WO2015093136A1 - Resin paste composition and semiconductor device - Google Patents

Resin paste composition and semiconductor device Download PDF

Info

Publication number
WO2015093136A1
WO2015093136A1 PCT/JP2014/077712 JP2014077712W WO2015093136A1 WO 2015093136 A1 WO2015093136 A1 WO 2015093136A1 JP 2014077712 W JP2014077712 W JP 2014077712W WO 2015093136 A1 WO2015093136 A1 WO 2015093136A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste composition
resin paste
meth
resin
silver powder
Prior art date
Application number
PCT/JP2014/077712
Other languages
French (fr)
Japanese (ja)
Inventor
愉加吏 井上
山田 和彦
賢 藤田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201480067971.6A priority Critical patent/CN105814093B/en
Publication of WO2015093136A1 publication Critical patent/WO2015093136A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver

Definitions

  • the present invention relates to a resin paste composition suitable for die bonding of semiconductor elements and a semiconductor device in which a semiconductor element is bonded to a support member using the resin paste.
  • Au-Si eutectic, solder, resin paste composition, and the like are known as die bonding materials used for semiconductor devices.
  • resin paste compositions are widely used from the viewpoint of workability and cost.
  • a semiconductor device is manufactured by bonding a semiconductor element to a support member such as a lead frame using a die bonding material.
  • the die bonding material is required to have high adhesive strength, but absorbs stress caused by the difference between the thermal expansion coefficient of the element and the thermal expansion coefficient of the support member in order to reduce the warpage of the support member to which the semiconductor device is bonded. Performance is also required.
  • a resin paste having high adhesive strength and the ability to absorb the stress a hybrid resin resin paste composition of an epoxy resin and an acrylic resin has been proposed (for example, see Patent Document 1).
  • the resin paste composition used for the die bonding material is required to have high reliability in characteristics such as electrical conductivity and thermal conductivity in addition to the adhesive strength.
  • a conductive filler is added to the resin paste composition.
  • the conductive filler used in the resin paste composition it is considered to use metal powder such as gold powder, silver powder, and copper powder, and silver powder is mainly used at present. Silver powder is not as rare as gold powder, it is easily oxidized like copper powder, is not inferior in storage stability, has further excellent workability and mechanical properties, and is required as a conductive filler for resin paste compositions. Various characteristics are also excellent.
  • silver powder is also a precious metal, a rare and expensive material.
  • a conductive filler used in the resin paste composition a combination of silver powder and another conductive filler that is more easily available and inexpensive has been developed.
  • Aluminum powder has been studied as another conductive filler to be used together with silver powder from the viewpoints of availability and low cost, and stability and conductivity (see, for example, Patent Document 2 and Patent Document 3).
  • the metal-containing paste described in Patent Document 2 has a volume ratio of 5:95 to 40:60 between the metal powder of aluminum and the metal powder such as silver, so that the amount of the metal powder such as silver is sufficient. It cannot be said that it is decreasing.
  • the mass ratio of aluminum powder and silver powder is 2/8 to 8/2.
  • characteristics such as volume resistance and viscosity may be inferior to those of a conventional resin paste composition containing silver powder.
  • the resin paste composition which reduced the ratio of the silver powder in an electroconductive filler and has the characteristic more than the conventional resin paste composition containing many silver powders is not obtained.
  • JP 2002-179769 A Japanese Patent Laid-Open No. 2005-197118 International Publication No. 2012/124527 Pamphlet
  • the present invention is suitably used for adhesion between a semiconductor element and a support member, and uses a resin paste composition having a small amount of silver used and having excellent electrical conductivity, thermal conductivity and adhesiveness, and the resin paste composition.
  • An object is to provide a semiconductor device used.
  • the present invention provides the following resin paste composition and a semiconductor device using the resin paste composition.
  • a resin paste composition comprising: Silver powder (F) includes silver powder (F-1) coated with stearic acid and having a tap density of 4.0 g / cm 3 or less, The content of the silver powder (F) is 42% by mass or less and the content of the silver powder (F-1) is 10% by mass or more with respect to the total mass of the components (A) to (G).
  • the resin paste composition has a mass ratio of aluminum powder (G) content / silver powder (F) content of 0.3 to 2.3.
  • a semiconductor device comprising a semiconductor element and a support member, wherein the semiconductor element is joined to the support member by a cured product of the resin paste composition according to any one of [1] to [10] .
  • the semiconductor device according to [11] wherein the semiconductor element and at least a part of the support member are sealed with a sealant.
  • ADVANTAGE OF THE INVENTION According to this invention, it is used suitably for adhesion
  • the usage-amount of silver is small,
  • the resin paste composition which was excellent in electrical conductivity, heat conductivity, and adhesiveness, and its resin paste composition A semiconductor device using an object can be provided.
  • FIGS. 1A to 1E are plan views for explaining a volume resistivity measuring method.
  • the resin paste composition of the present invention comprises (meth) acrylic compound (A), binder resin (B), amine compound (C), polymerization initiator (D), flexible agent (E), silver powder (F) and Contains aluminum powder (G).
  • acrylic compound A
  • binder resin B
  • amine compound C
  • polymerization initiator D
  • flexible agent E
  • silver powder F
  • Contains aluminum powder G
  • the (meth) acrylic compound (A) used in the present invention is not particularly limited as long as it is a compound having a (meth) acryloyl group.
  • the (meth) acrylic compound (A) is excellent in electrical conductivity, adhesiveness and thermal conductivity when used in combination with specific silver powder (F) and aluminum powder (G), and is suitably used for die bonding. It is preferable that the resin paste composition which can be obtained is obtained. Moreover, it is preferable that a (meth) acrylic compound (A) can suppress isolation
  • a preferable (meth) acrylic compound (A) is a (meth) acrylic acid ester compound having one or more (meth) acryloyloxy groups.
  • Preferable (meth) acrylic acid ester compounds include, for example, compounds represented by the following general formulas (I) to (X). These may be used alone or in combination of two or more.
  • R 1 represents hydrogen or a methyl group
  • R 2 represents a divalent aliphatic or cyclic hydrocarbon group having 1 to 100 carbon atoms, preferably 1 to 36 carbon atoms.
  • R 1 and R 2 are the same as R 1 and R 2 above, respectively.
  • R 1 is the same as R 1 above, R 3 represents hydrogen, a methyl group or a phenoxymethyl group, R 4 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a phenyl group, Or represents a benzoyl group, and n represents an integer of 1 to 50)
  • R 1 is the same as R 1 above, R 5 represents a phenyl group, a cyano group, —Si (OR 6 ) 3 (R 6 represents an alkyl group having 1 to 6 carbon atoms). Or a monovalent group represented by the following formula, m represents the number of 0, 1, 2, or 3)
  • R 7 , R 8 and R 9 each independently represents hydrogen or an alkyl group having 1 to 6 carbon atoms, and R 10 represents hydrogen, an alkyl group having 1 to 6 carbon atoms or a phenyl group
  • R 1 and R 2 are the same as R 1 and R 2 , respectively.
  • R 1 , R 3 and n are the same as R 1 , R 3 and n, respectively, provided that n is not 1 when R 3 is hydrogen or a methyl group).
  • R 1 is the same as R 1 above, and R 11 and R 12 each independently represents hydrogen or a methyl group
  • R 1 , R 11 and R 12 are the same as R 1 , R 11 and R 12 , respectively, R 13 and R 14 each independently represent hydrogen or a methyl group; And q each independently represents an integer of 1 to 20)
  • R 1 represents the above R 1 , R 15 , R 16 , R 17 and R 18 each independently represent hydrogen or a methyl group, and x represents an integer of 1 to 20)
  • R 1 represents the above R 1 , r, s, t and u are each independently a number of 0 or more indicating the average number of repetitions, and r + t is 0.1 or more, Preferably it is 0.3-5, and s + u is 1 or more, preferably 1-100)
  • Examples of the (meth) acrylic acid ester compound represented by the general formula (I) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl.
  • Examples of the (meth) acrylic acid ester compound represented by the general formula (II) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and dimer diol mono (meth) acrylate. It is done.
  • Examples of the (meth) acrylic acid ester compound represented by the general formula (III) include diethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-methoxyethyl (meth) ) Acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, 2-phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) Acrylate, phenoxypolyethylene glycol (meth) acrylate, 2-benzoyloxyethyl (meth) acrylate, and 2-hydroxy-3-pheno Shipuropiru (meth) acrylate.
  • a more preferred (meth) acrylic acid ester is 2-
  • Examples of the (meth) acrylic acid ester compound represented by the general formula (IV) include benzyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, ⁇ - (meth) acryloxypropyltrimethoxysilane, glycidyl (meta) ) Acrylate, tetrahydrofurfuryl (meth) acrylate, tetrahydropyranyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 1,2,2,6,6-pentamethylpiperidinyl ( (Meth) acrylate, 2,2,6,6-tetramethylpiperidinyl (meth) acrylate, (meth) acryloxyethyl phosphate, (meth) acryloxyethyl phenyl acid phosphate, ⁇ - (meth) acryloyloxyethyl hydrogen
  • Examples of the (meth) acrylic acid ester compound represented by the general formula (V) include ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth) ) Acrylate, 1,9-nonanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dimer diol di (meth) acrylate, and dimethylol tricyclode Examples include candi (meth) acrylate.
  • a more preferable (meth) acrylic acid ester is neopentyl glycol diacrylate.
  • Examples of the (meth) acrylic acid ester compound represented by the general formula (VI) include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di ( Examples include meth) acrylate, tripropylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate.
  • a more preferable (meth) acrylic acid ester is polyethylene glycol diacrylate.
  • Examples of the (meth) acrylic acid ester compound represented by the general formula (VII) include a di (meth) acrylate compound obtained by reacting 1 mol of bisphenol A, bisphenol F or bisphenol AD with 2 mol of glycidyl (meth) acrylate, and the like. Is mentioned.
  • Examples of the (meth) acrylic acid ester compound represented by the general formula (VIII) include di (meth) acrylate compounds of polyethylene oxide adducts of bisphenol A, bisphenol F or bisphenol AD.
  • Examples of the bisphenol A include ethoxylated bisphenol A, hydrogenated bisphenol A, and halogenated bisphenol A.
  • Examples of the (meth) acrylic acid ester compound represented by the general formula (IX) include bis ((meth) acryloxypropyl) polydimethylsiloxane and bis ((meth) acryloxypropyl) methylsiloxane-dimethylsiloxane copolymer. Etc.
  • the (meth) acrylic acid ester compound represented by the general formula (X) includes, for example, a reaction product obtained by reacting polybutadiene to which maleic anhydride is added and 2-hydroxyethyl (meth) acrylate, and hydrogen thereof.
  • the above compound preferably the above (meth) acrylic acid ester compound may be used alone or in combination of two or more.
  • the content of the (meth) acrylic compound (A) in the resin paste composition is preferably 18 to 24% by mass relative to the total mass of the components (A) to (G). More preferably, it is 19 to 23% by mass.
  • the content of the (meth) acrylic compound (A) is 18% by mass or more, high adhesive strength is exhibited, and when it is 24% by mass or less, high adhesive strength is maintained without generating voids during curing.
  • binder resin (B) examples include an epoxy resin, a silicone resin, a urethane resin, and an acrylic resin.
  • a preferable binder resin (B) is an epoxy resin from the viewpoint of excellent adhesiveness and suppression of separation between the resin and the filler. .
  • a preferred epoxy resin is an epoxy resin having two or more epoxy groups in one molecule.
  • examples of such epoxy resins include bisphenol A type epoxy resins (for example, AER-X8501 (Asahi Kasei Corporation, trade name), R-301 (Mitsubishi Chemical Corporation, trade name), YL-980 (Mitsubishi).
  • epoxy resins more preferable epoxy resins are bisphenol F type epoxy resin, epoxidized polybutadiene, phenol novolac type epoxy resin, and cresol novolac type epoxy resin.
  • these resins are used as the binder resin (B), they are excellent in electrical conductivity, adhesiveness and thermal conductivity, and are excellent in coating workability and mechanical properties, and can be more suitably used for die bonding.
  • a paste composition can be obtained.
  • these epoxy resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the number average molecular weight of the binder resin (B) used in the present invention is preferably 160 to 3000.
  • the number average molecular weight is a value measured by gel permeation chromatography using a standard polystyrene calibration curve (hereinafter referred to as GPC method).
  • GPC method a standard polystyrene calibration curve
  • the epoxy equivalent of the epoxy resin used as the binder resin (B) is preferably 80 to 1000, more preferably 100 to 500.
  • the resin paste composition has excellent adhesiveness. It can suppress that unreacted hardened
  • the content of the binder resin (B) in the resin paste composition with respect to the total mass of the components (A) to (G) is preferably 0.1 to 2.0% by mass, more preferably 0.00. It is 5 to 1.5% by mass.
  • the content of the binder resin (B) is 0.1% by mass or more, the resin paste composition has excellent adhesiveness, and when it is 2.0% by mass or less, the viscosity of the resin paste composition is excessively increased. Good workability can be obtained without any problems.
  • the epoxy resin used as the binder resin (B) may contain a monofunctional epoxy compound (reactive diluent) that is a compound having one epoxy group in one molecule.
  • monofunctional epoxy compounds include phenyl glycidyl ether (for example, PGE (Nippon Kayaku Co., Ltd., trade name)), alkylphenol monoglycidyl ether (for example, PP-101 (Toto Kasei Co., Ltd.), Name)), aliphatic monoglycidyl ether (eg (ED-502, ADEKA, trade name)), alkylphenol monoglycidyl ether (eg ED-509 (ADEKA, trade name)), alkylphenol mono Glycidyl ether (for example, YED-122 (Mitsubishi Chemical Corporation, trade name)), 3-glycidoxypropyltrimethoxysilane (for example, KBM-403 (Shin-Etsu Chemical Co., Ltd., trade name)), 3- Glycidoxyprop
  • the monofunctional epoxy compound is used as long as the properties of the resin paste composition of the present invention are not impaired.
  • the content of the monofunctional epoxy compound is preferably 10% by mass or less, more preferably 1 to 5% by mass with respect to the mass of the binder resin (B).
  • the content of the monofunctional epoxy compound in the binder resin (B) is 10% by mass or less, good workability can be obtained without excessive increase in the viscosity of the resin paste composition.
  • the amine compound (C) used in the present invention functions as a curing agent for the binder resin (B) when the binder resin (B), particularly the binder resin (B) is an epoxy resin.
  • Preferred amine compounds (C) include dicyandiamide and dibasic acid dihydrazide represented by the following general formula (XII) (for example, ADH, PDH, SDH (all from Nippon Finechem Co., Ltd., trade name)), epoxy resin A microcapsule type curing agent (for example, NOVACURE (Asahi Kasei Co., Ltd., trade name)), and diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, urea, urea Examples thereof include polyamine compounds such as derivatives and melamine.
  • R 19 represents a divalent aromatic group such as an m-phenylene group or a p-phenylene group, or a linear or branched alkylene group having 2 to 12 carbon atoms
  • amine compounds (C) include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-phenylimidazole, and 2-phenyl-4-methyl- Examples include imidazole compounds such as 5-hydroxymethylimidazole.
  • the above amine compounds (C) may be used alone or in combination of two or more.
  • the compounding amount of the amine compound (C) is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.5% by mass with respect to the total mass of the components (A) to (G). %.
  • the compounding amount of the amine compound (C) is 0.05% by mass or more, the curability of the resin paste composition is good, and when it is 0.5% by mass or less, the stability of the resin paste composition is good. .
  • a polymerization initiator (D) is used in order to accelerate
  • the polymerization initiator (D) is preferably a radical polymerization initiator.
  • the radical polymerization initiator is preferably a peroxide radical polymerization initiator.
  • a preferable radical polymerization initiator is one having a decomposition temperature of 70 to 170 ° C. in a rapid heating test.
  • Preferred peroxide radical polymerization initiators used as the polymerization initiator (D) include, for example, 1,1,3,3-tetramethylperoxy 2-ethylhexanoate, 1,1-bis (t-butyl) Peroxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, di-t-butylperoxyisophthalate, t-butylperbenzoate, dicumyl peroxide, t-butylcumyl peroxide, 2, Examples include 5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne, cumene hydroperoxide, and the like.
  • the blending amount of the polymerization initiator (D) is preferably 0.1 to 5% by mass, more preferably 0.6 to 3% by mass with respect to the total mass of the components (A) to (G). .
  • the blending amount of the polymerization initiator (D) is 0.1% by mass or more, the curability of the resin paste composition is not lowered, and the blending amount of the polymerization initiator (D) is 5% by mass or less. Then, the volatile content does not increase, and voids called voids are hardly generated in the cured product.
  • the flexible agent (E) is used for imparting flexibility to the cured product of the resin paste composition of the present invention.
  • Preferable flexible agents (E) include, for example, rubber compounds and thermoplastic resins.
  • a preferable rubber-based compound used as the flexible agent (E) is preferably a butadiene-based rubber having a butadiene skeleton.
  • Preferred butadiene rubbers include, for example, liquid rubbers such as epoxidized polybutadiene rubber, maleated polybutadiene, acrylonitrile butadiene rubber, carboxy terminal acrylonitrile butadiene rubber, amino terminal acrylonitrile butadiene rubber, vinyl terminal acrylonitrile butadiene rubber, and styrene butadiene rubber. Can be mentioned.
  • the number average molecular weight of the rubber compound used as the flexible agent (E) is preferably 500 to 10,000, more preferably 1,000 to 5,000.
  • the number average molecular weight of the rubber compound is 500 or more, good flexibility can be imparted to the cured product of the resin paste composition of the present invention, and when the number average molecular weight of the rubber compound is 10,000 or less, the resin. Good workability of the resin paste composition can be obtained without increasing the viscosity of the paste composition.
  • the number average molecular weight is a value measured by the vapor pressure infiltration method or a value measured by the GPC method.
  • the blending amount of the flexible agent (E) is preferably 1 to 10% by mass, more preferably 6 to 10% by mass with respect to the total mass of the components (A) to (G).
  • the blending amount of the flexible agent (E) is 1% by mass or more, warpage of the cured product of the resin paste composition of the present invention can be reduced, and the blending amount of the flexible agent (E) is 10% by mass or less.
  • operativity of a resin paste composition is obtained, without the viscosity of a resin paste composition increasing.
  • Silver powder (F) imparts electrical conductivity and thermal conductivity to the resin paste composition of the present invention.
  • the average particle diameter of the silver powder (F) is preferably 1 to 15 ⁇ m, more preferably 2 to 8 ⁇ m, and further preferably 3 to 6 ⁇ m.
  • the average particle diameter of the silver powder (F) can be calculated
  • the median diameter is a value of the particle diameter (D50) at which the cumulative ratio in the number-based particle size distribution is 50%.
  • the silver powder (F) preferably has a shape such as a granular shape, a flake shape, a spherical shape, a needle shape, and an irregular shape, and more preferably has a flake shape.
  • a shape such as a granular shape, a flake shape, a spherical shape, a needle shape, and an irregular shape.
  • the silver powder (F) has a flaky shape, contact between individual silver powders easily occurs, and the electrical conductivity and thermal conductivity of the resin paste can be further increased.
  • the resin paste composition which was further excellent in electrical conductivity, adhesiveness, storage stability, coating workability
  • Silver powder (F) is preferably coated with stearic acid.
  • the viscosity of the resin paste composition can be stabilized for a long time. Furthermore, separation of the resin and the filler in the resin paste composition can be suppressed.
  • the content of silver powder (F) is 42% by mass or less, preferably 3 to 40% by mass, more preferably 10 to 40% by mass with respect to the total mass of components (A) to (G). is there.
  • the content of the silver powder (F) is 40% by mass or less, an inexpensive resin paste composition excellent in application workability and mechanical properties in addition to electric conductivity, thermal conductivity and adhesiveness can be obtained.
  • the BET specific surface area of the silver powder (F) is preferably 0.5 to 2.1 m 2 / g.
  • the specific surface area of the silver powder (F) is a value measured by the BET method N 2 gas adsorption one point method.
  • the BET specific surface area of the silver powder (F) is 0.5 to 2.1 m 2 / g, the cured product of the resin paste composition having excellent electrical conductivity without excessively increasing the viscosity of the resin paste composition. Can be obtained.
  • Silver powder (F) contains silver powder (F-1) having a tap density of 4.0 g / cm 3 or less.
  • the tap density of the silver powder is a value obtained by measuring with a tap density measuring device according to JIS Z 2512. Specifically, 100 g of silver powder is gently dropped onto a 100 ml graduated cylinder using a funnel. Measure the volume of the compressed silver powder by dropping the cylinder 600 times at a drop distance of 20 mm and a speed of 60 times / minute by placing it on a tap density measuring device (model number: KRS-406, manufactured by Kuramochi Scientific Instruments). To do. The tap value calculated by dividing the mass of the silver powder by the volume of the compressed silver powder is the tap density.
  • the tap density of the silver powder (F-1) is more preferably 1.0 to 4.0 g / cm 3 .
  • the tap density of the silver powder has a range of constant by variation of the measured values
  • the range includes the value of 4.0 g / cm 3, or, within the scope that range of 4.0 g / cm 3 or less
  • the tap density of the silver powder is 4.0 g / cm 3 or less.
  • the tap density of the silver powder has a certain range due to variations in the measured value, the range includes a value of 4.0 g / cm 3 and a value of 1.0 g / cm 3 , or the range Is included in the range of 1.0 to 4.0 g / cm 3 , the tap density of the silver powder is assumed to be 1.0 to 4.0 g / cm 3 .
  • the average particle diameter of the silver powder (F-1) is preferably 1 to 15 ⁇ m, more preferably 2 to 8 ⁇ m, and further preferably 3 to 6 ⁇ m.
  • the average particle diameter of the silver powder (F-1) can be obtained as the median diameter with a particle size distribution measuring apparatus (for example, Microtrack X100) using a laser light diffraction method.
  • the median diameter is a value of the particle diameter (D50) at which the cumulative ratio in the number-based particle size distribution is 50%.
  • the silver powder (F-1) preferably has a granular shape, a flake shape, a spherical shape, a needle shape, an irregular shape, or the like, and more preferably has a flake shape.
  • the silver powder (F-1) has a flaky shape, contact between the individual silver powders is likely to occur, and the electrical conductivity and thermal conductivity of the resin paste can be further increased.
  • the resin paste composition which was further excellent in electrical conductivity, adhesiveness, storage stability, coating workability
  • Silver powder (F-1) is coated with stearic acid.
  • silver powder (F-1) is coated with stearic acid.
  • the viscosity of the resin paste composition can be stabilized for a long time. Furthermore, separation of the resin and the filler in the resin paste composition can be suppressed.
  • the silver powder (F) may further contain silver powder (F-2) having a tap density larger than 4.0 g / cm 3 .
  • the tap density of the silver powder (F-2) is more preferably more than 4.0 g / cm 3 and not more than 6.0 g / cm 3 .
  • the content of silver powder (F-1) is 10% by mass or more, preferably 10 to 40% by mass.
  • the content of the silver powder (F-1) is 10% by mass or more, excellent electrical conductivity is obtained, and the viscosity of the resin paste composition is increased with a small amount of silver powder, and good coating workability is obtained.
  • Aluminum powder (G) imparts excellent electrical conductivity, thermal conductivity, adhesiveness and viscosity stability to the resin paste composition of the present invention. Thereby, even if it reduces content of silver powder (F), the electrical conductivity and heat conductivity of a resin paste composition can be made high. And by containing aluminum powder (G), since content of silver powder (F) can be decreased, the resin paste composition of this invention can be made cheap.
  • the aluminum powder (G) preferably has an average particle diameter of 1 to 6 ⁇ m, more preferably 2 to 5 ⁇ m, and still more preferably 2 to 4 ⁇ m.
  • the average particle size of the aluminum powder (G) is 1 to 6 ⁇ m, it is possible to suppress a decrease in wet spreadability of the resin paste composition. Therefore, the semiconductor element is mounted on the support member using the resin paste composition. When the semiconductor element is tilted, it can be suppressed.
  • the average particle diameter of aluminum powder (G) can be calculated
  • the median diameter is a value of the particle diameter (D50) at which the cumulative ratio in the number-based particle size distribution is 50%.
  • Apparent density of aluminum powder (G) is preferably 0.40 ⁇ 1.20g / cm 3, more preferably 0.55 ⁇ 1.00g / cm 3.
  • the aluminum powder (G) preferably has a shape such as granular, flaky, spherical, acicular or irregular, and more preferably has a granular shape.
  • the value of content of aluminum powder (G) / content of silver powder (F) is 0.3 to 2.3, preferably 1.0 to 2.0 in terms of mass ratio.
  • the value of the content of the aluminum powder (G) / the content of the silver powder (F) is 0.3 to 2.3, the workability, electrical conductivity and adhesiveness of the resin paste composition can be further increased. it can.
  • the resin paste composition of the present invention may further contain a coupling agent (H).
  • a coupling agent (H) thereby, the adhesiveness of the resin paste composition with respect to a supporting member further improves.
  • a silane coupling agent (H) used for this invention As a preferable coupling agent (H), a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a zirconate, for example And a coupling agent and a zircoaluminate coupling agent.
  • silane coupling agent examples include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyl-tris (2- Methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, methyltri (methacryloxyethoxy) silane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ - Aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldime
  • titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecyl benzene sulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite).
  • Titanate tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl Titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl (dioctyl phosphate) Taneto, isopropyl tricumylphenyl titanate, isopropyl tri (N- aminoethyl-aminoethyl) titanate, dicumyl phenyloxy acetate titanate, and diisostearoyl ethylene titanate.
  • titanate coupling agents are isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl trioctanoyl titanate, isopropyl tricumylphenyl titanate and isopropyl tri (N-aminoethyl). -Aminoethyl) isopropyl trititanate such as titanate.
  • the aluminum coupling agent is, for example, acetoalkoxyaluminum diisopropionate.
  • Zirconate coupling agents include, for example, tetrapropyl zirconate, tetrabutyl zirconate, tetra (triethanolamine) zirconate, tetraisopropyl zirconate, zirconium acetylacetonate, acetylacetone zirconium butyrate, and zirconium stearate butyrate. Is mentioned.
  • zircoaluminate coupling agent examples include monoalkoxyzircoaluminate, trialkoxyzircoaluminate, and tetraalkoxyzircoaluminate.
  • ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -glycidoxypropylmethyldiethoxysilane are exemplified as monofunctional epoxy compounds (reactive diluents) that can be contained in an epoxy resin. It is. These compounds have both the function of a silane coupling agent and the function of a reactive diluent.
  • the blending amount of the coupling agent (H) is preferably 0.5 to 6.0 parts by mass, more preferably 1.0 to 5.0 parts by mass with respect to parts by mass.
  • the blending amount of the coupling agent (H) is 0.5 parts by mass or more, the adhesive strength of the resin paste composition is further improved, and when it is 6.0 parts by mass or less, the volatile content of the resin paste composition is increased. In other words, voids called voids are hardly generated in the cured product.
  • the resin paste composition of the present invention may further include at least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K), and dispersant (L).
  • oleic acid (I), stearic acid (J), lauric acid (K), and dispersant (L) By adding at least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K) and dispersant (L), only the resin component in the paste composition is separated. The phenomenon of bleeding on the substrate surface (bleed out) can be suppressed.
  • At least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K), and dispersant (L) is adsorbed on the surface of the filler, making it easy to wet the resin.
  • the blending amount of at least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K) and dispersant (L) is preferably 0.3 to 1.0 part by mass, and more preferably 0.5 to 1.0 part by mass.
  • Resin of the present invention when the blending amount of at least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K) and dispersant (L) is 0.3 parts by mass or more Bleed-out of the paste composition can be reduced, and when the amount of oleic acid is 1.0 part by mass or less, good workability of the resin paste composition can be obtained without the viscosity of the resin paste composition being too low. .
  • the resin paste composition of the present invention further includes a moisture absorbent such as calcium oxide and magnesium oxide, a wet surfactant such as a fluorosurfactant, a nonionic surfactant and a higher fatty acid, and a silicone oil.
  • a moisture absorbent such as calcium oxide and magnesium oxide
  • a wet surfactant such as a fluorosurfactant, a nonionic surfactant and a higher fatty acid
  • a silicone oil e.g., silicone oil
  • Various additives such as a foaming agent and an ion trapping agent such as an inorganic ion exchanger can be appropriately added singly or in combination of several kinds.
  • the resin paste composition of the present invention may further contain conductive particles other than silver powder (F) and aluminum powder (G).
  • conductive particles conductive particles having an average particle diameter of less than 10 ⁇ m are preferable.
  • the conductive particles include gold powder, copper powder, nickel powder, iron powder, and stainless steel powder.
  • the resin paste composition of the present invention can be produced, for example, as follows. Prepare the above-mentioned components constituting the resin paste of the present invention, and various additives to be added as desired, and batch or divide them into a stirrer, a hybrid mixer, a likai machine, a three roll, a planetary mixer The mixture is put into an apparatus capable of dispersing, stirring and kneading, and heated as necessary, and mixed, dissolved, granulated, kneaded and / or dispersed to produce a uniform paste-like composition. This composition is the resin paste composition of the present invention.
  • the resin paste composition of the present invention is used, for example, as a resin paste composition for bonding semiconductor elements. More specifically, the resin paste composition of the present invention is suitably used for bonding a conductor element such as a semiconductor chip and a support member such as a lead frame.
  • the semiconductor device of the present invention includes a semiconductor element and a support member, and the semiconductor element is bonded to the support member by a cured product of the resin paste composition of the present invention.
  • the semiconductor element and at least a part of the support member are sealed with a sealant.
  • the support member examples include a lead frame such as a copper lead frame, a glass epoxy substrate (a substrate made of glass fiber reinforced epoxy resin), and a BT substrate (a BT resin-use substrate made of cyanate monomer and its oligomer and bismaleimide). An organic substrate etc. are mentioned.
  • the semiconductor element and the support member are joined by the cured product of the resin paste composition of the present invention.
  • a resin paste composition is applied onto the support member by a dispensing method, and then the semiconductor element is pressure-bonded, and then a heating device such as an oven or a heat block is used. By heating and curing.
  • a wire bonding process or the like is performed to obtain the semiconductor device of the present invention.
  • the semiconductor element and at least a part of the support member may be further sealed with a sealant by a normal method.
  • the heat curing conditions of the resin paste composition are different for the case of long-time curing at a low temperature and the case of rapid curing at a high temperature.
  • the heat curing conditions for the resin paste composition are generally preferably 150 to 220 ° C., more preferably 180 to 200 ° C., and preferably 30 seconds to 2 hours, more preferably. Is a heating time of 10 minutes to 2 hours, more preferably 1 hour to 1 hour 30 minutes.
  • FIG. 1 is a plan view illustrating a method for measuring volume resistivity.
  • the resin paste composition 3 was placed on these exposed portions 1a (FIG. 1 (c)) and stretched flat with another slide glass or the like (FIG. 1 (d)).
  • the paper tape 2 was peeled off, and heated in an oven at 200 ° C. for 1 hour to cure the resin paste composition, thereby obtaining two linear cured products 4 parallel to the surface of the slide glass 1 (see FIG. 1 (e)).
  • the volume resistivity ( ⁇ ⁇ cm) of these cured products 4 was measured at a temperature of 23 ° C. using a digital multimeter (TR6846, manufactured by ADVANTEST).
  • the tap density of silver powder is a value obtained by measuring with a tap density measuring device in accordance with JIS Z 2512 (established in 2006). Specifically, 100 g of silver powder was measured and gently dropped into a 100 ml graduated cylinder with a funnel. The measuring cylinder was placed on a tap density measuring device, dropped 600 times at a falling distance of 20 mm and a speed of 60 times / minute, and the volume of the compressed silver powder was measured. The tap density was calculated by dividing the sample amount by the volume of the compressed silver powder.
  • Measurement of average particle diameter Take 1 or 2 cups of silver powder with a microspatella, add about 60 ml of isopropyl alcohol, and disperse with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd., model number: US-150) for 1 minute. . This was continuously measured twice with a laser diffraction particle size analyzer (Microtrack, X100) at a measurement time of 30 seconds, and the average value of 50% cumulative diameter was defined as the average particle diameter.
  • an ultrasonic homogenizer manufactured by Nippon Seiki Seisakusho Co., Ltd., model number: US-150
  • the resin paste composition of the present invention had good viscosity stability and excellent adhesive strength, electrical conductivity, and thermal conductivity.
  • a resin paste composition having good properties such as viscosity stability, adhesive strength and volume resistivity can be obtained without using a large amount of silver having a high rare value. It was confirmed that Moreover, the resin paste composition of this invention can suppress a bleed-out by containing a dispersing agent or a fatty acid.
  • the present invention it is suitably used for adhesion between a conductor element such as a semiconductor chip and a support member such as a lead frame, while reducing the amount of silver used, which is a rare and expensive material, electric conductivity,
  • An inexpensive resin paste composition that is excellent in thermal conductivity and adhesiveness and suppresses separation between the resin and the filler, and a semiconductor device using the resin paste composition are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention is a resin paste composition which contains (A) a (meth)acrylic compound, (B) a binder resin, (C) an amine compound, (D) a polymerization initiator, (E) a flexibility-imparting agent, (F) a silver powder and (G) an aluminum powder. The silver powder (F) contains a silver powder (F-1) that is coated with stearic acid and has a tap density of 4.0 g/cm3 or less. The content of the silver powder (F) is 42% by mass or less, and the content of the silver powder (F-1) is 11% by mass or more. The mass ratio of the content of the aluminum powder (G) to the content of the silver powder (F) is 0.3-2.3. The present invention is able to provide a low-cost resin paste composition that exhibits excellent electrical conductivity, excellent thermal conductivity and excellent adhesiveness, while reducing the amount of silver used therein, which is rare and expensive. This resin paste composition is suitable for use in bonding of a conductor element such as a semiconductor chip with a supporting member such as a lead frame. The present invention is also able to provide a semiconductor device which uses this resin paste composition.

