JP2007314852A - Silver powder and production method therefor - Google Patents

Silver powder and production method therefor Download PDF

Info

Publication number
JP2007314852A
JP2007314852A JP2006147614A JP2006147614A JP2007314852A JP 2007314852 A JP2007314852 A JP 2007314852A JP 2006147614 A JP2006147614 A JP 2006147614A JP 2006147614 A JP2006147614 A JP 2006147614A JP 2007314852 A JP2007314852 A JP 2007314852A
Authority
JP
Japan
Prior art keywords
silver powder
spherical
tap density
density value
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006147614A
Other languages
Japanese (ja)
Inventor
Kazumasa Morikawa
和政 森川
Masayoshi Yoshitake
正義 吉武
Nobuyuki Ito
信行 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2006147614A priority Critical patent/JP2007314852A/en
Publication of JP2007314852A publication Critical patent/JP2007314852A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silver powder which is used for a through-hole paste, for a baking paste and as a filler for radiating heat, and can be filled in a high concentration without degrading printing characteristics. <P>SOLUTION: The silver powder is uniformly coated with a fatty acid of 0.01 to 0.3 wt.%, contains both of spherical and discal particles with an average particle size of 3 to 10 μm, and has a tap density of 6.0 g/cm<SP>3</SP>or more. The preferred production method comprises the steps of: adding the fatty acid of 0.01 to 0.3 wt.% to spherical silver powders with an average particle size of 2.5 to 8 μm; and physically forming the silver powders into a discal shape by using a mill and a spherical medium with a size of 1/16 to 1/4 inch, while coating the silver powders with the fatty acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子部品の実装分野における導電ペースト用銀粉末、放熱用銀粉末に関するものである。詳しくは銀粉末をより高充填したスルホール、焼成ペースト、高放熱用充填材として最適性能を示す、タップ密度値が大きい銀粉末及びその製造方法を提供するものである。   The present invention relates to a silver powder for conductive paste and a silver powder for heat dissipation in the field of mounting electronic components. Specifically, the present invention provides a silver powder having a large tap density value and a method for producing the same, which shows optimum performance as a through hole, a fired paste, and a high heat dissipation filler filled with silver powder at a higher level.

従来の銀粉末はアトマイズ法、電解法、湿式還元法などの方法で得られた球状、樹枝状、粒状銀粉末である。塗料あるいはペースト用としては塗膜の平滑性、印刷適性が良い、沈降が遅いなどの理由から、銀粉末を機械的に加工した片状銀粉末が使用されている。   Conventional silver powders are spherical, dendritic and granular silver powders obtained by methods such as atomization, electrolysis and wet reduction. For paints or pastes, flaky silver powder obtained by mechanically processing silver powder is used for reasons such as smoothness of the coating film, good printability, and slow sedimentation.

しかし、スルホールペースト用、焼成ペースト用銀粉末として、より安定した導電性能あるいは電極材としてのはんだ濡れ性を向上するためには、ペースト成分中の銀粉末の含有量を上げる必要がある。   However, in order to improve more stable conductive performance or solder wettability as an electrode material as silver powder for through-hole paste and fired paste, it is necessary to increase the content of silver powder in the paste component.

しかし従来の扁平状銀粉末ではペースト成分中の銀粉末含有量を一定量以上増加するとペースト自体の流動性が悪くなり、印刷できないなどの欠点が生じた。球状銀粉末は高充填可能であるが、印刷適性が悪く、印刷できなくなり、塗膜外観も非常に悪い。更に、近年電子部品から発生する熱を逃がす高放熱材開発に、高充填銀粉末の要求がある。   However, with conventional flat silver powder, when the silver powder content in the paste component is increased by a certain amount or more, the fluidity of the paste itself deteriorates, resulting in defects such as inability to print. Spherical silver powder can be highly filled, but has poor printability, cannot be printed, and has a very poor coating appearance. Furthermore, there is a demand for highly filled silver powder in the development of a high heat dissipation material that releases heat generated from electronic components in recent years.

アトマイズ法による球状銀粉末はタップ密度値の大きい粉末を製造するのに適している。平均粒径2.5μmの球状銀粉末でタップ密度値4.8g/cm3、平均粒径5μmでタップ密度値5.3g/cm3で、タップ密度値5.5g/cm3以上の銀粉末は無い。 The spherical silver powder by the atomization method is suitable for producing a powder having a large tap density value. Average tap density value in particle size 2.5μm spherical silver powder 4.8 g / cm 3, with a tap density value 5.3 g / cm 3 with an average particle size of 5 [mu] m, a tap density value 5.5 g / cm 3 more silver powder There is no.

