WO2015093265A1 - エンジンの動弁装置 - Google Patents

エンジンの動弁装置 Download PDF

Info

Publication number
WO2015093265A1
WO2015093265A1 PCT/JP2014/081696 JP2014081696W WO2015093265A1 WO 2015093265 A1 WO2015093265 A1 WO 2015093265A1 JP 2014081696 W JP2014081696 W JP 2014081696W WO 2015093265 A1 WO2015093265 A1 WO 2015093265A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
control arm
cam
rocker
pressing member
Prior art date
Application number
PCT/JP2014/081696
Other languages
English (en)
French (fr)
Inventor
拓朗 神近
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2015553454A priority Critical patent/JP6058817B2/ja
Publication of WO2015093265A1 publication Critical patent/WO2015093265A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot

Definitions

  • the present invention relates to a valve gear for an engine capable of changing the valve operating angle of an intake valve or an exhaust valve.
  • a valve operating device for driving an intake valve or an exhaust valve of a four-cycle engine there is one provided with a rocker arm that changes the rotation of a camshaft to a reciprocating motion and transmits it to an intake valve or an exhaust valve.
  • the rocker arm is swingably supported by a rocker shaft parallel to the cam shaft.
  • This link mechanism is composed of a control arm that is swingably supported by the rocker shaft, and an auxiliary arm that is swingably supported at the swing end of the control arm about an axis parallel to the rocker shaft. ing.
  • the pressing member is provided at the swing end of the auxiliary arm.
  • the control arm swings when driven by an actuator.
  • the pressing member moves in the longitudinal direction of the rocker arm as the control arm swings.
  • the valve opening / closing timing is retarded by the pressing member moving toward the front in the rotational direction of the cam shaft, and the valve opening / closing timing is advanced by moving toward the rear in the rotational direction of the cam shaft.
  • the lever ratio of the rocker arm is reduced and the valve lift amount is relatively reduced.
  • the lever ratio of the rocker arm is increased and the valve lift amount is relatively increased.
  • the valve operating angle is a cam shaft rotation angle corresponding to a period during which the intake valve or the exhaust valve is open.
  • the valve operating angle is desirably large in order to increase the output when the rotational speed of the engine is relatively high. Further, it is desirable that the valve working angle is small so that combustion is stable when the rotational speed of the engine is relatively low.
  • the conventional valve operating device described in Patent Document 1 does not have a function of changing the valve working angle, there is a problem that the valve working angle cannot be controlled to a size suitable for the operating state. there were.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a valve operating apparatus for an engine that can control the magnitude of a valve working angle.
  • a valve operating apparatus for an engine includes a camshaft having an intake valve driving cam or an exhaust valve driving cam and rotatably supported by a cylinder head, and the cylinder head A rocker shaft provided in parallel with the camshaft, and a rocker shaft configured to be swingable about the rocker shaft, and a pressing piece for pressing the intake valve or the exhaust valve against the spring force of the valve spring is a rocking end.
  • a first rocker arm provided at a portion, a control arm configured to be swingable about the rocker shaft, and a swing end portion of the control arm swinging about an axis parallel to the rocker shaft
  • a second rocker arm that is freely supported, and a swinging end of the second rocker arm, and sandwiched between the cam and the pressing piece.
  • a pressing member that can move along the cam, a fixed stopper that restricts the swinging of the control arm to one side, and a movable stopper that restricts the swinging of the control arm to the other.
  • the control arm is configured to be movable between a first position where the swingable angle of the control arm is 0 and a second position where the swingable angle of the control arm is a predetermined angle.
  • the intake valve or the exhaust valve is opened while the control arm is located at the initial position, and the intake valve or the exhaust valve is closed while the control arm is located at the final position.
  • the valve operating angle which is the interval between the opening timing of the intake valve or the exhaust valve and the closing timing of the intake valve or the exhaust valve, increases or decreases according to the position of the movable stopper. Therefore, according to this invention, the valve operating apparatus of the engine which can control the magnitude
  • FIG. 1 is a cross-sectional view showing a main part of a valve gear for an engine according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the valve gear for the engine according to the first embodiment.
  • the fracture position in FIG. 1 is indicated by line II
  • the fracture position in FIG. 5 is indicated by line VV.
  • FIG. 3 is an exploded perspective view of a rocker arm portion of the valve gear for the engine according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the roller of the pressing member and the first rocker arm.
  • FIG. 5 is a cross-sectional view of the connecting shaft of the pressing member and the first rocker arm.
  • FIG. 6 is an enlarged cross-sectional view showing a main part of the valve gear for the engine according to the first embodiment.
  • FIG. 6 shows a state in which the movable stopper is positioned at the first position.
  • FIG. 7 is an enlarged cross-sectional view showing a main part of the valve gear for the engine according to the first embodiment.
  • FIG. 7 shows a state in which the movable stopper is positioned at the second position.
  • FIG. 8 is a graph showing the relationship between the cam rotation angle and the valve lift amount of the valve gear for the engine according to the first embodiment.
  • FIG. 9 is an enlarged cross-sectional view showing a main part of the valve gear for the engine according to the first embodiment.
  • FIG. 9 shows a state when the intake valve is opened.
  • FIG. 10 is an enlarged cross-sectional view showing a main part of the valve gear for the engine according to the first embodiment.
  • FIG. 10 shows a state when the direction of the thrust acting on the pressing member is reversed.
  • FIG. 11 is an enlarged cross-sectional view showing a main part of the valve gear for the engine according to the first embodiment.
  • FIG. 11 shows a state in which the pressing member is moved by thrust.
  • FIG. 12 is an enlarged cross-sectional view showing a main part of the valve gear for the engine according to the first embodiment.
  • FIG. 12 shows a state where the movement of the pressing member is finished.
  • FIG. 13 is an enlarged cross-sectional view showing a main part of the valve gear for the engine according to the first embodiment.
  • FIG. 13 shows a state when the valve lift amount of the intake valve is maximized.
  • FIG. 14 is an enlarged cross-sectional view showing a main part of the valve gear for the engine according to the first embodiment.
  • FIG. 14 shows a state when the intake valve is closed.
  • FIG. 15 is an enlarged cross-sectional view showing a main part of the valve gear for the engine according to the first embodiment.
  • FIG. 15 shows a state when the control arm returns to the initial position.
  • FIG. 16 is an enlarged cross-sectional view showing a main part of the valve gear for an engine according to the second embodiment.
  • FIG. 16 shows a state where the movable stopper is located at the second position.
  • FIG. 17 is an enlarged cross-sectional view showing a main part of the valve gear for an engine according to the second embodiment.
  • FIG. 17 shows a state where the movable stopper is located at the first position.
  • FIG. 18 is a graph showing the relationship between the cam rotation angle and the valve lift amount of the valve gear for the engine according to the second embodiment.
  • FIG. 19 is an enlarged cross-sectional view of a main part of the valve gear for an engine according to the second embodiment.
  • FIG. 19 shows a state when the intake valve is opened.
  • FIG. 20 is an enlarged cross-sectional view showing a main part of the valve gear for an engine according to the second embodiment.
  • FIG. 20 shows a state when the direction of the thrust acting on the pressing member is reversed.
  • FIG. 21 is an enlarged cross-sectional view showing a main part of the valve gear for an engine according to the second embodiment.
  • FIG. 21 shows a state in which the pressing member is moved by thrust.
  • FIG. 22 is an enlarged cross-sectional view showing a main part of the valve gear for an engine according to the second embodiment.
  • FIG. 22 shows a state where the movement of the pressing member is finished.
  • FIG. 23 is an enlarged cross-sectional view showing a main part of the valve gear for an engine according to the second embodiment.
  • FIG. 23 shows a state when the intake valve is closed.
  • a valve operating apparatus 1 for an engine shown in FIG. 1 drives an intake valve 4 by changing the rotation of a camshaft 3 provided in a cylinder head 2 of a multi-cylinder engine into a reciprocating motion.
  • the valve gear 1 according to the present invention is not limited to driving the intake valve 4 as described above, and can be configured to drive the exhaust valve 5.
  • the camshaft 3 rotates when the rotation of a crankshaft (not shown) is transmitted through a transmission mechanism.
  • the camshaft 3 according to this embodiment rotates clockwise in FIG.
  • the camshaft 3 includes a camshaft main body 6 that is rotatably supported by the cylinder head 2 and an intake valve driving cam 7 provided on the camshaft main body 6.
  • the cam 7 includes a base circle portion 7a and a nose portion 7b, and is provided for each intake valve 4.
  • the base circle portion 7a is used when the intake valve 4 is closed, and the nose portion 7b is used when the intake valve 4 is opened and closed.
  • the base circle portion 7 a is formed in a shape that becomes a part of a cylinder located on the same axis as the camshaft body 6.
  • the nose part 7b is formed in the shape which protrudes in cross-sectional mountain shape from the base circle part 7a to the outer side of radial direction.
  • Two intake valves 4 are provided per cylinder. These intake valves 4 are configured by a valve body 4 a that opens and closes the intake port 11 of the cylinder head 2 and a valve stem 4 b that extends from the valve body 4 a into the valve operating chamber 12 of the cylinder head 2.
  • the valve stem 4 b is movably supported by the cylinder head 2 by a valve stem guide 13.
  • a valve spring 14 that urges the intake valve 4 in the closing direction is provided between the tip of the valve stem 4b and the cylinder head 2.
  • a cap-shaped shim 4c is provided at the tip of the valve stem 4b.
