JPH0213002B2 - - Google Patents

Info

Publication number
JPH0213002B2
JPH0213002B2 JP8124382A JP8124382A JPH0213002B2 JP H0213002 B2 JPH0213002 B2 JP H0213002B2 JP 8124382 A JP8124382 A JP 8124382A JP 8124382 A JP8124382 A JP 8124382A JP H0213002 B2 JPH0213002 B2 JP H0213002B2
Authority
JP
Japan
Prior art keywords
alloy
atomic
powder
metal
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8124382A
Other languages
Japanese (ja)
Other versions
JPS58199805A (en
Inventor
Takehiro Isobe
Tatsuji Hashimoto
Yukio Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP8124382A priority Critical patent/JPS58199805A/en
Publication of JPS58199805A publication Critical patent/JPS58199805A/en
Publication of JPH0213002B2 publication Critical patent/JPH0213002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、合金粉末の製造方法に係り、さらに
詳しくは機械粉砕による合金粉末の製造方法に関
する。 合金を含む金属粉末はペイント添加用顔料、粉
末冶金原料として広く利用されており、通常、蒸
溜法、溶湯噴射法、溶湯噴射法+湿式粉砕法、箔
+ミル粉砕+気流粉砕等により製造している。し
かしながら、蒸溜法、溶湯噴射法等では微細な粒
状粉末が得られる利点を有する反面、高温の熱エ
ネルギーを大量に必要とする欠点を有している。
一方、機械的粉砕法としてアルミニウムを乾式ボ
ールミルにより不活性ガス気流中で粉砕するハメ
タグ(Hametag)法、湿式ボールミルを用いて
粉砕するホール(Hall)法等が知られており、
該方法を各種の合金または金属に適用する方法が
種々提案されているが、得られる粉末は鱗片状粉
末であり使用目的によつては利用できない欠点が
ある。 機械粉砕により粒状粉末を得る方法として、
Ni−Ti合金を酸に浸漬することにより脆化処理
し粉砕する方法および発生期の水素により脆化処
理し、粉砕する方法が特公昭49−2675号公報に開
示されているが該方法によつて得られる粉末はせ
いぜい50メツシユ下が87%とかなり粗く、かつ粒
度分布幅がかなり広い。 本発明は、機械粉砕により粒度分布幅が狭く、
かつ、微細な粒状粉末を効率よく製造する方法を
提供することを目的とする。 本発明者等は、前記目的を達成すべく鋭意研究
の結果、ベース金属に対して添加金属の原子サイ
ズフアクターが一定の範囲以上にあり、かつ、中
間相を有する。従来は脆いためにまつたく利用さ
れなかつた合金を機械粉砕したところ、極めて効
率よく粉砕でき、従来の合金粉末と同様に使用で
きることを見出し本発明を完成した。 本発明は、ベース金属に対して下記一般式
〔〕 〔(γX〜γB)/γB〕×100〔%〕……〔〕 (式中、γX;添加金属の原子半径〔Å〕 γB;ベース金属の原子半径〔Å〕を表
す。) で表わされる原子サイズフアクターが13%以上で
ある少くとも1種類以上の添加金属を含有し、か
つ、中間相を有する合金を、機械粉砕機を用いて
粉砕することを特徴とする合金粉末の製造方法で
ある。 本発明において、機械粉砕の対象となる合金
は、下記一般式 〔(γX〜γB)/γB〕×100 ……〔〕 (式中、γX;添加金属の原子半径〔Å〕 γB:ベース金属の原子半径〔Å〕) で表わされるベース金属に対する原子サイズフア
クターが、13%以上である少なくとも1種類以上
の添加金属を含有し、かつ、中間相を有する合金
であり、2種類以上の添加金属を含有する場合に
は、該添加金属相互間の下記一般式〔〕 〔(γX〜γX1)/γX〕×100 ……〔〕 (式中、γX;添加金属中含有量の多い金属の原子
半径〔Å〕 γX1;γXより添加量の少ない金属の原子
半径〔Å〕) で表わされる原子サイズフアクターが13%以上で
あることが好ましい。 本発明の中間相とは、合金の二成分のおのおの
の成分の相の外例に生じるその中間の成分を有す
る異つた相であり、ベース金属と添加金属との間
に生じる、ベース金属と添加金属との中間の成分
を有する中間相固溶体である。 これらの合金を例示すれば、Mg3.5〜40%、残
Znの合金、Mg0.5〜40%、Ni0.8〜30%、残Znの
合金、Mg0.5〜40%、Ti0.5〜7%、Al0.01〜5
%、残Znの合金、Sb55〜65%、残Znの合金、
Sb30〜50%、Cr1%以下残Znの合金、Zn2.4%以
下、Al37〜48%残Niの合金、Si20%以下、Al17
〜38%残Niの合金等を挙げることができる。金
属相互間の原子サイズフアクターを第1表に示
す。添加金属が、ベース金属に対する原子サイズ
フアクターが13%未満の金属のみからなる場合、
また、13%以上の金属が添加されていても初晶と
しての中間相を有しない場合には展性が生じ機械
粉砕によつて鱗片状粉末を得ることはできても、
目的とする粒状粉末を得ることは困難であり好ま
しくない。 本発明において、前記合金を従来公知の機械粉
砕機を用いて粉砕する。たとえば、ジヨークラツ
シヤー、ジヤイレトリクラツシヤー、コーンクラ
ツシヤー、エツジランナーロールクラツシヤー、
ロータリークラツシヤー、ハンマークラツシヤー
等の粉砕機、ボールミル、リングローラーミル、、
衝撃粉砕機、スタンプミル、ジエツトミル、振動
ミル等の粉砕機のいずれをも使用することがで
き、またその2種類以上を組合せ使用することに
より任意の粒径の合金粉末を得ることができる。
具体的にはジヨークラツシヤーを用いて平均粒径
10〜20mmに粗砕し、該粗砕物を奈良式粉砕機を用
いて平均粒径約1mmに中砕し、該中砕物を衝撃粉
砕機たとえばスクリーンミルを用いて325mesh
下、50%以上に粉砕し、さらに該粉砕物をジエツ
トミルを用いて10〜30μmに容易に微粉砕するこ
とができる。さらに驚くべきことには、これらの
粉砕を大気中で行つても酸化物の生成が殆んど認
められず、したがつて、合金粉末の急激な酸化に
よる爆発の危険性がない。 本発明は、従来、その脆性のために全く利用す
ることのできなかつたベース金属に対する原子サ
イズフアクターが13%以上の添加金属の少なくと
も1種類以上を含み、かつ、中間相を有する合金
組成とすることにより、公知の機械式粉砕機の1
種または2種以上を組合せ使用することにより、
数μmないし、数10μmの平均粒径を有する合金
粉末を、大気中において容易に製造する方法を提
供するものでありその産業的意義は極めて大き
い。 本発明の合金粉末は、塗料の顔料等として用途
がある。 以下、本発明を実施例によりさらに詳しく説明
する。ただし、本発明は下記実施例に限定される
ものではない。 実施例 1 亜鉛にマグネシウムを添加し、Mg6.8重量%、
残Znの合金を溶製し、該合金をジヨークラツシ
ヤー(0.75K.W.吉田製作所製)で粗砕した後、
該粗砕物を奈良式粉砕機(1K.W.奈良機械製)で
中砕した。ついで該中砕物を衝撃粉砕機(0.75K.
W.細川ミクロン製)を用い2回粉砕し、該粉砕
物をさらに気流粉砕機(22K.W.日曹エンジニア
リング製)を用いて微粉砕した。衝撃粉砕機によ
る2回の粉砕および気流粉砕機による粉砕の結果
得られた粉末の粒度分布を第2表中に示す。 実施例 2〜5 合金組成を代え実施例1と同一の装置を用いて
合金粉末を製造した。その結果を第2表に示す。 実施例 6 種々の合金組成について実施例1と同一の装置
を用い粉砕性を調べた。その結果を第3表に示
す。
