JP2005076058A - Method for manufacturing flaky metal powder - Google Patents

Method for manufacturing flaky metal powder Download PDF

Info

Publication number
JP2005076058A
JP2005076058A JP2003305644A JP2003305644A JP2005076058A JP 2005076058 A JP2005076058 A JP 2005076058A JP 2003305644 A JP2003305644 A JP 2003305644A JP 2003305644 A JP2003305644 A JP 2003305644A JP 2005076058 A JP2005076058 A JP 2005076058A
Authority
JP
Japan
Prior art keywords
metal powder
powder
particle size
spherical
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003305644A
Other languages
Japanese (ja)
Inventor
Masayoshi Yoshitake
吉武正義
Kazumasa Morikawa
森川和政
Nobuyuki Ito
伊藤信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2003305644A priority Critical patent/JP2005076058A/en
Publication of JP2005076058A publication Critical patent/JP2005076058A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing a fine flaky metal powder which has a narrow width of a particle size distribution and is uniformly flattened. <P>SOLUTION: The manufacturing method for making a metal powder flaky with the use of a ball mill comprises a step of; when pulverizing the metal powder with steel balls in air or an inert atmosphere along with employing a starting material of the spherical or granular metal powder with a particle diameter of 5 μm or smaller and a grinding media of the steel balls with diameters of 2 to 5 mm, adding grinding auxiliaries to them, using a cylindrical rotation vessel with a shielding plate on the inner wall, and making the shielding plate lift and drop the metal powder and the steel balls along the wall surface during the rotation of the vessel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は導電ペースト用、メタリック塗料用、防錆塗料用等に使用する粒径の細かい片状金属粉末の製造方法に関するものである。詳しくは優れた塗膜導電性能が得られる粒度分布巾の狭い、粒径の細かい片状銅粉末・片状ニッケル粉末・片状銀粉末、優れたメタリック光沢塗膜が得られる粒度分布巾の狭い微粉の少ない片状錫粉末、優れた隠蔽力と防錆効果が得られる比表面積値の大きい片状亜鉛粉末などの片状金属粉末を効率良く製造する方法に関するものである。   The present invention relates to a method for producing a fine metal powder having a small particle size for use in conductive pastes, metallic paints, rust-proof paints, and the like. Specifically, narrow particle size distribution width that can provide excellent coating film conductive performance, narrow piece size copper powder, flaky nickel powder, flaky silver powder, narrow particle size distribution range that gives excellent metallic glossy coating film The present invention relates to a method for efficiently producing a flake metal powder such as a flake tin powder with a small amount of fine powder and a flake zinc powder having a large specific surface area that can provide excellent hiding power and antirust effect.

従来までの片状金属粉末の製造方法はスタンプミル、アトライター、ボールミル等の粉砕機を用いて、比較的大きな金属粉末や塊を、強い衝撃力と剪断力で片状加工していた。しかし最近、導電性ペースト用片状金属粉末としては、粒度分布巾の狭い、均一に展延加工した、粒径の細かい方が優れた塗膜導電性能が得られことが判明してきた。メタリック塗料用としても均一に展延加工した、粉砕中の微粉を含まない金属粉末の方が光沢の良い塗膜となる。粒径の大きい金属粉末や塊を粉砕加工して粒径の細かい片状金属粉末を製造すると、粉砕中に非常に細かい微粉末が多く発生し、粒度分布巾も広く、また粉砕時間も長く金属粉末の酸化や金属粉末の発熱燃焼の問題もあった。これらの理由から、出発原料は出来るだけ細かい金属粉末を使用する方が良い。   Conventionally, a method for producing a flake metal powder has been to flake a relatively large metal powder or lump with a strong impact force and shear force using a crusher such as a stamp mill, an attritor, or a ball mill. Recently, however, it has been found that as a flake metal powder for conductive paste, a coating film having a narrow particle size distribution width, a uniform spread processing, and a finer particle size can provide better coating film conductive performance. Metallic powders that are uniformly spread and processed for metallic paints and that do not contain fine powder during pulverization have a glossy coating film. When a metal powder or lump with a large particle size is pulverized to produce a flaky metal powder with a small particle size, a lot of very fine powder is generated during pulverization, the particle size distribution width is wide, and the pulverization time is long. There were also problems of oxidation of the powder and exothermic combustion of the metal powder. For these reasons, it is better to use metal powder as fine as possible as the starting material.