  • the intake port 11 is formed in a bifurcated shape inside the cylinder head 2.
  • the upstream end of the intake port 11 opens to the side of the cylinder head 2, and the downstream end of the intake port 11 opens to the combustion chamber 15.
  • a spark plug 16 is provided at the center of the combustion chamber 15.
  • the valve operating apparatus 1 can change the valve operating angle, the opening / closing timing, the valve lift amount, and the like of the intake valve 4, and includes two arm members (a first rocker arm 21 and a second rocker arm 22). Each intake valve 4 is provided.
  • the valve operating angle is a rotation angle of the camshaft 3 from when the intake valve 4 is opened to when it is closed.
  • the first rocker arm 21 has a pressing piece 23 for pushing the intake valve 4, and is configured to be swingable around a rocker shaft 24 described later via a boss portion 23a of the base portion.
  • the rocker shaft 24 is provided on the cylinder head 2 in parallel with the camshaft 3.
  • the first rocker arm 21 according to this embodiment extends from the rocker shaft 24 to the outside of the cylinder head 2 (direction perpendicular to the axis of the rocker shaft 24 and the cylinder axis CL (see FIG. 1)).
  • the shaft 24 is swingably supported.
  • the pressing piece 23 is provided at the swinging end portion of the first rocker arm 21. That is, when the first rocker arm 21 swings clockwise in FIG. 1, the pressing piece 23 presses the intake valve 4 against the spring force of the valve spring 14.
  • the rocker shaft 24 supports the control arm 25 in a swingable manner in addition to the first rocker arm 21.
  • the control arm 25 is formed in a shape extending from the rocker shaft 24 toward the camshaft 3, and is configured to be swingable about the rocker shaft 24.
  • the control arm 25 according to this embodiment is swingably supported by the rocker shaft 24.
  • a base portion of the control arm 25 supported by the rocker shaft 24 includes a first contact surface 27 that contacts a fixed stopper 26 described later and a second contact surface 29 that contacts a movable stopper 28 described later. Is formed.
  • a second rocker arm 22 is swingably supported by a swing end portion (tip portion) of the control arm 25 via a support shaft 30.
  • the support shaft 30 is provided on the control arm 25 in parallel with the rocker shaft 24. That is, the second rocker arm 22 is supported on the swing end of the control arm 25 so as to be swingable about an axis parallel to the rocker shaft 24.
  • the second rocker arm 22 according to this embodiment is provided on both sides of the control arm 25 as shown in FIGS.
  • a pressing member 31 that is sandwiched between the cam 7 of the camshaft 3 and the first rocker arm 21 and transmits a pressing force is provided at the swing end of the second rocker arm 22.
  • the pressing member 31 includes a connecting shaft 32 spanned between a pair of second rocker arms 22 and 22, and a central portion of the connecting shaft 32. And a roller 33 supported rotatably. The roller 33 rotates in contact with the cam 7. Both ends of the connecting shaft 32 are fixed to the second rocker arm 22. Further, as shown in FIG. 2, the connecting shaft 32 is formed in a length that is partially exposed as an exposed portion 32 a between the second rocker arm 22 and the roller 33.
  • the exposed portion 32a contacts the rail 34 formed on the pressing piece 23 of the first rocker arm 21. Since the exposed portion 32a is at a position sandwiching the roller 33, the pressing piece 23 is provided with two rails 34. That is, both end portions of the connecting shaft 32 are in contact with the pressing piece 23. In this embodiment, these rails 34 constitute the “part where the pressing member contacts the pressing piece” according to the fourth aspect of the present invention.
  • a concave groove 35 is formed between the two rails 34 in the pressing piece 23 as shown in FIGS.
  • the concave groove 35 is for preventing the roller 33 from contacting the pressing piece 23 as shown in FIG.
  • the concave groove 35 is formed in a shape in which a gap is formed between the connecting shaft 32 (exposed portion 32 a) and the roller 33 in a state where the connecting shaft 32 (exposed portion 32 a) is in contact with the rail 34.
  • a concave groove 36 for avoiding interference with the second rocker arm 22 is formed on the opposite side of the pressing piece 23 to the concave groove 35 across the rail 34.
  • the shape of the portion of the rail 34 that contacts the connecting shaft 32 has a circular arc shape.
  • the cross-sectional shape of the rail 34 is such that, when viewed from the axial direction of the camshaft 3, the roller 33 is in contact with the base circle portion 7 a of the cam 7 (the lift amount of the intake valve 4 is 0). 3 is a circular arc with a radius R centered on the third axis C.
  • the pressing member 31 is movable along the cam 7 while being sandwiched between the cam 7 and the pressing piece 23 in a state where the roller 33 is in contact with the base circle portion 7a.
  • the lever ratio of the first rocker arm 21 is reduced. Further, the lever ratio of the first rocker arm 21 is increased by the pressing member 31 moving in the direction approaching the rocker shaft 24.
  • the fixed stopper 26 described above is positioned at a position facing the first contact surface 27 of the control arm 25 and is provided so as not to move to the cylinder head 2.
  • the fixed stopper 26 can be formed by a member separate from the cylinder head 2 or can be formed by a part of the cylinder head 2.
  • the fixed stopper 26 restricts the swinging of the control arm 25 in the counterclockwise direction in FIG. That is, the fixed stopper 26 restricts the swing of the control arm 25 in the direction in which the lever ratio of the first rocker arm 21 is increased.
  • the lever ratio of the first rocker arm 21 is maximized while the fixed stopper 26 restricts the swinging of the control arm 25 to one side.
  • the position of the control arm 25 at which the lever ratio of the first rocker arm 21 is maximized is referred to as “initial position”.
  • the control arm 25 moves to an initial position that is one end of a swingable range.
  • the state shown in FIG. 1 is that the pressing member 31 comes into contact with the base circle portion 7a of the rotating cam 7, and the rotational force of the cam 7 is transmitted to the pressing member 31 so that the control arm 25 is the second rocker arm. 22 is pushed to the left in FIG.
  • the movable stopper 28 is disposed at a position facing the second contact surface 29 of the control arm 25 while being supported by an actuator (not shown), and restricts the swing of the control arm 25 to the other side. That is, the movable stopper 28 restricts the swing of the control arm 25 in the direction in which the lever ratio of the first rocker arm 21 is reduced.
  • the actuator for example, an actuator that drives the movable stopper 28 by hydraulic pressure or electric power can be used.
  • the movable stopper 28 according to this embodiment is driven by an actuator to move to an arbitrary position between the first position shown in FIG. 6 and the second position shown in FIGS. 1 and 7.
  • the first position is a position where the swingable angle of the control arm 25 becomes zero.
  • the second position is a position at which the swingable angle of the control arm 25 is a predetermined angle ⁇ (see FIG. 7).
  • the lever ratio of the first rocker arm 21 is minimized while the swinging of the control arm 25 to the other is restricted by the movable stopper 28 moved to the second position.
  • Final position The position of the control arm 25 at which the lever ratio of the first rocker arm 21 is minimized is referred to as “final position” in this embodiment.
  • the movable stopper 28 includes a ball 37 at a portion facing the control arm 25 as shown in FIGS.
  • the ball 37 is inserted into the hole 38 of the movable stopper 28 together with the compression coil spring 39.
  • the hole 38 is formed in an end face of the movable stopper 28 that faces the control arm 25.
  • the compression coil spring 39 urges the ball 37 in the direction of exiting from the hole 38. That is, the ball 37 is pressed against the second contact surface 29 of the control arm 25 by the spring force of the compression coil spring 39, and urges the control arm 25 in one of the swing directions.
  • the direction in which the control arm 25 is urged by the spring force of the compression coil spring 39 is a direction in which the first contact surface 27 contacts the fixed stopper 26.
  • the ball 37 according to this embodiment pushes the second contact surface 29 of the control arm 25 even when the movable stopper 28 is moved to the second position. Therefore, as shown in FIGS. 1 and 7, the control arm 25 is configured such that the pressing member 31 and the second rocker arm 22 rotate the cam 7 when the pressing member 31 is in contact with the base circular portion 7 a of the cam 7. And is swung to the initial position by being pressed by the leftward force of the drawing and the spring force of the compression coil spring 39.
  • the ball 37 and the compression coil spring 39 constitute a “spring member” according to the third aspect of the present invention.
  • the valve lift amount of the intake valve 4 changes as shown in FIG.
  • the solid line shown in FIG. 8 shows the change in the valve lift when the movable stopper 28 is moved to the first position and the control arm 25 is fixed at the initial position (FIG. 6).
  • the broken line shown in FIG. 8 indicates the change in the valve lift when the movable stopper 28 is positioned at the second position and the control arm 25 is temporarily fixed at the final position (FIG. 12).
  • a one-dot chain line shown in FIG. 8 indicates a change in the valve lift amount when the movable stopper 28 is positioned at an intermediate position between the first position and the second position and the control arm 25 is temporarily fixed at the final position. .
  • FIG. 1 In this valve operating apparatus 1, the swingable range of the control arm 25 changes according to the position of the movable stopper 28.
  • the control arm 25 When the movable stopper 28 is at the first position, the control arm 25 is fixed by the fixed stopper 26 and the movable stopper 28 so that the swinging is restricted.
  • the valve lift amount in this case changes as shown by the solid line in FIG. That is, the intake valve 4 opens when the cam rotation angle is A ° shown in FIG. 8, and the intake valve 4 closes when the cam rotation angle is B °.
  • the control arm 25 can swing when the movable stopper 28 moves from the first position to the second position. As shown in FIG. 7, the control arm 25 in such a swingable state is shown in FIG. 7 by the rotational force of the cam 7 when the pressing member 31 is in contact with the base circular portion 7 a of the cam 7. Pushed to the left. In this case, the control arm 25 swings until swinging is restricted by the fixed stopper 26, and moves to an initial position that is one end of the swingable range.
