를 추가할 경우, 슬럼프는 보통콘크리트에서 80mm 이었던 것이 기포혼입 후, 250mm로 증가하였으며, 숏팅 후에는 90mm로 감소하였다. 기포량 20%를 추가할 경우, 6.8kg/㎥의 물이 추가 되었으나, 최종 숏팅 후, 슬럼프가 감소하였는데, 이는 보통강도 콘크리트 숏팅 중 물 분자가 일부분 대기중으로 소산되기 때문이다. 기포량을 27%와 33% 혼입할 경우, 추가 단위수량이 많아 숏팅 후, 최종 슬럼프는 보통콘크리트의 슬럼프보다 크게 되나, 최종 공기량은 보통콘크리트의 공기량이나 추가 혼입공기량과는 상관없이 일정함을 알 수 있다.
또한, 상기와 같이 체적대비 20~33%의 기포 혼입으로 슬럼프가 커진 보통강도 콘크리트는 펌핑성이 좋아 용이하게 숏팅할 수 있을 뿐만 아니라 기포만을 혼입하고 숏팅할 경우 최종 슬럼프가 90~150mm 로 너무 커서 대상 사면에 숏팅할 경우, 붙어 있지 않고 흘러내리게 된다. 따라서 가격이 저렴하면서 혼입 시 점성을 지니는 플라이애쉬나 슬래그미분말 중 어느 하나 또는 플라이애쉬나 슬래그미분말을 혼합한 저급 혼합재료를 분말형태로 슬럼프가 커진 보통강도 콘크리트에 추가 혼입하여 물-결합재비를 낮추어 숏팅 후, 최종 슬럼프를 줄임으로써 붙임성을 증대시킬 수 있는 것이다.
표 2 기포혼입량에 따른 슬럼프와 공기량 변화
기포혼입량 슬럼프(mm) 공기량(%)
기포량 추가단위수량(kg/㎥) 보통콘크리트 기포혼입 후 숏팅 후 보통콘크리트 기포혼입 후 숏팅 후
20% 6.8 80 250 90 7 20 6
27% 9.1 70 260 100 5 27 7
33% 18.1 70 275 150 5 33 7
즉, 상기 보통콘크리트에 기포 및 플라이애쉬나 슬래그미분말 중 어느 하나 또는 플라이애쉬나 슬래그미분말을 혼합한 저급 혼합재료를 혼입하여 펌핑성을 증가시킴은 물론 기포가 혼합된 보통강도 콘크리트는 고압의 압축공기와 부딪히면서 배출되므로 보통강도 콘크리트의 기포를 소산시켜 보통강도 숏크리트의 붙임성 증가 및 내구성을 확보할 수 있으며, 상기 내층부(200)은 배근된 철근을 수용할 수 있도록 사면(100)에 형성되어야 한다.
여기서, 상기 플라이애쉬나 슬래그미분말 중 어느 하나 또는 플라이애쉬나 슬래그미분말을 혼합한 저급 혼합재료는 상기 보통콘크리트를 형성하는 시멘트 100 중량부 기준으로 3~30 중량부로 혼합되는 것이 바람직하다.
상기의 과정으로 내층부(200)가 형성되면, 현장 이송된 레미콘 트럭(40)에 기포를 전체 콘크리트 체적대비 20~40% 정도 추가하여 기포의 볼베어링 효과 및 실리카퓸과 메타카올린 중 어느 하나 또는 실리카퓸과 메타카올린을 혼합한 고급 혼합재료를 투입하여 혼합부(60)의 축(61)에 장착되어 회전하는 다수의 혼합부재(62)에 의해 균일하게 혼합되는 고성능 콘크리트를 형성하고, 이를 펌프카(50)에 공급하여 압송관(51)에 착탈가능하게 장착된 숏팅안내부재(70)를 통해 내층부(200) 상면으로 배출되도록 한다.