電解法や湿式還元法の銀粉末はタップ密度値が約2g/cm3と小さい。片状銀粉末ではタップ密度値は約4g/cm3であるが、高充填タイプでもタップ密度値5.6g/cm3が最大である。ポリマーに銀粉末を高充填しても印刷特性を悪くしない為には、タップ密度値6.0g/cm3以上の銀粉末が要求されているが、まだ得られていない。 Silver powder of the electrolytic method or wet reduction method has a small tap density value of about 2 g / cm 3 . The flake silver powder has a tap density value of about 4 g / cm 3 , but the tap density value of 5.6 g / cm 3 is the highest even in the high filling type. A silver powder having a tap density value of 6.0 g / cm 3 or more is required in order not to deteriorate the printing characteristics even if the polymer is highly filled with silver powder, but it has not been obtained yet.

しかし、導電性ペースト用などの導電材料として見掛密度0.01〜0.5g/cm3と非常に嵩高い銀粉を製造する方法(例えば特許文献1参照)が提案されているが、この嵩高い銀粉は高充填が要求されるスルホール、焼成ペースト、放熱用としては、使用するのが難しい。   However, a method for producing a silver powder having an apparent density of 0.01 to 0.5 g / cm 3 and a very bulky conductive material for a conductive paste or the like has been proposed (for example, see Patent Document 1). Silver powder is difficult to use as a through hole, a fired paste, and a heat dissipation that require high filling.

特許第3168023号Japanese Patent No. 3168023

本発明は、上記従来技術の問題点を、銀粉末の表面処理、粒度、粒形を検討した結果、タップ密度値が大きい銀粉末を提供することによって印刷適性上の問題を解決し、高充填ペーストを提供することを課題とする。   As a result of examining the surface treatment, particle size, and particle shape of silver powder, the present invention solves the problem of printability by providing silver powder with a large tap density value, and achieves high filling. It is an object to provide a paste.

本発明は、このような従来の問題点を解決することを目的としてなされたもので、銀粉末に脂肪酸を0.01〜0.3重量%均一に被覆した、平均粒子径3〜10μmの球状と円盤状の粒子が混在した、タップ密度値が6.0g/cm3以上であることを特徴として、ポリマーに高充填しても印刷特性を悪くしない銀粉末を実現した。 The present invention was made for the purpose of solving such conventional problems, and a spherical powder having an average particle diameter of 3 to 10 μm, in which 0.01 to 0.3% by weight of a fatty acid is uniformly coated on silver powder. a disk-shaped particles are mixed, the tap density value as characterized in that 6.0 g / cm 3 or more, to achieve a silver powder be highly filled in the polymer does not deteriorate the printing characteristics.

我々はスルホールペースト、焼成ペースト、放熱用充填材として銀粉末をポリマーに高充填しても印刷適性を悪くしない銀粉末の研究を行った結果、銀粉末のタップ密度値と相関性があり、タップ密度値6.0g/cm3以上で有れば良いことを見出した。 As a result of research on silver powder that does not deteriorate printability even when high-filled silver powder is filled into the polymer as a through-hole paste, fired paste, and heat dissipation filler, there is a correlation with the tap density value of the silver powder. It has been found that the density value should be 6.0 g / cm 3 or more.

本発明の銀粉末は球状および円盤状銀粉末粒子全てを脂肪酸で被覆する必要がある。被覆していない銀粉末だと充填密度を上げる事が出来ない。被覆する油脂量は粒子径により変える必要があるが銀粉末に対して0.01〜0.3重量%が良い。少ないと密度が上がらないし、多いと逆に流動性が悪く充填密度が上がらない。   The silver powder of the present invention needs to coat all spherical and discotic silver powder particles with a fatty acid. If it is uncoated silver powder, the packing density cannot be increased. The amount of oil or fat to be coated needs to be changed depending on the particle diameter, but is preferably 0.01 to 0.3% by weight based on the silver powder. If the amount is too small, the density will not increase. If the amount is too large, the fluidity is poor and the packing density does not increase.