Description

樹脂ペースト組成物及び半導体装置Resin paste composition and semiconductor device
 本発明は、半導体素子のダイボンディングに好適な樹脂ペースト組成物及びその樹脂ペーストを使用して半導体素子を支持部材に接合した半導体装置に関する。 The present invention relates to a resin paste composition suitable for die bonding of semiconductor elements and a semiconductor device in which a semiconductor element is bonded to a support member using the resin paste.
 半導体装置に用いられるダイボンディング材として、Au-Si共晶、半田及び樹脂ペースト組成物等が知られている。これらの中で、作業性及びコストの点から樹脂ペースト組成物が広く使用されている。 Au-Si eutectic, solder, resin paste composition, and the like are known as die bonding materials used for semiconductor devices. Among these, resin paste compositions are widely used from the viewpoint of workability and cost.
 一般に、ダイボンディング材を使用して半導体素子をリードフレーム等の支持部材に接着することにより半導体装置を製造している。ダイボンディング材には、高い接着強度が要求される一方、半導体装置を接着した支持部材の反りを低減させるために素子の熱膨張率と支持部材の熱膨張率との差から生じるストレスを吸収する性能も要求される。高い接着強度と上記ストレスを吸収する性能とを有する樹脂ペーストとして、エポキシ樹脂とアクリル樹脂とのハイブリッド樹脂系の樹脂ペースト組成物が提案されている(例えば特許文献1参照)。 Generally, a semiconductor device is manufactured by bonding a semiconductor element to a support member such as a lead frame using a die bonding material. The die bonding material is required to have high adhesive strength, but absorbs stress caused by the difference between the thermal expansion coefficient of the element and the thermal expansion coefficient of the support member in order to reduce the warpage of the support member to which the semiconductor device is bonded. Performance is also required. As a resin paste having high adhesive strength and the ability to absorb the stress, a hybrid resin resin paste composition of an epoxy resin and an acrylic resin has been proposed (for example, see Patent Document 1).
 半導体素子の高集積化及び微細化に伴い、半導体素子には、電気伝導性及び熱伝導性等の特性の高信頼性が要求される。そのため、ダイボンディング材に用いられる樹脂ペースト組成物にも、接着強度に加えて、電気伝導性及び熱伝導性等の特性の高信頼性が要求される。このような性能を樹脂ペースト組成物に付与するため、樹脂ペースト組成物に導電性フィラーを添加する。樹脂ペースト組成物に用いる導電性フィラーとして、例えば金粉、銀粉、銅粉等の金属粉を使用することが考えられており、現在、銀粉が主に用いられている。銀粉は、金粉ほど希少ではなく、銅粉のように酸化されやすく保存安定性に劣るということもなく、さらに優れた作業性及び機械特性を有し、樹脂ペースト組成物の導電性フィラーとして要求される諸特性も優れている。 With high integration and miniaturization of semiconductor elements, semiconductor elements are required to have high reliability in characteristics such as electrical conductivity and thermal conductivity. Therefore, the resin paste composition used for the die bonding material is required to have high reliability in characteristics such as electrical conductivity and thermal conductivity in addition to the adhesive strength. In order to impart such performance to the resin paste composition, a conductive filler is added to the resin paste composition. As the conductive filler used in the resin paste composition, it is considered to use metal powder such as gold powder, silver powder, and copper powder, and silver powder is mainly used at present. Silver powder is not as rare as gold powder, it is easily oxidized like copper powder, is not inferior in storage stability, has further excellent workability and mechanical properties, and is required as a conductive filler for resin paste compositions. Various characteristics are also excellent.
 しかし、金粉ほどではないにしても、銀粉も貴金属であり、希少であり、高価な材料である。このため、樹脂ペースト組成物に用いられる導電性フィラーとして、銀粉と、より入手の容易で安価な他の導電性フィラーとを併用したものの開発が行われている。 However, although not as much as gold powder, silver powder is also a precious metal, a rare and expensive material. For this reason, as a conductive filler used in the resin paste composition, a combination of silver powder and another conductive filler that is more easily available and inexpensive has been developed.
 入手が容易で安価であり、さらに安定性、導電性の観点から、銀粉とともに使用する他の導電性フィラーとして、アルミニウム粉が検討されている(例えば特許文献2及び特許文献3参照)。しかし、特許文献2に記載される金属含有ペーストは、アルミニウムの金属粉末と銀等の金属粉末との体積比が5:95~40:60であり、銀等の金属粉末の使用量を十分に減らしているとはいえない。また、特許文献3に記載の樹脂ペースト組成物では、アルミニウム粉及び銀粉の質量比が2/8~8/2である。しかし、導電性フィラー中の銀粉の割合を極端に減らした場合、従来の銀粉を含有する樹脂ペースト組成物に比べて体積抵抗及び粘度等の特性が劣る場合がある。このように、導電性フィラー中の銀粉の割合を減らした樹脂ペースト組成物で、銀粉を多く含有する従来の樹脂ペースト組成物と同等以上の特性を有する樹脂ペースト組成物は得られていない。 Aluminum powder has been studied as another conductive filler to be used together with silver powder from the viewpoints of availability and low cost, and stability and conductivity (see, for example, Patent Document 2 and Patent Document 3). However, the metal-containing paste described in Patent Document 2 has a volume ratio of 5:95 to 40:60 between the metal powder of aluminum and the metal powder such as silver, so that the amount of the metal powder such as silver is sufficient. It cannot be said that it is decreasing. In the resin paste composition described in Patent Document 3, the mass ratio of aluminum powder and silver powder is 2/8 to 8/2. However, when the ratio of the silver powder in the conductive filler is extremely reduced, characteristics such as volume resistance and viscosity may be inferior to those of a conventional resin paste composition containing silver powder. Thus, the resin paste composition which reduced the ratio of the silver powder in an electroconductive filler and has the characteristic more than the conventional resin paste composition containing many silver powders is not obtained.
特開2002-179769号公報JP 2002-179769 A 特開2005-197118号公報Japanese Patent Laid-Open No. 2005-197118 国際公開第2012/124527号パンフレットInternational Publication No. 2012/124527 Pamphlet
 本発明は、半導体素子と支持部材との接着に好適に用いられ、銀の使用量が少なく、電気伝導性、熱伝導性及び接着性が優れた樹脂ペースト組成物、及びその樹脂ペースト組成物を用いた半導体装置を提供することを目的とする。 The present invention is suitably used for adhesion between a semiconductor element and a support member, and uses a resin paste composition having a small amount of silver used and having excellent electrical conductivity, thermal conductivity and adhesiveness, and the resin paste composition. An object is to provide a semiconductor device used.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、次の発明により解決できることを見出した。すなわち本発明は、次の樹脂ペースト組成物、及びその樹脂ペースト組成物を用いた半導体装置を提供するものである。 As a result of intensive studies to solve the above problems, the present inventors have found that the problem can be solved by the following invention. That is, the present invention provides the following resin paste composition and a semiconductor device using the resin paste composition.
[1](メタ)アクリル化合物(A)、バインダー樹脂(B)、アミン化合物(C)、重合開始剤(D)、可とう化剤(E)、銀粉(F)及びアルミニウム粉(G)を含有する樹脂ペースト組成物であって、
 銀粉(F)は、ステアリン酸でコーティングされ、かつタップ密度が4.0g/cm3以下である銀粉(F-1)を含み、
 成分(A)~(G)の合計質量に対して、銀粉(F)の含有量は42質量%以下であり、銀粉(F-1)の含有量は10質量%以上であり、
 アルミニウム粉(G)の含有量/銀粉(F)の含有量の値は、質量比で0.3~2.3である樹脂ペースト組成物。
[2]銀粉(F)は平均粒子径1~15μmのフレーク状である上記[1]に記載の樹脂ペースト組成物。
[3]銀粉(F-1)は平均粒子径1~15μmのフレーク状である上記[1]に記載の樹脂ペースト組成物。
[4]アルミニウム粉(G)は平均粒子径1~6μmの粒状である上記[1]~[3]のいずれかに記載の樹脂ペースト組成物。
[5](メタ)アクリル化合物(A)は(メタ)アクリル酸エステル化合物である上記[1]~[4]のいずれかに記載の樹脂ペースト組成物。
[6]バインダー樹脂(B)はエポキシ樹脂である上記[1]~[5]のいずれかに記載の樹脂ペースト組成物。
[7]アミン化合物(C)はポリアミン化合物及びイミダゾール化合物から選ばれる少なくとも1種である上記[1]~[6]のいずれかに記載の樹脂ペースト組成物。
[8]可とう化剤(E)はゴム系化合物である上記[1]~[7]のいずれかに記載の樹脂ペースト組成物。
[9]カップリング剤(H)をさらに含む上記[1]~[8]のいずれかに記載の樹脂ペースト組成物。
[10]オレイン酸(I)、ステアリン酸(J)、ラウリン酸(K)及び分散剤(L)からなる群から選択される少なくとも1種をさらに含む上記[1]~[9]のいずれかに記載の樹脂ペースト組成物。
[11]半導体素子及び支持部材を備える半導体装置であって、上記[1]~[10]のいずれかに記載の樹脂ペースト組成物の硬化物により、半導体素子が支持部材と接合される半導体装置。
[12]半導体素子と支持部材の少なくとも一部とが封止剤により封止される上記[11]に記載の半導体装置。
[1] (Meth) acrylic compound (A), binder resin (B), amine compound (C), polymerization initiator (D), flexible agent (E), silver powder (F) and aluminum powder (G) A resin paste composition comprising:
Silver powder (F) includes silver powder (F-1) coated with stearic acid and having a tap density of 4.0 g / cm 3 or less,
The content of the silver powder (F) is 42% by mass or less and the content of the silver powder (F-1) is 10% by mass or more with respect to the total mass of the components (A) to (G).
The resin paste composition has a mass ratio of aluminum powder (G) content / silver powder (F) content of 0.3 to 2.3.
[2] The resin paste composition according to [1], wherein the silver powder (F) is in the form of flakes having an average particle diameter of 1 to 15 μm.
[3] The resin paste composition according to [1], wherein the silver powder (F-1) is in the form of flakes having an average particle diameter of 1 to 15 μm.
[4] The resin paste composition according to any one of the above [1] to [3], wherein the aluminum powder (G) is granular with an average particle diameter of 1 to 6 μm.
[5] The resin paste composition according to any one of [1] to [4], wherein the (meth) acrylic compound (A) is a (meth) acrylic acid ester compound.
[6] The resin paste composition according to any one of [1] to [5], wherein the binder resin (B) is an epoxy resin.
[7] The resin paste composition according to any one of [1] to [6], wherein the amine compound (C) is at least one selected from a polyamine compound and an imidazole compound.
[8] The resin paste composition according to any one of [1] to [7], wherein the flexible agent (E) is a rubber compound.
[9] The resin paste composition according to any one of [1] to [8], further including a coupling agent (H).
[10] Any one of the above [1] to [9], further comprising at least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K) and dispersant (L) The resin paste composition described in 1.
[11] A semiconductor device comprising a semiconductor element and a support member, wherein the semiconductor element is joined to the support member by a cured product of the resin paste composition according to any one of [1] to [10] .
[12] The semiconductor device according to [11], wherein the semiconductor element and at least a part of the support member are sealed with a sealant.
 本発明によれば、半導体素子と支持部材との接着に好適に用いられ、銀の使用量が少なく、電気伝導性、熱伝導性及び接着性が優れた樹脂ペースト組成物、及びその樹脂ペースト組成物を用いた半導体装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is used suitably for adhesion | attachment of a semiconductor element and a supporting member, The usage-amount of silver is small, The resin paste composition which was excellent in electrical conductivity, heat conductivity, and adhesiveness, and its resin paste composition A semiconductor device using an object can be provided.
図1(a)~(e)は、体積抵抗率の測定方法を説明する平面図である。FIGS. 1A to 1E are plan views for explaining a volume resistivity measuring method.
 本発明の樹脂ペースト組成物は、(メタ)アクリル化合物(A)、バインダー樹脂(B)、アミン化合物(C)、重合開始剤(D)、可とう化剤(E)、銀粉(F)及びアルミニウム粉(G)を含有する。以下、本発明の樹脂ペースト組成物を詳細に説明する。 The resin paste composition of the present invention comprises (meth) acrylic compound (A), binder resin (B), amine compound (C), polymerization initiator (D), flexible agent (E), silver powder (F) and Contains aluminum powder (G). Hereinafter, the resin paste composition of the present invention will be described in detail.
[(メタ)アクリル化合物(A)]
 本発明に用いられる(メタ)アクリル化合物(A)は、(メタ)アクリロイル基を有する化合物であれば特に制限はない。(メタ)アクリル化合物(A)は、特定の銀粉(F)及びアルミニウム粉(G)と組み合わせて使用することにより、電気伝導性、接着性及び熱伝導性に優れ、ダイボンディング用として好適に用いることができる樹脂ペースト組成物が得られるものであることが好ましい。また、(メタ)アクリル化合物(A)は、樹脂と銀粉及びアルミニウム粉等のフィラーとの分離を抑制できるものであることが好ましい。このような観点から、好ましい(メタ)アクリル化合物(A)は、1個以上の(メタ)アクリロイルオキシ基を有する(メタ)アクリル酸エステル化合物である。好ましい(メタ)アクリル酸エステル化合物には、例えば、次の一般式(I)~(X)で表される化合物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
[(Meth) acrylic compound (A)]
The (meth) acrylic compound (A) used in the present invention is not particularly limited as long as it is a compound having a (meth) acryloyl group. The (meth) acrylic compound (A) is excellent in electrical conductivity, adhesiveness and thermal conductivity when used in combination with specific silver powder (F) and aluminum powder (G), and is suitably used for die bonding. It is preferable that the resin paste composition which can be obtained is obtained. Moreover, it is preferable that a (meth) acrylic compound (A) can suppress isolation | separation with resin and fillers, such as silver powder and aluminum powder. From such a viewpoint, a preferable (meth) acrylic compound (A) is a (meth) acrylic acid ester compound having one or more (meth) acryloyloxy groups. Preferable (meth) acrylic acid ester compounds include, for example, compounds represented by the following general formulas (I) to (X). These may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000001
(一般式(I)中、R1は水素又はメチル基を表し、R2は炭素数1~100、好ましくは炭素数1~36の2価の脂肪族又は環状構造を持つ炭化水素基を表す)
Figure JPOXMLDOC01-appb-C000001
(In general formula (I), R 1 represents hydrogen or a methyl group, and R 2 represents a divalent aliphatic or cyclic hydrocarbon group having 1 to 100 carbon atoms, preferably 1 to 36 carbon atoms. )
Figure JPOXMLDOC01-appb-C000002
(一般式(II)中、R1及びR2はそれぞれ上記のR1及びR2と同じである)
Figure JPOXMLDOC01-appb-C000002
(In general formula (II), R 1 and R 2 are the same as R 1 and R 2 above, respectively)
Figure JPOXMLDOC01-appb-C000003
(一般式(III)中、R1は上記のR1と同じであり、R3は水素、メチル基又はフェノキシメチル基を表し、R4は水素、炭素数1~6のアルキル基、フェニル基又はベンゾイル基を表し、nは1~50の整数を表す)
Figure JPOXMLDOC01-appb-C000003
(In general formula (III), R 1 is the same as R 1 above, R 3 represents hydrogen, a methyl group or a phenoxymethyl group, R 4 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a phenyl group, Or represents a benzoyl group, and n represents an integer of 1 to 50)
Figure JPOXMLDOC01-appb-C000004
(一般式(IV)中、R1は上記のR1と同じであり、R5はフェニル基、シアノ基、-Si(OR63(R6は炭素数1~6のアルキル基を表す)又は下記の式で表される1価の基を表し、mは0、1、2又は3の数を表す)
Figure JPOXMLDOC01-appb-C000004
(In the general formula (IV), R 1 is the same as R 1 above, R 5 represents a phenyl group, a cyano group, —Si (OR 6 ) 3 (R 6 represents an alkyl group having 1 to 6 carbon atoms). Or a monovalent group represented by the following formula, m represents the number of 0, 1, 2, or 3)
Figure JPOXMLDOC01-appb-C000005
(ここで、R7、R8及びR9はそれぞれ独立に水素又は炭素数1~6のアルキル基を表し、R10は水素又は炭素数1~6のアルキル基又はフェニル基を表す)
Figure JPOXMLDOC01-appb-C000005
(Wherein R 7 , R 8 and R 9 each independently represents hydrogen or an alkyl group having 1 to 6 carbon atoms, and R 10 represents hydrogen, an alkyl group having 1 to 6 carbon atoms or a phenyl group)
Figure JPOXMLDOC01-appb-C000006
(一般式(V)中、R1及びR2はそれぞれ上記のR1及びR2と同じである)
Figure JPOXMLDOC01-appb-C000006
(In general formula (V), R 1 and R 2 are the same as R 1 and R 2 , respectively)
Figure JPOXMLDOC01-appb-C000007
(一般式(VI)中、R1、R3及びnはそれぞれ上記のR1、R3及びnと同じである。ただし、R3が水素又はメチル基であるとき、nは1ではない)
Figure JPOXMLDOC01-appb-C000007
(In the general formula (VI), R 1 , R 3 and n are the same as R 1 , R 3 and n, respectively, provided that n is not 1 when R 3 is hydrogen or a methyl group).
Figure JPOXMLDOC01-appb-C000008
(一般式(VII)中、R1は上記のR1と同じであり、R11及びR12はそれぞれ独立に水素又はメチル基を表す)
Figure JPOXMLDOC01-appb-C000008
(In general formula (VII), R 1 is the same as R 1 above, and R 11 and R 12 each independently represents hydrogen or a methyl group)
Figure JPOXMLDOC01-appb-C000009
(一般式(VIII)中、R1、R11及びR12はそれぞれ上記のR1、R11及びR12と同じであり、R13及びR14はそれぞれ独立に水素又はメチル基を表し、p及びqはそれぞれ独立に1~20の整数を表す)
Figure JPOXMLDOC01-appb-C000009
(In the general formula (VIII), R 1 , R 11 and R 12 are the same as R 1 , R 11 and R 12 , respectively, R 13 and R 14 each independently represent hydrogen or a methyl group; And q each independently represents an integer of 1 to 20)
Figure JPOXMLDOC01-appb-C000010
(一般式(IX)中、R1は上記のR1を表し、R15、R16、R17及びR18はそれぞれ独立に水素又はメチル基を表し、xは1~20の整数を表す)
Figure JPOXMLDOC01-appb-C000010
(In the general formula (IX), R 1 represents the above R 1 , R 15 , R 16 , R 17 and R 18 each independently represent hydrogen or a methyl group, and x represents an integer of 1 to 20)
Figure JPOXMLDOC01-appb-C000011
(一般式(X)中、R1は上記のR1を表し、r、s、t及びuはそれぞれ独立に繰り返し数の平均値を示す0以上の数であり、r+tは0.1以上、好ましくは0.3~5であり、s+uは1以上、好ましくは1~100である)
Figure JPOXMLDOC01-appb-C000011
(In general formula (X), R 1 represents the above R 1 , r, s, t and u are each independently a number of 0 or more indicating the average number of repetitions, and r + t is 0.1 or more, Preferably it is 0.3-5, and s + u is 1 or more, preferably 1-100)
 一般式(I)で表される(メタ)アクリル酸エステル化合物には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、及びトリシクロ[5.2.1.02,6]デシル(メタ)アクリレート、2-(トリシクロ)[5.2.1.02,6]デカ-3-エン-8又は9-イルオキシエチル(メタ)アクリレート等が挙げられる。上記(メタ)アクリル酸エステル化合物の中でより好ましい(メタ)アクリル酸エステル化合物はエチルアクリレートである。 Examples of the (meth) acrylic acid ester compound represented by the general formula (I) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl. (Meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2 -Ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, hexadecyl (meth) acrylate, Lil (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and tricyclo [5.2.1.0 2, 6] decyl (meth) acrylate, 2- (tricyclo) [5.2.1.0 2,6 ] dec-3-en-8 or 9-yloxyethyl (meth) acrylate and the like. Among the (meth) acrylic acid ester compounds, a more preferred (meth) acrylic acid ester compound is ethyl acrylate.