여기서, 상기 실리카퓸과 메타카올린 중 어느 하나 또는 실리카퓸과 메타카올린을 혼합한 고급 혼합재료는, 상기 보통콘크리트를 형성하는 시멘트 100 중량부 기준으로 2~20 중량부로 혼합되는 것이 바람직하다. 이는 고급 혼합재료의 각 범위보다 작을 경우, 고강도, 고내구성이 떨어지고, 상기 범위를 초과할 경우, 고강도, 고내구성이 더 높게 나타나지 않으면서 시공원가가 상승하며, 슬럼프를 줄여 붙임성을 증가시키기 때문이다.
상기 고성능 콘크리트가 숏팅안내부재(70)를 통해 내층부(200) 상면으로 배출될 때, 내부가 관통되면서 입/출구의 직경보다 중앙부의 직경이 작게 형성된 숏팅안내몸체(71)로 공급되어 고성능 콘크리트는 압축되면서 압력이 발생하고, 상기 숏팅안내몸체(71)의 중앙부를 경유하여 중앙부의 직경보다 큰 직경의 숏팅안내몸체(71) 출구로 고성능 콘크리트가 배출될 때, 5기압 이상의 고압의 압축공기가 숏팅안내몸체(71)의 외주면에 방사상으로 경사지게 형성된 공기공급공(72)으로 공급되면서 숏팅안내몸체(71)의 출구로 와류되어 숏팅되도록 한다.
이때, 상기 압축공기와 고성능 콘크리트는 스프레이방식으로 펼쳐짐은 물론 스프레이방식으로 압축공기와 고성능 콘크리트가 펼쳐질 때, 압축공기와 고성능 콘크리트가 부딪히면서 고성능 콘크리트에 포함된 다량의 기포가 소산되도록 하고, 기포의 소산으로 슬럼프가 줄어들어 사면(100)으로 배출되는 고성능 숏크리트가 외층부(300)을 형성하는데, 상기 외층부(300)는 내층부(200)의 두께보다 얇게 형성하여도 고성능 콘크리트로 타설한 구조물과 동일한 고강도 및 고내구성을 확보할 수 있으므로, 사면(100) 전체를 고성능 콘크리트로 타설할 때보다 시공원가를 줄여 경제성을 확보할 수 있는 것이다.
표 3은 배합강도 27MPa, 슬럼프 70~80mm의 보통콘크리트에 단위체적당 기포를 27% 혼입하여 실험한 결과를 보여주고 있다. 슬럼프는 보통콘크리트에서 70mm 이었던 것이 기포혼입 후, 260mm로 증가하였으며, 실리카퓸 분말을 시멘트 대비 8% 추가한 후 150mm로 감소하였으며, 숏팅 후에는 제로 슬럼프의 고성능 콘크리트가 되었다. 공기량은 보통콘크리트에서 5%이었던 것이, 기포혼입 후 27%로 증가하였으며, 실리카퓸 분말 추가한 후, 21%로 감소하고, 숏팅 후에는 5%로 됨을 알 수 있다.
상기와 같이 체적대비 27%의 기포혼입으로 슬럼프가 커진 보통콘크리트에 분말형태의 실리카퓸을 추가로 투입하여 고성능 콘크리트를 형성하고, 분말의 실리카퓸 첨가로 물-결합재 비를 줄여 붙임성이 좋은 고성능 콘크리트를 형성하고, 이를 숏팅하여 고성능 숏크리트를 얻을 수 있는 것이다.
표 3 기포와 실리카퓸을 혼입하고 숏팅한 결과
항목 보통콘크리트 기포 27% 혼입 후 실리카퓸 혼입 후 숏팅 후
슬럼프(mm) 70 260 150 0
공기량(%) 5 27 21 5
상기의 과정으로 외층부(300)가 형성되면, 현장 이송된 레미콘 트럭(40)에 기포를 전체 콘크리트 체적대비 20~40% 정도 추가하여 기포의 볼베어링 효과 및 산화철, 카본블랙의 착색재료를 투입하여 혼합부(60)의 축(61)에 장착되어 회전하는 다수의 혼합부재(62)에 의해 균일하게 혼합되는 칼라 콘크리트를 형성하고, 이를 펌프카(50)로 공급하여 압송관(51)에 착탈가능하게 장착된 숏팅안내부재(70)를 통해 외층부(300) 상면으로 배출되도록 한다.