  • thrust F generated by being sandwiched between the cam 7 and the first rocker arm 21 acts on the pressing member 31.
  • the thrust F at this time is a force that pushes the pressing member 31 in a direction approaching the rocker shaft 24 as indicated by an arrow in FIG. 9.
  • the control arm 25 swings against the spring force of the compression coil spring 39 by a series of movements as shown in FIGS.
  • the direction in which the control arm 25 swings at this time is the clockwise direction in FIGS.
  • the control arm 25 swings until the second contact surface 29 contacts the movable stopper 28.
  • the control arm 25 is positioned at the final position. (Fig. 12) That is, in the valve operating apparatus 1 according to this embodiment, the control arm 25 is swung by being pressed by the spring force of the valve spring 14 while the pressing member 31 is in contact with the tip portion of the nose portion 7b of the cam 7. It swings to the other end (final position) of the movable range.
  • the control arm 25 swings from the initial position to the final position while the intake valve 4 is open.
  • the intake valve 4 is closed.
  • the intake valve 4 is closed in a state where the control arm 25 is located at the final position. That is, the intake valve 4 is closed when the cam rotation angle is D ° in FIG.
  • the cam rotation angle D ° is smaller than the cam rotation angle B ° when the intake valve 4 is closed while the control arm 25 is fixed at the initial position.
  • the intake valve 4 is opened while the control arm 25 is located at the initial position, and the intake valve 4 is closed while the control arm 25 is located at the final position.
  • the final position of the control arm 25 changes corresponding to the position of the movable stopper 28.
  • the valve operating angle which is the interval between the opening timing of the intake valve 4 and the closing timing of the intake valve 4, increases or decreases corresponding to the position of the movable stopper 28.
  • valve operating angle ⁇ 1 when the movable stopper 28 is located at the first position is equal to the valve operating angle ⁇ 1 when the movable stopper 28 is located at the second position, as shown in FIG. It becomes larger than the operating angle ⁇ 2.
  • valve operating angle ⁇ 3 in a state in which the movable stopper 28 is located between the first position and the second position is larger than the valve operating angle ⁇ 2 and smaller than the valve operating angle ⁇ 1. Therefore, according to this embodiment, it is possible to provide an engine valve operating device capable of controlling the magnitude of the valve operating angle.
  • the fixed stopper 26 causes the control arm 25 to swing in the direction in which the lever ratio of the first rocker arm 21 increases at a position where the lever ratio becomes a predetermined maximum value. It is something to regulate.
  • the movable stopper 28 regulates the swinging of the control arm 25 in the direction in which the lever ratio of the first rocker arm 21 decreases.
  • the second position where the movable stopper 28 moves is a position where the lever ratio of the first rocker arm 21 becomes a predetermined minimum value.
  • the pressing member 31 is pressed in the direction in which the lever ratio of the first rocker arm 21 is increased in a state where the pressing member 31 is in contact with the base circle portion 7a of the cam 7, and the control arm 25 is moved to the initial position. Positioned on. In this case, the intake valve 4 starts to open with the control arm 25 positioned at the initial position. That is, the opening timing of the intake valve 4 is constant regardless of the position of the movable stopper 28.
  • the movable stopper 28 moves toward the first position and the range in which the control arm 25 can swing is narrowed, so that the lever ratio of the first rocker arm 21 is increased.
  • the valve operating angle increases.
  • An increase in the lever ratio means an increase in the valve lift amount.
  • the valve operating apparatus 1 for an engine further includes a ball 37 and a compression coil spring 39 for biasing the control arm 25 in one of the swing directions. For this reason, the control arm 25 does not swing unnecessarily when the pressing member 31 is in contact with the base circle portion 7a of the cam 7. That is, when the intake valve 4 is opened, the control arm 25 does not collide with the fixed stopper 26 and no hitting sound is generated. Further, it is possible to prevent the contact portion between the control arm 25 positioned at the initial position and the fixed stopper 26 from unnecessarily repeating contact and separation, and to prevent the contact portion from being excessively worn. Therefore, according to this embodiment, it is possible to provide an engine valve gear capable of maintaining a high quality state for a long period of time.
  • the portion of the pressing piece 23 of the first rocker arm 21 that is in contact with the pressing member 31 is the position of the camshaft 3 when the lift amount of the intake valve 4 is zero. It is formed in a circular arc shape with the axis C as the center. For this reason, according to this embodiment, the pressing member 31 moves smoothly while maintaining a state of contacting the base circular portion 7a of the cam 7. Therefore, since the control arm 25 quickly returns from the final position to the initial position after the intake valve 4 is closed, it is possible to provide a valve operating apparatus for an engine in which operation is stable even when the engine speed is high. .
  • the valve operating apparatus 1 for an engine two intake valves 4 are provided per cylinder.
  • the first rocker arm 21, the second rocker arm 22, and the control arm 25 are provided for each intake valve 4.
  • the pressing member 31 includes a connecting shaft 32 that is spanned between the pair of second rocker arms 22 for each intake valve 4, and a roller 33 that is rotatably supported at the center of the connecting shaft 32. It is out. Both ends of the connecting shaft 32 are in contact with the pressing piece 23, and the roller 33 is in contact with the cam 7 and rotates.
  • the valve operating apparatus 1 for an engine when the pressing member 31 moves along the cam 7, the connecting shaft 32 slides while contacting the rail 34 of the first rocker arm 21. For this reason, the pressing member 31 movable by the spring force of the valve spring 14 can be realized with a simple structure, and can be formed with high accuracy. Therefore, even though the pressing member 31 and the first rocker arm 21 are provided for each intake valve 4, it is possible to drive the two intake valves 4 per cylinder in synchronization with high accuracy. Become. As a result, according to this embodiment, it is possible to provide an engine valve operating apparatus with high operational reliability.
  • the valve operating apparatus for an engine according to the present invention can be configured as shown in FIGS.
  • FIGS. In these drawings, members that are the same as or equivalent to those described with reference to FIGS. 1 to 15 are given the same reference numerals, and detailed descriptions thereof are omitted as appropriate.
  • the valve gear 41 of the engine according to this embodiment is the same as the valve gear 1 of the engine shown in the first embodiment except for a part of the configuration.
  • the configuration different from the valve operating apparatus 1 of the engine shown in the first embodiment is that the rotation direction of the camshaft 3 is reverse, and a spring member comprising a ball 37 and a compression coil spring 39 is a fixed stopper. 26 is provided.
  • the camshaft 3 according to this embodiment rotates counterclockwise in FIG. For this reason, the pressing member 31 is pressed to the side opposite to the rocker shaft 24 by the rotational force of the cam 7 in a state where it is in contact with the base circle portion 7 a of the cam 7. Further, the swing of the control arm 25 according to this embodiment is restricted by the second contact surface 29 coming into contact with the movable stopper 28 in a state where the pressing member 31 is in contact with the base circular portion 7a of the cam 7. , Positioned at the initial position.
  • valve lift amount of the intake valve 4 changes as indicated by a solid line in FIG.
  • the valve lift amount of the intake valve 4 is As shown by the broken line in FIG.
  • the valve lift amount of the intake valve 4 is as shown in FIG. It changes as shown by the alternate long and short dash line.
  • the timing at which the intake valve 4 opens varies depending on the position of the movable stopper 28.
  • the intake valve 4 starts to open when the cam rotation angle is a ° in FIG. In this case, the intake valve 4 is closed when the cam rotation angle is b °.
  • the intake valve 4 opens when the cam rotation angle is c ° slower than a ° in FIG.
  • thrust F acts on the pressing member 31 in the direction away from the rocker shaft 24 until the cam rotation angle reaches from c ° to d ° described later.
  • the intake valve 4 is closed.
  • the intake valve 4 is closed in a state where the control arm 25 is located at the final position. That is, the intake valve 4 is closed when the cam rotation angle is b ° in FIG.
  • the cam rotation angle b ° is smaller than the cam rotation angle e ° when the intake valve 4 is closed in a state where the control arm 25 is fixed at the initial position (the valve lift curve is a solid line in FIG. 18).
  • the intake valve 4 is opened in a state where the control arm 25 is located at the initial position corresponding to the position of the movable stopper 28.
  • the intake valve 4 is closed in a state where the swing of the control arm 25 is restricted by the fixed stopper 26 and the control arm 25 is located at the final position. For this reason, the timing when the intake valve 4 is closed is not affected by the position of the movable stopper 28 and is always constant.
  • the valve operating angle increases or decreases corresponding to the position of the movable stopper 28.
  • the valve operating angle ⁇ 1 when the movable stopper 28 is located at the first position is the same as that when the movable stopper 28 is located at the second position, as shown in FIG. It becomes larger than the valve operating angle ⁇ 2.
  • the valve operating angle ⁇ 3 in a state in which the movable stopper 28 is located between the first position and the second position is larger than the valve operating angle ⁇ 2 and smaller than the valve operating angle ⁇ 1. Therefore, also in this embodiment, the same effect as that obtained when the first embodiment is adopted can be obtained.
  • SYMBOLS 1 Valve drive apparatus, 2 ... Cylinder head, 3 ... Cam shaft, 4 ... Intake valve, 5 ... Exhaust valve, 7 ... Intake valve drive cam, 14 ... Valve spring, 21 ... 1st rocker arm, 22 ... 1st 2 rocker arms, 23 ... a pressing piece, 24 ... a rocker shaft, 25 ... a control arm, 26 ... a fixed stopper, 28 ... a movable stopper, 31 ... a pressing member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