 一般式(II)で表される(メタ)アクリル酸エステル化合物には、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、及びダイマージオールモノ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid ester compound represented by the general formula (II) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and dimer diol mono (meth) acrylate. It is done.
 一般式(III)で表される(メタ)アクリル酸エステル化合物には、例えば、ジエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2-ベンゾイルオキシエチル(メタ)アクリレート、及び2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等が挙げられる。上記(メタ)アクリル酸エステル化合物の中で、より好ましい(メタ)アクリル酸エステルは2-フェノキシエチルアクリレートである。 Examples of the (meth) acrylic acid ester compound represented by the general formula (III) include diethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-methoxyethyl (meth) ) Acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, 2-phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) Acrylate, phenoxypolyethylene glycol (meth) acrylate, 2-benzoyloxyethyl (meth) acrylate, and 2-hydroxy-3-pheno Shipuropiru (meth) acrylate. Among the (meth) acrylic acid ester compounds, a more preferred (meth) acrylic acid ester is 2-phenoxyethyl acrylate.
 一般式(IV)で表される(メタ)アクリル酸エステル化合物には、例えば、ベンジル(メタ)アクリレート、2-シアノエチル(メタ)アクリレート、γ-(メタ)アクリロキシプロピルトリメトキシシラン、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、テトラヒドロピラニル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、1,2,2,6,6-ペンタメチルピペリジニル(メタ)アクリレート、2,2,6,6-テトラメチルピペリジニル(メタ)アクリレート、(メタ)アクリロキシエチルホスフェート、(メタ)アクリロキシエチルフェニルアシッドホスフェート、β-(メタ)アクリロイルオキシエチルハイドロジェンフタレート、β-(メタ)アクリロイルオキシエチルハイドロジェンサクシネート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、及びジシクロペンテニル(メタ)アクリレート等が挙げられる。上記(メタ)アクリル酸エステル化合物の中で、より好ましい(メタ)アクリル酸エステルはジシクロペンテニルオキシエチルアクリレートである。 Examples of the (meth) acrylic acid ester compound represented by the general formula (IV) include benzyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, γ- (meth) acryloxypropyltrimethoxysilane, glycidyl (meta) ) Acrylate, tetrahydrofurfuryl (meth) acrylate, tetrahydropyranyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 1,2,2,6,6-pentamethylpiperidinyl ( (Meth) acrylate, 2,2,6,6-tetramethylpiperidinyl (meth) acrylate, (meth) acryloxyethyl phosphate, (meth) acryloxyethyl phenyl acid phosphate, β- (meth) acryloyloxyethyl hydrogen Examples thereof include phthalate, β- (meth) acryloyloxyethyl hydrogen succinate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyl (meth) acrylate. Among the (meth) acrylic acid ester compounds, a more preferred (meth) acrylic acid ester is dicyclopentenyloxyethyl acrylate.
 一般式(V)で表される(メタ)アクリル酸エステル化合物には、例えば、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ダイマージオールジ(メタ)アクリレート、及びジメチロールトリシクロデカンジ(メタ)アクリレート等が挙げられる。上記(メタ)アクリル酸エステル化合物の中で、より好ましい(メタ)アクリル酸エステルはネオペンチルグリコールジアクリレートである。 Examples of the (meth) acrylic acid ester compound represented by the general formula (V) include ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth) ) Acrylate, 1,9-nonanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dimer diol di (meth) acrylate, and dimethylol tricyclode Examples include candi (meth) acrylate. Among the (meth) acrylic acid ester compounds, a more preferable (meth) acrylic acid ester is neopentyl glycol diacrylate.
 一般式(VI)で表される(メタ)アクリル酸エステル化合物には、例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、及びポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。上記(メタ)アクリル酸エステル化合物の中で、より好ましい(メタ)アクリル酸エステルはポリエチレングリコールジアクリレートである。 Examples of the (meth) acrylic acid ester compound represented by the general formula (VI) include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di ( Examples include meth) acrylate, tripropylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate. Among the (meth) acrylic acid ester compounds, a more preferable (meth) acrylic acid ester is polyethylene glycol diacrylate.
 一般式(VII)で表される(メタ)アクリル酸エステル化合物には、例えば、ビスフェノールA、ビスフェノールF又はビスフェノールAD1モルとグリシジル(メタ)アクリレート2モルとを反応させたジ(メタ)アクリレート化合物等が挙げられる。 Examples of the (meth) acrylic acid ester compound represented by the general formula (VII) include a di (meth) acrylate compound obtained by reacting 1 mol of bisphenol A, bisphenol F or bisphenol AD with 2 mol of glycidyl (meth) acrylate, and the like. Is mentioned.
 一般式(VIII)で表される(メタ)アクリル酸エステル化合物には、例えば、ビスフェノールA、ビスフェノールF又はビスフェノールADのポリエチレンオキサイド付加物のジ(メタ)アクリレート化合物等が挙げられる。上記ビスフェノールAには、例えば、エトキシ化ビスフェノールA、水素化ビスフェノールA及びハロゲン化ビスフェノールA等が挙げられる。 Examples of the (meth) acrylic acid ester compound represented by the general formula (VIII) include di (meth) acrylate compounds of polyethylene oxide adducts of bisphenol A, bisphenol F or bisphenol AD. Examples of the bisphenol A include ethoxylated bisphenol A, hydrogenated bisphenol A, and halogenated bisphenol A.
 一般式(IX)で表される(メタ)アクリル酸エステル化合物には、例えば、ビス((メタ)アクリロキシプロピル)ポリジメチルシロキサン、及びビス((メタ)アクリロキシプロピル)メチルシロキサン-ジメチルシロキサンコポリマー等が挙げられる。 Examples of the (meth) acrylic acid ester compound represented by the general formula (IX) include bis ((meth) acryloxypropyl) polydimethylsiloxane and bis ((meth) acryloxypropyl) methylsiloxane-dimethylsiloxane copolymer. Etc.
 一般式(X)で示される(メタ)アクリル酸エステル化合物には、例えば、無水マレイン酸を付加させたポリブタジエンと、2-ヒドロキシエチル(メタ)アクリレートとを反応させて得られる反応物及びその水素添加物等があり、例えばMM-1000-80、MAC-1000-80(共に、JX日鉱日石エネルギー(株)、商品名)等がある。 The (meth) acrylic acid ester compound represented by the general formula (X) includes, for example, a reaction product obtained by reacting polybutadiene to which maleic anhydride is added and 2-hydroxyethyl (meth) acrylate, and hydrogen thereof. There are additives, for example, MM-1000-80, MAC-1000-80 (both are JX Nippon Mining & Energy Co., Ltd., trade name) and the like.
 本発明に用いる(メタ)アクリル化合物(A)として、上記の化合物、好ましくは上記の(メタ)アクリル酸エステル化合物を単独で、又は複数種を組み合わせて使用してもよい。 As the (meth) acrylic compound (A) used in the present invention, the above compound, preferably the above (meth) acrylic acid ester compound may be used alone or in combination of two or more.
 (メタ)アクリル化合物(A)、バインダー樹脂(B)、アミン化合物(C)、重合開始剤(D)、可とう化剤(E)、銀粉(F)及びアルミニウム粉(G)の合計質量(以下、成分(A)~(G)の合計質量という場合がある)に対して、樹脂ペースト組成物中の(メタ)アクリル化合物(A)の含有量は、好ましくは18~24質量%であり、より好ましくは19~23質量%である。(メタ)アクリル化合物(A)の含有量が18質量%以上であると高い接着強度を示し、24質量%以下であると硬化中にボイドを発生することなく高い接着強度を維持する。 Total mass of (meth) acrylic compound (A), binder resin (B), amine compound (C), polymerization initiator (D), flexible agent (E), silver powder (F) and aluminum powder (G) ( Hereinafter, the content of the (meth) acrylic compound (A) in the resin paste composition is preferably 18 to 24% by mass relative to the total mass of the components (A) to (G). More preferably, it is 19 to 23% by mass. When the content of the (meth) acrylic compound (A) is 18% by mass or more, high adhesive strength is exhibited, and when it is 24% by mass or less, high adhesive strength is maintained without generating voids during curing.
[バインダー樹脂(B)]
 本発明に用いるバインダー樹脂(B)には、例えば、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、及びアクリル樹脂等が挙げられる。これらの樹脂の中で、上記の(メタ)アクリル化合物(A)と組み合わせると、接着性に優れ、樹脂とフィラーとの分離を抑制できるという観点から、好ましいバインダー樹脂(B)はエポキシ樹脂である。
[Binder resin (B)]
Examples of the binder resin (B) used in the present invention include an epoxy resin, a silicone resin, a urethane resin, and an acrylic resin. Among these resins, when combined with the above (meth) acrylic compound (A), a preferable binder resin (B) is an epoxy resin from the viewpoint of excellent adhesiveness and suppression of separation between the resin and the filler. .
 好ましいエポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂である。このようなエポキシ樹脂には、例えば、ビスフェノールA型エポキシ樹脂(例えば、AER-X8501(旭化成(株)、商品名)、R-301(三菱化学(株)、商品名)、YL-980(三菱化学(株)、商品名))、ビスフェノールF型エポキシ樹脂(例えば、YDF-170(東都化成(株)、商品名))、ビスフェノールAD型エポキシ樹脂(例えば、R-1710(三井化学(株)、商品名))、フェノールノボラック型エポキシ樹脂(例えば、N-730S(DIC(株)、商品名)、Quatrex-2010(ダウ・ケミカル社、商品名))、クレゾールノボラック型エポキシ樹脂(例えば、N-665―EXP(DIC(株)、商品名)、YDCN-702S(東都化成(株)、商品名)、EOCN-100(日本化薬(株)、商品名))、多官能エポキシ樹脂(例えば、EPPN-501(日本化薬(株)、商品名)、TACTIX-742(ダウ・ケミカル社、商品名)、VG-3010(三井化学(株)、商品名)、1032S(三菱化学(株)、商品名))、ナフタレン骨格を有するエポキシ樹脂(例えば、HP-4032(DIC(株)、商品名))、脂環式エポキシ樹脂(例えば、CELー3000((株)ダイセル、商品名))、エポキシ化ポリブタジエン(例えば、PB-3600((株)ダイセル、商品名)、E-1000-6.5(JX日鉱日石エネルギー(株)、商品名))、アミン型エポキシ樹脂(例えば、ELM-100(住友化学(株)、商品名)、YH-434L(東都化成(株)、商品名))、レゾルシン型エポキシ樹脂(例えば、デナコールEX-201(ナガセケムテックス(株)、商品名))、ネオペンチルグリコール型エポキシ樹脂(例えば、デナコールEX-211(ナガセケムテックス(株)、商品名))、ヘキサンディネルグリコール型エポキシ樹脂(例えば、デナコールEX-212(ナガセケムテックス(株)、商品名))、エチレン・プロピレングリコール型エポキシ樹脂(例えば、デナコールEX-810、811、850、851、821、830、832、841、861(ナガセケムテックス(株)、商品名))、下記一般式(XI)で表されるエポキシ樹脂(例えば、E-XL-24、E-XL-3L(三井化学(株)、商品名))等が挙げられる。 A preferred epoxy resin is an epoxy resin having two or more epoxy groups in one molecule. Examples of such epoxy resins include bisphenol A type epoxy resins (for example, AER-X8501 (Asahi Kasei Corporation, trade name), R-301 (Mitsubishi Chemical Corporation, trade name), YL-980 (Mitsubishi). Chemical Co., Ltd., trade name)), bisphenol F type epoxy resin (for example, YDF-170 (Toto Kasei Co., Ltd., trade name)), bisphenol AD type epoxy resin (for example, R-1710 (Mitsui Chemicals, Inc.) ), Phenol novolac type epoxy resin (eg, N-730S (DIC Corporation, trade name), Quatrex-2010 (Dow Chemical Co., trade name)), cresol novolac type epoxy resin (eg, N -665-EXP (DIC Corporation, trade name), YDCN-702S (Toto Kasei Co., trade name), EOCN-100 (Nippon Kayaku) Co., Ltd., trade name)), polyfunctional epoxy resin (for example, EPPN-501 (Nippon Kayaku Co., Ltd., trade name), TACTIX-742 (Dow Chemical Co., trade name), VG-3010 (Mitsui Chemicals, Inc.) Co., Ltd., trade name), 1032S (Mitsubishi Chemical Corporation, trade name)), epoxy resin having a naphthalene skeleton (for example, HP-4032 (DIC Corporation, trade name)), alicyclic epoxy resin (for example, , CEL-3000 (Daicel Corporation, trade name)), epoxidized polybutadiene (for example, PB-3600 (Daicel Corporation, trade name), E-1000-6.5 (JX Nippon Oil & Energy Corporation) ), Amine type epoxy resin (for example, ELM-100 (Sumitomo Chemical Co., Ltd., trade name), YH-434L (Toto Kasei Co., Ltd., trade name)), resorcinol type epoxy resin ( For example, Denacol EX-201 (Nagase ChemteX Corporation, trade name)), neopentyl glycol type epoxy resin (for example, Denacol EX-211 (Nagase ChemteX Corporation, trade name)), hexane diner glycol type Epoxy resin (for example, Denacol EX-212 (Nagase ChemteX Corporation, trade name)), ethylene / propylene glycol type epoxy resin (for example, Denacol EX-810, 811, 850, 851, 821, 830, 832, 841) 861 (Nagase ChemteX Corporation, trade name)), epoxy resin represented by the following general formula (XI) (for example, E-XL-24, E-XL-3L (Mitsui Chemicals, trade name) )) And the like.
Figure JPOXMLDOC01-appb-C000012
(一般式(XI)中、vは0~5の整数を表す)
Figure JPOXMLDOC01-appb-C000012
(In general formula (XI), v represents an integer of 0 to 5)
 これらのエポキシ樹脂の中で、より好ましいエポキシ樹脂は、ビスフェノールF型エポキシ樹脂、エポキシ化ポリブタジエン、フェノールノボラック型エポキシ樹脂、及びクレゾールノボラック型エポキシ樹脂である。バインダー樹脂(B)としてこれらの樹脂を用いると、電気伝導性、接着性及び熱伝導性により優れ、かつ塗布作業性及び機械特性にもより優れ、ダイボンディング用としてさらに好適に用いることができる樹脂ペースト組成物を得ることができる。また、これらのエポキシ樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Among these epoxy resins, more preferable epoxy resins are bisphenol F type epoxy resin, epoxidized polybutadiene, phenol novolac type epoxy resin, and cresol novolac type epoxy resin. When these resins are used as the binder resin (B), they are excellent in electrical conductivity, adhesiveness and thermal conductivity, and are excellent in coating workability and mechanical properties, and can be more suitably used for die bonding. A paste composition can be obtained. Moreover, these epoxy resins may be used individually by 1 type, and may be used in combination of 2 or more type.
 本発明に用いるバインダー樹脂(B)、特にエポキシ樹脂の数平均分子量は、好ましくは160~3000である。数平均分子量は、ゲルパーミエーションクロマトグラフィーにより標準ポリスチレンの検量線を利用して測定(以下、GPC法という)した値である。バインダー樹脂(B)の数平均分子量が160以上であると樹脂ペースト組成物は優れた接着性を有し、3000以下であると樹脂ペースト組成物の粘度が上昇しすぎることなく良好な作業性が得られる。 The number average molecular weight of the binder resin (B) used in the present invention, particularly an epoxy resin, is preferably 160 to 3000. The number average molecular weight is a value measured by gel permeation chromatography using a standard polystyrene calibration curve (hereinafter referred to as GPC method). When the number average molecular weight of the binder resin (B) is 160 or more, the resin paste composition has excellent adhesiveness, and when it is 3000 or less, the viscosity of the resin paste composition does not increase excessively and good workability is obtained. can get.
 バインダー樹脂(B)として用いるエポキシ樹脂のエポキシ当量は、好ましくは80~1000であり、より好ましくは100~500である。エポキシ樹脂のエポキシ当量が80以上であると樹脂ペースト組成物は優れた接着性を有する。エポキシ樹脂のエポキシ当量が1000以下であると、樹脂ペースト組成物の硬化時に未反応硬化物が残留することを抑制できる。これにより硬化後の熱履歴で生じる樹脂ペースト組成物の硬化物のアウトガスの発生を抑制できる。 The epoxy equivalent of the epoxy resin used as the binder resin (B) is preferably 80 to 1000, more preferably 100 to 500. When the epoxy equivalent of the epoxy resin is 80 or more, the resin paste composition has excellent adhesiveness. It can suppress that unreacted hardened | cured material remains at the time of hardening of a resin paste composition as the epoxy equivalent of an epoxy resin is 1000 or less. Thereby, generation | occurrence | production of the outgas of the hardened | cured material of the resin paste composition produced with the heat history after hardening can be suppressed.
 成分(A)~(G)の合計質量に対して、樹脂ペースト組成物中のバインダー樹脂(B)の含有量は、好ましくは0.1~2.0質量%であり、より好ましくは0.5~1.5質量%である。バインダー樹脂(B)の含有量が0.1質量%以上であると樹脂ペースト組成物は優れた接着性を有し、2.0質量%以下であると樹脂ペースト組成物の粘度が上昇しすぎることなく良好な作業性が得られる。 The content of the binder resin (B) in the resin paste composition with respect to the total mass of the components (A) to (G) is preferably 0.1 to 2.0% by mass, more preferably 0.00. It is 5 to 1.5% by mass. When the content of the binder resin (B) is 0.1% by mass or more, the resin paste composition has excellent adhesiveness, and when it is 2.0% by mass or less, the viscosity of the resin paste composition is excessively increased. Good workability can be obtained without any problems.
 バインダー樹脂(B)として用いるエポキシ樹脂は、1分子中に1個のエポキシ基を有する化合物である単官能エポキシ化合物(反応性希釈剤)を含んでもよい。このような単官能エポキシ化合物には、例えば、フェニルグリシジルエーテル(例えば、PGE(日本化薬(株)、商品名))、アルキルフェノールモノグリシジルエーテル(例えば、PP-101(東都化成(株)、商品名))、脂肪族モノグリシジルエーテル(例えば、(ED-502、(株)ADEKA、商品名))、アルキルフェノールモノグリシジルエーテル(例えば、ED-509((株)ADEKA、商品名))、アルキルフェノールモノグリシジルエーテル(例えば、YED-122(三菱化学(株)、商品名))、3-グリシドキシプロピルトリメトキシシラン(例えば、KBM-403(信越化学工業(株)、商品名))、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、1-(3-グリシドキシプロピル)-1,1,3,3,3-ペンタメチルジシロキサン(例えば、TSL-8350、TSL-8355、TSL-9905(いずれもモメンティブ・パフォーマンス・マテリアルズ・ジャパン、商品名))等が挙げられる。 The epoxy resin used as the binder resin (B) may contain a monofunctional epoxy compound (reactive diluent) that is a compound having one epoxy group in one molecule. Examples of such monofunctional epoxy compounds include phenyl glycidyl ether (for example, PGE (Nippon Kayaku Co., Ltd., trade name)), alkylphenol monoglycidyl ether (for example, PP-101 (Toto Kasei Co., Ltd.), Name)), aliphatic monoglycidyl ether (eg (ED-502, ADEKA, trade name)), alkylphenol monoglycidyl ether (eg ED-509 (ADEKA, trade name)), alkylphenol mono Glycidyl ether (for example, YED-122 (Mitsubishi Chemical Corporation, trade name)), 3-glycidoxypropyltrimethoxysilane (for example, KBM-403 (Shin-Etsu Chemical Co., Ltd., trade name)), 3- Glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane 1- (3-glycidoxypropyl) -1,1,3,3,3-pentamethyldisiloxane (eg, TSL-8350, TSL-8355, TSL-9905 (all Momentive Performance Materials)・ Japan, trade name)), etc.
 単官能エポキシ化合物は、本発明の樹脂ペースト組成物の特性を阻害しない範囲で使用される。単官能エポキシ化合物の含有量は、バインダー樹脂(B)の質量に対して、好ましくは10質量%以下であり、より好ましくは1~5質量%である。バインダー樹脂(B)中の単官能エポキシ化合物の含有量が10質量%以下であると、樹脂ペースト組成物の粘度が上昇しすぎることなく良好な作業性が得られる。 The monofunctional epoxy compound is used as long as the properties of the resin paste composition of the present invention are not impaired. The content of the monofunctional epoxy compound is preferably 10% by mass or less, more preferably 1 to 5% by mass with respect to the mass of the binder resin (B). When the content of the monofunctional epoxy compound in the binder resin (B) is 10% by mass or less, good workability can be obtained without excessive increase in the viscosity of the resin paste composition.
[アミン化合物(C)]
 本発明に用いるアミン化合物(C)は、バインダー樹脂(B)、特にバインダー樹脂(B)がエポキシ樹脂の場合、バインダー樹脂(B)の硬化剤として機能する。好ましいアミン化合物(C)には、ジシアンジアミド及び以下の一般式(XII)で表される二塩基酸ジヒドラジド(例えば、ADH、PDH、SDH(いずれも(株)日本ファインケム、商品名))、エポキシ樹脂とアミン化合物の反応物とからなるマイクロカプセル型硬化剤(例えば、ノバキュア(旭化成(株)、商品名))、並びにジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルフォン、尿素、尿素誘導体及びメラミン等のポリアミン化合物などが挙げられる。