銀粉末の平均粒子径は3〜10μmがスルホールペースト、焼成ペースト、放熱用充填材として、本発明の方法で高充填できる最適の粒子径である。これよりも細かくても、大きくてもタップ密度値6.0g/cm3以上の銀粉末はできない。 The average particle size of the silver powder is 3 to 10 μm, which is the optimum particle size that can be highly filled by the method of the present invention as a through-hole paste, a fired paste, and a heat dissipation filler. Even finer or larger than this, silver powder having a tap density value of 6.0 g / cm 3 or more cannot be produced.

本発明の銀粉末の製造方法としては、平均粒子径2.5〜8μmの球状銀粉末に脂肪酸を0.01〜0.3重量%添加し、1/16〜1/4インチの球状媒体を用いて、粉砕機で物理的に銀粉末に脂肪酸を被覆しながら円盤状加工することで製造できる。   As a method for producing the silver powder of the present invention, 0.01 to 0.3% by weight of a fatty acid is added to a spherical silver powder having an average particle size of 2.5 to 8 μm, and a 1/16 to 1/4 inch spherical medium is formed. It can be manufactured by using a pulverizer to form a disk while physically coating the fatty acid on the silver powder.

球状銀粉末を1/16〜1/4インチの球状スチールボール、セラミックスボールを粉砕媒体としてボールミル、アジテーターアーム粉砕機で加工すると、細かい粒子の球状銀粉末は粉砕媒体の応力が当たらず球状のまま存在し、大きな粒子は円盤状に加工される。   When spherical silver powder is processed with a ball mill or agitator arm pulverizer using spherical steel balls of 1/16 to 1/4 inch and ceramic balls as pulverizing media, the fine particles of spherical silver powder remain spherical without being subjected to the stress of the pulverizing media Large particles are processed into a disk shape.

その結果、得られた銀粉末は細かい球状粒子が大きい円盤状銀粉末の間に充填されることになり、タップ密度値が6.0g/cm3以上の銀粉末が得られる。 As a result, the obtained silver powder is filled between disk-shaped silver powders having large spherical particles, and a silver powder having a tap density value of 6.0 g / cm 3 or more is obtained.

脂肪酸はミリスチン酸、パルミチン酸、ステアリン酸などの高級脂肪酸が良い。脂肪酸量、粉砕媒体のサイズ、粉砕力となる回転数や時間は、粉砕加工する銀粉末の粒子径、目的とするタップ密度値で本発明の範囲内で変える事ができる。   The fatty acid is preferably a higher fatty acid such as myristic acid, palmitic acid or stearic acid. The amount of fatty acid, the size of the grinding medium, the number of rotations and the time for grinding force can be changed within the scope of the present invention depending on the particle diameter of the silver powder to be ground and the target tap density value.

本発明の方法以外で本発明の銀粉末を得る方法としては、脂肪酸で被覆した球状銀粉末と脂肪酸で被覆した円盤状銀粉末を別々に配合し、タップ密度値6.0g/cm3以上にする事も可能であるが工業的でない。 As a method of obtaining the silver powder of the present invention other than the method of the present invention, a spherical silver powder coated with a fatty acid and a disc-shaped silver powder coated with a fatty acid are blended separately, and the tap density value is 6.0 g / cm 3 or more. It is possible to do this, but it is not industrial.

本発明の銀粉末は、タップ密度値が大きい銀粉末を得ることにより、ペースト成分中の銀粉末の含有量を上げても、印刷特性を悪くすることなく印刷可能となった。このことで、従来まで使用の難しかったスルホールペースト用、焼成ペースト用、あるいは高放熱用としての充填材に使用可能となった。また、球状と円盤状の粒子が混在するため印刷特性も飛躍的に良くなり、また、脂肪酸が銀粉末に均一に被覆しているため分散性も向上した。   By obtaining a silver powder having a large tap density value, the silver powder of the present invention can be printed without deteriorating the printing characteristics even when the content of the silver powder in the paste component is increased. This makes it possible to use as a filler for through-hole paste, fired paste, or high heat dissipation, which has been difficult to use until now. In addition, since the spherical and discoidal particles are mixed, the printing characteristics are dramatically improved, and the dispersibility is improved because the fatty acid is uniformly coated on the silver powder.