 吸気弁駆動用カム(7)を有するカムシャフト(3)と、ロッカーシャフト(24)と、押圧片(23)を有する第1のロッカーアーム(21)とを備える。ロッカーシャフト(24)を中心として揺動する制御アーム(25)を備える。カム(7)と押圧片(23)との間に挟まれた押圧部材(31)を有し、制御アーム(25)に揺動自在に支持された第2のロッカーアーム(22)を備える。制御アーム(25)の一方への揺動を規制する固定ストッパ(26)と、制御アーム(25)の他方への揺動を規制する可動ストッパ(28)とを備える。可動ストッパ(28)は、制御アーム(25)の揺動可能な角度が0になる第1の位置と、制御アーム(25)の揺動可能となる第2の位置との間で移動可能である。可動ストッパ(28)の位置が第1の位置以外の状態において、押圧部材(31)がカム(7)のベース円部(7a)に接触している状態で制御アーム(25)が揺動可能な範囲の一端となる初期位置に揺動する。押圧部材(31)がカム(7)のノーズ部(7b)に接触している状態で制御アーム(25)が揺動可能な範囲の他端となる最終位置に揺動する。 バルブ作用角の大きさを制御可能なエンジンの動弁装置を提供できる。

Description

エンジンの動弁装置
 本発明は、吸気弁または排気弁のバルブ作用角を変えることが可能なエンジンの動弁装置に関するものである。
 従来、4サイクルエンジンの吸気弁や排気弁を駆動する動弁装置としては、カム軸の回転を往復運動に変えて吸気弁または排気弁に伝達するロッカーアームを備えたものがある。ロッカーアームは、カム軸と平行なロッカーシャフトに揺動自在に支持されている。
 この種の動弁装置においては、例えば特許文献1に記載されているように、カム軸とロッカーアームとの間に介在された押圧部材をロッカーアームの長手方向に移動させることによって、吸気弁や排気弁のバルブリフト量とバルブ開閉時期を連続的に変更できることが知られている。特許文献1に開示されている押圧部材は、ロッカーシャフトにリンク機構を介して連結されている。
 このリンク機構は、ロッカーシャフトに揺動可能に支持された制御アームと、この制御アームの揺動端部にロッカーシャフトと平行な軸線を中心として揺動自在に支持された補助アームとによって構成されている。押圧部材は、補助アームの揺動端部に設けられている。制御アームは、アクチュエータによって駆動されて揺動する。
 特許文献1に記載されている動弁装置においては、制御アームの揺動に伴って押圧部材がロッカーアームの長手方向に移動する。押圧部材がカム軸の回転方向の前方に向けて移動することにより、バルブ開閉時期が遅角され、カム軸の回転方向の後方に向けて移動することによってバルブ開閉時期が進角される。また、押圧部材がロッカーアームの揺動端側に向けて移動することにより、ロッカーアームのレバー比が小さくなってバルブリフト量が相対的に少なくなる。押圧部材がロッカーアームの基端側、すなわちロッカーシャフト側に移動することにより、ロッカーアームのレバー比が大きくなってバルブリフト量が相対的に多くなる。
特開2001-164911号公報
 特許文献1に開示された従来の動弁装置では、押圧部材が移動して吸気弁または排気弁の開く時期が例えば早くなった場合、バルブが閉じる時期も早くなる。このため、この動弁装置において、バルブ作用角は、押圧部材が移動したとしても変化することはない。バルブ作用角とは、吸気弁または排気弁が開いている期間に相当するカム軸の回転角である。
 バルブ作用角は、エンジンの回転速度が相対的に高いときは、出力増大を図るために、大きいことが望ましい。また、バルブ作用角は、エンジンの回転速度が相対的に低いときは、燃焼が安定するように、小さいことが望ましい。
 しかしながら、特許文献1に記載されている従来の動弁装置では、バルブ作用角を変える機能を有していないから、バルブ作用角を運転状態に適合した大きさに制御することはできないという問題があった。
 本発明はこのような問題を解消するためになされたもので、バルブ作用角の大きさを制御可能なエンジンの動弁装置を提供することを目的とする。
 この目的を達成するために、本発明に係るエンジンの動弁装置は、吸気弁駆動用カムまたは排気弁駆動用カムを有し、シリンダヘッドに回転自在に支持されたカムシャフトと、前記シリンダヘッドに前記カムシャフトと平行に設けられたロッカーシャフトと、前記ロッカーシャフトを中心として揺動自在に構成され、吸気弁または排気弁をバルブスプリングのばね力に抗して押圧する押圧片が揺動端部に設けられた第1のロッカーアームと、前記ロッカーシャフトを中心として揺動自在に構成された制御アームと、前記制御アームの揺動端部に前記ロッカーシャフトと平行な軸線を中心として揺動自在に支持された第2のロッカーアームと、前記第2のロッカーアームの揺動端部に設けられ、前記カムと前記押圧片との間に挟まれた状態で前記カムに沿って移動可能な押圧部材と、前記制御アームの一方への揺動を規制する固定ストッパと、前記制御アームの他方への揺動を規制する可動ストッパとを備え、前記可動ストッパは、前記制御アームの揺動可能な角度が0になる第1の位置と、前記制御アームの揺動可能な角度が予め定めた角度となる第2の位置との間で移動可能に形成され、前記可動ストッパの位置が前記第1の位置以外の状態において、前記押圧部材が前記カムのベース円部に接触している状態でこの押圧部材にカムの回転力が伝達されることによって、前記制御アームが揺動可能な範囲の一端となる初期位置に揺動し、前記押圧部材が前記カムのノーズ部に接触している状態で前記バルブスプリングのばね力により押されることによって、前記制御アームが揺動可能な範囲の他端となる最終位置に揺動するものである。
 本発明によれば、制御アームが初期位置に位置している状態で吸気弁または排気弁が開き、制御アームが最終位置に位置している状態で吸気弁または排気弁が閉じる。吸気弁または排気弁が開く時期と、吸気弁または排気弁が閉じる時期との間隔であるバルブ作用角は、可動ストッパの位置に対応して増減する。
 したがって、本発明によれば、バルブ作用角の大きさを制御可能なエンジンの動弁装置を提供することができる。
図1は、本発明の第1の実施の形態によるエンジンの動弁装置の要部を示す断面図である。 図2は、第1の実施の形態によるエンジンの動弁装置の側面図である。図2においては、図1の破断位置をI-I線によって示し、図5の破断位置をV-V線によって示してある。 図3は、第1の実施の形態によるエンジンの動弁装置のロッカーアーム部分の分解斜視図である。 図4は、押圧部材のローラと第1のロッカーアームの断面図である。 図5は、押圧部材の連結軸と第1のロッカーアームの断面図である。 図6は、第1の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図6は、可動ストッパが第1の位置に位置付けられている状態を示す。 図7は、第1の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図7は、可動ストッパが第2の位置に位置付けられている状態を示す。 図8は、第1の実施の形態によるエンジンの動弁装置のカム回転角とバルブリフト量との関係を示すグラフである。 図9は、第1の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図9は、吸気弁が開くときの状態を示す。 図10は、第1の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図10は、押圧部材に作用する推力の方向が逆転するときの状態を示す。 図11は、第1の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図11は、押圧部材が推力によって移動している状態を示す。 図12は、第1の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図12は、押圧部材の移動が終了した状態を示す。 図13は、第1の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図13は、吸気弁のバルブリフト量が最大になるときの状態を示す。 図14は、第1の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図14は、吸気弁が閉じるときの状態を示す。 図15は、第1の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図15は、制御アームが初期位置に戻るときの状態を示す。 図16は、第2の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図16は、可動ストッパが第2の位置に位置している状態を示す。 図17は、第2の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図17は、可動ストッパが第1の位置に位置している状態を示す。 図18は、第2の実施の形態によるエンジンの動弁装置のカム回転角とバルブリフト量との関係を示すグラフである。 図19は、第2の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図19は、吸気弁が開くときの状態を示す。 図20は、第2の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図20は、押圧部材に作用する推力の方向が逆転するときの状態を示す。 図21は、第2の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図21は、押圧部材が推力によって移動している状態を示す。 図22は、第2の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図22は、押圧部材の移動が終了した状態を示す。 図23は、第2の実施の形態によるエンジンの動弁装置の要部を拡大して示す断面図である。図23は、吸気弁が閉じるときの状態を示す。