여기서 상기 착색재료의 산화철 및 카본블랙은, 도 16에 도시된 바와 같이, 상기 보통콘크리트를 형성하는 시멘트 100 중량부 기준으로 1~8 중량부로 혼합하는데, 이는 안료의 종류에 따라 5~8%에서 발색의 포화점에 도달하게 되고, 1~3% 사이에서 발색 농도가 급격히 상승하기 때문이다. 상기 안료의 입경은 시멘트보다 작기 때문에 안료의 혼합에 의해 콘크리트의 수량을 증가시키게 되고, 결국 물-시멘트비가 커져서 강도가 저하하는 경향이 일반적이지만, 시멘트의 5~6% 정도까지는 콘크리트가 굳기 전후의 물성에 미치는 영향은 거의 없으므로 색상의 포화도가 5~8% 인점으로 볼 때, 경제성의 측면에서도 8% 이상 첨가하지 않는 것이 바람직하다.
상기 칼라 콘크리트가 숏팅안내부재(70)를 통해 외층부(300) 상면으로 배출될 때, 내부가 관통되면서 입/출구의 직경보다 중앙부의 직경이 작게 형성된 숏팅안내몸체(71)로 공급되어 칼라 콘크리트는 압축되면서 압력이 발생하고, 상기 숏팅안내몸체(71)의 중앙부를 경유하여 중앙부의 직경보다 큰 직경의 숏팅안내몸체(71) 출구로 칼라 콘크리트가 배출될 때, 5기압 이상의 고압의 압축공기가 숏팅안내몸체(71)의 외주면에 방사상으로 경사지게 형성된 공기공급공(72)으로 공급되면서 숏팅안내몸체(71)의 출구로 와류되어 숏팅되도록 한다.
이때, 상기 압축공기와 칼라 콘크리트는 스프레이방식으로 펼쳐짐은 물론 스프레이방식으로 압축공기와 칼라 콘크리트가 펼쳐질 때, 압축공기와 칼라 콘크리트가 부딪히면서 칼라 콘크리트에 포함된 다량의 기포가 소산되도록 하고, 기포의 소산으로 슬럼프가 줄어들어 사면(100)으로 배출되는 칼라 숏크리트가 표층부(400)를 형성하는데, 상기 표층부(400)는 외층부(300)의 두께보다 얇게 형성하는 것이 바람직하다.
상기 내층부(200)과 외층부(300) 및 표층부(400)는 내층부(200)가 일반 콘크리트에서 14~28일 동안 양생된 후, 외층부(300)를 형성할 수 있으나, 숏크리트로 쇼팅되기 때문에 내층부(200)이 흘러내리지 않을 경우, 내층부(200)에 외층부(300)을 숏팅하여 형성할 수 있으므로 시공기간을 단축시킬 수 있는 것이다.
또한, 도 17 내지 도 18에 도시된 바와 같이, 상기의 과정으로 내층부(200)과 외층부(300) 및 표층부(400)가 형성되면, 상기 표층부(400)로 돌출된 보강부재(20)를 고정할 두부(Anchor Head)가 사용되는데, 상기 두부는 보강부재(20)에 발휘되는 높은 하중을 고정하기 위해 필요하며, 일반적으로 쐐기(wedge) 정착구(30)로 정착하여 시공을 마무리하나, 외층부(300)를 형성한 후, 보강부재(20)를 정착구(30)로 정착한 상태에서 표층부(400)를 형성하여 시공을 마무리할 수도 있는 것이다.
본 발명에서 상기 실시형태는 하나의 예시로서 본 발명이 여기에 한정되는 것은 아니다. 본 발명의 특허청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고 동일한 작용효과를 이루는 것은 어떠한 것이라도 본 발명의 기술적 범위에 포함된다 할 것이다.