本発明の銀粉末および製造方法は、平均粒子径2.5〜8μmの球状銀粉末に脂肪酸を0.01〜0.3重量%添加し、1/16〜1/4インチの球状媒体を用いて、粉砕機で物理的に銀粉末に脂肪酸を被覆しながら円盤状加工することによりタップ密度値が大きい高充填銀粉末が得ることができる。本発明の構成を詳しく説明すれば次の通りである。   In the silver powder and the production method of the present invention, 0.01 to 0.3% by weight of a fatty acid is added to a spherical silver powder having an average particle diameter of 2.5 to 8 μm, and a spherical medium of 1/16 to 1/4 inch is used. Then, a high-filled silver powder having a large tap density value can be obtained by performing disk-like processing while physically coating the silver powder with fatty acid using a pulverizer. The configuration of the present invention will be described in detail as follows.

実施例1. Example 1.

平均粒径2.5μmでタップ密度値4.8g/cm3の球状銀粉末を1kgにステアリン酸2g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/16インチ径の球状スチールボール10kg、ミル回転数40rpmで10時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径3μm、タップ密度値6.2g/cm3の脂肪酸で被覆した円盤状銀粉末が得られた。 2 g of stearic acid was added to 1 kg of spherical silver powder having an average particle diameter of 2.5 μm and a tap density value of 4.8 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed for 10 hours at a mill rotation speed of 40 rpm with 10 kg of spherical steel balls having a diameter of 1/16 inch as a grinding medium. As a result, a disc-like silver powder coated with a fatty acid having an average particle size of 3 μm and a tap density value of 6.2 g / cm 3 in which spherical and disc-like particles are mixed was obtained.

実施例2. Example 2

平均粒径5.0μmでタップ密度値5.3g/cm3の球状銀粉末を1kgにステアリン酸1g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径の球状スチールボール10kg、ミル回転数40rpmで5時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径6.5μm、タップ密度値6.5g/cm3の脂肪酸で被覆した円盤状銀粉末が得られた。 1 g of stearic acid was added to 1 kg of spherical silver powder having an average particle diameter of 5.0 μm and a tap density value of 5.3 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed for 5 hours at a mill rotation speed of 40 rpm with 10 kg of spherical steel balls having a diameter of 1/8 inch as a grinding medium. As a result, a disc-like silver powder coated with a fatty acid having an average particle size of 6.5 μm and a tap density value of 6.5 g / cm 3 in which spherical and disc-like particles are mixed was obtained.

実施例3. Example 3

平均粒径8.0μmでタップ密度値5.4g/cm3の球状銀粉末を1kgにステアリン酸0.2g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/4インチ径の球状スチールボール10kg、ミル回転数40rpmで5時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径10.0μm、タップ密度値6.2g/cm3の脂肪酸で被覆した円盤状銀粉末が得られた。 To 1 kg of spherical silver powder having an average particle size of 8.0 μm and a tap density value of 5.4 g / cm 3 , 0.2 g of stearic acid was added and put into a medium stirring mill. Disc processing was performed for 5 hours at a mill rotational speed of 40 rpm with a spherical steel ball having a diameter of 1/4 inch as a grinding medium. As a result, a disc-shaped silver powder coated with a fatty acid having an average particle size of 10.0 μm in which spherical and disc-shaped particles are mixed and a tap density value of 6.2 g / cm 3 was obtained.

実施例4. Example 4

平均粒径8.0μmでタップ密度値5.4g/cm3の球状銀粉末を1kgにステアリン酸0.1g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径の球状スチールボール10kg、ミル回転数40rpmで10時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径9.5μm、タップ密度値6.5g/cm3の脂肪酸で被覆した円盤状銀粉末が得られた。 0.1 g of stearic acid was added to 1 kg of spherical silver powder having an average particle size of 8.0 μm and a tap density value of 5.4 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed for 10 hours at a mill rotational speed of 40 rpm with 10 kg of spherical steel balls having a diameter of 1/8 inch as a grinding medium. As a result, a disc-like silver powder coated with a fatty acid having an average particle size of 9.5 μm and a tap density value of 6.5 g / cm 3 in which spherical and disc-like particles are mixed was obtained.

実施例5. Example 5 FIG.

平均粒径2.5μmでタップ密度値4.8g/cm3の球状銀粉末を1kgにステアリン酸3g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径の球状スチールボール10kg、ミル回転数40rpmで5時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径3.5μm、タップ密度値6.0g/cm3の脂肪酸で被覆した円盤状銀粉末が得られた。 3 g of stearic acid was added to 1 kg of spherical silver powder having an average particle diameter of 2.5 μm and a tap density value of 4.8 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed for 5 hours at a mill rotation speed of 40 rpm with 10 kg of spherical steel balls having a diameter of 1/8 inch as a grinding medium. As a result, a disc-like silver powder coated with a fatty acid having an average particle size of 3.5 μm and a tap density value of 6.0 g / cm 3 in which spherical and disc-like particles are mixed was obtained.