(第1の実施の形態)
 以下、本発明に係るエンジンの動弁装置の一実施の形態を図1~図15によって詳細に説明する。
 図1に示すエンジンの動弁装置1は、多気筒エンジンのシリンダヘッド2に設けられたカムシャフト3の回転を往復運動に変えて吸気弁4を駆動するものである。本発明に係る動弁装置1は、このような吸気弁4を駆動するものに限定されることはなく、排気弁5を駆動するものとして構成することができる。
 カムシャフト3は、図示していないクランクシャフトの回転が伝動機構を介して伝達されることにより回転する。この実施の形態によるカムシャフト3は、図1において時計方向に回転する。カムシャフト3は、シリンダヘッド2に回転自在に支持されたカムシャフト本体6と、このカムシャフト本体6に設けられた吸気弁駆動用カム7とを備えている。
 このカム7は、ベース円部7aとノーズ部7bとを含み、吸気弁4毎に設けられている。ベース円部7aは、吸気弁4が閉じているときに使用され、ノーズ部7bは、吸気弁4を開閉するときに使用される。ベース円部7aは、カムシャフト本体6と同一軸線上に位置する円柱の一部となる形状に形成されている。ノーズ部7bは、ベース円部7aから径方向の外側へ断面山形状に突出する形状に形成されている。
 吸気弁4は、1気筒当たり2本設けられている。これらの吸気弁4は、シリンダヘッド2の吸気ポート11を開閉する弁体4aと、この弁体4aからシリンダヘッド2の動弁室12内に延びるバルブステム4bとによって構成されている。バルブステム4bは、シリンダヘッド2にバルブステムガイド13によって移動自在に支持されている。バルブステム4bの先端部とシリンダヘッド2との間には、吸気弁4を閉じる方向に付勢するバルブスプリング14が設けられている。バルブステム4bの先端部には、キャップ状のシム4cが設けられている。
 吸気ポート11は、シリンダヘッド2の内部で二又状に分岐する形状に形成されている。この吸気ポート11の上流端は、シリンダヘッド2の側部に開口し、吸気ポート11の下流端は、それぞれ燃焼室15に開口している。燃焼室15の中央部には点火プラグ16が設けられている。
 動弁装置1は、吸気弁4のバルブ作用角と、開閉時期およびバルブリフト量などを変えることができるもので、2つのアーム部材(第1のロッカーアーム21と第2のロッカーアーム22)を吸気弁4毎に備えている。バルブ作用角とは、吸気弁4が開いてから閉じるまでのカムシャフト3の回転角である。
 第1のロッカーアーム21は、吸気弁4を押すための押圧片23を有し、その基部のボス部23aを介して後述するロッカーシャフト24を中心として揺動自在に構成されている。ロッカーシャフト24は、シリンダヘッド2にカムシャフト3と平行に設けられている。この実施の形態による第1のロッカーアーム21は、ロッカーシャフト24からシリンダヘッド2の外側方{ロッカーシャフト24の軸線およびシリンダの軸線CL(図1参照)と直交する方向}に延びており、ロッカーシャフト24に揺動自在に支持されている。押圧片23は、第1のロッカーアーム21の揺動端部に設けられている。すなわち、この第1のロッカーアーム21が図1において時計方向に揺動することにより、押圧片23がバルブスプリング14のばね力に抗して吸気弁4を押す。
 ロッカーシャフト24は、第1のロッカーアーム21の他に制御アーム25を揺動自在に支持している。制御アーム25は、ロッカーシャフト24からカムシャフト3に向けて延びる形状に形成されており、ロッカーシャフト24を中心として揺動自在に構成されている。
 この実施の形態による制御アーム25は、ロッカーシャフト24に揺動自在に支持されている。この制御アーム25におけるロッカーシャフト24に支持される基部には、後述する固定ストッパ26に当接する第1の当接面27と、後述する可動ストッパ28に当接する第2の当接面29とが形成されている。
 制御アーム25の揺動端部(先端部)には、支軸30を介して第2のロッカーアーム22が揺動自在に支持されている。支軸30は、ロッカーシャフト24と平行に制御アーム25に設けられている。すなわち、第2のロッカーアーム22は、制御アーム25の揺動端部にロッカーシャフト24と平行な軸線を中心として揺動自在に支持されている。
 この実施の形態による第2のロッカーアーム22は、図2および図3に示すように、制御アーム25の両側にそれぞれ設けられている。第2のロッカーアーム22の揺動端部には、カムシャフト3のカム7と第1のロッカーアーム21との間に挟まれて押圧力を伝達する押圧部材31が設けられている。
 この実施の形態による押圧部材31は、図2および図3に示すように、一対の第2のロッカーアーム22,22どうしの間に架け渡された連結軸32と、この連結軸32の中央部に回転自在に支持されたローラ33とを含んでいる。このローラ33は、カム7に接触して回転する。
 連結軸32の両端は、第2のロッカーアーム22に固着されている。また、この連結軸32は、図2に示すように、第2のロッカーアーム22とローラ33との間で一部が露出部32aとして露出する長さに形成されている。
 この露出部32aは、第1のロッカーアーム21の押圧片23に形成されているレール34に接触する。この露出部32aは、ローラ33を挟む位置にそれぞれあるために、押圧片23には2つのレール34が設けられている。すなわち、連結軸32の両端部が押圧片23に接触する。この実施の形態においては、これらのレール34によって、請求項4記載の発明でいう「押圧片における押圧部材が接触する部位」が構成されている。
 押圧片23における2つのレール34の間には、図2および図3に示すように、凹溝35が形成されている。この凹溝35は、図4に示すように、ローラ33が押圧片23に接触することを防ぐためのものである。この凹溝35は、連結軸32(露出部32a)がレール34に接触する状態でローラ33との間に隙間が形成される形状に形成されている。押圧片23におけるレール34を挟んで凹溝35とは反対側には、第2のロッカーアーム22との干渉を避けるための凹溝36が形成されている。
 上述したレール34における連結軸32が接触する部分の形状は、図5に示すように、断面円弧状である。すなわち、レール34の断面形状は、カムシャフト3の軸線方向から見て、ローラ33がカム7のベース円部7aに接触する状態(吸気弁4のリフト量が0になる状態)において、カムシャフト3の軸心Cを中心とする半径Rの円弧状である。このため、押圧部材31は、ローラ33がベース円部7aに接触する状態において、カム7と押圧片23との間に挟まれた状態でカム7に沿って移動可能である。
 この押圧部材31がロッカーシャフト24から離間する方向に移動することにより、第1のロッカーアーム21のレバー比が小さくなる。また、押圧部材31がロッカーシャフト24に接近する方向に移動することにより、第1のロッカーアーム21のレバー比が大きくなる。
 上述した固定ストッパ26は、制御アーム25の第1の当接面27と対向する位置に位置付けられ、シリンダヘッド2に移動できないように設けられている。固定ストッパ26は、シリンダヘッド2とは別体の部材によって形成することができるし、シリンダヘッド2の一部によって形成することもできる。
 この固定ストッパ26は、図1において反時計方向となる制御アーム25の一方への揺動を規制する。すなわち、固定ストッパ26は、第1のロッカーアーム21のレバー比が大きくなる方向への制御アーム25の揺動を規制する。
 この実施の形態による動弁装置1においては、固定ストッパ26によって制御アーム25の一方への揺動が規制された状態で第1のロッカーアーム21のレバー比が最大になる。このように第1のロッカーアーム21のレバー比が最大になる制御アーム25の位置をこの実施の形態においては「初期位置」という。制御アーム25は、図1に示す状態において、揺動可能な範囲の一端である初期位置に移動する。図1に示す状態とは、回転しているカム7のベース円部7aに押圧部材31が接触し、この押圧部材31にカム7の回転力が伝達されて制御アーム25が第2のロッカーアーム22によって図1の左方へ押される状態である。
 可動ストッパ28は、図示していないアクチュエータに支持された状態で制御アーム25の第2の当接面29と対向する位置に配置されており、制御アーム25の他方への揺動を規制する。すなわち、可動ストッパ28は、第1のロッカーアーム21のレバー比が小さくなる方向への制御アーム25の揺動を規制する。
 アクチュエータは、例えば油圧や電力によって可動ストッパ28を駆動するものを用いることができる。この実施の形態による可動ストッパ28は、アクチュエータによって駆動されることにより、図6に示す第1の位置と、図1および図7に示す第2の位置との間で任意の位置に移動する。
 第1の位置は、制御アーム25の揺動可能な角度が0になる位置である。第2の位置は、制御アーム25の揺動可能な角度が予め定めた角度θ(図7参照)となる位置である。この実施の形態による動弁装置1においては、第2の位置に移動した可動ストッパ28によって制御アーム25の他方への揺動が規制される状態で第1のロッカーアーム21のレバー比が最小になる。
 このように第1のロッカーアーム21のレバー比が最小になる制御アーム25の位置をこの実施の形態においては「最終位置」という。
