JP2001152211A - Method for producing flat metal powder for electromagnetic wave absorber - Google Patents

Method for producing flat metal powder for electromagnetic wave absorber

Info

Publication number
JP2001152211A
JP2001152211A JP33469099A JP33469099A JP2001152211A JP 2001152211 A JP2001152211 A JP 2001152211A JP 33469099 A JP33469099 A JP 33469099A JP 33469099 A JP33469099 A JP 33469099A JP 2001152211 A JP2001152211 A JP 2001152211A
Authority
JP
Japan
Prior art keywords
powder
metal powder
electromagnetic wave
soft magnetic
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33469099A
Other languages
Japanese (ja)
Inventor
Hiroshi Endo
博司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP33469099A priority Critical patent/JP2001152211A/en
Publication of JP2001152211A publication Critical patent/JP2001152211A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing metal powder low in an oxygen content at a low cost by which the working environment is satisfactorily retained, and the problem of waste treatment is reduced in a method for producing the flat powder of soft magnetic metal composing an electromagnetic wave absorber obtained by dispersing the powder of soft magnetic metal into a matrix of rubber or plastics and having a high aspect ratio by wet grinding treatment. SOLUTION: The powder of an Fe-Cr alloy containing, by weight, 5 to 25% Cr, and the balance substantial Fe is subjected to grinding treatment for a suitable time, ordinarily, for 3 to 10 hr with water instead of an organic solvent as a medium by using an attoritor. At the time of the treatment, a lubricant such as zinc stearate may be added thereto.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軟磁性金属の粉末
をゴムまたはプラスチックのマトリクス中に分散させて
なる電磁波吸収体の材料として使用する、扁平な金属粉
末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a flat metal powder which is used as a material for an electromagnetic wave absorber obtained by dispersing a soft magnetic metal powder in a rubber or plastic matrix.

【0002】[0002]

【従来の技術】各種電子機器から発生する電磁波を吸収
して外部に漏洩させないために、また外部からの電磁波
が機器に侵入して動作を妨害することを防ぐために、あ
るいは機器内部の諸要素が相互に干渉して障害とならな
いようシールドするために、電磁波を吸収する材料が使
用されている。その多くは、軟磁性金属の粉末をゴムま
たはプラスチックのマトリクス中に分散させてなるもの
であって、通常は、シート状にしたものが加工および使
用に便宜であって好まれているが、用途に応じた成形品
にしたものもある。出願人も、「DPR」の名称を付し
た電磁波吸収シートの種々のグレードを開発し、実用に
供している。
2. Description of the Related Art In order to prevent electromagnetic waves generated from various electronic devices from absorbing and leaking to the outside, to prevent electromagnetic waves from entering the device from obstructing operation, and to prevent various elements inside the device from being operated. Materials that absorb electromagnetic waves are used to shield them from interfering with each other and hindering each other. Most of them are obtained by dispersing a soft magnetic metal powder in a rubber or plastic matrix, and usually, a sheet is preferred because it is convenient for processing and use. There are also products made according to the requirements. The applicant has also developed various grades of the electromagnetic wave absorbing sheet with the name "DPR" and has put it to practical use.

【0003】この種の電磁波吸収体を構成する軟磁性粉
末の金属としては、センダストに代表されるFe−Si
−Al合金をはじめとし、Fe−Cr−Si合金や、F
e−Cr−Al合金が選択されている。マトリクスの材
料には、塩素化ポリエチレンが好んで用いられている。
[0003] As a metal of the soft magnetic powder constituting this kind of electromagnetic wave absorber, Fe-Si represented by Sendust is used.
-Al alloy, Fe-Cr-Si alloy, F
The e-Cr-Al alloy has been selected. Chlorinated polyethylene is preferably used as the matrix material.

【0004】よく知られているように、電磁波吸収シー
トには周波数特性がある。吸収のピーク周波数を決定す
る主な因子は、軟磁性金属の粉末の粒度および形状、マ
トリクス中への分散量およびシートの厚さである。粉末
の形状に関していえば、きわめて高周波の領域、すなわ
ち数GHz以上の周波数の電磁波に対しては、球形に近
い粉末が高性能の電磁波吸収シートを与えるが、それ以
下すなわち数百MHzから3〜5GHz程度の周波数領
域に対しては、扁平なフレーク状(アスペクト比にして
5以上、好ましくは7以上)の粉末が好適である。
As is well known, an electromagnetic wave absorbing sheet has frequency characteristics. The main factors that determine the peak frequency of absorption are the particle size and shape of the soft magnetic metal powder, the amount of dispersion in the matrix and the thickness of the sheet. Regarding the shape of the powder, for a very high frequency region, that is, an electromagnetic wave having a frequency of several GHz or more, a powder having a nearly spherical shape gives a high-performance electromagnetic wave absorbing sheet. For a frequency range of the order, a flat flake-like (5 or more, preferably 7 or more in aspect ratio) powder is suitable.