実施例6. Example 6

平均粒径5.0μmでタップ密度値5.3g/cm3の球状銀粉末を1kgにパルミチン酸1g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径の球状スチールボール10kg、ミル回転数40rpmで5時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径6.6μm、タップ密度値6.4g/cm3の脂肪酸で被覆した円盤状銀粉末が得られた。 1 g of spherical silver powder having an average particle diameter of 5.0 μm and a tap density value of 5.3 g / cm 3 was added to 1 kg of palmitic acid, and the mixture was put into a medium stirring mill. Disc processing was performed for 5 hours at a mill rotation speed of 40 rpm with 10 kg of spherical steel balls having a diameter of 1/8 inch as a grinding medium. As a result, a disc-like silver powder coated with a fatty acid having an average particle size of 6.6 μm and a tap density value of 6.4 g / cm 3 in which spherical and disc-like particles are mixed was obtained.

実施例7. Example 7

平均粒径5.0μmでタップ密度値5.3g/cm3の球状銀粉末を1kgにミリスチン酸1g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径の球状スチールボール10kg、ミル回転数40rpmで5時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径6.5μm、タップ密度値6.6g/cm3の脂肪酸で被覆した円盤状銀粉末が得られた。 1 g of myristic acid was added to 1 kg of spherical silver powder having an average particle size of 5.0 μm and a tap density value of 5.3 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed for 5 hours at a mill rotation speed of 40 rpm with 10 kg of spherical steel balls having a diameter of 1/8 inch as a grinding medium. As a result, a disc-like silver powder coated with a fatty acid having an average particle size of 6.5 μm and a tap density value of 6.6 g / cm 3 in which spherical and disc-like particles are mixed was obtained.

実施例8. Example 8 FIG.

平均粒径5.0μmでタップ密度値5.3g/cm3の球状銀粉末を1kgにステアリン酸0.5g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径の球状スチールボール10kg、ミル回転数40rpmで5時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径6.2μm、タップ密度値6.8g/cm3の脂肪酸で被覆した円盤状銀粉末が得られた。 0.5 g of stearic acid was added to 1 kg of spherical silver powder having an average particle diameter of 5.0 μm and a tap density value of 5.3 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed for 5 hours at a mill rotation speed of 40 rpm with 10 kg of spherical steel balls having a diameter of 1/8 inch as a grinding medium. As a result, a disc-like silver powder coated with a fatty acid having an average particle size of 6.2 μm and a tap density value of 6.8 g / cm 3 in which spherical and disc-like particles are mixed was obtained.

実施例9. Example 9

平均粒径5.0μmでタップ密度値5.3g/cm3の球状銀粉末を1kgにステアリン酸0.5g添加し、媒体攪拌ミルに投入した。粉砕媒体として1/8インチ径の球状セラミックスボール10kg、ミル回転数40rpmで5時間、円盤状加工を行った。その結果、球状と円盤状の粒子が混在する平均粒径6.1μm、タップ密度値6.3g/cm3の脂肪酸で被覆した円盤状銀粉末が得られた。 0.5 g of stearic acid was added to 1 kg of spherical silver powder having an average particle diameter of 5.0 μm and a tap density value of 5.3 g / cm 3 , and charged into a medium stirring mill. Disc processing was performed at a mill rotational speed of 40 rpm for 5 hours at 10 kg of spherical ceramic balls having a diameter of 1/8 inch as a grinding medium. As a result, a disc-like silver powder coated with a fatty acid having an average particle size of 6.1 μm and a tap density value of 6.3 g / cm 3 in which spherical and disc-like particles are mixed was obtained.

比較例1. Comparative Example 1

平均粒径5.0μmでタップ密度値5.4g/cm3の球状銀粉末90重量%とタップ密度値5.6g/cm3の高密度片状銀粉を10重量%をミキサーに投入し混合した。その結果、タップ密度値5.5g/cm3の銀粉末が得られ、タップ密度値6.0g/cm3以上の銀粉末は得られなかった。 90% by weight of spherical silver powder having an average particle diameter of 5.0 μm and a tap density value of 5.4 g / cm 3 and 10% by weight of high-density flaky silver powder having a tap density value of 5.6 g / cm 3 were put into a mixer and mixed. . As a result, a silver powder having a tap density value of 5.5 g / cm 3 was obtained, and a silver powder having a tap density value of 6.0 g / cm 3 or more was not obtained.