 この実施の形態による可動ストッパ28は、図1、図6および図7に示すように、制御アーム25と対向する部分にボール37を備えている。このボール37は、可動ストッパ28の穴38に圧縮コイルばね39とともに挿入されている。穴38は、可動ストッパ28における制御アーム25と対向する端面に形成されている。圧縮コイルばね39は、ボール37を穴38から出る方向に付勢している。すなわち、ボール37は、圧縮コイルばね39のばね力で制御アーム25の第2の当接面29に押し付けられ、制御アーム25を揺動方向の一方に付勢している。
 制御アーム25が圧縮コイルばね39のばね力で付勢される方向は、第1の当接面27が固定ストッパ26に当接する方向である。この実施の形態によるボール37は、図7に示すように、可動ストッパ28が第2の位置に移動した状態であっても制御アーム25の第2の当接面29を押している。このため、制御アーム25は、図1および図7に示すように、押圧部材31がカム7のベース円部7aに接触する状態において、押圧部材31と第2のロッカーアーム22がカム7の回転から受ける図の左方への力と、圧縮コイルばね39のばね力とによって押されて初期位置に揺動する。この実施の形態においては、これらのボール37と圧縮コイルばね39とによって、請求項3記載の発明でいう「ばね部材」が構成されている。
 このように構成された動弁装置1において、吸気弁4のバルブリフト量は、図8に示すように変化する。図8に示す実線は、可動ストッパ28が第1の位置に移動して制御アーム25が初期位置に固定されている場合(図6)のバルブリフト量の変化を示す。図8に示す破線は、可動ストッパ28を第2の位置に位置付けるとともに、制御アーム25を最終位置に仮に固定した場合(図12)のバルブリフト量の変化を示す。図8に示す一点鎖線は、可動ストッパ28を第1の位置と第2の位置との間の中間位置に位置付けるとともに、制御アーム25を最終位置に仮に固定した場合のバルブリフト量の変化を示す。
 図8から判るように、可動ストッパ28が第1の位置に移動することによって、実線で示すように、バルブリフト量が最大になる。また、可動ストッパ28が第2の位置に移動した状態で、制御アーム25を可動ストッパ28に接触する最終位置に固定した場合は、破線で示すように、バルブリフト量が最小になるとともに、バルブ開閉時期が実線で示す場合と比べて早くなる。
 次に、この実施の形態による動弁装置1の動作を図7、図9~図15によって説明する。
 この動弁装置1において、制御アーム25の揺動可能な範囲は、可動ストッパ28の位置に応じて変化する。制御アーム25は、可動ストッパ28が第1の位置にあるときは、固定ストッパ26と可動ストッパ28とによって揺動が規制されて固定される。この場合のバルブリフト量は、図8中に実線で示すように変化する。すなわち、カム回転角が図8に示すA°であるときに吸気弁4が開き、カム回転角がB°であるときに吸気弁4が閉じる。
 制御アーム25は、可動ストッパ28が第1の位置から第2の位置側に移動することにより、揺動可能になる。このように揺動可能な状態にある制御アーム25は、図7に示すように、押圧部材31がカム7のベース円部7aに接触しているときに、カム7の回転力によって図7において左方に押される。この場合の制御アーム25は、固定ストッパ26によって揺動が規制されるまで揺動し、揺動可能な範囲の一端となる初期位置に移動する。
 制御アーム25が初期位置に位置している状態でカム7が回転することにより、図9に示すように、押圧部材31とカム7との接触点P1がベース円部7aからノーズ部7b側に移る。このとき、押圧部材31は、バルブスプリング14のばね力で押されている第1のロッカーアーム21と、カム7とに挟まれている。図9において、接触点P1を通る接線L1は、連結軸32と第1のロッカーアーム21との接触点P2を通る接線L2に対して傾斜している。これらの接線L1と接線L2との間隔は、連結軸32からロッカーシャフト24に向かうにしたがって次第に広くなっている。このため、押圧部材31には、カム7と第1のロッカーアーム21とによって挟まれることにより生じる推力Fが作用する。このときの推力Fは、図9中に矢印で示すように、押圧部材31をロッカーシャフト24に接近する方向へ押す力である。
 しかし、このときは、制御アーム25の揺動が固定ストッパ26によって規制されているために、押圧部材31は、推力Fが加えられているにもかかわらず、移動することができない。
 この状態になると、押圧部材31が第1のロッカーアーム21をバルブスプリング14のばね力に抗して押し、吸気弁4が開く。このとき、吸気弁4は、制御アーム25が初期位置に位置している状態で開く。このため、この場合の吸気弁4が開くときのカム回転角は、図8に示すA°である。
 このように吸気弁4が開いた後、カム回転角が図8中の予め定めたC°に達するまでの間、すなわちノーズ部7bの先端部分がローラ33を押す状態になるまでの間は、バルブリフト量が図8中の実線からなるバルブリフトカーブに示すように増大する。
 カム回転角がC°に達したときとは、図10に示すように、カム7のノーズ部7bの先端部分がローラ33を押すときであって、接線L2に対する接線L1の傾斜方向がそれまでとは逆方向になるときである。図10に示す接線L1と接線L2との間隔は、連結軸32からロッカーシャフト24に向かうにしたがって次第に狭くなっている。このため、押圧部材31をロッカーシャフト24から離間する方向へ押す推力Fが発生する。すなわち、カム回転角がC°に達することにより、押圧部材31に作用する推力Fの方向が逆転する。
 押圧部材31がこの推力Fによって押されると、図10~図12に示すような一連の動きで、制御アーム25が圧縮コイルばね39のばね力に抗して揺動する。このときに制御アーム25が揺動する方向は、図10~図12において時計方向である。この制御アーム25は、第2の当接面29が可動ストッパ28に当接するまで揺動する。制御アーム25の揺動が可動ストッパ28によって規制されることにより、制御アーム25が最終位置に位置付けられる。(図12)
 すなわち、この実施の形態による動弁装置1は、押圧部材31がカム7のノーズ部7bの先端部分に接触している状態でバルブスプリング14のばね力により押されることによって、制御アーム25が揺動可能な範囲の他端(最終位置)に揺動するものである。制御アーム25は、吸気弁4が開いている状態で、初期位置から最終位置に揺動する。
 このように制御アーム25が最終位置に揺動することによって、押圧部材31がカム7に対してカム7の回転方向の後方に移動する。すなわち、カムの回転位相が実質的に進むことになる。カム回転角が図8においてC°に達した後のバルブリフト量は、図8中の破線からなるバルブリフトカーブに示すように変化する。
 制御アーム25は、ローラ33がカム7のノーズ部7bによって押されている間はバルブスプリング14のばね力で最終位置に保持される。すなわち、制御アーム25は、カム7が更に回転し、カム7のノーズ部7bの頂点がローラ33を押す状態(図13参照)を経て、ローラ33がベース円部7aに接触する状態(図14参照)になるまで最終位置に保持される。
 ローラ33とカム7との接触点P1がノーズ部7bとベース円部7aとの境界に達することによって、吸気弁4が閉じる。吸気弁4は、制御アーム25が最終位置に位置している状態で閉じる。すなわち、吸気弁4は、図8においてカム回転角がD°であるときに閉じる。カム回転角D°は、制御アーム25が初期位置に固定されている状態で吸気弁4が閉じるときのカム回転角B°より小さい。
 ローラ33がベース円部7aに接触する状態になると、上述したようにカム7の回転力でローラ33が押され、図15に示すように、制御アーム25が同図において反時計方向に揺動し、図7に示す初期位置に戻る。
 この実施の形態による動弁装置1においては、制御アーム25が初期位置に位置している状態で吸気弁4が開き、制御アーム25が最終位置に位置している状態で吸気弁4が閉じる。制御アーム25の最終位置は、可動ストッパ28の位置に対応して変化する。このため、吸気弁4が開く時期と、吸気弁4が閉じる時期との間隔であるバルブ作用角は、可動ストッパ28の位置に対応して増減する。
 この実施の形態において、可動ストッパ28が第1の位置に位置している状態のバルブ作用角α1は、図8に示すように、可動ストッパ28が第2の位置に位置している状態のバルブ作用角α2より大きくなる。また、可動ストッパ28が第1の位置と第2の位置との中間に位置している状態のバルブ作用角α3は、バルブ作用角α2より大きく、バルブ作用角α1より小さくなる。
 したがって、この実施の形態によれば、バルブ作用角の大きさを制御可能なエンジンの動弁装置を提供することができる。
 この実施の形態による固定ストッパ26は、上述したように、第1のロッカーアーム21のレバー比が大きくなる方向への制御アーム25の揺動を、レバー比が予め定めた最大値となる位置で規制するものである。可動ストッパ28は、第1のロッカーアーム21のレバー比が小さくなる方向への制御アーム25の揺動を規制するものである。この可動ストッパ28が移動する第2の位置は、第1のロッカーアーム21のレバー比が予め定めた最小値となる位置である。
 この実施の形態においては、カム7のベース円部7aに押圧部材31が接触する状態で第1のロッカーアーム21のレバー比が大きくなる方向に押圧部材31が押され、制御アーム25が初期位置に位置付けられる。この場合、吸気弁4は、制御アーム25が初期位置に位置している状態で開き始める。すなわち、吸気弁4が開く時期は、可動ストッパ28の位置とは無関係に一定になる。
 押圧部材31は、カム7のノーズ部7bに接触してバルブスプリング14のばね力によって押されている状態において、上述した推力Fの方向が逆転したとき(図8に示すカム回転角C°のとき)に、ロッカーシャフト24とは反対側へ移動する。この移動は、制御アーム25の揺動が可動ストッパ28によって規制されるまで行われる。押圧部材31がこのように移動することにより、吸気弁4が閉じる時期が早くなるとともに、第1のロッカーアーム21のレバー比が小さくなってバルブリフト量が減少する。