【0005】軟磁性金属の粉末であって扁平なものを得
るためには、通常、粉末をアトライターなどの装置にか
けて磨り潰す、摩砕処理を行なう。この作業は、乾式よ
り湿式で、すなわち液体の媒体中で行なうことが、扁平
化の目的に叶っている。媒体とする液体は、水で足りれ
ば好都合であるが、摩砕に伴って金属粉末が水中に溶存
する酸素によって酸化されるという問題が生じる。軟磁
性金属の粉末は、加工可能な限度で高い割合でマトリク
ス材料中に分散させたいわけであるが、金属粉末が酸化
されれば、マトリクス中に分散させることができる金属
成分が減少するから、得られる電磁波吸収シートの性能
は、低いものになる。その上、水の中で摩砕処理を行な
うと、扁平化も行なわれるが、同時に微粉化も進んで、
製品粉末のアスペクト比はあまり高くならないのが常で
あった。
[0005] In order to obtain a flat soft magnetic metal powder, the powder is usually ground by using an attritor or the like to grind it. Performing this operation in a wet type rather than a dry type, that is, in a liquid medium has been achieved for the purpose of flattening. It is convenient if the liquid serving as the medium is sufficient with water, but there is a problem that the metal powder is oxidized by oxygen dissolved in the water during the grinding. The soft magnetic metal powder is desired to be dispersed in the matrix material at a high rate as much as possible, but if the metal powder is oxidized, the metal component that can be dispersed in the matrix decreases, The performance of the resulting electromagnetic wave absorbing sheet will be poor. In addition, when milling is performed in water, flattening is also performed, but at the same time, pulverization proceeds,
The aspect ratio of the product powder usually did not increase very much.

【0006】このため従来は、軟磁性金属の粉末を摩砕
処理して扁平なものを得ようとする場合、水でなく有機
溶剤、たとえばナフテン系の炭化水素を媒体として、摩
砕処理を行なうことを余儀なくされていた。しかし、有
機溶剤を使用すると、まず、臭気や皮膚への影響を防い
で作業環境を良好に維持するのが容易でない、という問
題がある。それが解決できても、廃油の処理という問題
が残り、いずれにせよ製造コストは高くなることが避け
られない。
For this reason, conventionally, when a powder of a soft magnetic metal is to be crushed to obtain a flat material, the crushing is carried out not by water but by an organic solvent, for example, a naphthenic hydrocarbon. I was forced to do that. However, when an organic solvent is used, first, there is a problem that it is not easy to maintain a good working environment by preventing odors and effects on the skin. Even if it can be solved, the problem of waste oil treatment remains, and in any case, the production cost is unavoidable.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、電磁
波吸収体を構成する軟磁性金属の粉末であって十分に扁
平なものを、問題の多い有機溶剤でなく水を媒体として
使用し、したがって作業環境を良好に保つとともに廃棄
物処理の問題を軽減し、低コストで、金属粉末の酸化が
少なく、かつアスペクト比の高い扁平な粉末を供給する
ことができる扁平金属粉末の製造方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to use a soft magnetic metal powder constituting an electromagnetic wave absorber, which is sufficiently flat, using water as a medium instead of a problematic organic solvent, Therefore, the present invention provides a method for producing a flat metal powder capable of supplying a flat powder having a low aspect ratio, low oxidation, low oxidation of a metal powder, and a high aspect ratio, while maintaining a good working environment and reducing the problem of waste disposal. Is to do.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成する本
発明の扁平金属粉末の製造方法は、軟磁性金属の粉末を
ゴムまたはプラスチックのマトリクス中に分散させてな
る電磁波吸収体に使用する扁平な金属粉末を製造する方
法であって、Crを5〜25重量%含有し、残部が実質
上FeからなるFe−Cr合金の粉末を、水中で摩砕処
理することを特徴とする。
According to the present invention, there is provided a method of manufacturing a flat metal powder for achieving the above object, wherein the flat metal powder is dispersed in a rubber or plastic matrix and used in an electromagnetic wave absorber. A method for producing a fine metal powder, characterized in that a powder of a Fe-Cr alloy containing 5 to 25% by weight of Cr and the balance substantially consisting of Fe is ground in water.

【0009】[0009]

【発明の実施形態】摩砕処理の手段としては、常用のア
トライターを使用すればよい。処理の条件は、使用する
装置の特性をはじめ、処理の対象とする金属の合金組成
や粉末の粒度などによって異なり、所望の扁平度となる
回転数と処理時間の組み合わせを選べばよい。ただし、
処理時間が不足であると扁平化が不充分になるが、あま
り長い時間にわたり摩砕を行なっても、扁平化についで
微粉化が起こってアスペクト比がかえって低下する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a means for the grinding treatment, a conventional attritor may be used. The processing conditions vary depending on the characteristics of the equipment used, the alloy composition of the metal to be processed, the particle size of the powder, and the like, and a combination of the number of rotations and the processing time that achieves a desired flatness may be selected. However,
If the treatment time is insufficient, the flattening becomes insufficient. However, even if the milling is performed for an excessively long time, fineness occurs after the flattening and the aspect ratio is rather lowered.