しかし、出発原料が細かい金属粉末を従来の粉砕機で強力に粉砕すると金属粉末同士が圧着凝集し粗大薄片が生じ、均一に各粒子を展延加工できない。これらの解決方法として、出発原料粉末を水に分散させたスラリー状にして1mm以下のジルコニアビーズで媒体型撹拌ミルにて片状加工する方法(例えば特許文献1参照)、スラリー濃度5〜60%で0.5〜3mmのビーズを用いた媒体撹拌ミルで片状加工する方法(例えば特許文献2参照)が提案されている。   However, when metal powder with a fine starting material is strongly pulverized with a conventional pulverizer, the metal powders are pressed and agglomerated to form coarse flakes, and each particle cannot be spread and processed uniformly. As a solution to these problems, a method in which a starting material powder is dispersed in water to form a slurry and is flaked with a zirconia bead of 1 mm or less in a medium-type stirring mill (for example, see Patent Document 1), a slurry concentration of 5 to 60%. Has been proposed (see, for example, Patent Document 2), in which a piece is processed with a medium stirring mill using beads of 0.5 to 3 mm.

しかし溶媒中で片状加工するため、粉砕後溶液と粉末を分離する必要があり、特に微細な片状粉末になると分離が困難となる。空気中あるいは不活性雰囲気中で片状加工する方法として1/8〜1/4インチ径のスチールボールを使用し脂肪酸を添加し媒体撹拌ミルで製造する方法(例えば特許文献3参照)が提案されているが、粉砕時間の短い盤状形状粉末の製造には適しているが、出発原料粉末が5μm以下の微細片状金属粉末の製造は粉砕や剪断力が強いため難しい。   However, since it is processed into a piece in a solvent, it is necessary to separate the solution and the powder after pulverization. In particular, separation becomes difficult when a fine piece of powder is formed. As a method of processing in a piece in air or in an inert atmosphere, a method of using a steel ball with a diameter of 1/8 to 1/4 inch and adding a fatty acid and manufacturing with a medium stirring mill has been proposed (for example, see Patent Document 3). However, it is suitable for the production of a disk-shaped powder having a short pulverization time, but it is difficult to produce a fine flaky metal powder having a starting material powder of 5 μm or less because of strong pulverization and shearing force.

媒体撹拌ミルより粉砕力の弱いボールミルで片状加工する場合、出発原料粉末の粒径が細かいと円筒型回転容器の壁面やボールに粉砕粉末が付着し、特に小径ボールでは転動の衝撃力が非常に弱まり、硬い金属や球形粉末は片状加工が難しく、長時間かかる。またボール径の大きいボールミルでは、衝撃力は得られるが、各粒子へのボールの接触点が減少し、粗大片状粉と粒状粉の混在した粒度分布巾の広い片状金属粉末しか製造することができなかった。
特開2000−80409号公報 特開平4−56701号公報 特開2002−15622号公報
When slab processing is performed with a ball mill whose grinding force is weaker than that of a medium agitation mill, if the starting material powder has a small particle size, the pulverized powder adheres to the wall surface or ball of the cylindrical rotary container. Hard metals and spherical powders that are very weak are difficult to machine and take a long time. A ball mill with a large ball diameter can provide impact force, but the number of contact points of the ball with each particle is reduced, and only flaky metal powder with a wide particle size distribution width, in which coarse flaky powder and granular powder are mixed, is manufactured. I could not.
JP 2000-80409 A Japanese Patent Laid-Open No. 4-56701 JP 2002-15622 A

本発明は、上記従来技術の問題点を、ボールミル粉砕方法を改良することによって効率よく製造する方法を見いだし、粒度分布巾の狭い、均一に展延加工された片状微細金属粉末を提供することを課題とする。   The present invention has found a method for efficiently producing the above-mentioned problems of the prior art by improving the ball mill grinding method, and provides a uniform finely processed flake metal powder having a narrow particle size distribution width. Is an issue.

本発明は、このような従来の問題点を解決することを目的としてなされたもので、出発原料である粒径5μm以下の球状あるいは粒状の金属粉末と粉砕媒体として直径2〜5mmのスチールボールに少量の粉砕助剤を添加し、前記金属粉末を空気中あるいは不活性雰囲気中で該スチールボールによって粉砕加工する際、内壁にジャマ板の付いた円筒型回転容器を用いて、その回転中に該ジャマ板により金属粉末とスチールボールを壁面にそって持ち上げ、落下させることを特徴として、粒度分布巾の狭い、各粒子が均一に展延加工された細かい片状金属粉末を得ることを実現した。   The present invention has been made for the purpose of solving such conventional problems. The starting material is a spherical or granular metal powder having a particle size of 5 μm or less and a steel ball having a diameter of 2 to 5 mm as a grinding medium. When a small amount of grinding aid is added and the metal powder is pulverized by the steel balls in air or in an inert atmosphere, a cylindrical rotary container with a jammer plate on the inner wall is used to rotate the metal powder during the rotation. The metal powder and the steel ball are lifted along the wall surface by the jammer plate and dropped, and it is possible to obtain a fine piece-like metal powder with a narrow particle size distribution width in which each particle is uniformly spread.