[Amine compound (C)]
The amine compound (C) used in the present invention functions as a curing agent for the binder resin (B) when the binder resin (B), particularly the binder resin (B) is an epoxy resin. Preferred amine compounds (C) include dicyandiamide and dibasic acid dihydrazide represented by the following general formula (XII) (for example, ADH, PDH, SDH (all from Nippon Finechem Co., Ltd., trade name)), epoxy resin A microcapsule type curing agent (for example, NOVACURE (Asahi Kasei Co., Ltd., trade name)), and diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, urea, urea Examples thereof include polyamine compounds such as derivatives and melamine.
Figure JPOXMLDOC01-appb-C000013
(一般式(XII)中、R19はm-フェニレン基、p-フェニレン基等の2価の芳香族基、炭素数2~12の直鎖又は分岐鎖のアルキレン基を表す)
Figure JPOXMLDOC01-appb-C000013
(In the general formula (XII), R 19 represents a divalent aromatic group such as an m-phenylene group or a p-phenylene group, or a linear or branched alkylene group having 2 to 12 carbon atoms)
 また、他の好ましいアミン化合物(C)には、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニルイミダゾール、及び2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール化合物が挙げられる。 Other preferred amine compounds (C) include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-phenylimidazole, and 2-phenyl-4-methyl- Examples include imidazole compounds such as 5-hydroxymethylimidazole.
 以上のアミン化合物(C)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The above amine compounds (C) may be used alone or in combination of two or more.
 成分(A)~(G)の合計質量に対して、アミン化合物(C)の配合量は、好ましくは0.05~0.5質量%であり、より好ましくは0.1~0.5質量%である。アミン化合物(C)の配合量が0.05質量%以上であると樹脂ペースト組成物の硬化性が良好になり、0.5質量%以下であると樹脂ペースト組成物の安定性が良好になる。 The compounding amount of the amine compound (C) is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.5% by mass with respect to the total mass of the components (A) to (G). %. When the compounding amount of the amine compound (C) is 0.05% by mass or more, the curability of the resin paste composition is good, and when it is 0.5% by mass or less, the stability of the resin paste composition is good. .
[重合開始剤(D)]
 重合開始剤(D)は、本発明の樹脂ペースト組成物の硬化を促進するために用いられる。重合開始剤(D)は、好ましくはラジカル重合開始剤である。樹脂ペースト組成物の硬化時のボイド生成を抑える観点から、ラジカル重合開始剤は、好ましくは過酸化物系ラジカル重合開始剤である。また、樹脂ペースト組成物の硬化性及び粘度安定性の点から、好ましいラジカル重合開始剤は、急速加熱試験での分解温度が70~170℃のものである。
[Polymerization initiator (D)]
A polymerization initiator (D) is used in order to accelerate | stimulate hardening of the resin paste composition of this invention. The polymerization initiator (D) is preferably a radical polymerization initiator. From the viewpoint of suppressing void formation during the curing of the resin paste composition, the radical polymerization initiator is preferably a peroxide radical polymerization initiator. Further, from the viewpoint of curability and viscosity stability of the resin paste composition, a preferable radical polymerization initiator is one having a decomposition temperature of 70 to 170 ° C. in a rapid heating test.
 重合開始剤(D)として用いる好ましい過酸化物系ラジカル重合開始剤には、例えば、1,1,3,3-テトラメチルパーオキシ2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーベンゾエート、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、及びクメンハイドロパーオキサイド等が挙げられる。 Preferred peroxide radical polymerization initiators used as the polymerization initiator (D) include, for example, 1,1,3,3-tetramethylperoxy 2-ethylhexanoate, 1,1-bis (t-butyl) Peroxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, di-t-butylperoxyisophthalate, t-butylperbenzoate, dicumyl peroxide, t-butylcumyl peroxide, 2, Examples include 5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne, cumene hydroperoxide, and the like.
 成分(A)~(G)の合計質量に対して、重合開始剤(D)の配合量は、好ましくは0.1~5質量%であり、より好ましくは0.6~3質量%である。重合開始剤(D)の配合量が0.1質量%以上であると、樹脂ペースト組成物の硬化性が低下することがなく、重合開始剤(D)の配合量が5質量%以下であると、揮発分が多くならず、硬化物中にボイドと呼ばれる空隙が生じ難くなる。 The blending amount of the polymerization initiator (D) is preferably 0.1 to 5% by mass, more preferably 0.6 to 3% by mass with respect to the total mass of the components (A) to (G). . When the blending amount of the polymerization initiator (D) is 0.1% by mass or more, the curability of the resin paste composition is not lowered, and the blending amount of the polymerization initiator (D) is 5% by mass or less. Then, the volatile content does not increase, and voids called voids are hardly generated in the cured product.
[可とう化剤(E)]
 可とう化剤(E)は、本発明の樹脂ペースト組成物の硬化物に可とう性を付与するために用いられる。好ましい可とう化剤(E)には、例えば、ゴム系化合物及び熱可塑性樹脂等が挙げられる。
[Flexible agent (E)]
The flexible agent (E) is used for imparting flexibility to the cured product of the resin paste composition of the present invention. Preferable flexible agents (E) include, for example, rubber compounds and thermoplastic resins.
 可とう化剤(E)として用いる好ましいゴム系化合物は、好ましくは、ブタジエンの骨格を有するブタジエン系ゴムである。好ましいブタジエン系ゴムには、例えば、エポキシ化ポリブタジエンゴム、マレイン化ポリブタジエン、アクリロニトリルブタジエンゴム、カルボキシ末端アクリロニトリルブタジエンゴム、アミノ末端アクリロニトリルブタジエンゴム、ビニル末端アクリロニトリルブタジエンゴム、及びスチレンブタジエンゴム等の液状ゴムなどが挙げられる。 A preferable rubber-based compound used as the flexible agent (E) is preferably a butadiene-based rubber having a butadiene skeleton. Preferred butadiene rubbers include, for example, liquid rubbers such as epoxidized polybutadiene rubber, maleated polybutadiene, acrylonitrile butadiene rubber, carboxy terminal acrylonitrile butadiene rubber, amino terminal acrylonitrile butadiene rubber, vinyl terminal acrylonitrile butadiene rubber, and styrene butadiene rubber. Can be mentioned.
 可とう化剤(E)として用いるゴム系化合物の数平均分子量は、好ましくは500~10,000であり、より好ましくは1,000~5,000である。ゴム系化合物の数平均分子量が500以上であると、本発明の樹脂ペースト組成物の硬化物に良好な可とう性を付与でき、ゴム系化合物の数平均分子量が10,000以下であると樹脂ペースト組成物の粘度が上昇することなく、樹脂ペースト組成物の良好な作業性が得られる。数平均分子量は蒸気圧浸透法で測定した値又はGPC法により測定した値である。 The number average molecular weight of the rubber compound used as the flexible agent (E) is preferably 500 to 10,000, more preferably 1,000 to 5,000. When the number average molecular weight of the rubber compound is 500 or more, good flexibility can be imparted to the cured product of the resin paste composition of the present invention, and when the number average molecular weight of the rubber compound is 10,000 or less, the resin. Good workability of the resin paste composition can be obtained without increasing the viscosity of the paste composition. The number average molecular weight is a value measured by the vapor pressure infiltration method or a value measured by the GPC method.
 成分(A)~(G)の合計質量に対して、可とう化剤(E)の配合量は、好ましくは1~10質量%であり、より好ましくは6~10質量%である。可とう化剤(E)の配合量が1質量%以上であると本発明の樹脂ペースト組成物の硬化物の反りを低減でき、可とう化剤(E)の配合量が10質量%以下であると、樹脂ペースト組成物の粘度が増大することなく、樹脂ペースト組成物の良好な作業性が得られる。 The blending amount of the flexible agent (E) is preferably 1 to 10% by mass, more preferably 6 to 10% by mass with respect to the total mass of the components (A) to (G). When the blending amount of the flexible agent (E) is 1% by mass or more, warpage of the cured product of the resin paste composition of the present invention can be reduced, and the blending amount of the flexible agent (E) is 10% by mass or less. When it exists, the favorable workability | operativity of a resin paste composition is obtained, without the viscosity of a resin paste composition increasing.
[銀粉(F)]
 銀粉(F)は、本発明の樹脂ペースト組成物に電気伝導性及び熱伝導性を付与する。銀粉(F)の平均粒径は、好ましくは1~15μmであり、より好ましくは2~8μmであり、さらに好ましくは3~6μmである。銀粉(F)の平均粒径が1~15μmであると、樹脂ペースト組成物中の銀粉が沈降しづらくなり、樹脂ペースト組成物をディスペンスする際にニードル中でつまりが発生することを抑制できる。なお、銀粉(F)の平均粒径はレーザー光回折法を利用した粒度分布測定装置(例えば、マイクロトラックX100、日機装(株))でメジアン径として求めることができるものである。メジアン径とは個数基準の粒度分布における累積率が50%となる粒子径(D50)の値を示す。
[Silver powder (F)]
Silver powder (F) imparts electrical conductivity and thermal conductivity to the resin paste composition of the present invention. The average particle diameter of the silver powder (F) is preferably 1 to 15 μm, more preferably 2 to 8 μm, and further preferably 3 to 6 μm. When the average particle diameter of the silver powder (F) is 1 to 15 μm, the silver powder in the resin paste composition is difficult to settle, and it is possible to suppress clogging in the needle when the resin paste composition is dispensed. In addition, the average particle diameter of silver powder (F) can be calculated | required as a median diameter with the particle size distribution measuring apparatus (for example, Microtrac X100, Nikkiso Co., Ltd.) using a laser beam diffraction method. The median diameter is a value of the particle diameter (D50) at which the cumulative ratio in the number-based particle size distribution is 50%.
 銀粉(F)は、好ましくは、粒状、フレーク状、球状、針状及び不規則状等の形状を有し、より好ましくはフレーク状の形状を有する。銀粉(F)がフレーク状の形状を有すると、個々の銀粉同士の接触が起こりやすくなり、樹脂ペーストの電気伝導性及び熱伝導性をより高くすることができる。また、後述のアルミニウム粉(G)と組み合わせて用いることで、電気伝導性、接着性、保存安定性、塗布作業性及び機械特性にさらに優れた樹脂ペースト組成物を得ることができる。 The silver powder (F) preferably has a shape such as a granular shape, a flake shape, a spherical shape, a needle shape, and an irregular shape, and more preferably has a flake shape. When the silver powder (F) has a flaky shape, contact between individual silver powders easily occurs, and the electrical conductivity and thermal conductivity of the resin paste can be further increased. Moreover, the resin paste composition which was further excellent in electrical conductivity, adhesiveness, storage stability, coating workability | operativity, and mechanical characteristics can be obtained by using in combination with the below-mentioned aluminum powder (G).
 銀粉(F)は、好ましくはステアリン酸でコーティングされる。ステアリン酸で銀粉(F)をコーティングすることにより、樹脂ペースト組成物の粘度を長時間安定させることができる。また、さらに、樹脂ペースト組成物における樹脂とフィラーとの分離を抑制することができる。 Silver powder (F) is preferably coated with stearic acid. By coating the silver powder (F) with stearic acid, the viscosity of the resin paste composition can be stabilized for a long time. Furthermore, separation of the resin and the filler in the resin paste composition can be suppressed.
 成分(A)~(G)の合計質量に対して、銀粉(F)の含有量は、42質量%以下であり、好ましくは3~40質量%であり、より好ましくは10~40質量%である。銀粉(F)の含有量が40質量%以下であると、電気伝導性、熱伝導性及び接着性に加えて、塗布作業性、機械特性にも優れる安価な樹脂ペースト組成物が得られる。 The content of silver powder (F) is 42% by mass or less, preferably 3 to 40% by mass, more preferably 10 to 40% by mass with respect to the total mass of components (A) to (G). is there. When the content of the silver powder (F) is 40% by mass or less, an inexpensive resin paste composition excellent in application workability and mechanical properties in addition to electric conductivity, thermal conductivity and adhesiveness can be obtained.
 銀粉(F)のBET比表面積は、好ましくは0.5~2.1m2/gである。ここで、銀粉(F)の比表面積はBET法N2ガス吸着一点法により測定した値である。銀粉(F)のBET比表面積が0.5~2.1m2/gであると、樹脂ペースト組成物の粘度が上昇しすぎることなく、優れた電気伝導性を有する樹脂ペースト組成物の硬化物を得ることができる。 The BET specific surface area of the silver powder (F) is preferably 0.5 to 2.1 m 2 / g. Here, the specific surface area of the silver powder (F) is a value measured by the BET method N 2 gas adsorption one point method. When the BET specific surface area of the silver powder (F) is 0.5 to 2.1 m 2 / g, the cured product of the resin paste composition having excellent electrical conductivity without excessively increasing the viscosity of the resin paste composition. Can be obtained.
 銀粉(F)は、タップ密度が4.0g/cm3以下である銀粉(F-1)を含む。ここで、銀粉のタップ密度はJIS Z 2512に準じて、タップ密度測定器により測定を行い得られた値である。具体的には、ロートを使用して100gの銀粉を100mlメスシリンダーに静かに落下させる。シリンダーをタップ密度測定器((株)蔵持科学器械製作所製、型番:KRS-406)に乗せて20mmの落下距離及び60回/分の速さで600回落下させ、圧縮した銀粉の容積を測定する。そして、銀粉の質量を圧縮した銀粉の容積で割って算出したタップ値がタップ密度である。銀粉(F-1)のタップ密度は、より好ましくは1.0~4.0g/cm3である。 Silver powder (F) contains silver powder (F-1) having a tap density of 4.0 g / cm 3 or less. Here, the tap density of the silver powder is a value obtained by measuring with a tap density measuring device according to JIS Z 2512. Specifically, 100 g of silver powder is gently dropped onto a 100 ml graduated cylinder using a funnel. Measure the volume of the compressed silver powder by dropping the cylinder 600 times at a drop distance of 20 mm and a speed of 60 times / minute by placing it on a tap density measuring device (model number: KRS-406, manufactured by Kuramochi Scientific Instruments). To do. The tap value calculated by dividing the mass of the silver powder by the volume of the compressed silver powder is the tap density. The tap density of the silver powder (F-1) is more preferably 1.0 to 4.0 g / cm 3 .
 なお、銀粉のタップ密度が測定値のばらつきによって一定の範囲を有する場合、その範囲が4.0g/cm3の値を含むとき、または、その範囲が4.0g/cm3以下の範囲に含まれるとき、その銀粉のタップ密度は、4.0g/cm3以下であるとする。また、銀粉のタップ密度が測定値のばらつきによって一定の範囲を有する場合、その範囲が4.0g/cm3の値を含み、かつ1.0g/cm3の値を含むとき、または、その範囲が1.0~4.0g/cm3の範囲に含まれるとき、その銀粉のタップ密度は、1.0~4.0g/cm3であるとする。 In the case where the tap density of the silver powder has a range of constant by variation of the measured values, when the range includes the value of 4.0 g / cm 3, or, within the scope that range of 4.0 g / cm 3 or less The tap density of the silver powder is 4.0 g / cm 3 or less. Further, when the tap density of the silver powder has a certain range due to variations in the measured value, the range includes a value of 4.0 g / cm 3 and a value of 1.0 g / cm 3 , or the range Is included in the range of 1.0 to 4.0 g / cm 3 , the tap density of the silver powder is assumed to be 1.0 to 4.0 g / cm 3 .
 銀粉(F-1)の平均粒径は、好ましくは1~15μmであり、より好ましくは2~8μmであり、さらに好ましくは3~6μmである。銀粉(F-1)の平均粒径が1~15μmであると、樹脂ペースト組成物中の銀粉が沈降しづらくなり、樹脂ペースト組成物をディスペンスする際にニードル中でつまりが発生することを抑制できる。なお、銀粉(F-1)の平均粒径はレーザー光回折法を利用した粒度分布測定装置(例えば、マイクロトラックX100)でメジアン径として求めることができるものである。メジアン径とは個数基準の粒度分布における累積率が50%となる粒子径(D50)の値を示す。 The average particle diameter of the silver powder (F-1) is preferably 1 to 15 μm, more preferably 2 to 8 μm, and further preferably 3 to 6 μm. When the average particle size of the silver powder (F-1) is 1 to 15 μm, it is difficult for the silver powder in the resin paste composition to settle, and the occurrence of clogging in the needle is suppressed when the resin paste composition is dispensed. it can. The average particle diameter of the silver powder (F-1) can be obtained as the median diameter with a particle size distribution measuring apparatus (for example, Microtrack X100) using a laser light diffraction method. The median diameter is a value of the particle diameter (D50) at which the cumulative ratio in the number-based particle size distribution is 50%.
 銀粉(F-1)は、好ましくは、粒状、フレーク状、球状、針状及び不規則状等の形状を有し、より好ましくはフレーク状の形状を有する。銀粉(F-1)がフレーク状の形状を有すると、個々の銀粉同士の接触が起こりやすくなり、樹脂ペーストの電気伝導性及び熱伝導性をより高くすることができる。また、後述のアルミニウム粉(G)と組み合わせて用いることで、電気伝導性、接着性、保存安定性、塗布作業性及び機械特性にさらに優れた樹脂ペースト組成物を得ることができる。 The silver powder (F-1) preferably has a granular shape, a flake shape, a spherical shape, a needle shape, an irregular shape, or the like, and more preferably has a flake shape. When the silver powder (F-1) has a flaky shape, contact between the individual silver powders is likely to occur, and the electrical conductivity and thermal conductivity of the resin paste can be further increased. Moreover, the resin paste composition which was further excellent in electrical conductivity, adhesiveness, storage stability, coating workability | operativity, and mechanical characteristics can be obtained by using in combination with the below-mentioned aluminum powder (G).
 銀粉(F-1)は、ステアリン酸でコーティングされる。ステアリン酸で銀粉(F-1)をコーティングすることにより、樹脂ペースト組成物の粘度を長時間安定させることができる。また、さらに、樹脂ペースト組成物における樹脂とフィラーとの分離を抑制することができる。 Silver powder (F-1) is coated with stearic acid. By coating silver powder (F-1) with stearic acid, the viscosity of the resin paste composition can be stabilized for a long time. Furthermore, separation of the resin and the filler in the resin paste composition can be suppressed.
 銀粉(F)は、タップ密度が4.0g/cm3よりも大きい銀粉(F-2)をさらに含んでもよい。銀粉(F-2)のタップ密度は、より好ましくは4.0g/cm3超、6.0g/cm3以下である。 The silver powder (F) may further contain silver powder (F-2) having a tap density larger than 4.0 g / cm 3 . The tap density of the silver powder (F-2) is more preferably more than 4.0 g / cm 3 and not more than 6.0 g / cm 3 .
 (メタ)アクリル化合物(A)、バインダー樹脂(B)、アミン化合物(C)、重合開始剤(D)、可とう化剤(E)、銀粉(F)及びアルミニウム粉(G)の合計質量に対して、銀粉(F-1)の含有量は10質量%以上であり、好ましくは10~40質量%である。銀粉(F-1)の含有量が10質量%以上であると、優れた電気伝導性が得られ、また少量の銀粉で樹脂ペースト組成物の粘度を上昇させ、良好な塗布作業性が得られる。 To the total mass of (meth) acrylic compound (A), binder resin (B), amine compound (C), polymerization initiator (D), flexible agent (E), silver powder (F) and aluminum powder (G) On the other hand, the content of silver powder (F-1) is 10% by mass or more, preferably 10 to 40% by mass. When the content of the silver powder (F-1) is 10% by mass or more, excellent electrical conductivity is obtained, and the viscosity of the resin paste composition is increased with a small amount of silver powder, and good coating workability is obtained. .