The present invention relates to a method for producing alloy powder, and more particularly to a method for producing alloy powder by mechanical pulverization. Metal powders containing alloys are widely used as pigments for paint additives and raw materials for powder metallurgy, and are usually produced by distillation, molten metal injection, molten metal injection + wet pulverization, foil + mill pulverization + air flow pulverization, etc. There is. However, although the distillation method, molten metal injection method, etc. have the advantage of producing fine granular powder, they have the disadvantage of requiring a large amount of high-temperature thermal energy.
On the other hand, known mechanical pulverization methods include the Hametag method, in which aluminum is pulverized in a stream of inert gas using a dry ball mill, and the Hall method, in which aluminum is pulverized using a wet ball mill.
Various methods have been proposed for applying this method to various alloys or metals, but the powder obtained is a scaly powder, which has the disadvantage that it cannot be used depending on the purpose of use. As a method of obtaining granular powder by mechanical crushing,
Japanese Patent Publication No. 49-2675 discloses a method of embrittling Ni-Ti alloy by immersing it in acid and pulverizing it, and a method of embrittling it with nascent hydrogen and pulverizing it. The resulting powder is quite coarse, at most 87% below 50 meshes, and has a fairly wide particle size distribution. The present invention has a narrow particle size distribution width due to mechanical pulverization.
Another object of the present invention is to provide a method for efficiently producing fine granular powder. As a result of intensive research to achieve the above object, the present inventors have found that the atomic size factor of the additive metal is greater than a certain range with respect to the base metal, and the metal has an intermediate phase. By mechanically pulverizing an alloy that had not been used in the past due to its brittleness, the inventors discovered that it could be pulverized extremely efficiently and that it could be used in the same way as conventional alloy powders, thus completing the present invention. In the present invention, the following general formula [ ] [ ( γ An alloy containing at least one type of additive metal with an atomic size factor of 13% or more and having an intermediate phase is machined . This is a method for producing alloy powder, characterized by pulverizing it using a pulverizer. In the present invention, the alloy to be mechanically pulverized has the following general formula [ ( γ B : An alloy containing at least one type of additive metal whose atomic size factor relative to the base metal, expressed as the atomic radius of the base metal [Å]), is 13% or more, and has an intermediate phase; When more than one kind of additive metal is contained, the relationship between the additive metals is expressed by the following general formula [] [( γ X ~ γ X1 )/γ It is preferable that the atomic size factor expressed as: atomic radius of the metal with a large content [Å] γ X1 ; atomic radius of the metal with a smaller content than γ The intermediate phase of the present invention is a different phase having an intermediate component that occurs as an exception to the phase of each of the two components of the alloy, and that occurs between the base metal and the additive metal. It is a mesophase solid solution with a composition intermediate to that of metals. Examples of these alloys include 3.5 to 40% Mg, and
Alloy of Zn, Mg0.5-40%, Ni0.8-30%, remaining Zn alloy, Mg0.5-40%, Ti0.5-7%, Al0.01-5
%, alloy with residual Zn, Sb55~65%, alloy with residual Zn,
Alloy with Sb30~50%, Cr1% or less remaining Zn, Zn2.4% or less, Al37~48% remaining Ni, Si20% or less, Al17