Claims (11)

  1. 물, 시멘트, 골재를 일정비율로 배합하여 압축강도가 21~30MPa의 보통콘크리트를 생산 및 현장 이송하는 단계와;
    상기 보통콘크리트에 기포 및 저급 혼합재료를 혼합부로 혼합하여 형성된 보통강도 콘크리트가 숏팅안내부재를 통해 사면으로 배출되어 외층부보다 두꺼운 두께로 내층부를 형성하는 단계와;
    상기 보통콘크리트에 기포 및 고급 혼합재료를 혼합부로 혼합하여 형성된 고성능 콘크리트가 숏팅안내부재를 통해 내층부 상면으로 내층부의 두께보다 얇은 두께로 배출되어 외층부를 형성하는 단계와;
    상기 보통콘크리트에 기포 및 착색재료를 혼합부로 혼합하여 형성된 칼라 콘크리트가 숏팅안내부재를 통해 외층부 상면으로 배출되어 표층부를 형성하는 단계와;
    상기 숏팅안내부재로 각 콘크리트가 배출될 때, 5기압 이상의 고압의 공기를 뿜어 각 콘크리트에 포함된 기포를 소산시키면서 슬럼프가 감소되도록 하는 것을 특징으로 하는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법.
  2. 청구항 1에 있어서, 상기 저급 혼합재료는,
    플라이애쉬나 슬래그미분말 중 어느 하나 또는 플라이애쉬나 슬래그미분말을 혼합하는 것을 특징으로 하는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법.
  3. 청구항 2에 있어서,
    상기 저급 혼합재료는, 상기 보통콘크리트를 형성하는 시멘트 100 중량부 기준으로 3~30 중량부로 혼합되는 것을 특징으로 하는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법.
  4. 청구항 1에 있어서, 상기 고급 혼합재료는,
    실리카퓸과 메타카올린 중 어느 하나 또는 실리카퓸과 메타카올린을 혼합하는 것을 특징으로 하는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법.
  5. 청구항 4에 있어서,
    상기 고급 혼합재료는, 상기 보통콘크리트를 형성하는 시멘트 100 중량부 기준으로 2~20 중량부로 혼합되는 것을 특징으로 하는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법.
  6. 청구항 1에 있어서, 상기 착색재료는,
    산화철이나 카본블랙 중 어느 하나 또는 산화철이나 카본블랙을 혼합하는 것을 특징으로 하는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법.
  7. 청구항 6에 있어서,
    상기 착색재료는, 상기 보통콘크리트를 형성하는 시멘트 100 중량부 기준으로 1~8 중량부로 혼합되는 것을 특징으로 하는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법.
  8. 청구항 1에 있어서, 상기 혼합부는,
    상기 보통콘크리트가 투입되는 레미콘 트럭 내부에 모터의 동력으로 회전하는 축과;
    상기 축에 적어도 1단 이상 방사상으로 형성되어 축의 회전방향으로 회전하면서 보통콘크리트와 기포, 혼합재료 및 착색재료를 혼합하는 혼합부재를 포함하여 구비되는 것을 특징으로 하는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법.
  9. 청구항 1에 있어서, 상기 숏팅안내부재는,
    상기 보통강도 콘크리트와 고성능 콘크리트 및 칼라 콘크리트가 유입 및 압축되어 배출되도록 내부가 관통되면서 각 콘크리트가 유입/배출되는 입/출구의 직경보다 중앙부의 직경이 작게 형성되는 숏팅안내몸체와;
    상기 숏팅안내몸체로 유입되는 각 콘크리트에 포함된 기포를 소산시키면서 공기량을 감소시키도록 5기압 이상의 고압의 공기를 공급하도록 숏팅안내부재에 관통된 공기공급공을 포함하여 구비되는 것을 특징으로 하는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법.
  10. 청구항 9에 있어서, 상기 공기공급공은,
    상기 숏팅안내몸체의 외주면에 방사상으로 경사지게 형성되는 것을 특징으로 하는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법.
  11. 청구항 1에 있어서,
    상기 보강부재를 정착구로 정착하는 단계를 더 포함하여 이루어지는 것을 특징으로 하는 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법.
PCT/KR2014/011815 2013-12-19 2014-12-04 고성능 숏크리트를 이용한 사면보강방법 WO2015093760A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480069796.4A CN105829612B (zh) 2013-12-19 2014-12-04 利用高性能喷射混凝土的边坡加强方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130159102A KR101415891B1 (ko) 2013-12-19 2013-12-19 고성능 숏크리트와 보강부재를 이용한 합체식 사면 보강방법
KR10-2013-0159102 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015093760A1 true WO2015093760A1 (ko) 2015-06-25