比較例2. Comparative Example 2

平均粒径5.0μmでタップ密度値5.4g/cm3の球状銀粉末50重量%とタップ密度値5.6g/cm3の高密度片状銀粉を50重量%をミキサーに投入し混合した。その結果、球状と片状の粒子が混在するするものの、タップ密度値は5.6g/cm3の銀粉末であり、タップ密度値6.0g/cm3以上の銀粉末は得られなかった。 50% by weight of spherical silver powder having an average particle size of 5.0 μm and a tap density value of 5.4 g / cm 3 and 50% by weight of high-density flaky silver powder having a tap density value of 5.6 g / cm 3 were put into a mixer and mixed. . As a result, although spherical and flake shaped particles were mixed, the tap density value was 5.6 g / cm 3 silver powder, and no silver powder having a tap density value of 6.0 g / cm 3 or more was obtained.

比較例3. Comparative Example 3

平均粒径5.0μmでタップ密度値5.4g/cm3の球状銀粉末90重量%とタップ密度値5.6g/cm3の高密度片状銀粉を10重量%をミキサーに投入し混合した。その結果、球状と片状の粒子が混在するものの、タップ密度値は5.8g/cm3の銀粉末であり、タップ密度値6.0g/cm3以上の銀粉末は得られなかった。 90% by weight of spherical silver powder having an average particle diameter of 5.0 μm and a tap density value of 5.4 g / cm 3 and 10% by weight of high-density flaky silver powder having a tap density value of 5.6 g / cm 3 were put into a mixer and mixed. . As a result, although spherical and piece-like particles were mixed, the tap density value was a silver powder having a tap density value of 5.8 g / cm 3, and a silver powder having a tap density value of 6.0 g / cm 3 or more was not obtained.

本発明の銀粉末は、タップ密度値が大きい銀粉末を得ることにより、ペースト成分中の銀粉末の含有量を上げても、印刷特性を悪くすることなく印刷可能となった。このことで、従来まで使用の難しかったスルホールペースト用、焼成ペースト用、あるいは高放熱用としての充填材に使用可能となった。また、球状と円盤状の粒子が混在するため印刷特性も飛躍的に良くなり、また、脂肪酸が銀粉末に均一に被覆しているため分散性も向上した。   By obtaining a silver powder having a large tap density value, the silver powder of the present invention can be printed without deteriorating the printing characteristics even when the content of the silver powder in the paste component is increased. This makes it possible to use as a filler for through-hole paste, fired paste, or high heat dissipation, which has been difficult to use until now. In addition, since the spherical and discoidal particles are mixed, the printing characteristics are dramatically improved, and the dispersibility is improved because the fatty acid is uniformly coated on the silver powder.

従って、本発明の産業上利用性は非常に高いといえる。   Therefore, it can be said that the industrial applicability of the present invention is very high.

Claims (3)

脂肪酸で均一に被覆した平均粒子径3〜10μmの球状と円盤状の粒子が混在する、タップ密度値が6.0g/cm3以上であることを特徴とする銀粉末。 A silver powder having a tap density value of 6.0 g / cm 3 or more, in which spherical and disk-shaped particles having an average particle diameter of 3 to 10 μm uniformly coated with a fatty acid are mixed. 銀粉末に対して0.01〜0.3重量%の脂肪酸が、球状と円盤状銀粉末に均一に被覆していることを特徴とする請求項1記載の銀粉末。   2. The silver powder according to claim 1, wherein 0.01 to 0.3% by weight of fatty acid is uniformly coated on the spherical and discotic silver powder with respect to the silver powder. 請求項1ないし2記載の銀粉末製造にさいし、平均粒子径2.5〜8μmの球状銀粉末に脂肪酸を0.01〜0.3重量%添加し、1/16〜1/4インチの球状媒体を用いて、粉砕機で物理的に脂肪酸を被覆ならびに円盤状加工することを特徴とする銀粉末の製造方法。
3. In producing the silver powder according to claim 1 or 2, 0.01 to 0.3% by weight of a fatty acid is added to a spherical silver powder having an average particle size of 2.5 to 8 μm, and a spherical shape of 1/16 to 1/4 inch is added. A method for producing a silver powder, characterized in that a medium is used to physically coat a fatty acid with a pulverizer and perform a disk-like process.
JP2006147614A 2006-05-29 2006-05-29 Silver powder and production method therefor Pending JP2007314852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147614A JP2007314852A (en) 2006-05-29 2006-05-29 Silver powder and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147614A JP2007314852A (en) 2006-05-29 2006-05-29 Silver powder and production method therefor