[アルミニウム粉(G)]
 アルミニウム粉(G)は、優れた電気伝導性、熱伝導性、接着性及び粘度安定性を本発明の樹脂ペースト組成物に付与する。これにより、銀粉(F)の含有量を少なくしても樹脂ペースト組成物の電気伝導性及び熱伝導性を高くすることができる。そして、アルミニウム粉(G)を含有することにより、銀粉(F)の含有量を少なくできるので、本発明の樹脂ペースト組成物を安価にできる。
[Aluminum powder (G)]
Aluminum powder (G) imparts excellent electrical conductivity, thermal conductivity, adhesiveness and viscosity stability to the resin paste composition of the present invention. Thereby, even if it reduces content of silver powder (F), the electrical conductivity and heat conductivity of a resin paste composition can be made high. And by containing aluminum powder (G), since content of silver powder (F) can be decreased, the resin paste composition of this invention can be made cheap.
 アルミニウム粉(G)は、好ましくは1~6μmの、より好ましくは2~5μmの、さらに好ましくは2~4μmの平均粒径を有する。アルミニウム粉(G)の平均粒径が1~6μmであると、樹脂ペースト組成物の濡れ拡がり性の低下を抑制できるので、樹脂ペースト組成物を使用して支持部材の上に半導体素子を実装するとき、半導体素子が傾くことを抑制できる。なお、アルミニウム粉(G)の平均粒径は、レーザー光回折法を利用した粒度分布測定装置(例えば、マイクロトラックX100)でメジアン径として求めることができる。なお、メジアン径とは個数基準の粒度分布における累積率が50%となる粒子径(D50)の値を示す。 The aluminum powder (G) preferably has an average particle diameter of 1 to 6 μm, more preferably 2 to 5 μm, and still more preferably 2 to 4 μm. When the average particle size of the aluminum powder (G) is 1 to 6 μm, it is possible to suppress a decrease in wet spreadability of the resin paste composition. Therefore, the semiconductor element is mounted on the support member using the resin paste composition. When the semiconductor element is tilted, it can be suppressed. In addition, the average particle diameter of aluminum powder (G) can be calculated | required as a median diameter with the particle size distribution measuring apparatus (for example, microtrack X100) using a laser beam diffraction method. The median diameter is a value of the particle diameter (D50) at which the cumulative ratio in the number-based particle size distribution is 50%.
 アルミニウム粉(G)の見掛密度は0.40~1.20g/cm3が好ましく、0.55~1.00g/cm3であることがより好ましい。 Apparent density of aluminum powder (G) is preferably 0.40 ~ 1.20g / cm 3, more preferably 0.55 ~ 1.00g / cm 3.
 アルミニウム粉(G)は、好ましくは粒状、フレーク状、球状、針状及び不規則状等の形状を有し、より好ましくは粒状の形状を有する。 The aluminum powder (G) preferably has a shape such as granular, flaky, spherical, acicular or irregular, and more preferably has a granular shape.
 アルミニウム粉(G)の含有量/銀粉(F)の含有量の値は、質量比で0.3~2.3であり、好ましくは1.0~2.0である。アルミニウム粉(G)の含有量/銀粉(F)の含有量の値が0.3~2.3であると、樹脂ペースト組成物の作業性、電気伝導性及び接着性をより高くすることができる。 The value of content of aluminum powder (G) / content of silver powder (F) is 0.3 to 2.3, preferably 1.0 to 2.0 in terms of mass ratio. When the value of the content of the aluminum powder (G) / the content of the silver powder (F) is 0.3 to 2.3, the workability, electrical conductivity and adhesiveness of the resin paste composition can be further increased. it can.
[カップリング剤(H)]
 本発明の樹脂ペースト組成物は、カップリング剤(H)をさらに含んでもよい。これにより、支持部材に対する樹脂ペースト組成物の接着性がさらに向上する。本発明に用いるシランカップリング剤(H)には、特に制限はないが、好ましいカップリング剤(H)には、例えば、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコネート系カップリング剤及びジルコアルミネート系カップリング剤等が挙げられる。
[Coupling agent (H)]
The resin paste composition of the present invention may further contain a coupling agent (H). Thereby, the adhesiveness of the resin paste composition with respect to a supporting member further improves. Although there is no restriction | limiting in particular in the silane coupling agent (H) used for this invention, As a preferable coupling agent (H), a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a zirconate, for example And a coupling agent and a zircoaluminate coupling agent.
 シランカップリング剤には、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニル-トリス(2-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、メチルトリ(メタクリロキシエトキシ)シラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、3-(4,5-ジヒドロイミダゾリル)プロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン、メチルトリグリシドキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、トリメチルシリルイソシアネート、ジメチルシリルイソシアネート、フェニルシリルトリイソシアネート、テトライソシアネートシラン、メチルシリルトリイソシアネート、ビニルシリルトリイソシアネート、及びエトキシシラントリイソシアネート等が挙げられる。上記シランカップリング剤の中でより好ましいシランカップリング剤はγ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシランである。 Examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyl-tris (2- Methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, methyltri (methacryloxyethoxy) silane, γ-acryloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ- Aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-β- ( -Vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, 3- (4,5-dihydroimidazolyl) Propyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldiisopro Penoxysilane, methyltriglycidoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, trimethylsilyl isocyanate, dimethylsilyl Isocyanate, phenyl triisocyanate, tetraisocyanate silane, methyl triisocyanate, and vinyl triisocyanate, and silane triisocyanate and the like. Among the above silane coupling agents, more preferable silane coupling agents are γ-glycidoxypropyltrimethoxysilane and γ-methacryloxypropyltrimethoxysilane.
 チタネート系カップリング剤には、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピル(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチル・アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、及びジイソステアロイルエチレンチタネート等が挙げられる。上記チタネート系カップリング剤の中でより好ましいチタネート系カップリング剤は、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート及びイソプロピルトリ(N-アミノエチル・アミノエチル)チタネート等のイソプロピルトリチタネートである。 Examples of titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecyl benzene sulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite). ) Titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl Titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl (dioctyl phosphate) Taneto, isopropyl tricumylphenyl titanate, isopropyl tri (N- aminoethyl-aminoethyl) titanate, dicumyl phenyloxy acetate titanate, and diisostearoyl ethylene titanate. Among the titanate coupling agents, more preferred titanate coupling agents are isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl trioctanoyl titanate, isopropyl tricumylphenyl titanate and isopropyl tri (N-aminoethyl). -Aminoethyl) isopropyl trititanate such as titanate.
 アルミニウム系カップリング剤は、例えば、アセトアルコキシアルミニウムジイソプロピオネートである。 The aluminum coupling agent is, for example, acetoalkoxyaluminum diisopropionate.
 ジルコネート系カップリング剤には、例えば、テトラプロピルジルコネート、テトラブチルジルコネート、テトラ(トリエタノールアミン)ジルコネート、テトライソプロピルジルコネート、ジルコニウムアセチルアセトネート、アセチルアセトンジルコニウムブチレート、及びステアリン酸ジルコニウムブチレート等が挙げられる。 Zirconate coupling agents include, for example, tetrapropyl zirconate, tetrabutyl zirconate, tetra (triethanolamine) zirconate, tetraisopropyl zirconate, zirconium acetylacetonate, acetylacetone zirconium butyrate, and zirconium stearate butyrate. Is mentioned.
 ジルコアルミネート系カップリング剤には、例えば、モノアルコキシジルコアルミネート、トリアルコキシジルコアルミネート、及びテトラアルコキシジルコアルミネート等が挙げられる。 Examples of the zircoaluminate coupling agent include monoalkoxyzircoaluminate, trialkoxyzircoaluminate, and tetraalkoxyzircoaluminate.
 上記シランカップリング剤のうち、γ-グリシドキシプロピルトリメトキシシラン及びγ-グリシドキシプロピルメチルジエトキシシランは、エポキシ樹脂に含有し得る単官能エポキシ化合物(反応性希釈剤)として例示したものである。これらの化合物はシランカップリング剤の機能及び反応性希釈剤の機能の両方を有する。 Among the above silane coupling agents, γ-glycidoxypropyltrimethoxysilane and γ-glycidoxypropylmethyldiethoxysilane are exemplified as monofunctional epoxy compounds (reactive diluents) that can be contained in an epoxy resin. It is. These compounds have both the function of a silane coupling agent and the function of a reactive diluent.
 (メタ)アクリル化合物(A)、バインダー樹脂(B)、アミン化合物(C)、重合開始剤(D)、可とう化剤(E)、銀粉(F)及びアルミニウム粉(G)の合計の100質量部に対して、カップリング剤(H)の配合量は、好ましくは0.5~6.0質量部であり、より好ましくは1.0~5.0質量部である。カップリング剤(H)の配合量が0.5質量部以上であると樹脂ペースト組成物の接着強度がより向上し、6.0質量部以下であると樹脂ペースト組成物の揮発分が多くならず、硬化物中にボイドと呼ばれる空隙が生じ難くなる。 100 of the total of (meth) acrylic compound (A), binder resin (B), amine compound (C), polymerization initiator (D), flexible agent (E), silver powder (F) and aluminum powder (G) The blending amount of the coupling agent (H) is preferably 0.5 to 6.0 parts by mass, more preferably 1.0 to 5.0 parts by mass with respect to parts by mass. When the blending amount of the coupling agent (H) is 0.5 parts by mass or more, the adhesive strength of the resin paste composition is further improved, and when it is 6.0 parts by mass or less, the volatile content of the resin paste composition is increased. In other words, voids called voids are hardly generated in the cured product.
[オレイン酸(I)、ステアリン酸(J)、ラウリン酸(K)、分散剤(L)]
 本発明の樹脂ペースト組成物は、オレイン酸(I)、ステアリン酸(J)、ラウリン酸(K)及び分散剤(L)からなる群から選択される少なくとも1種をさらに含んでもよい。オレイン酸(I)、ステアリン酸(J)、ラウリン酸(K)及び分散剤(L)からなる群から選択される少なくとも1種を添加することで、ペースト組成物中の樹脂成分のみが分離し基板表面上に染み出す現象(ブリードアウト)を抑制できる。オレイン酸(I)、ステアリン酸(J)、ラウリン酸(K)及び分散剤(L)からなる群から選択される少なくとも1種がフィラーの表面に吸着し、樹脂に対し濡れやすくする。フィラーの分散が改善されたことで樹脂の分離が抑制され、樹脂の染み出しであるブリードアウトを低減できる。(メタ)アクリル化合物(A)、バインダー樹脂(B)、アミン化合物(C)、重合開始剤(D)、可とう化剤(E)、銀粉(F)及びアルミニウム粉(G)の合計の100質量部に対して、オレイン酸(I)、ステアリン酸(J)、ラウリン酸(K)及び分散剤(L)からなる群から選択される少なくとも1種の配合量は、好ましくは0.3~1.0質量部であり、より好ましくは0.5~1.0質量部である。オレイン酸(I)、ステアリン酸(J)、ラウリン酸(K)及び分散剤(L)からなる群から選択される少なくとも1種の配合量が0.3質量部以上であると本発明の樹脂ペースト組成物のブリードアウトを低減でき、オレイン酸の配合量が1.0質量部以下であると、樹脂ペースト組成物の粘度が低すぎることなく、樹脂ペースト組成物の良好な作業性が得られる。
[Oleic acid (I), stearic acid (J), lauric acid (K), dispersant (L)]
The resin paste composition of the present invention may further include at least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K), and dispersant (L). By adding at least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K) and dispersant (L), only the resin component in the paste composition is separated. The phenomenon of bleeding on the substrate surface (bleed out) can be suppressed. At least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K), and dispersant (L) is adsorbed on the surface of the filler, making it easy to wet the resin. By improving the dispersion of the filler, the separation of the resin is suppressed, and the bleed-out, which is a seepage of the resin, can be reduced. 100 of the total of (meth) acrylic compound (A), binder resin (B), amine compound (C), polymerization initiator (D), flexible agent (E), silver powder (F) and aluminum powder (G) The blending amount of at least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K) and dispersant (L) is preferably 0.3 to 1.0 part by mass, and more preferably 0.5 to 1.0 part by mass. Resin of the present invention when the blending amount of at least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K) and dispersant (L) is 0.3 parts by mass or more Bleed-out of the paste composition can be reduced, and when the amount of oleic acid is 1.0 part by mass or less, good workability of the resin paste composition can be obtained without the viscosity of the resin paste composition being too low. .
[その他の成分]
 本発明の樹脂ペースト組成物には、さらに必要に応じて酸化カルシウム及び酸化マグネシウム等の吸湿剤、フッ素系界面活性剤、ノニオン系界面活性剤及び高級脂肪酸等の濡れ向上剤、シリコーン油等の消泡剤、並びに無機イオン交換体等のイオントラップ剤などの各種添加剤を、単独又は数種類を組み合わせて、適宜添加することができる。
[Other ingredients]
If necessary, the resin paste composition of the present invention further includes a moisture absorbent such as calcium oxide and magnesium oxide, a wet surfactant such as a fluorosurfactant, a nonionic surfactant and a higher fatty acid, and a silicone oil. Various additives such as a foaming agent and an ion trapping agent such as an inorganic ion exchanger can be appropriately added singly or in combination of several kinds.
 また、本発明の樹脂ペースト組成物は、銀粉(F)及びアルミニウム粉(G)以外の導電性粒子をさらに含有してもよい。このような導電性粒子としては、平均粒径が10μm未満である導電性粒子が好ましい。また、導電性粒子には、金粉、銅粉、ニッケル粉、鉄粉及びステンレス粉等が挙げられる。 Moreover, the resin paste composition of the present invention may further contain conductive particles other than silver powder (F) and aluminum powder (G). As such conductive particles, conductive particles having an average particle diameter of less than 10 μm are preferable. Examples of the conductive particles include gold powder, copper powder, nickel powder, iron powder, and stainless steel powder.
[樹脂ペースト組成物]
 本発明の樹脂ペースト組成物は、例えば以下のようにして製造することができる。本発明の樹脂ペーストを構成する上述の成分、及び所望により添加する各種添加剤を用意して、これらを一括して又は分割して、攪拌機、ハイブリッドミキサー、ライカイ機、3本ロール、プラネタリーミキサー等の分散、攪拌及び混練可能な装置に投入し、必要に応じて加熱し、混合、溶解、解粒、混練及び/又は分散して、均一なペースト状の組成物を作製する。この組成物が本発明の樹脂ペースト組成物である。
[Resin paste composition]
The resin paste composition of the present invention can be produced, for example, as follows. Prepare the above-mentioned components constituting the resin paste of the present invention, and various additives to be added as desired, and batch or divide them into a stirrer, a hybrid mixer, a likai machine, a three roll, a planetary mixer The mixture is put into an apparatus capable of dispersing, stirring and kneading, and heated as necessary, and mixed, dissolved, granulated, kneaded and / or dispersed to produce a uniform paste-like composition. This composition is the resin paste composition of the present invention.
 得られた樹脂ペースト組成物では、希少であり高価な材料である銀の使用量が低減されている。それにもかかわらず、樹脂ペースト組成物は、電気伝導性、熱伝導性及び接着性に優れている。また、樹脂ペースト組成物における樹脂及びフィラーの分離が抑制されており、樹脂ペースト組成物を長期間保存しても樹脂及びフィラーが分離することが少ない。本発明の樹脂ペースト組成物は、例えば、半導体素子接着用の樹脂ペースト組成物として使用される。より具体的には、本発明の樹脂ペースト組成物は、半導体チップ等の導体素子とリードフレーム等の支持部材との接着に好適に用いられる。 In the obtained resin paste composition, the amount of silver that is a rare and expensive material is reduced. Nevertheless, the resin paste composition is excellent in electrical conductivity, thermal conductivity and adhesiveness. Moreover, separation of the resin and filler in the resin paste composition is suppressed, and the resin and filler are rarely separated even if the resin paste composition is stored for a long period of time. The resin paste composition of the present invention is used, for example, as a resin paste composition for bonding semiconductor elements. More specifically, the resin paste composition of the present invention is suitably used for bonding a conductor element such as a semiconductor chip and a support member such as a lead frame.
〔半導体装置〕
 本発明の半導体装置は半導体素子及び支持部材を備えており、本発明の樹脂ペースト組成物の硬化物により、半導体素子が支持部材と接合される。本発明の半導体装置では、半導体素子と支持部材の少なくとも一部とが封止剤により封止されることが好ましい。
[Semiconductor device]
The semiconductor device of the present invention includes a semiconductor element and a support member, and the semiconductor element is bonded to the support member by a cured product of the resin paste composition of the present invention. In the semiconductor device of the present invention, it is preferable that the semiconductor element and at least a part of the support member are sealed with a sealant.
 支持部材には、例えば、銅リードフレーム等のリードフレーム、ガラスエポキシ基板(ガラス繊維強化エポキシ樹脂からなる基板)及びBT基板(シアネートモノマー及びそのオリゴマーとビスマレイミドとからなるBTレジン使用基板)等の有機基板などが挙げられる。 Examples of the support member include a lead frame such as a copper lead frame, a glass epoxy substrate (a substrate made of glass fiber reinforced epoxy resin), and a BT substrate (a BT resin-use substrate made of cyanate monomer and its oligomer and bismaleimide). An organic substrate etc. are mentioned.
 本発明の半導体装置では、半導体素子と支持部材とが、本発明の樹脂ペースト組成物の硬化物により接合される。半導体素子をリードフレーム等の支持部材に接着させるには、例えば、支持部材上に樹脂ペースト組成物をディスペンス法により塗布した後、半導体素子を圧着し、その後オーブン及びヒートブロック等の加熱装置を用いて加熱硬化することにより行う。次に、ワイヤボンド工程等が実施され、本発明の半導体装置が得られる。その後、さらに、通常の方法によって、半導体素子と支持部材の少なくとも一部とを封止剤で封止してもよい。 In the semiconductor device of the present invention, the semiconductor element and the support member are joined by the cured product of the resin paste composition of the present invention. In order to adhere the semiconductor element to a support member such as a lead frame, for example, a resin paste composition is applied onto the support member by a dispensing method, and then the semiconductor element is pressure-bonded, and then a heating device such as an oven or a heat block is used. By heating and curing. Next, a wire bonding process or the like is performed to obtain the semiconductor device of the present invention. Thereafter, the semiconductor element and at least a part of the support member may be further sealed with a sealant by a normal method.
 樹脂ペースト組成物の加熱硬化条件は、低温での長時間硬化の場合と、高温での速硬化の場合とで異なる。例えば、高温での速硬化の場合、通常、樹脂ペースト組成物の加熱硬化条件は、好ましくは150~220℃、より好ましくは180~200℃の加熱温度及び好ましくは30秒~2時間、より好ましくは10分~2時間、さらに好ましくは1時間~1時間30分の加熱時間である。 The heat curing conditions of the resin paste composition are different for the case of long-time curing at a low temperature and the case of rapid curing at a high temperature. For example, in the case of rapid curing at a high temperature, the heat curing conditions for the resin paste composition are generally preferably 150 to 220 ° C., more preferably 180 to 200 ° C., and preferably 30 seconds to 2 hours, more preferably. Is a heating time of 10 minutes to 2 hours, more preferably 1 hour to 1 hour 30 minutes.