 すなわち、この実施の形態によれば、可動ストッパ28が第1の位置に向けて移動して制御アーム25の揺動可能な範囲が狭くなることにより、第1のロッカーアーム21のレバー比が大きくなるとともに、バルブ作用角が大きくなる。レバー比が大きくなることは、バルブリフト量が多くなることを意味する。このため、エンジンの運転域が高速運転域にあるときに制御アーム25の揺動可能な範囲を狭くすることによって、エンジンの更なる出力向上が図られる。また、エンジンの運転域が低速運転域にあるときに制御アーム25の揺動可能な範囲が広くなることによって、燃焼が安定する。
 したがって、この実施の形態によれば、低速運転時の安定性の向上と、高速運転時の出力向上とを両立可能なエンジンの動弁装置を提供することができる。
 この実施の形態によるエンジンの動弁装置1は、制御アーム25を揺動方向の一方に付勢するためのボール37と圧縮コイルばね39とをさらに備えている。このため、押圧部材31がカム7のベース円部7aに接触しているときに制御アーム25が不必要に揺動することがない。すなわち、吸気弁4が開くときに制御アーム25が固定ストッパ26に衝突して当打音が発生することがない。また、初期位置に位置する制御アーム25と、固定ストッパ26との接触部分が不必要に接触、離間を繰り返すことを防ぐことができ、この接触部分が過度に摩耗することを防ぐことができる。したがって、この実施の形態によれば、長期間にわたって品質が高い状態を維持可能なエンジンの動弁装置を提供することができる。
 この実施の形態によるエンジンの動弁装置1において、第1のロッカーアーム21の押圧片23における押圧部材31が接触する部位は、吸気弁4のリフト量が0になる状態において、カムシャフト3の軸心Cを中心とする断面円弧状に形成されている。
 このため、この実施の形態によれば、押圧部材31がカム7のベース円部7aに接触する状態を保ちながら円滑に移動する。したがって、吸気弁4が閉じた後に制御アーム25が最終位置から初期位置に速やかに戻るから、エンジンの回転速度が高い場合であっても動作が安定するエンジンの動弁装置を提供することができる。
 この実施の形態によるエンジンの動弁装置1において、吸気弁4は、1気筒当たり2本設けられている。第1のロッカーアーム21と、第2のロッカーアーム22と、制御アーム25とは、それぞれ吸気弁4毎に設けられている。押圧部材31は、吸気弁4毎の一対の第2のロッカーアーム22どうしの間に架け渡された連結軸32と、この連結軸32の中央部に回転自在に支持されたローラ33とを含んでいる。連結軸32の両端部が押圧片23に接触し、ローラ33がカム7に接触して回転する。
 この実施の形態によるエンジンの動弁装置1によれば、押圧部材31がカム7に沿って移動するときは、連結軸32が第1のロッカーアーム21のレール34に接触しながら滑る。このため、バルブスプリング14のばね力で移動可能な押圧部材31を簡単な構造で実現でき、高い精度で形成することができる。
 したがって、押圧部材31と第1のロッカーアーム21とが吸気弁4毎に設けられているにもかかわらず、1気筒当たり2本ある吸気弁4を高い精度で同期させて駆動することが可能になる。この結果、この実施の形態によれば、動作の信頼性が高いエンジンの動弁装置を提供することができる。
(第2の実施の形態)
 本発明に係るエンジンの動弁装置は、図16~図23に示すように構成することができる。これらの図において、前記図1~図15によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
 この実施の形態によるエンジンの動弁装置41は、第1の実施の形態で示したエンジンの動弁装置1と一部の構成が異なっているだけで、その他の構成は同一である。第1の実施の形態で示したエンジンの動弁装置1と相違する構成は、カムシャフト3の回転方向が逆方向であることと、ボール37と圧縮コイルばね39とからなるばね部材が固定ストッパ26に設けられていることである。
 この実施の形態によるカムシャフト3は、図16において反時計方向に回転する。このため、押圧部材31は、カム7のベース円部7aに接触している状態において、カム7の回転力によってロッカーシャフト24とは反対側に押される。また、この実施の形態による制御アーム25は、押圧部材31がカム7のベース円部7aに接触する状態において、第2の当接面29が可動ストッパ28に当接することにより揺動が規制され、初期位置に位置付けられる。
 可動ストッパ28が第2の位置に位置している状態で制御アーム25が初期位置に仮に固定されている場合、吸気弁4のバルブリフト量は、図18中に実線で示すように変化する。また、可動ストッパ28が図17に示すように第1の位置に位置付けられて制御アーム25の揺動が固定ストッパ26と可動ストッパ28とによって規制される場合、吸気弁4のバルブリフト量は図18中の破線で示すように変化する。
 可動ストッパ28が第1の位置と第2の位置との間の中間位置に位置している状態で制御アーム25が初期位置に仮に固定されている場合、吸気弁4のバルブリフト量は図18中に一点鎖線で示すように変化する。
 この実施の形態による動弁装置1において、吸気弁4が開く時期は、可動ストッパ28の位置に応じて変わる。可動ストッパ28が図17に示すように第1の位置に位置している場合は、図18においてカム回転角がa°であるときに吸気弁4が開き始める。この場合、吸気弁4は、カム回転角がb°であるときに閉じる。
 可動ストッパ28が図16に示すように第2の位置に位置している場合は、図18においてカム回転角がa°より遅いc°であるときに吸気弁4が開く。カム回転角がc°から後述するd°に達するまでの間は、図19に示すように、押圧部材31にロッカーシャフト24から離間する方向に推力Fが作用している。
 しかし、制御アーム25は可動ストッパ28によって揺動が規制されているために、推力Fによって押圧部材31が移動することはできない。この結果、カム7の回転に伴って押圧部材31がバルブスプリング14のばね力に抗して第1のロッカーシャフト24を押す。このため、吸気弁4が開いた後、カム回転角が図18中の予め定めたd°に達するまでの間、すなわち吸気弁4のバルブリフト量が最大になる状態を経て吸気弁4が閉じ始める状態になるまでの間は、バルブリフト量が図18中の実線からなるバルブリフトカーブに示すように変化する。
 カム回転角がd°に達すると、図20に示すように、押圧部材31に加えられる推力Fの方向が逆転し、押圧部材31が推力Fによってロッカーシャフト24に接近する方向へ押される。このため、図20~図22に示すような一連の動きで、制御アーム25が圧縮コイルばね39のばね力に抗して揺動する。このときに制御アーム25が揺動する方向は、図20~図22において反時計方向である。この制御アーム25は、第1の当接面27が固定ストッパ26に当接するまで揺動する。制御アーム25の揺動が固定ストッパ26によって規制されることにより、制御アーム25が最終位置に位置付けられる。
 このように制御アーム25が最終位置に揺動することによって、押圧部材31がカム7に対してカム7の回転方向の後方に移動する。このため、制御アーム25が最終位置に位置している状態で吸気弁4が閉じる時期は、制御アーム25が初期位置に位置している場合と比べて早くなる。すなわち、カム回転角が図18においてd°に達した後のバルブリフト量は、図18中の破線からなるバルブリフトカーブに示すように変化する。
 制御アーム25は、ローラ33がカム7のノーズ部7bによって押されている間はバルブスプリング14のばね力で最終位置に保持される。すなわち、制御アーム25は、カム7が更に回転し、ローラ33がベース円部7aに接触する状態(図23参照)になるまで最終位置に保持される。
 ローラ33とカム7との接触点P1がノーズ部7bとベース円部7aとの境界に達することによって、吸気弁4が閉じる。吸気弁4は、制御アーム25が最終位置に位置している状態で閉じる。すなわち、吸気弁4は、図18においてカム回転角がb°であるときに閉じる。カム回転角b°は、制御アーム25が初期位置に固定されている状態(バルブリフトカーブが図18の実線となる状態)で吸気弁4が閉じるときのカム回転角e°より小さい。
 ローラ33がベース円部7aに接触する状態になると、カム7の回転力でローラ33が押され、制御アーム25が図16に示す初期位置に戻る。
 この実施の形態による動弁装置1においては、制御アーム25が可動ストッパ28の位置に対応した初期位置に位置している状態で吸気弁4が開く。吸気弁4は、制御アーム25の揺動が固定ストッパ26によって規制されて制御アーム25が最終位置に位置している状態で閉じる。このため、吸気弁4が閉じる時期は、可動ストッパ28の位置に影響を受けることはなく、常に一定になる。
 この実施の形態による動弁装置1においても、バルブ作用角は、可動ストッパ28の位置に対応して増減する。この実施の形態においては、可動ストッパ28が第1の位置に位置している状態のバルブ作用角α1は、図18に示すように、可動ストッパ28が第2の位置に位置している状態のバルブ作用角α2より大きくなる。また、可動ストッパ28が第1の位置と第2の位置との中間に位置している状態のバルブ作用角α3は、バルブ作用角α2より大きく、バルブ作用角α1より小さくなる。
 したがって、この実施の形態においても、第1の実施の形態を採るときと同等の効果が得られる。
 1…動弁装置、2…シリンダヘッド、3…カムシャフト、4…吸気弁、5…排気弁、7…吸気弁駆動用カム、14…バルブスプリング、21…第1のロッカーアーム、22…第2のロッカーアーム、23…押圧片、24…ロッカーシャフト、25…制御アーム、26…固定ストッパ、28…可動ストッパ、31…押圧部材。