本発明の効果は、ボールミル粉砕方法のボールの転動を改良することによって従来から使用されているボールミル粉砕機が利用でき、粒径の細かい球状あるいは粒状粉末の片状加工が溶媒を使用しなくても可能となり、粒度分布巾の狭い、細かい各種金属組成の片状金属粉末が安価に大量に提供できるようになった。   The effect of the present invention is that a ball mill pulverizer conventionally used can be used by improving the ball rolling of the ball mill pulverization method, and a sphere-shaped or fine powder flaky process does not use a solvent. It has become possible, and it has become possible to provide a large amount of fine metal flakes having various metal compositions with a narrow particle size distribution at a low cost.

以下、本発明のボールミルで金属粉末を片状加工する製造について詳細に説明する。本発明の出発原料である金属粉末は粒径が5μm以下の球状あるいは粒状粉末であることが必要である。金属粉末の粒径が5μm以上であると本発明の製造方法でも均一に片状加工することが難しく、また片状加工に長時間必要となり好ましくない。粒径は細かいほど均一な片状金属粉末が得られるが、0.5μm以下になると単分散した球状あるいは粒状金属粉末を入手することが難しく、その場合、前処理として流体エネルギーミルなどでできるだけ単分散して使用するのが好ましい。   Hereafter, the manufacture which processes a metal powder in the shape of a piece with the ball mill of this invention is demonstrated in detail. The metal powder as the starting material of the present invention must be a spherical or granular powder having a particle size of 5 μm or less. When the particle size of the metal powder is 5 μm or more, it is difficult to uniformly flank the process according to the present invention, and it is not preferable because it takes a long time for the flaky process. As the particle size becomes finer, a uniform piece-like metal powder can be obtained. However, when the particle size is 0.5 μm or less, it is difficult to obtain a monodispersed spherical or granular metal powder. It is preferable to use in a dispersed manner.

本発明で使用できる金属粉末としては粒径が5μm以下の球状あるいは粒状粉末であれば製造方法や金属組成を選ばない。
具体的には、アトマイズ法では銅粉末、銅合金粉末、銀粉末、錫粉末。水溶液電解法では銅粉末。溶液還元法では銅粉末、銀粉末。蒸留法では亜鉛粉末。カーボニル法ではニッケル粉末などを挙げることができる。円筒型回転容器は、円筒内壁にスチールボールと金属粉末を回転中に壁面にそって持ち上げ、一定の位置で落下させるジャマ板付きの構造であることが重要で、それは円筒型回転容器の内壁に法線方向に中心に向かって取り付けられる。
As the metal powder that can be used in the present invention, any production method and metal composition can be used as long as the particle diameter is a spherical or granular powder having a particle size of 5 μm or less.
Specifically, in the atomization method, copper powder, copper alloy powder, silver powder, and tin powder. Copper powder in aqueous solution electrolysis. In the solution reduction method, copper powder and silver powder. Zinc powder in the distillation method. Examples of the carbonyl method include nickel powder. It is important that the cylindrical rotating container has a structure with a jammer plate that allows steel balls and metal powder to be lifted along the wall surface during rotation and dropped at a fixed position on the inner wall of the cylindrical rotating container. Mounted in the normal direction toward the center.

ジャマ板の寸法は円筒内径(D)、長手(L)とすると、径方向1/30D以上、長手方向に2/3L以上が好ましい。ジャマ板の寸法は片状加工する金属粉末組成や用途にしたがって効率の良いものにすれば良い。ジャマ板の寸法が1/30Dより短いとスチールボールと金属粉末の撹拌効果や衝撃力が弱く、また3/10Dより長いとスチールボールの転動が不均一となり効率が悪くなる。長手方向については2/3Lより短いとジャマ板の効果が得られず、円筒のLと同等が好ましい。   The dimensions of the jammer plate are preferably 1 / 30D or more in the radial direction and 2 / 3L or more in the longitudinal direction when the cylindrical inner diameter (D) and the longitudinal (L) are taken. The size of the jammer plate may be efficient according to the metal powder composition to be processed into a piece and the application. When the size of the jammer plate is shorter than 1 / 30D, the stirring effect and impact force of the steel ball and the metal powder are weak, and when it is longer than 3 / 10D, the rolling of the steel ball becomes uneven and the efficiency is deteriorated. If the length is shorter than 2 / 3L, the effect of the jammer plate cannot be obtained, and it is preferably equivalent to the L of the cylinder.