 以下に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(評価方法)
 実施例及び比較例の樹脂ペースト組成物を以下の評価方法で評価した。
(1)粘度の測定、粘度の安定性の測定及び塗布作業性の評価:
a)粘度の測定
 各実施例及び比較例の樹脂ペースト組成物を、EHD型回転粘度計(東京計器(株)製、3°コーン)を用いて25℃における0.5rpmの3分後の粘度(Pa・s)を測定した。
b)粘度の安定性の測定
 各実施例及び比較例の樹脂ペースト組成物を、23℃で7日間保管した後にEHD型回転粘度計(東京計器(株)製、3°コーン)を用いて25℃における0.5rpmの3分後の粘度(Pa・s)を測定した。
c)塗布作業性の評価
 ディスペンサー(武蔵エンジニアリング(株)製)で連続打点(4225点)を行った際、打点と打点の間の様子を目視で確認し、以下の基準で評価した。
 A 4225点中、糸引きが発生したものは、なし
 B 4225点中、糸引きが発生したものは、1~2112点
 C 4225点中、糸引きが発生したものは、2113~4225点
(Evaluation methods)
The resin paste compositions of Examples and Comparative Examples were evaluated by the following evaluation methods.
(1) Measurement of viscosity, measurement of viscosity stability and evaluation of coating workability:
a) Measurement of viscosity Viscosity after 3 minutes of 0.5 rpm at 25 ° C. using the resin paste composition of each Example and Comparative Example using an EHD type rotational viscometer (manufactured by Tokyo Keiki Co., Ltd., 3 ° cone). (Pa · s) was measured.
b) Measurement of viscosity stability The resin paste compositions of the examples and comparative examples were stored at 23 ° C. for 7 days and then EHD type rotational viscometer (manufactured by Tokyo Keiki Co., Ltd., 3 ° cone) was used. The viscosity (Pa · s) after 3 minutes at 0.5 rpm at ℃ was measured.
c) Evaluation of coating workability When continuous hitting (4225 points) was performed with a dispenser (manufactured by Musashi Engineering Co., Ltd.), the state between the hitting points was visually confirmed and evaluated according to the following criteria.
A No 4225 points where stringing occurred B B2252 points where threading occurred 1-211 points C 4225 points where stringing occurred 2113-4225 points
(2)剪断接着強度の測定
 各実施例及び比較例の樹脂ペースト組成物を、Ni/Auメッキ付き銅フレーム、Agリングめっき付き銅リードフレーム及びAgスポットめっき付き銅リードフレーム上に約0.5mg塗布し、この上に2mm×2mmのSiチップ(厚さ約0.4mm)を圧着し、さらにオーブンで180℃まで30分で昇温し180℃で1時間加熱し樹脂ペースト組成物を硬化させた。これを、自動接着力試験装置(BT4000、Dage社製)を用い、260℃/20秒保持時の剪断接着強度(MPa)を測定した。なお、各実施例及び比較例について、10個の試験片について剪断接着強度の測定を行い、その平均値を各実施例及び比較例の剪断接着強度(MPa)とした。
(2) Measurement of shear adhesive strength About 0.5 mg of the resin paste composition of each example and comparative example was placed on a Ni / Au plated copper frame, an Ag ring plated copper lead frame, and an Ag spot plated copper lead frame. It is coated, and a 2 mm x 2 mm Si chip (thickness: about 0.4 mm) is pressure-bonded thereon. Further, the temperature is raised to 180 ° C in 30 minutes in an oven and heated at 180 ° C for 1 hour to cure the resin paste composition. It was. This was measured for shear adhesive strength (MPa) when held at 260 ° C. for 20 seconds using an automatic adhesive strength tester (BT4000, manufactured by Dage). In addition, about each Example and a comparative example, the shear bond strength was measured about ten test pieces, and the average value was made into the shear bond strength (MPa) of each Example and a comparative example.
(3)体積抵抗率の測定
 図1に示す手順で、樹脂ペースト組成物の硬化物の体積抵抗率を測定した。図1は、体積抵抗率の測定方法を説明する平面図である。スライドグラス1(東京硝子器機(株)製、寸法=76×26mm、厚さ=0.9~1.2mm)(図1(a))の表面に、3枚の紙テープ2(日東電工CSシステム(株)製、No.7210F、寸法幅=18mm、厚さ=0.10mm)を互いに間隔をおいて平行に貼り付けることにより、これら3枚の紙テープ2同士の間にスライドグラス1表面の露出部1a(幅2mm)を2条形成した(図1(b))。これら露出部1aに樹脂ペースト組成物3を置き(図1(c))、他のスライドグラス等で平らに伸ばした(図1(d))。次いで、紙テープ2を剥がし、オーブンで200℃で1時間加熱して樹脂ペースト組成部を硬化させることにより、スライドグラス1の表面に互いに平行な2条の線状の硬化物4を得た(図1(e))。デジタルマルチメーター(TR6846、ADVANTEST社製)を用い、温度23℃にて、これら硬化物4の体積抵抗率(Ω・cm)を測定した。
(3) Measurement of volume resistivity The volume resistivity of the cured product of the resin paste composition was measured by the procedure shown in FIG. FIG. 1 is a plan view illustrating a method for measuring volume resistivity. Three paper tapes 2 (Nitto Denko CS System) on the surface of a slide glass 1 (manufactured by Tokyo Glass Equipment Co., Ltd., dimensions = 76 × 26 mm, thickness = 0.9 to 1.2 mm) (FIG. 1A) No.7210F, manufactured by Co., Ltd., dimension width = 18 mm, thickness = 0.10 mm) is attached in parallel with an interval between each other, thereby exposing the surface of the slide glass 1 between these three paper tapes 2. Two sections 1a (width 2 mm) were formed (FIG. 1B). The resin paste composition 3 was placed on these exposed portions 1a (FIG. 1 (c)) and stretched flat with another slide glass or the like (FIG. 1 (d)). Next, the paper tape 2 was peeled off, and heated in an oven at 200 ° C. for 1 hour to cure the resin paste composition, thereby obtaining two linear cured products 4 parallel to the surface of the slide glass 1 (see FIG. 1 (e)). The volume resistivity (Ω · cm) of these cured products 4 was measured at a temperature of 23 ° C. using a digital multimeter (TR6846, manufactured by ADVANTEST).
(4)熱伝導率の測定
 上記(3)と同じようにして得られた硬化物における比熱、比重、及び熱拡散率を下記の条件で測定した。熱伝導率は比熱×比重×熱拡散率で求めた。
a)比熱の測定
 比熱測定装置:示差走差熱量計(Parking-Elmer社製DSC)を用いて、温度:25℃の条件で比熱を測定した。
b)比重の測定
 比重測定装置:密度計(アルファーミラージュ社製密度計)を用いて、室温(アルキメデス法)で比重を測定した。
c)熱拡散率の測定
 熱拡散率:キセノンフラッシュアナライザー(LFA447、NETZSCH社製)を用いて温度:25℃の条件で熱拡散率を測定した。
(4) Measurement of thermal conductivity Specific heat, specific gravity, and thermal diffusivity of the cured product obtained in the same manner as (3) above were measured under the following conditions. The thermal conductivity was determined by specific heat × specific gravity × thermal diffusivity.
a) Measurement of specific heat Specific heat was measured at a temperature of 25 ° C. using a specific heat measuring device: a differential scanning calorimeter (DSC manufactured by Parking-Elmer).
b) Measurement of specific gravity Specific gravity was measured at room temperature (Archimedes method) using a density meter (a density meter manufactured by Alpha Mirage).
c) Measurement of thermal diffusivity Thermal diffusivity: Thermal diffusivity was measured under the condition of temperature: 25 ° C. using a xenon flash analyzer (LFA447, manufactured by NETZSCH).
(5)反りの測定
 各実施例及び比較例の樹脂ペースト組成物を、Agリングめっき付き銅リードフレーム上に約0.5mg塗布し、この上に5mm×5mmのSiチップ(厚さ約0.4mm)を圧着し、さらにオーブンで180℃まで30分で昇温し180℃で1時間加熱し樹脂ペースト組成物を硬化させた。これを、比接触膜厚計(KS-1100、(株)キーエンス製)を用い、走査距離6.5mmでチップ表面の反りを測定した。なお、各実施例及び比較例について、10個の試験片について反りの測定を行い、その平均値を各実施例及び比較例の反りとした。
(5) Measurement of warpage About 0.5 mg of the resin paste composition of each example and comparative example was applied on a copper lead frame with Ag ring plating, and a 5 mm × 5 mm Si chip (thickness of about 0.00 mm) was formed thereon. 4 mm), and further heated to 180 ° C. in 30 minutes in an oven and heated at 180 ° C. for 1 hour to cure the resin paste composition. This was measured for warpage of the chip surface at a scanning distance of 6.5 mm using a specific contact film thickness meter (KS-1100, manufactured by Keyence Corporation). In addition, about each Example and the comparative example, the curvature of 10 test pieces was measured and the average value was made into the curvature of each Example and the comparative example.
(6)ブリードアウトの測定
 各実施例及び比較例の樹脂ペースト組成物を、Agスポットめっき付き銅リードフレーム上に約0.5mg塗布し、室温で保管し10分後にブリードアウトの有無を目視で確認した。
(6) Measurement of bleed out About 0.5 mg of the resin paste composition of each example and comparative example was applied on a copper lead frame with Ag spot plating, stored at room temperature, and visually checked for bleed out after 10 minutes. confirmed.
 また、実施例及び比較例の樹脂ペースト組成物に使用される銀粉を以下の評価方法で評価した。
(7)タップ密度の測定
 銀粉のタップ密度はJIS Z 2512(2006年制定)に準じて、タップ密度測定器により測定を行い得られた値である。具体的には、銀粉100gを測り、ロートで100mlメスシリンダーに静かに落下させた。メスシリンダーをタップ密度測定器に乗せて、20mmの落下距離及び60回/分の速さで600回落下し、圧縮した銀粉の容積を測定した。サンプル量を圧縮した銀粉の容積で割って、タップ密度を算出した。
Moreover, the silver powder used for the resin paste composition of an Example and a comparative example was evaluated with the following evaluation methods.
(7) Measurement of tap density The tap density of silver powder is a value obtained by measuring with a tap density measuring device in accordance with JIS Z 2512 (established in 2006). Specifically, 100 g of silver powder was measured and gently dropped into a 100 ml graduated cylinder with a funnel. The measuring cylinder was placed on a tap density measuring device, dropped 600 times at a falling distance of 20 mm and a speed of 60 times / minute, and the volume of the compressed silver powder was measured. The tap density was calculated by dividing the sample amount by the volume of the compressed silver powder.
(8)平均粒子径の測定
 銀粉をミクロスパテラで1~2杯ビーカーにとり、イソプロピルアルコールを約60ml入れて超音波ホモジナイザー((株)日本精機製作所製、型番:US-150)で1分間分散する。これをレーザー回折式粒度分析計(マイクロトラック、X100)で、測定時間30秒で2回連続測定して50%累積径の平均値を平均粒径とした。
(8) Measurement of average particle diameter Take 1 or 2 cups of silver powder with a microspatella, add about 60 ml of isopropyl alcohol, and disperse with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd., model number: US-150) for 1 minute. . This was continuously measured twice with a laser diffraction particle size analyzer (Microtrack, X100) at a measurement time of 30 seconds, and the average value of 50% cumulative diameter was defined as the average particle diameter.
(実施例1~14及び比較例1~5の樹脂ペースト組成物の作製)
 第1表~第3表に示す配合割合で、各材料を混合し、プラネタリーミキサー(プライミクス(株)製、型番:T.K. HIVIS MIX 2P-06)を用いて混練した後、666.61Pa(5トル(Torr))以下で10分間脱泡処理を行い、樹脂ペースト組成物を得た。得られた樹脂ペースト組成物の特性(粘度及び粘度安定性、塗布作業性、剪断接着強度、体積抵抗率等)を上記に示す方法で調べた。その結果を第1表~第3表に示す。
(Production of resin paste compositions of Examples 1 to 14 and Comparative Examples 1 to 5)
Each material was mixed at the blending ratio shown in Tables 1 to 3 and kneaded using a planetary mixer (manufactured by PRIMIX Corporation, model number: TK HIVIS MIX 2P-06), and then 666. A defoaming treatment was performed at 61 Pa (5 Torr) or less for 10 minutes to obtain a resin paste composition. The properties (viscosity and viscosity stability, coating workability, shear adhesive strength, volume resistivity, etc.) of the obtained resin paste composition were examined by the method described above. The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 第1表~第3表における略号は次の通りである。
(1)(A)(メタ)アクリル化合物((メタ)アクリル酸エステル化合物)
SR-349(Sartomer社製、エトキシ化ビスフェノールAジアクリレートの製品名)
FA-512AS(日立化成(株)製、ジシクロペンテニルオキシエチルアクリレートの製品名)
FA-512M(日立化成(株)製、ジシクロペンテニルオキシエチルメタクリレートの製品名)
FA-513AS(日立化成(株)製、ジシクロペンタニルアクリレートの製名)
FA-513M(日立化成(株)製、ジシクロペンタニルメタクリレートの製品名)
(2)(B)バインダー樹脂
N-665―EXP(DIC(株)製クレゾールノボラック型エポキシ樹脂の製品名、エポキシ当量:198~208)
(3)(C)アミン化合物
Dicy(三菱化学(株)製、ジシアンジアミド)
(4)(D)重合開始剤
トリゴノックス22-70E(化薬アクゾ(株)製、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、10時間半減期温度:91℃)
(5)(E)可とう化剤
エポリードPB-4700((株)ダイセル製、エポキシ化ポリブタジエンの商品名、エポキシ当量:152.4~177.8、数平均分子量=3500)
(6)(F)銀粉
TC-20E-L((株)徳力本店製、形状:フレーク状、平均粒径:3.5~5.5μm、タップ密度:3.0~4.0g/cm3、比表面積:1.4~2.1m2/g、表面被覆材:ステアリン酸)
TCG-11N((株)徳力本店製、形状:フレーク状、平均粒径:4.5~6.5μm、タップ密度:3.9~4.5g/cm3、比表面積:0.9~1.2m2/g、表面被覆材:ステアリン酸)
TCG-1((株)徳力本店製、形状:フレーク状、平均粒径:4.0~5.0μm、タップ密度:2.7~3.3g/cm3、表面被覆材:ステアリン酸)
TC-204B((株)徳力本店製、形状:フレーク状、平均粒径:2.0~4.0μm、タップ密度:2.0~3.0g/cm3、表面被覆材:ステアリン酸)
TC-505CS((株)徳力本店製、形状:フレーク状、平均粒径:1.0~3.0μm、タップ密度:5.0~6.0g/cm3、表面被覆材:ステアリン酸)
TC-106((株)徳力本店製、形状:フレーク状、平均粒径:6.0~8.0μm、タップ密度:1.6~2.2g/cm3、比表面積:0.8~2.4m2/g、表面被覆材:オレイン酸)
(7)(G)アルミニウム粉
12-0086(東洋アルミニウム(株)製のアルミニウム粉の製品名、形状:粒状、平均粒径:3.5~4.2μm)
(8)(H)カップリング剤
KBM-403(信越化学工業(株)製、γ-グリシドキシプロピルトリメトキシシラン)
(9)(I)オレイン酸
オレイン酸(和光純薬工業(株)製)
(10)(J)ステアリン酸
粉末ステアリン酸 300(新日本理化(株)製)
(11)(K)ラウリン酸
ラウリン酸(和光純薬工業(株)製)
(12)(L)分散剤
エスリーム AD-374M(ポリアルキレングリコール誘導体)(日油(株)製)
Abbreviations in Tables 1 to 3 are as follows.
(1) (A) (Meth) acrylic compound ((meth) acrylic ester compound)
SR-349 (product name of ethoxylated bisphenol A diacrylate, manufactured by Sartomer)
FA-512AS (product name of dicyclopentenyloxyethyl acrylate, manufactured by Hitachi Chemical Co., Ltd.)
FA-512M (product name of dicyclopentenyloxyethyl methacrylate, manufactured by Hitachi Chemical Co., Ltd.)
FA-513AS (manufactured by Hitachi Chemical Co., Ltd., trade name of dicyclopentanyl acrylate)
FA-513M (product name of dicyclopentanyl methacrylate, manufactured by Hitachi Chemical Co., Ltd.)
(2) (B) Binder resin N-665-EXP (product name of cresol novolac type epoxy resin manufactured by DIC Corporation, epoxy equivalent: 198-208)
(3) (C) Amine compound Dicy (manufactured by Mitsubishi Chemical Corporation, dicyandiamide)
(4) (D) Polymerization initiator Trigonox 22-70E (manufactured by Kayaku Akzo Co., Ltd., 1,1-bis (t-butylperoxy) cyclohexane, 10 hour half-life temperature: 91 ° C.)
(5) (E) Flexible agent Epolide PB-4700 (manufactured by Daicel Corporation, trade name of epoxidized polybutadiene, epoxy equivalent: 152.4 to 177.8, number average molecular weight = 3500)
(6) (F) Silver powder TC-20E-L (manufactured by Tokuru Honten Co., Ltd., shape: flake, average particle size: 3.5 to 5.5 μm, tap density: 3.0 to 4.0 g / cm 3 Specific surface area: 1.4 to 2.1 m 2 / g, surface coating material: stearic acid)
TCG-11N (manufactured by Tokuru Honten Co., Ltd., shape: flake shape, average particle size: 4.5 to 6.5 μm, tap density: 3.9 to 4.5 g / cm 3 , specific surface area: 0.9 to 1 .2m 2 / g, surface coating material: stearic acid)
TCG-1 (manufactured by Tokuroku Honten Co., Ltd., shape: flake shape, average particle size: 4.0 to 5.0 μm, tap density: 2.7 to 3.3 g / cm 3 , surface coating material: stearic acid)
TC-204B (manufactured by Tokuru Honten Co., Ltd., shape: flake shape, average particle diameter: 2.0 to 4.0 μm, tap density: 2.0 to 3.0 g / cm 3 , surface coating material: stearic acid)
TC-505CS (manufactured by Tokuru Honsha Co., Ltd., shape: flake shape, average particle size: 1.0 to 3.0 μm, tap density: 5.0 to 6.0 g / cm 3 , surface coating material: stearic acid)
TC-106 (manufactured by Tokuru Honten Co., Ltd., shape: flake shape, average particle size: 6.0 to 8.0 μm, tap density: 1.6 to 2.2 g / cm 3 , specific surface area: 0.8 to 2 .4m 2 / g, surface coating material: oleic acid)
(7) (G) Aluminum powder 12-0086 (product name of aluminum powder manufactured by Toyo Aluminum Co., Ltd., shape: granular, average particle diameter: 3.5 to 4.2 μm)
(8) (H) Coupling agent KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd., γ-glycidoxypropyltrimethoxysilane)
(9) (I) oleic acid oleic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
(10) (J) Stearic acid powder stearic acid 300 (manufactured by Shin Nippon Rika Co., Ltd.)
(11) (K) Lauric acid Lauric acid (manufactured by Wako Pure Chemical Industries, Ltd.)
(12) (L) Dispersant Esliem AD-374M (polyalkylene glycol derivative) (manufactured by NOF Corporation)
 第1表及び第2表に示されるように、本発明の樹脂ペースト組成物は、粘度安定性が良好で、接着強度、電気伝導性、熱伝導性に優れていることが確認された。このことから、本発明の樹脂ペースト組成物によれば、希少価値が高い銀を大量に使うことなく、粘度安定性、接着強度及び体積抵抗率等の特性が良好である樹脂ペースト組成物を得られることが確認できた。また、本発明の樹脂ペースト組成物は、分散剤又は脂肪酸を含有することによって、ブリードアウトを抑制できる。 As shown in Tables 1 and 2, it was confirmed that the resin paste composition of the present invention had good viscosity stability and excellent adhesive strength, electrical conductivity, and thermal conductivity. Thus, according to the resin paste composition of the present invention, a resin paste composition having good properties such as viscosity stability, adhesive strength and volume resistivity can be obtained without using a large amount of silver having a high rare value. It was confirmed that Moreover, the resin paste composition of this invention can suppress a bleed-out by containing a dispersing agent or a fatty acid.
 本発明によれば、半導体チップ等の導体素子とリードフレーム等の支持部材との接着に好適に用いられ、希少価値が高く高価な材料である銀の使用量を低減しつつ、電気伝導性、熱伝導性及び接着性に優れ、かつ樹脂とフィラーの分離を抑制する安価な樹脂ペースト組成物、及び該樹脂ペースト組成物を用いた半導体装置が得られる。 According to the present invention, it is suitably used for adhesion between a conductor element such as a semiconductor chip and a support member such as a lead frame, while reducing the amount of silver used, which is a rare and expensive material, electric conductivity, An inexpensive resin paste composition that is excellent in thermal conductivity and adhesiveness and suppresses separation between the resin and the filler, and a semiconductor device using the resin paste composition are obtained.
1 スライドグラス
1a 露出部
2 紙テープ
3 樹脂ペースト組成物
4 硬化物
DESCRIPTION OF SYMBOLS 1 Slide glass 1a Exposed part 2 Paper tape 3 Resin paste composition 4 Hardened | cured material