Family

ID=51741329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011815 WO2015093760A1 (ko) 2013-12-19 2014-12-04 고성능 숏크리트를 이용한 사면보강방법

Country Status (3)

Country Link
KR (1) KR101415891B1 (ko)
CN (1) CN105829612B (ko)
WO (1) WO2015093760A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981831B2 (en) 2017-09-21 2021-04-20 Crown Products & Services, Inc. Dry mix and concrete composition containing bed ash and related methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101698550B1 (ko) * 2015-01-30 2017-01-23 대상이앤씨(주) 고성능 숏크리트를 이용한 골재노출형 경관구조물의 시공방법
KR101660023B1 (ko) * 2016-04-18 2016-09-26 신일에스앤지(주) 칼라 숏크리트 시공방법
CN106368225A (zh) * 2016-10-18 2017-02-01 中国电建集团成都勘测设计研究院有限公司 岩质边坡锚索锚固段地质条件判别及位置长度调整方法
WO2019218132A1 (zh) * 2018-05-14 2019-11-21 重庆大学产业技术研究院 一种三峡库区消落带用绿色水泥砂浆及其制备方法
KR102196953B1 (ko) 2020-05-08 2021-01-04 대상이앤씨(주) 고성능 칼라그라우팅 조성물과 이를 이용한 고성능 칼라숏크리트 시공방법
KR102280230B1 (ko) * 2021-01-26 2021-07-23 하리기술이십이 주식회사 칼라 몰탈을 이용한 사면 디자인 인공암 옹벽조성공법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050079706A (ko) * 2004-02-06 2005-08-11 최제인 토사 및 소일시멘트 압착 뿜어 붙이기에 의한 경사면보호구조 및 보강공법
KR20090096077A (ko) * 2008-03-07 2009-09-10 (주)성광종합기술개발 사면 식생-안정화 구조 및 사면 식생-안정화 공법
KR20100011600A (ko) * 2008-07-25 2010-02-03 (주) 캐어콘 숏크리트 타설 장치 및 이를 이용한 콘크리트 구조물의손상부 단면 보수방법
KR101073969B1 (ko) * 2010-09-09 2011-10-17 대상엔지니어링(주) 숏크리트를 이용한 사면 및 곡면 구조물의 보수공법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074065A (ja) * 2001-09-06 2003-03-12 Ohbayashi Corp 法面における排水層形成方法及びそれを用いた法面緑化方法
CN1786418A (zh) * 2004-12-09 2006-06-14 周德祥 分离式混凝土湿喷机组
CN100570127C (zh) * 2007-08-14 2009-12-16 陕西金石混凝土科技发展有限公司 一种采用液体速凝剂喷射混凝土的施工方法
KR101073967B1 (ko) 2008-12-15 2011-10-17 강원대학교산학협력단 고성능 습식 숏크리트 프리믹스 조성물 및 이를 이용한 습식 숏크리트 보수 및 보강공법
CN201419442Y (zh) * 2009-06-10 2010-03-10 上海德滨机械设备科技有限公司 一种带搅拌装置的预拌砂浆储料罐
CN101994285A (zh) * 2009-08-20 2011-03-30 安徽奥来新能源有限公司 一种能拼接成植草砖的彩色条石
CN202144747U (zh) * 2011-07-21 2012-02-15 湖南五新重型装备有限公司 混凝土湿喷机
KR101336165B1 (ko) 2012-04-27 2013-12-03 주식회사 유니온 숏크리트용 혼화재 조성물 및 이를 이용한 고성능 숏크리트 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050079706A (ko) * 2004-02-06 2005-08-11 최제인 토사 및 소일시멘트 압착 뿜어 붙이기에 의한 경사면보호구조 및 보강공법
KR20090096077A (ko) * 2008-03-07 2009-09-10 (주)성광종합기술개발 사면 식생-안정화 구조 및 사면 식생-안정화 공법
KR20100011600A (ko) * 2008-07-25 2010-02-03 (주) 캐어콘 숏크리트 타설 장치 및 이를 이용한 콘크리트 구조물의손상부 단면 보수방법
KR101073969B1 (ko) * 2010-09-09 2011-10-17 대상엔지니어링(주) 숏크리트를 이용한 사면 및 곡면 구조물의 보수공법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981831B2 (en) 2017-09-21 2021-04-20 Crown Products & Services, Inc. Dry mix and concrete composition containing bed ash and related methods
US11479506B2 (en) 2017-09-21 2022-10-25 Crown Products & Services, Inc. Dry mix and concrete composition containing bed ash and related methods
US11840482B2 (en) 2017-09-21 2023-12-12 Crown Products & Services, Inc. Dry mix and concrete composition containing bed ash and related methods