Examples include alloys with a residual Ni content of ~38%. Atomic size factors between metals are shown in Table 1. If the added metal consists only of metals with an atomic size factor of less than 13% relative to the base metal,
In addition, even if 13% or more of metal is added, if it does not have an intermediate phase as a primary crystal, it becomes malleable and although it is possible to obtain a scaly powder by mechanical crushing,
It is difficult and undesirable to obtain the desired granular powder. In the present invention, the alloy is pulverized using a conventionally known mechanical pulverizer. For example, Jyo Crusher, Yare Restrictor, Cone Crusher, Edge Runner Roll Crusher,
Crusher such as rotary crusher, hammer crusher, ball mill, ring roller mill, etc.
Any pulverizer such as an impact pulverizer, stamp mill, jet mill, vibration mill, etc. can be used, and alloy powder of any particle size can be obtained by using two or more of these pulverizers in combination.
Specifically, the average particle size is
Crushed to 10 to 20 mm, the coarsely crushed material is crushed to an average particle size of approximately 1 mm using a Nara type crusher, and the medium crushed material is crushed to 325 mesh using an impact crusher such as a screen mill.
After pulverizing to 50% or more, the pulverized product can be easily pulverized to 10 to 30 μm using a jet mill. What is even more surprising is that even if these pulverizations are carried out in the atmosphere, hardly any oxides are produced, and therefore there is no risk of explosion due to rapid oxidation of the alloy powder. The present invention provides an alloy composition containing at least one type of additive metal having an atomic size factor of 13% or more with respect to the base metal, which could not be used at all due to its brittleness, and having an intermediate phase. By doing so, one of the known mechanical crushers
By using a species or a combination of two or more species,
The present invention provides a method for easily producing alloy powder having an average particle size of several micrometers to several tens of micrometers in the atmosphere, and is of extremely great industrial significance. The alloy powder of the present invention can be used as a pigment for paints, etc. Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to the following examples. Example 1 Magnesium was added to zinc, Mg6.8% by weight,
After melting the residual Zn alloy and coarsely crushing the alloy with a Jio crusher (0.75KW manufactured by Yoshida Seisakusho),
The coarsely crushed material was pulverized using a Nara type pulverizer (manufactured by 1K.W. Nara Kikai). Then, the medium crushed material was crushed by an impact crusher (0.75K.
W. Hosokawa Micron) was used to pulverize twice, and the pulverized product was further finely pulverized using an air flow pulverizer (22K.W. manufactured by Nisso Engineering). The particle size distribution of the powder obtained as a result of two rounds of crushing with an impact crusher and with a pneumatic crusher is shown in Table 2. Examples 2 to 5 Alloy powders were produced using the same equipment as in Example 1 except that the alloy composition was changed. The results are shown in Table 2. Example 6 The crushability of various alloy compositions was investigated using the same equipment as in Example 1. The results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 表中 ○印 機械的粉砕が容易である
△印 機械的粉砕が可能であるが一部塑
性変形が見られ微粉砕が困難である
×印 塑性変形し機械的粉砕に適しない
[Table] ○ mark in the table Mechanical crushing is easy
△: Mechanical pulverization is possible, but plastic deformation is observed in some parts, making pulverization difficult.
×: Plastically deformed and not suitable for mechanical crushing