Claims (12)

  1.  (メタ)アクリル化合物(A)、バインダー樹脂(B)、アミン化合物(C)、重合開始剤(D)、可とう化剤(E)、銀粉(F)及びアルミニウム粉(G)を含有する樹脂ペースト組成物であって、
     前記銀粉(F)は、ステアリン酸でコーティングされ、かつタップ密度が4.0g/cm3以下である銀粉(F-1)を含み、
     前記成分(A)~(G)の合計質量に対して、前記銀粉(F)の含有量は42質量%以下であり、前記銀粉(F-1)の含有量は10質量%以上であり、
     前記アルミニウム粉(G)の含有量/前記銀粉(F)の含有量の値は、質量比で0.3~2.3である樹脂ペースト組成物。
    Resin containing (meth) acrylic compound (A), binder resin (B), amine compound (C), polymerization initiator (D), flexible agent (E), silver powder (F) and aluminum powder (G) A paste composition comprising:
    The silver powder (F) includes silver powder (F-1) coated with stearic acid and having a tap density of 4.0 g / cm 3 or less.
    The content of the silver powder (F) is 42% by mass or less with respect to the total mass of the components (A) to (G), and the content of the silver powder (F-1) is 10% by mass or more,
    The resin paste composition having a mass ratio of the content of the aluminum powder (G) / the content of the silver powder (F) is 0.3 to 2.3.
  2.  前記銀粉(F)は平均粒子径1~15μmのフレーク状である請求項1に記載の樹脂ペースト組成物。 The resin paste composition according to claim 1, wherein the silver powder (F) is in the form of flakes having an average particle diameter of 1 to 15 µm.
  3.  前記銀粉(F―1)は平均粒子径1~15μmのフレーク状である請求項1に記載の樹脂ペースト組成物。 The resin paste composition according to claim 1, wherein the silver powder (F-1) is in the form of flakes having an average particle diameter of 1 to 15 µm.
  4.  前記アルミニウム粉(G)は平均粒子径1~6μmの粒状である請求項1~3のいずれか1項に記載の樹脂ペースト組成物。 The resin paste composition according to any one of claims 1 to 3, wherein the aluminum powder (G) is in the form of granules having an average particle diameter of 1 to 6 µm.
  5.  前記(メタ)アクリル化合物(A)は(メタ)アクリル酸エステル化合物である請求項1~4のいずれか1項に記載の樹脂ペースト組成物。 The resin paste composition according to any one of claims 1 to 4, wherein the (meth) acrylic compound (A) is a (meth) acrylic acid ester compound.
  6.  前記バインダー樹脂(B)はエポキシ樹脂である請求項1~5のいずれか1項に記載の樹脂ペースト組成物。 The resin paste composition according to any one of claims 1 to 5, wherein the binder resin (B) is an epoxy resin.
  7.  前記アミン化合物(C)はポリアミン化合物及びイミダゾール化合物から選ばれる少なくとも1種である請求項1~6のいずれか1項に記載の樹脂ペースト組成物。 The resin paste composition according to any one of claims 1 to 6, wherein the amine compound (C) is at least one selected from a polyamine compound and an imidazole compound.
  8.  前記可とう化剤(E)はゴム系化合物である請求項1~7のいずれか1項に記載の樹脂ペースト組成物。 The resin paste composition according to any one of claims 1 to 7, wherein the flexible agent (E) is a rubber compound.
  9.  カップリング剤(H)をさらに含む請求項1~8のいずれか1項に記載の樹脂ペースト組成物。 The resin paste composition according to any one of claims 1 to 8, further comprising a coupling agent (H).
  10.  オレイン酸(I)、ステアリン酸(J)、ラウリン酸(K)及び分散剤(L)からなる群から選択される少なくとも1種をさらに含む請求項1~9のいずれか1項に記載の樹脂ペースト組成物。 The resin according to any one of claims 1 to 9, further comprising at least one selected from the group consisting of oleic acid (I), stearic acid (J), lauric acid (K), and dispersant (L). Paste composition.
  11.  半導体素子及び支持部材を備える半導体装置であって、
     請求項1~10のいずれか1項に記載の樹脂ペースト組成物の硬化物により、前記半導体素子が前記支持部材と接合される半導体装置。
    A semiconductor device comprising a semiconductor element and a support member,
    A semiconductor device in which the semiconductor element is bonded to the support member by a cured product of the resin paste composition according to any one of claims 1 to 10.
  12.  前記半導体素子と前記支持部材の少なくとも一部とが封止剤により封止される請求項11に記載の半導体装置。 The semiconductor device according to claim 11, wherein the semiconductor element and at least a part of the support member are sealed with a sealant.
PCT/JP2014/077712 2013-12-16 2014-10-17 Resin paste composition and semiconductor device WO2015093136A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480067971.6A CN105814093B (en) 2013-12-16 2014-10-17 Resin paste composition and semiconductor device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-259597 2013-12-16
JP2013259597 2013-12-16
JP2013262069 2013-12-19
JP2013-262069 2013-12-19
JP2014207735A JP6405867B2 (en) 2013-12-16 2014-10-09 Resin paste composition and semiconductor device
JP2014-207735 2014-10-09