ジャマ板はステンレス鋼、鉄等粉砕中に変形や摩耗しない材質や厚さで、板あるいは穴空き板でも良い。ジャマ板の枚数は2〜6枚が好ましく、この範囲内の枚数を均等な幅に取り付ければ良い。円筒内壁にジャマ板を付ける事により、細かい粒径の球状あるいは粒状金属粉末と小さい直径の粉砕ボールが常に強制的に撹拌、混合、分離されるため粉砕加工中の凝集を防止している。   The jammer plate may be a plate or a perforated plate made of a material or a thickness that does not deform or wear during grinding such as stainless steel or iron. The number of jammers is preferably 2 to 6, and the number within this range may be attached to a uniform width. By attaching a jammer plate to the inner wall of the cylinder, a spherical or granular metal powder with a small particle size and a pulverized ball with a small diameter are always forcibly agitated, mixed, and separated, thereby preventing aggregation during the pulverization process.

また一定位置からボールを落下させることで通常ボールミル以上の衝撃力が与えられ小ボールでも片状加工ができる。均一に金属粒子を片状加工するためには粉砕媒体のスチールボール直径が2〜5mmであることも必要である。それより細かいとジャマ板付きでも片状加工に長時間必要で、大きいボールでは金属粉末との接触点数が少なくなるため各粒子を均一に片状加工できない。   Also, by dropping the ball from a certain position, an impact force higher than that of a normal ball mill is applied, and even a small ball can be processed into a piece. In order to uniformly process the metal particles into pieces, it is necessary that the diameter of the steel ball of the grinding medium is 2 to 5 mm. If it is finer than that, it will take a long time for slab processing even with a jammer plate, and a large ball will reduce the number of points of contact with the metal powder, so that each particle cannot be uniformly slab processed.

粉砕雰囲気は通常空気中で可能だが、金属粉末の酸化や発火の危険性が有る場合は窒素封入など不活性雰囲気中で粉砕すればよい。粉砕助剤は金属粉末の分散と粉砕加工中の凝集防止のため必要でステアリン酸やパルミチン酸などの脂肪酸が好ましく、添加量は粉砕する金属粉末の粒度、金属組成、目的とする片状金属粉末の粒度、用途により違うが、粉砕する金属粉末に対して0.1〜2wt%添加するのが良い。   Although the pulverizing atmosphere is usually possible in the air, if there is a risk of oxidation or ignition of the metal powder, it may be pulverized in an inert atmosphere such as nitrogen filling. The grinding aid is necessary for dispersion of the metal powder and prevention of aggregation during the grinding process, and fatty acids such as stearic acid and palmitic acid are preferable, and the addition amount is the particle size of the metal powder to be ground, the metal composition, and the desired flake metal powder Depending on the particle size and application, it is preferable to add 0.1 to 2 wt% to the metal powder to be crushed.

この実施例は出発原料の金属粉末が単分散した平均粒径5μmのアトマイズ法による球状銅粉末を用いて実施したものである。この球状銅粉末2kg、粉砕媒体として3/16インチ径(4.76mm)のスチールボール10kg、ステアリン酸2gを円筒型回転容器に投入した。これは内径20cm、長さ30cm、総容積20リットルで、その内壁に径方向3cm、長手方向に28cmのジャマ板を円周3分割するように3枚取り付けられている。粉砕加工条件は空気中で、ボールミル回転数40rpmで8時間運転した。その結果、電子顕微鏡で観察すると平均7〜8μmの非常に粒度分布巾の狭い、各粒子が均一に片状加工された片状銅粉末が製造できた。   This example was carried out using spherical copper powder by an atomizing method having an average particle diameter of 5 μm in which the starting metal powder was monodispersed. 2 kg of this spherical copper powder, 10 kg of a 3/16 inch diameter (4.76 mm) steel ball and 2 g of stearic acid as a grinding medium were charged into a cylindrical rotating container. It has an inner diameter of 20 cm, a length of 30 cm, and a total volume of 20 liters. Three jammer plates having a radial direction of 3 cm and a longitudinal direction of 28 cm are attached to the inner wall so as to divide the circumference into three. The pulverization process was performed in air at a ball mill rotational speed of 40 rpm for 8 hours. As a result, when observed with an electron microscope, it was possible to produce a flaky copper powder having a very narrow particle size distribution width of 7 to 8 μm on average and in which each particle was uniformly flaked.