Also Published As

Publication number Publication date
CN105829612B (zh) 2018-06-05
CN105829612A (zh) 2016-08-03
KR101415891B1 (ko) 2014-07-09

Similar Documents

Publication Publication Date Title
WO2015093760A1 (ko) 고성능 숏크리트를 이용한 사면보강방법
KR100582840B1 (ko) 고인성·고내화성 혼합 모르타르 조성물과 이를 이용한보수공법 및 이의 시공장치
CN107285714B (zh) 一种高延性聚乙烯醇纤维混凝土及其制备方法
WO2015111860A1 (ko) 기포 숏크리트를 이용한 연속철근 콘크리트포장 시공방법
WO2015088182A1 (ko) 보통콘크리트와 고성능콘크리트를 이용한 2층 콘크리트 포장장치 및 포장방법
CN103964795B (zh) 一种纤维编织网增强水泥基复合材料及其制备方法
CN1414931A (zh) 轻质墙结构
CN106396586A (zh) 一种水泥基自流平魔石砂浆
KR100654152B1 (ko) 다기능성 슬래그골재를 이용한 노출콘크리트 구조물보수보강재 및 보수보강재용 펌핑장치
WO2013062243A1 (ko) 고성능 습식 숏크리트 조성물과 이를 이용한 경관 구조물의 시공방법
WO2015002472A1 (ko) 보통콘크리트에 공기를 혼입하고 소산하는 과정을 통해 고성능 콘크리트를 제조하는 고성능 콘크리트 제조장치 및 이의 제조방법
CN106587759A (zh) 复合材料型水性地坪涂料及其制备方法
JP5959096B2 (ja) 既設管ライニング用グラウト材粉粒体組成物およびその硬化物および既設管のライニング施工法
KR20190071626A (ko) 기중/습윤/수중 콘크리트 구조물의 단면 복구용 조성물 및 이를 이용한 콘크리트 단면 복구방법.
KR20060073001A (ko) 시멘트 광물계 급결제를 사용하는 습식 숏크리트 타설장비 시스템
JP2009030427A (ja) 耐震補強方法
WO2022250476A1 (ko) 단열성과 압축강도를 증대시킨 단열uhpc 조성물
CN110627454A (zh) 一种聚合物水泥防水砂浆及其制备方法
CN105801060A (zh) 一种超早强水泥基灌浆料
WO2015099278A1 (ko) 기포숏크리트를 이용한 콘크리트포장 시공방법
WO2013089431A2 (ko) 강도발현의 극대화를 위한 초고강도 콘크리트의 관리방법
CN106587725A (zh) 一种用于大型设备基础的高强减振环氧砂浆及其制备方法
JP2004324285A (ja) 躯体コンクリートの表面保護工法
JP5801554B2 (ja) セメントモルタル塗材
JP2002371796A (ja) コンクリート補修工法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873005

Country of ref document: EP

Kind code of ref document: A1