Publications (1)

Publication Number Publication Date
WO2015093136A1 true WO2015093136A1 (en) 2015-06-25

Family

ID=53402493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077712 WO2015093136A1 (en) 2013-12-16 2014-10-17 Resin paste composition and semiconductor device

Country Status (4)

Country Link
JP (1) JP6405867B2 (en)
CN (1) CN105814093B (en)
TW (1) TWI640567B (en)
WO (1) WO2015093136A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600307A (en) * 2016-01-18 2016-05-25 孙欣 Coke screening and transport device
CN105694126A (en) * 2016-01-18 2016-06-22 孙欣 Conveying belt
JPWO2018047598A1 (en) * 2016-09-06 2019-06-24 株式会社スリーボンド Thermosetting conductive adhesive
JPWO2018047597A1 (en) * 2016-09-06 2019-07-11 株式会社スリーボンド Thermosetting conductive adhesive
JP2020057699A (en) * 2018-10-02 2020-04-09 日立化成株式会社 Semiconductor component and manufacturing method thereof
JPWO2020070806A1 (en) * 2018-10-02 2021-09-02 昭和電工マテリアルズ株式会社 Resin compositions, cured products and semiconductor parts
CN113924629A (en) * 2019-06-12 2022-01-11 京都一来电子化学股份有限公司 Electroconductive paste composition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472538B2 (en) 2015-11-06 2019-11-12 Ppg Industries Ohio, Inc. Flexible container coating compositions
KR102526024B1 (en) * 2015-11-26 2023-04-25 가부시끼가이샤 쓰리본드 Thermosetting composition and conductive adhesive using the same
CN109641999A (en) * 2016-09-02 2019-04-16 三键有限公司 (methyl) acrylic acid resin composition and the electrically conductive adhesive for using it
MY198033A (en) * 2017-03-31 2023-07-27 Resonac Corp Epoxy resin composition, curable resin composition and electronic component device
JP6381738B1 (en) * 2017-05-31 2018-08-29 ニホンハンダ株式会社 Paste-like metal particle composition, bonding method, and electronic device manufacturing method
CN108087321B (en) 2017-12-21 2023-11-21 珠海格力节能环保制冷技术研究中心有限公司 Magnetic suspension bearing, magnetic suspension rotor supporting assembly and compressor
CN113930167B (en) * 2018-03-01 2023-06-23 住友电木株式会社 Paste adhesive composition and semiconductor device
WO2020121379A1 (en) * 2018-12-10 2020-06-18 日立化成株式会社 Adhesive for semiconductor, cured product, and semiconductor component
WO2020262115A1 (en) * 2019-06-27 2020-12-30 Dowaエレクトロニクス株式会社 Silver powder and method for producing same
CN114341288B (en) * 2019-09-05 2023-07-28 住友电木株式会社 Thermally conductive composition and semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179769A (en) * 2000-12-12 2002-06-26 Hitachi Chem Co Ltd Resin paste composition and semiconductor device using the same
JP2005505897A (en) * 2001-10-12 2005-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aqueous developable photoimageable thick film composition
JP2005126593A (en) * 2003-10-24 2005-05-19 Hitachi Chem Co Ltd Binder resin composition and electroconductive paste
JP2005197118A (en) * 2004-01-08 2005-07-21 Sumitomo Bakelite Co Ltd Metal containing paste and semiconductor device
JP2011095244A (en) * 2009-04-16 2011-05-12 Nippon Handa Kk Evaluation method of heat sinterability of organic matter coated metal particle, method for manufacturing heat-sinterable metal paste, and method for manufacturing metal member assembly
WO2011158753A1 (en) * 2010-06-17 2011-12-22 日立化成工業株式会社 Resin paste composition
WO2012124527A1 (en) * 2011-03-14 2012-09-20 日立化成工業株式会社 Resin paste composition for bonding semiconductor element, and semiconductor device
JP2013067673A (en) * 2011-09-20 2013-04-18 Hitachi Chemical Co Ltd Resin paste composition and semiconductor device
JP2013149527A (en) * 2012-01-20 2013-08-01 Toyo Aluminium Kk Flake-like conductive filler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121270A (en) * 1978-03-14 1979-09-20 Fukuda Metal Foil Powder Production of finely divided silver powder
US4732702A (en) * 1986-02-13 1988-03-22 Hitachi Chemical Company, Ltd. Electroconductive resin paste
JP2007314852A (en) * 2006-05-29 2007-12-06 Fukuda Metal Foil & Powder Co Ltd Silver powder and production method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179769A (en) * 2000-12-12 2002-06-26 Hitachi Chem Co Ltd Resin paste composition and semiconductor device using the same
JP2005505897A (en) * 2001-10-12 2005-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aqueous developable photoimageable thick film composition
JP2005126593A (en) * 2003-10-24 2005-05-19 Hitachi Chem Co Ltd Binder resin composition and electroconductive paste
JP2005197118A (en) * 2004-01-08 2005-07-21 Sumitomo Bakelite Co Ltd Metal containing paste and semiconductor device
JP2011095244A (en) * 2009-04-16 2011-05-12 Nippon Handa Kk Evaluation method of heat sinterability of organic matter coated metal particle, method for manufacturing heat-sinterable metal paste, and method for manufacturing metal member assembly
WO2011158753A1 (en) * 2010-06-17 2011-12-22 日立化成工業株式会社 Resin paste composition
WO2012124527A1 (en) * 2011-03-14 2012-09-20 日立化成工業株式会社 Resin paste composition for bonding semiconductor element, and semiconductor device
JP2013067673A (en) * 2011-09-20 2013-04-18 Hitachi Chemical Co Ltd Resin paste composition and semiconductor device
JP2013149527A (en) * 2012-01-20 2013-08-01 Toyo Aluminium Kk Flake-like conductive filler

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600307A (en) * 2016-01-18 2016-05-25 孙欣 Coke screening and transport device
CN105694126A (en) * 2016-01-18 2016-06-22 孙欣 Conveying belt
CN107298277A (en) * 2016-01-18 2017-10-27 孙欣 A kind of travelling belt
CN105600307B (en) * 2016-01-18 2017-11-03 邳州高新区新能源技术研究院有限公司 Coke screens conveying arrangement
JP6989785B2 (en) 2016-09-06 2022-01-12 株式会社スリーボンド Thermosetting conductive adhesive
JPWO2018047597A1 (en) * 2016-09-06 2019-07-11 株式会社スリーボンド Thermosetting conductive adhesive
JPWO2018047598A1 (en) * 2016-09-06 2019-06-24 株式会社スリーボンド Thermosetting conductive adhesive
JP7071644B2 (en) 2016-09-06 2022-05-19 株式会社スリーボンド Thermosetting conductive adhesive
US11359116B2 (en) 2016-09-06 2022-06-14 Threebond Co., Ltd. Thermocurable electroconductive adhesive
JP2020057699A (en) * 2018-10-02 2020-04-09 日立化成株式会社 Semiconductor component and manufacturing method thereof
JPWO2020070806A1 (en) * 2018-10-02 2021-09-02 昭和電工マテリアルズ株式会社 Resin compositions, cured products and semiconductor parts
JP7318657B2 (en) 2018-10-02 2023-08-01 株式会社レゾナック Resin compositions, cured products and semiconductor parts
CN113924629A (en) * 2019-06-12 2022-01-11 京都一来电子化学股份有限公司 Electroconductive paste composition
EP3985074A4 (en) * 2019-06-12 2023-05-24 Kyoto Elex Co., Ltd. Conductive paste composition
CN113924629B (en) * 2019-06-12 2024-04-09 京都一来电子化学股份有限公司 Conductive paste composition

Also Published As

Publication number Publication date
TWI640567B (en) 2018-11-11
JP6405867B2 (en) 2018-10-17
JP2015135805A (en) 2015-07-27
TW201527389A (en) 2015-07-16
CN105814093A (en) 2016-07-27
CN105814093B (en) 2018-07-03

Similar Documents

Publication Publication Date Title
JP6405867B2 (en) Resin paste composition and semiconductor device
JP5664673B2 (en) Resin paste composition
WO2011158753A1 (en) Resin paste composition
JP4752109B2 (en) Resin paste composition and semiconductor device using the same
JP6319530B1 (en) Die attach paste and semiconductor device
JP2012236873A (en) Resin paste composition and semiconductor device
JP5625248B2 (en) Resin paste composition and semiconductor device
JP2009102603A (en) Adhesive composition and semiconductor device
JP2013067673A (en) Resin paste composition and semiconductor device
JP2010225312A (en) Resin paste composition and semiconductor device
JP2012072305A (en) Resin paste composition
JP2009102602A (en) Adhesive composition and semiconductor device
JP2009120826A (en) Adhesive composition and semiconductor device
WO2012124527A1 (en) Resin paste composition for bonding semiconductor element, and semiconductor device
JP2012188465A (en) Resin paste composition and semiconductor apparatus
JP2010222452A (en) Resin paste composition, and semiconductor device using the same
JP2012188622A (en) Resin paste composition for bonding semiconductor device, and semiconductor device
JP2004168933A (en) Resin paste composition and semiconductor device using the same
JP2002012603A (en) Electroconductive resin paste composition and semiconductor device using the same
WO2021044631A1 (en) Resin paste composition, semiconductor device, and semiconductor device manufacturing method
JP4600429B2 (en) Resin paste composition and semiconductor device using the same
JP7279802B2 (en) PASTE RESIN COMPOSITION FOR HIGH THERMAL CONDUCTIVE MATERIAL, HIGH THERMAL CONDUCTIVE MATERIAL, AND SEMICONDUCTOR DEVICE
JP7318657B2 (en) Resin compositions, cured products and semiconductor parts
JP2002012602A (en) Resin paste composition and semiconductor device using the same
JP2020057699A (en) Semiconductor component and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872662

Country of ref document: EP

Kind code of ref document: A1