この実施例は出発原料の金属粉末が単分散した平均粒径3μmのアトマイズ法による球状銅粉末を用いて実施したものである。この球状銅粉末2kg、粉砕媒体として1/8インチ径(3.17mm)のスチールボール10kg、ステアリン酸10gを円筒型回転容器に投入した。これは内径20cm、長さ30cm、総容積20リットルで、その内壁に径方向3cm、長手方向に28cm長のジャマ板を円周3分割するように3枚取り付けられている。粉砕加工条件は空気中で、ボールミル回転数40rpmで8時間運転した。その結果、電子顕微鏡で観察すると平均粒径5〜7μmの非常に粒度分布巾の狭い、各粒子が均一に片状加工された片状銅粉末が製造できた。   This example was carried out using spherical copper powder by an atomizing method having an average particle diameter of 3 μm in which the starting metal powder was monodispersed. 2 kg of this spherical copper powder, 10 kg of steel balls having a 1/8 inch diameter (3.17 mm) as a grinding medium, and 10 g of stearic acid were charged into a cylindrical rotating container. It has an inner diameter of 20 cm, a length of 30 cm, and a total volume of 20 liters, and three jammer plates having a radial direction of 3 cm and a longitudinal direction of 28 cm are attached to the inner wall so as to divide the circumference into three. The pulverization process was performed in air at a ball mill rotational speed of 40 rpm for 8 hours. As a result, when observed with an electron microscope, a flaky copper powder having an average particle diameter of 5 to 7 μm and a very narrow particle size distribution width in which each particle was uniformly flaked could be produced.

この実施例は出発原料の金属粉末が水溶液還元法で還元析出した銅粉末であって、これをジェットミルで単分散化した粒径0.3μmの粒状銅粉末を用いて実施したものである。この粒状銅粉末1.5kg、粉砕媒体として3/32インチ径(2.38mm)のスチールボール10kg、ステアリン酸15gを円筒型回転容器に投入した。これは内径20cm、長さ30cm、総容積20リットルで、その内壁に径方向0.7cm、長手方向に30cmジャマ板を円周6分割するように6枚取り付けられている。粉砕加工条件は窒素雰囲気中で、ボールミル回転数20rpmで20時間運転した。その結果、電子顕微鏡で観察すると平均粒径2〜4μmの非常に粒度分布巾の狭い、各粒子が均一に片状加工された片状銅粉末が製造できた。   This example is a copper powder obtained by reducing and depositing a starting material metal powder by an aqueous solution reduction method, and using a granular copper powder having a particle diameter of 0.3 μm, which is monodispersed by a jet mill. 1.5 kg of this granular copper powder, 10 kg of a 3/32 inch diameter (2.38 mm) steel ball and 15 g of stearic acid as a grinding medium were charged into a cylindrical rotating container. This has an inner diameter of 20 cm, a length of 30 cm, and a total volume of 20 liters. Six diametric plates are attached to the inner wall so as to divide the junk plate into a circumference of 0.7 cm and a longitudinal direction of 30 cm. The pulverization process was performed in a nitrogen atmosphere at a ball mill rotational speed of 20 rpm for 20 hours. As a result, when observed with an electron microscope, a flaky copper powder having an average particle diameter of 2 to 4 μm and a very narrow particle size distribution width in which each particle was uniformly flaked could be produced.

この実施例は出発原料の金属粉末が水溶液還元法で還元析出した粒径0.5μmの粒状銀粉末を用いて実施したものである。この粒状銀粉末2kg、粉砕媒体として3/32インチ径のスチールボール10kg、ステアリン酸20gを円筒型回転容器に投入した。これは内径20cm、長さ30cm、総容積20リットルで、その内壁に径方向3cm、長手方向に25cmのジャマ板を円周3分割するように3枚取り付けられている。粉砕加工条件は空気中で、ボールミル回転数20rpmで20時間運転した。その結果、電子顕微鏡で観察すると平均粒径3〜6μmの非常に粒度分布巾の狭い、各粒子が均一に片状加工された片状銀粉末が製造できた。   This example was carried out using a granular silver powder having a particle size of 0.5 μm obtained by reducing and depositing a starting metal powder by an aqueous solution reduction method. 2 kg of this granular silver powder, 10 kg of a 3/32 inch diameter steel ball and 20 g of stearic acid as a grinding medium were put into a cylindrical rotary container. It has an inner diameter of 20 cm, a length of 30 cm, and a total volume of 20 liters. Three jammer plates having a radial direction of 3 cm and a longitudinal direction of 25 cm are attached to the inner wall so as to divide the circumference into three. The pulverization process was carried out in air at a ball mill rotational speed of 20 rpm for 20 hours. As a result, when observed with an electron microscope, a flaky silver powder having an average particle diameter of 3 to 6 μm and a very narrow particle size distribution width in which each particle was uniformly flaked could be produced.