Claims (1)

【特許請求の範囲】 1 ベース金属に対して、下記一般式〔〕 〔(γX〜γB)/γB〕×100〔%〕……〔〕 (式中、γX;添加金属の原子半径〔Å〕 γB;ベース金属の原子半径〔Å〕を表
す。) で表わされる原子サイズフアクターが13%以上で
ある少なくとも1種類以上の添加金属を含有し、
かつ、中間相を有する合金を、機械式粉砕機を用
いて粉砕することを特徴とする合金粉末の製造方
法。 2 2種類以上の添加金属相互間の下記一般式
〔〕 〔(γX〜γX1)/γX〕×100〔%〕 ……〔〕 (式中、γX;添加金属中含有量の多い元素の原子
半径〔Å〕 γX1;γXより添加量の少ない元素の原子
半径〔Å〕) で表わされる原子サイズフアクターが13%以上で
ある特許請求の範囲第1項記載の方法。
[ Scope of Claims] 1 Based on the base metal , the following general formula [ ] [(γ Radius [Å] γ B ; Represents the atomic radius of the base metal [Å]) Contains at least one or more additive metals having an atomic size factor of 13% or more,
A method for producing an alloy powder, characterized in that the alloy having an intermediate phase is pulverized using a mechanical pulverizer. 2 The following general formula between two or more types of additive metals [ ] [(γ X ~ γ X1 )/γ The method according to claim 1, wherein the atomic size factor expressed as atomic radius of the element [Å] γ X1 ; atomic radius of the element added in a smaller amount than γ X [Å]) is 13% or more.
JP8124382A 1982-05-14 1982-05-14 Manufacture of alloy powder Granted JPS58199805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8124382A JPS58199805A (en) 1982-05-14 1982-05-14 Manufacture of alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8124382A JPS58199805A (en) 1982-05-14 1982-05-14 Manufacture of alloy powder

Publications (2)