Publications (1)

Publication Number Publication Date
JP2007314852A true JP2007314852A (en) 2007-12-06

Family

ID=38848984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147614A Pending JP2007314852A (en) 2006-05-29 2006-05-29 Silver powder and production method therefor

Country Status (1)

Country Link
JP (1) JP2007314852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135805A (en) * 2013-12-16 2015-07-27 日立化成株式会社 Resin paste composition and semiconductor device
KR101764220B1 (en) * 2015-10-08 2017-08-03 엘에스니꼬동제련 주식회사 Conductive composition for nano imprint, and method for manufacturing touch panel using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235201A (en) * 1991-01-10 1992-08-24 Daido Steel Co Ltd Method for controlling tap density of powder
JPH1166956A (en) * 1997-08-12 1999-03-09 Tanaka Kikinzoku Kogyo Kk Conductive paste
JP2005008930A (en) * 2003-06-18 2005-01-13 Nippon Atomized Metal Powers Corp Metallic powder, and apparatus and method for manufacturing metallic powder
JP2005076058A (en) * 2003-08-29 2005-03-24 Fukuda Metal Foil & Powder Co Ltd Method for manufacturing flaky metal powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235201A (en) * 1991-01-10 1992-08-24 Daido Steel Co Ltd Method for controlling tap density of powder
JPH1166956A (en) * 1997-08-12 1999-03-09 Tanaka Kikinzoku Kogyo Kk Conductive paste
JP2005008930A (en) * 2003-06-18 2005-01-13 Nippon Atomized Metal Powers Corp Metallic powder, and apparatus and method for manufacturing metallic powder
JP2005076058A (en) * 2003-08-29 2005-03-24 Fukuda Metal Foil & Powder Co Ltd Method for manufacturing flaky metal powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135805A (en) * 2013-12-16 2015-07-27 日立化成株式会社 Resin paste composition and semiconductor device
KR101764220B1 (en) * 2015-10-08 2017-08-03 엘에스니꼬동제련 주식회사 Conductive composition for nano imprint, and method for manufacturing touch panel using the same

Similar Documents

Publication Publication Date Title
JP4841987B2 (en) Flake silver powder and method for producing the same
TWI236393B (en) Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
JPWO2007037440A1 (en) Conductive powder and method for producing the same, conductive powder paste, and method for producing conductive powder paste
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
WO2012023566A1 (en) Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JPWO2008133172A1 (en) Composite filler for resin mixing
JP5778941B2 (en) Method for producing silver-coated flake copper powder
JPWO2020153505A1 (en) Filler composition, silicone resin composition and heat dissipation parts
JP2010180471A (en) Flaky silver powder and method for producing the same, and conductive paste
US20060289837A1 (en) Silver salts of dicarboxcylic acids for precious metal powder and flakes
CN109181469A (en) The preparation method of graphene-based-aqueous epoxy resins composite anti-corrosive coating solution
JP2004068111A (en) Silver coated flake copper powder and method for manufacturing silver coated flake copper powder and conductive paste using silver coated flake copper powder
JP2007314852A (en) Silver powder and production method therefor
JP2010236039A (en) Flaky silver powder, its production method and conductive paste
JP2004027246A (en) Copper powder for conductive paste, and its manufacturing method
JPH11264001A (en) Flake copper powder and its production
WO2021220552A1 (en) Silver particles
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
CN110605385B (en) Preparation method of tungsten-based micro-nano composite powder and tungsten-based micro-nano composite powder
JP2007332391A (en) Copper powder and its production method
JP2008214678A (en) Tin powder, tin paste and method for producing tin powder
JP2005203304A (en) Mixed conductive powder
JP2005076058A (en) Method for manufacturing flaky metal powder
JP2020196928A (en) Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method
JP4074369B2 (en) Method for producing flake copper alloy powder for conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405