この実施例は出発原料の金属粉末がアトマイズ法による単分散した平均粒径2μmの球状銀粉末を用いて実施したものである。この球状銀粉末3kg、粉砕媒体として1/8インチ径のスチールボール10kg、パルミチン酸6gを円筒型回転容器に投入した。これは内径20cm、長さ30cm、総容積20リットルで、その内壁に径方向3cm、長手方向に25cmのジャマ板を円周3分割するように3枚取り付けられている。粉砕加工条件は空気中で、ボールミル回転数30rpmで8時間運転した。その結果、電子顕微鏡で観察すると平均粒径5〜6μmの非常に粒度分布巾の狭い、各粒子が均一に片状加工された片状銀粉末が製造できた。   This example was carried out using spherical silver powder having an average particle diameter of 2 μm in which the starting metal powder was monodispersed by the atomization method. 3 kg of this spherical silver powder, 10 kg of a 1/8 inch diameter steel ball and 6 g of palmitic acid were added as a grinding medium to a cylindrical rotary container. It has an inner diameter of 20 cm, a length of 30 cm, and a total volume of 20 liters. Three jammer plates having a radial direction of 3 cm and a longitudinal direction of 25 cm are attached to the inner wall so as to divide the circumference into three. The pulverization process was performed in air at a ball mill rotational speed of 30 rpm for 8 hours. As a result, when observed with an electron microscope, a flaky silver powder having an average particle diameter of 5 to 6 μm and a very narrow particle size distribution width in which each particle was uniformly flaked could be produced.

この実施例は出発原料の金属粉末がアトマイズ法による単分散した平均粒径2.5μmの球状錫粉末を用いて実施したものである。この球状錫粉末3kg、粉砕媒体として3/16インチ径のスチールボール10kg、ステアリン酸15gを円筒型回転容器に投入した。これは内径20cm、長さ30cm、総容積20リットルで、その内壁に径方向3cm、長手方向に25cmのジャマ板を円周3分割するように3枚取り付けられている。粉砕加工条件は空気中で、ボールミル回転数40rpmで30時間運転した。その結果、電子顕微鏡で観察すると平均粒径10〜15μmの非常に粒度分布巾の狭い、各粒子が均一に薄く片状加工された、銀色メタリック外観を呈する片状錫粉末が製造できた。   This example was carried out using spherical tin powder having an average particle diameter of 2.5 μm, in which the starting metal powder was monodispersed by the atomization method. 3 kg of this spherical tin powder, 10 kg of a 3/16 inch diameter steel ball and 15 g of stearic acid as a grinding medium were put into a cylindrical rotary container. It has an inner diameter of 20 cm, a length of 30 cm, and a total volume of 20 liters. Three jammer plates having a radial direction of 3 cm and a longitudinal direction of 25 cm are attached to the inner wall so as to divide the circumference into three. The pulverization process was carried out in air at a ball mill rotational speed of 40 rpm for 30 hours. As a result, when observed with an electron microscope, it was possible to produce a flaky tin powder having an average particle diameter of 10 to 15 μm and having a very narrow particle size distribution width, each particle being uniformly thinly processed and having a silver metallic appearance.

この実施例は出発原料の金属粉末が蒸留法による単分散した平均粒径3μmの球状亜鉛粉末を用いて実施したものである。この球状亜鉛粉末2kg、粉砕媒体として1/8インチ径のスチールボール10kg、ステアリン酸20gを円筒型回転容器に投入した。これは内径20cm、長さ30cm、総容積20リットルで、その内壁に径方向3cm、長手方向に25cmのジャマ板を円周3分割するように3枚取り付けられている。粉砕加工条件は空気中で、ボールミル回転数40rpmで20時間運転後ステアリン酸20g追加添加し30時間まで運転した。その結果、電子顕微鏡で観察すると平均粒径6〜10μmの非常に粒度分布巾の狭い、各粒子が均一に薄く片状加工された、比表面積値15000cm2/gの片状亜鉛粉末が製造できた。 This example was carried out using spherical zinc powder having an average particle size of 3 μm in which the starting metal powder was monodispersed by distillation. 2 kg of this spherical zinc powder, 10 kg of a 1/8 inch diameter steel ball and 20 g of stearic acid as a grinding medium were put into a cylindrical rotary container. It has an inner diameter of 20 cm, a length of 30 cm, and a total volume of 20 liters. Three jammer plates having a radial direction of 3 cm and a longitudinal direction of 25 cm are attached to the inner wall so as to divide the circumference into three. The pulverization process was performed in air at a ball mill rotational speed of 40 rpm for 20 hours, and then 20 g of stearic acid was added and the operation was continued for 30 hours. As a result, it is possible to produce a flaky zinc powder having a specific surface area value of 15000 cm 2 / g, with an average particle diameter of 6 to 10 μm and a very narrow particle size distribution width, each particle being uniformly thinly processed into a flaky shape when observed with an electron microscope. It was.