Publication Number Publication Date
JPS58199805A JPS58199805A (en) 1983-11-21
JPH0213002B2 true JPH0213002B2 (en) 1990-04-03

Family

ID=13740974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8124382A Granted JPS58199805A (en) 1982-05-14 1982-05-14 Manufacture of alloy powder

Country Status (1)

Country Link
JP (1) JPS58199805A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915906A (en) * 1988-06-17 1990-04-10 Canadian Patents And Development Limited/Societie Canadienne Des Brevets Et D'exploitation Limitee Novel zinc-based alloys, preparation and use thereof for producing thermal-sprayed coatings having improved corrosion resistance and adherence
JP4637978B2 (en) * 1998-09-07 2011-02-23 新日本製鐵株式会社 Corrosion-resistant paint and corrosion-resistant steel material coated with the same
JP5190235B2 (en) * 2006-09-08 2013-04-24 新日鐵住金株式会社 Zn alloy particles for high corrosion resistance rust preventive paint having crushing surface, manufacturing method thereof, high corrosion resistance rust preventive paint, high corrosion resistance steel material and steel structure
JP5190238B2 (en) * 2006-09-28 2013-04-24 新日鐵住金株式会社 High corrosion resistance rust-proof paint, high corrosion resistance steel material and steel structure
JP5130018B2 (en) * 2006-10-31 2013-01-30 新日鐵住金株式会社 High corrosion resistance rust preventive paint paste with excellent long-term storage, high corrosion resistance rust preventive paint prepared with this paste, and steel and steel structures coated with this high corrosion resistance rust preventive paint
JP5130062B2 (en) * 2007-01-26 2013-01-30 新日鐵住金株式会社 Steel coating method and coated steel
JP5130071B2 (en) * 2007-02-08 2013-01-30 新日鐵住金株式会社 Rust prevention method for marine steel
JP5130058B2 (en) * 2008-01-11 2013-01-30 新日鐵住金株式会社 High corrosion resistance rust preventive paint paste with excellent processability, high corrosion resistance rust preventive paint, high corrosion resistant steel and steel structure coated with the paint

Also Published As

Publication number Publication date
JPS58199805A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
JPS62238344A (en) Mechanical alloying method
US3838981A (en) Wear-resistant power metallurgy nickel-base alloy
US4579587A (en) Method for producing high strength metal-ceramic composition
JPH0213002B2 (en)
DE69932148T2 (en) MICRONOON METAL POWDER BASED ON 3D TRANSITION METALS
GB1559647A (en) Method of making oxide dispersion strengthened metallic powder
Tavoosi et al. Softening behaviour of nanostructured Al–14 wt% Zn alloy during mechanical alloying
US4464206A (en) Wrought P/M processing for prealloyed powder
JPS59186258A (en) Method of producing zinc powder for alkali battery
KR100300938B1 (en) Iron-based powder composition and its manufacturing method
Cardoso et al. Processing of aluminium alloys containing titanium addition by mechanical alloying
CN112626404A (en) 3D printing high-performance WMoTaTi high-entropy alloy and low-cost powder preparation method thereof
WO2016047692A1 (en) Process for producing ru-containing corrosion-resistant titanium alloy
Zuo et al. Effect of temperature on mechanical alloying of Cu-Zn and Cu-Cr system
JP2005076058A (en) Method for manufacturing flaky metal powder
JPS58199837A (en) Mg-zn alloy and alloy containing mg and zn for manufacturing fine powder
US3597194A (en) Alloy for brazing powder
Murty et al. Synthesis of nanocrystalline NiAl over a wide composition range by mechanical alloying
JPS58199838A (en) Al-ni alloy and alloy containing al and ni for manufacturing fine powder
US2909808A (en) Process of producing powdered or granular metallic material
JPS63114901A (en) Production of flaky amorphous alloy powder
Csanády et al. Al–Pb nanocomposites made by mechanical alloying and consolidation
JPS6035402B2 (en) aluminum alloy powder pigment
JPH0543775B2 (en)
US3734713A (en) Preparation of powder composition for making dispersion strengthened binary and higher nickel base alloys