Claims (5)

  1.  吸気弁駆動用カムまたは排気弁駆動用カムを有し、シリンダヘッドに回転自在に支持されたカムシャフトと、
     前記シリンダヘッドに前記カムシャフトと平行に設けられたロッカーシャフトと、
     前記ロッカーシャフトを中心として揺動自在に構成され、吸気弁または排気弁をバルブスプリングのばね力に抗して押圧する押圧片が揺動端部に設けられた第1のロッカーアームと、
     前記ロッカーシャフトを中心として揺動自在に構成された制御アームと、
     前記制御アームの揺動端部に前記ロッカーシャフトと平行な軸線を中心として揺動自在に支持された第2のロッカーアームと、
     前記第2のロッカーアームの揺動端部に設けられ、前記カムと前記押圧片との間に挟まれた状態で前記カムに沿って移動可能な押圧部材と、
     前記制御アームの一方への揺動を規制する固定ストッパと、
     前記制御アームの他方への揺動を規制する可動ストッパとを備え、
     前記可動ストッパは、前記制御アームの揺動可能な角度が0になる第1の位置と、前記制御アームの揺動可能な角度が予め定めた角度となる第2の位置との間で移動可能に形成され、
     前記可動ストッパの位置が前記第1の位置以外の状態において、
     前記押圧部材が前記カムのベース円部に接触している状態でこの押圧部材にカムの回転力が伝達されることによって、前記制御アームが揺動可能な範囲の一端となる初期位置に揺動し、
     前記押圧部材が前記カムのノーズ部に接触している状態で前記バルブスプリングのばね力により押されることによって、前記制御アームが揺動可能な範囲の他端となる最終位置に揺動するエンジンの動弁装置。
  2.  請求項1記載のエンジンの動弁装置において、
     前記固定ストッパは、前記第1のロッカーアームのレバー比が大きくなる方向への制御アームの揺動を、前記レバー比が予め定めた最大値となる位置で規制するものであり、
     前記可動ストッパは、前記レバー比が小さくなる方向への前記制御アームの揺動を規制するものであり、
     前記可動ストッパが移動する前記第2の位置は、前記レバー比が予め定めた最小値となる位置であることを特徴とするエンジンの動弁装置。
  3.  請求項1または請求項2記載のエンジンの動弁装置において、
     前記制御アームを揺動方向の一方に付勢するばね部材をさらに備えたことを特徴とするエンジンの動弁装置。
  4.  請求項1ないし請求項3のうちいずれか1つに記載のエンジンの動弁装置において、
     前記押圧片における前記押圧部材が接触する部位は、吸気弁または排気弁のリフト量が0になる状態において、前記カムシャフトの軸心を中心とする断面円弧状に形成されていることを特徴とするエンジンの動弁装置。
  5.  請求項1ないし請求項4のうちいずれか1つに記載のエンジンの動弁装置において、
     前記吸気弁または排気弁は、1気筒当たり2本設けられ、
     前記第1のロッカーアームと、前記制御アームと、前記第2のロッカーアームは、それぞれ吸気弁毎または排気弁毎に設けられ、
     前記押圧部材は、前記吸気弁毎または排気弁毎に設けられている一対の第2のロッカーアームどうしの間に架け渡された連結軸と、この連結軸の中央部に回転自在に支持されたローラとを含み、
     前記連結軸の両端部が前記押圧片に接触し、
     前記ローラが前記カムに接触して回転するものであることを特徴とするエンジンの動弁装置。
PCT/JP2014/081696 2013-12-20 2014-12-01 エンジンの動弁装置 WO2015093265A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553454A JP6058817B2 (ja) 2013-12-20 2014-12-01 エンジンの動弁装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013263503 2013-12-20
JP2013-263503 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015093265A1 true WO2015093265A1 (ja) 2015-06-25

Family

ID=53402616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081696 WO2015093265A1 (ja) 2013-12-20 2014-12-01 エンジンの動弁装置

Country Status (2)

Country Link
JP (1) JP6058817B2 (ja)
WO (1) WO2015093265A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017134062A1 (en) * 2016-02-01 2017-08-10 Eaton Srl Variable rocker ratio system for a switchable rocker arm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307219A (ja) * 1993-04-28 1994-11-01 Toyota Motor Corp 内燃機関の可変動弁機構
JP2002371816A (ja) * 2001-06-14 2002-12-26 Otics Corp 可変動弁機構
JP2003239712A (ja) * 2002-02-18 2003-08-27 Nippon Soken Inc 弁制御装置
WO2006025565A1 (ja) * 2004-08-31 2006-03-09 Toyota Jidosha Kabushiki Kaisha 可変動弁装置
JP2007278097A (ja) * 2006-04-03 2007-10-25 Toyota Motor Corp 可変動弁機構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307219A (ja) * 1993-04-28 1994-11-01 Toyota Motor Corp 内燃機関の可変動弁機構
JP2002371816A (ja) * 2001-06-14 2002-12-26 Otics Corp 可変動弁機構
JP2003239712A (ja) * 2002-02-18 2003-08-27 Nippon Soken Inc 弁制御装置
WO2006025565A1 (ja) * 2004-08-31 2006-03-09 Toyota Jidosha Kabushiki Kaisha 可変動弁装置
JP2007278097A (ja) * 2006-04-03 2007-10-25 Toyota Motor Corp 可変動弁機構

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017134062A1 (en) * 2016-02-01 2017-08-10 Eaton Srl Variable rocker ratio system for a switchable rocker arm

Also Published As

Publication number Publication date
JP6058817B2 (ja) 2017-01-11
JPWO2015093265A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP4211846B2 (ja) 可変動弁装置
JP4480669B2 (ja) 内燃機関の可変動弁機構
JP4297189B2 (ja) 可変動弁装置および開弁量調整方法
WO2006025566A1 (ja) 可変動弁装置
JP4697011B2 (ja) 可変動弁機構
JP6244479B2 (ja) エンジンの動弁装置
JPWO2003098012A1 (ja) エンジンの動弁装置
JP4248343B2 (ja) エンジンの動弁装置
JP4103871B2 (ja) 可変動弁装置
JP6058817B2 (ja) エンジンの動弁装置
JP2007077940A (ja) 可変動弁機構
JP6154028B2 (ja) エンジンの動弁装置
JP4941028B2 (ja) エンジンの動弁装置
JP2005320887A (ja) 内燃機関における動弁機構
JP4305335B2 (ja) 可変動弁機構
WO2021131190A1 (ja) 可変動弁機構
WO2011086702A1 (ja) 内燃機関の可変動弁装置
JP4289260B2 (ja) 可変動弁装置
JP2008064112A (ja) 可変動弁装置
JP2004150301A (ja) 内燃機関の可変動弁装置
JP2006170062A (ja) V型内燃機関の可変動弁装置
JP2017020469A (ja) 内燃機関の可変動弁機構
JP2009191798A (ja) 内燃機関の可変動弁機構
JP2007154687A (ja) 内燃機関の可変動弁装置
JP2006144742A (ja) 内燃機関の可変動弁装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872803

Country of ref document: EP

Kind code of ref document: A1