この実施例は出発原料の金属粉末がカーボニル法による一次粒径4μmの粒状ニッケル粉末を用いて実施したものである。この粒状ニッケル粉末2kg、粉砕媒体として1/8インチ径のスチールボール10kg、ステアリン酸10gを円筒型回転容器に投入した。これは内径20cm、長さ30cm、総容積20リットルで、その内壁に径方向6cm、長手方向に25cmのジャマ板(直径2cmの穴空き板)を円周2分割するように2枚取り付けられている。粉砕加工条件は空気中で、ボールミル回転数40rpmで14時間運転した。その結果、電子顕微鏡で観察すると平均粒径6〜9μmの粒度分布巾の狭い、均一な片状ニッケル粉末が製造できた。   In this example, the starting metal powder was a granular nickel powder having a primary particle size of 4 μm by the carbonyl method. 2 kg of the granular nickel powder, 10 kg of a 1/8 inch diameter steel ball and 10 g of stearic acid as a grinding medium were put into a cylindrical rotary container. It has an inner diameter of 20 cm, a length of 30 cm, and a total volume of 20 liters. A jama plate (a perforated plate with a diameter of 2 cm) having a diameter of 6 cm and a length of 25 cm is attached to the inner wall so as to divide the circumference into two. Yes. The pulverization process was performed in air at a ball mill rotational speed of 40 rpm for 14 hours. As a result, when observed with an electron microscope, uniform flake nickel powder having an average particle diameter of 6 to 9 μm and a narrow particle size distribution width could be produced.

比較例1Comparative Example 1

比較例としてジャマ板の付いていない従来型の円筒型回転容器のボールミル粉砕方法を示す。実施例2で使用した平均粒径3μmのアトマイズ法による球状銅粉末を2kg、粉砕媒体として1/8インチ径のスチールボール10kg、ステアリン酸10gを(回転容器)円筒型回転容器に投入した。これは内径20cm、長さ30cm、総容積20リットルで、その内壁は障害物のない構造である。粉砕加工条件は空気中で、ボールミル回転数40rpmで8時間運転した。その結果、電子顕微鏡で観察すると片状、多面体状、球状などさまざまな形状の粉末が混在していた。その後20時間まで粉砕したが片状粉末は15μm以上と粗大化し細かい球状粉末はそのまま少量残存し、均一な片状銅粉末を得ることができなかった。   As a comparative example, a ball mill pulverization method for a conventional cylindrical rotating container without a jammer plate will be described. 2 kg of spherical copper powder by an atomizing method having an average particle diameter of 3 μm used in Example 2, 10 kg of 1/8 inch diameter steel balls and 10 g of stearic acid as a grinding medium were charged into a cylindrical rotating container. This has an inner diameter of 20 cm, a length of 30 cm and a total volume of 20 liters, and its inner wall is a structure free of obstacles. The pulverization process was performed in air at a ball mill rotational speed of 40 rpm for 8 hours. As a result, when observed with an electron microscope, powders of various shapes such as flakes, polyhedrons, and spheres were mixed. Thereafter, the powder was pulverized for 20 hours, but the flake powder was coarsened to 15 μm or more, and a small amount of fine spherical powder remained as it was, and a uniform flake copper powder could not be obtained.

本発明の片状金属粉末の製造方法は、従来のボールミル法と同じで工程が簡単で、しかも細かい球状あるいは粒状粉末を出発原料として使用できるため、粉砕時間が短くなり、しかも粒度分布巾の狭い、均一な片状金属粉末を安価に提供できるようになった。このような片状金属粉末は導電ペースト用充填材、メタリック用顔料、防錆塗料用片状粉等機能材料用素材として極めて産業上有用である。
The method for producing the flake metal powder of the present invention is the same as the conventional ball mill method, and the process is simple, and since a fine spherical or granular powder can be used as a starting material, the pulverization time is shortened and the particle size distribution width is narrow. Thus, it has become possible to provide uniform flake metal powder at a low cost. Such flake metal powder is extremely useful industrially as a material for functional materials such as conductive paste fillers, metallic pigments, flake powder for anticorrosion paints.

Claims (1)

ボールミルで金属粉末を片状加工する製造方法において、出発原料である粒径5μm以下の球状あるいは粒状の金属粉末と粉砕媒体として直径2〜5mmのスチールボールに粉砕助剤を添加し、前記金属粉末を空気中あるいは不活性雰囲気中で該スチールボールによって粉砕加工する際、内壁にジャマ板の付いた円筒型回転容器を用いて、その回転中に該ジャマ板により金属粉末とスチールボールを壁面にそって持ち上げ、落下させることを特徴とする片状金属粉末の製造方法。
In the manufacturing method in which metal powder is processed into a piece by a ball mill, a grinding aid is added to a spherical or granular metal powder having a particle size of 5 μm or less as a starting material and a steel ball having a diameter of 2 to 5 mm as a grinding medium. When the steel ball is pulverized with the steel ball in air or in an inert atmosphere, a cylindrical rotating container with a jama plate on the inner wall is used, and during the rotation, the metal powder and the steel ball are moved along the wall surface by the jama plate. A method for producing flake metal powder, characterized in that it is lifted and dropped.
JP2003305644A 2003-08-29 2003-08-29 Method for manufacturing flaky metal powder Pending JP2005076058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003305644A JP2005076058A (en) 2003-08-29 2003-08-29 Method for manufacturing flaky metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305644A JP2005076058A (en) 2003-08-29 2003-08-29 Method for manufacturing flaky metal powder

Publications (1)

Publication Number Publication Date
JP2005076058A true JP2005076058A (en) 2005-03-24

Family

ID=34408939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305644A Pending JP2005076058A (en) 2003-08-29 2003-08-29 Method for manufacturing flaky metal powder

Country Status (1)

Country Link
JP (1) JP2005076058A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314852A (en) * 2006-05-29 2007-12-06 Fukuda Metal Foil & Powder Co Ltd Silver powder and production method therefor
JP2007332391A (en) * 2006-06-12 2007-12-27 Fukuda Metal Foil & Powder Co Ltd Copper powder and its production method
WO2008108179A1 (en) * 2007-03-01 2008-09-12 Mitsui Mining & Smelting Co., Ltd. Tin powder, tin paste and tin powder manufacturing method
CN103341632A (en) * 2013-07-08 2013-10-09 昆明理工大学 Technology for preparing flake zinc powder through dry method
CN104815987A (en) * 2015-05-07 2015-08-05 昆明冶金研究院 Flaky zinc powder preparation method
CN109500402A (en) * 2018-12-25 2019-03-22 江苏科创金属新材料有限公司 A kind of zinc metal sheet preparation method
CN116037935A (en) * 2023-02-16 2023-05-02 华中科技大学 Near-flake titanium alloy powder for metal automobile paint, and preparation method and application thereof
CN116037935B (en) * 2023-02-16 2024-04-19 华中科技大学 Near-flake titanium alloy powder for metal automobile paint, and preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314852A (en) * 2006-05-29 2007-12-06 Fukuda Metal Foil & Powder Co Ltd Silver powder and production method therefor
JP2007332391A (en) * 2006-06-12 2007-12-27 Fukuda Metal Foil & Powder Co Ltd Copper powder and its production method
WO2008108179A1 (en) * 2007-03-01 2008-09-12 Mitsui Mining & Smelting Co., Ltd. Tin powder, tin paste and tin powder manufacturing method
CN103341632A (en) * 2013-07-08 2013-10-09 昆明理工大学 Technology for preparing flake zinc powder through dry method
CN104815987A (en) * 2015-05-07 2015-08-05 昆明冶金研究院 Flaky zinc powder preparation method
CN109500402A (en) * 2018-12-25 2019-03-22 江苏科创金属新材料有限公司 A kind of zinc metal sheet preparation method
CN116037935A (en) * 2023-02-16 2023-05-02 华中科技大学 Near-flake titanium alloy powder for metal automobile paint, and preparation method and application thereof
CN116037935B (en) * 2023-02-16 2024-04-19 华中科技大学 Near-flake titanium alloy powder for metal automobile paint, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CA2429093A1 (en) Powder additive for powder metallurgy, iron-based powder mixture for powder metallurgy, and method for manufacturing the same
WO2007034810A1 (en) Process for producing flaky silver powder and flaky silver powder produced by the process
CN110405218B (en) High-sphericity nano-structure stainless steel powder and preparation method thereof
JP5323461B2 (en) Fine metal powder for conductive paint and method for producing the same
US4787561A (en) Fine granular metallic powder particles and process for producing same
JP2004068111A (en) Silver coated flake copper powder and method for manufacturing silver coated flake copper powder and conductive paste using silver coated flake copper powder
JP2005076058A (en) Method for manufacturing flaky metal powder
JP2001303111A (en) Method for producing flat soft magnetic metal powder
JP2008223096A (en) Method for manufacturing flaky silver powder
JPWO2015005218A1 (en) Method for producing granulated raw material for sintering
JP5087859B2 (en) Crushing method and crushing apparatus
CN101480720A (en) Method for preparing scaly nickle and nickel alloy powder with dry process
JP2004027246A (en) Copper powder for conductive paste, and its manufacturing method
JPS6152204B2 (en)
JPS62199705A (en) Production of fine-grained copper powder
JPH0213002B2 (en)
JP2916611B2 (en) Powder particle crushing method and particle modification method
JP2003123537A (en) Mixed copper powder, method of manufacturing the mixed copper powder, copper paste using the mixed copper powder and printed circuit board using the copper paste
JPH0598301A (en) Flat fine metal powder and its production
JP2001152211A (en) Method for producing flat metal powder for electromagnetic wave absorber
CN1358593A (en) Method for reducing atomized copper powder bulk loading density
JP2507716B2 (en) Process for producing flaky amorphous alloy powder
JP2002266005A (en) Method for manufacturing flat metal powder, and powder obtained by the same
JPH02182809A (en) Production of fine granular copper powder
JPH05117722A (en) Production of aluminum pigment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610