【0010】アトライターによる摩砕処理にあたって
は、高級脂肪酸またはその金属塩、たとえばステアリン
酸またはその亜鉛やカルシウムの塩を、滑剤として原料
金属粉末の2重量%以下、通常1重量%程度添加して処
理を行なってもよい。それにより、製品粉末に高いアス
ペクト比を実現することができる。
In the milling treatment by an attritor, a higher fatty acid or a metal salt thereof, for example, stearic acid or a salt of zinc or calcium, is added as a lubricant in an amount of 2% by weight or less, usually about 1% by weight of the raw metal powder. Processing may be performed. Thereby, a high aspect ratio can be realized in the product powder.

【0011】本発明において、摩砕処理の対象となる軟
磁性合金粉末として、Crを5〜25重量%含有するF
e−Cr合金の粉末を選択した理由は、Crが5重量%
以上含有されていれば、後記する実施例にみるとおり、
水中で摩砕処理を行なっても、扁平化に伴う酸素量の増
大は、有機溶剤中で摩砕処理をした場合と大差ないから
である。Cr量の上限25重量%は、それを超えると、
合金の磁気特性が電磁波吸収体の材料として適切でなく
なるからである。残部が実質上Feからなり、他の成分
を含まない組成を選んだのは、前記した軟磁性合金とし
て常用されているもの、たとえば、Fe−Si−Al合
金、Fe−Cr−Si合金、Fe−Cr−Al合金のよ
うに、SiやAlを含むものは延性が低くて前述の扁平
化に伴う微粉化が生じやすく、水中の摩砕が不適切だか
らである。これに対し、Fe−Cr合金は延性が高く、
水中の摩砕に伴う微粉化の心配はほとんどない。
In the present invention, as a soft magnetic alloy powder to be subjected to the grinding treatment, F containing 5 to 25% by weight of Cr is used.
The reason for selecting the e-Cr alloy powder is that Cr is 5% by weight.
If it is contained as described above, as shown in Examples described below,
This is because even if the grinding treatment is performed in water, the increase in the oxygen amount due to the flattening is not much different from the case where the grinding treatment is performed in an organic solvent. When the upper limit of 25% by weight of Cr exceeds that,
This is because the magnetic properties of the alloy are not suitable as a material for the electromagnetic wave absorber. The reason that the balance was substantially composed of Fe and that the composition containing no other components was selected was selected from those commonly used as the soft magnetic alloys described above, for example, Fe-Si-Al alloy, Fe-Cr-Si alloy, This is because a material containing Si or Al, such as a -Cr-Al alloy, has low ductility and is liable to be pulverized due to the flattening described above, and is not suitable for grinding in water. In contrast, Fe-Cr alloy has high ductility,
There is almost no concern about pulverization due to grinding in water.

【0012】[0012]

【実施例】[実施例1および比較例1]Fe−12Cr
合金の溶湯を水噴霧して、平均粒径D50=8μmの粉
末を製造した。この金属粉末を、つぎの条件でアトライ
ターにより摩砕処理して扁平化した。 使用ボール:SUS440C 18kg 金属粉末:1.8kg 媒体:真空脱気処理した水(実施例1)またはナフテン
系炭化水素「ナフテゾール」日本石油化学製(比較例
1) ともに20リットル 回転数:250rpm 処理時間:15時間まで 潤滑剤:なし (平均粒径「D50」は、レーザー式粒度分布計で測定
したときの、累積重量が50%になる粒径である。) 摩砕処理後、粉末を媒体から分離し真空乾燥して、酸素
量と平均粒径D50とを測定した。処理時間9時間まで
の酸素量の増大傾向を図1に、15時間までのD50の
変化を図2に、それぞれ示した。
[Example 1 and Comparative Example 1] Fe-12Cr
The molten alloy was sprayed with water to produce a powder having an average particle size D50 = 8 μm. This metal powder was ground by an attritor under the following conditions to flatten it. Ball used: SUS440C 18 kg Metal powder: 1.8 kg Medium: Vacuum degassed water (Example 1) or naphthenic hydrocarbon "naphthesol" manufactured by Nippon Petrochemical (Comparative Example 1) 20 liters Both rotation speed: 250 rpm Processing time : Up to 15 hours Lubricant: None (Average particle size "D50" is the particle size at which the cumulative weight becomes 50% as measured by a laser-type particle size distribution meter.) Separated and dried in a vacuum, the amount of oxygen and the average particle size D50 were measured. FIG. 1 shows the increasing tendency of the oxygen amount up to the treatment time of 9 hours, and FIG. 2 shows the change of D50 up to 15 hours.

【0013】図1の結果から、水を媒体として扁平化を
行なっても、有機溶剤を媒体とする場合と、金属粉末に
含有される酸素量には大差がないことがわかる。図2の
データは、処理時間が5〜6時間まではD50の増大す
なわち扁平化が急速に進み、その後はほぼ一定値を保
ち、約10時間を超えると漸減する傾向を示し、かつこ
の傾向は、媒体が水の場合も有機溶媒の場合も、ほとん
ど差がないことを示す。
From the results shown in FIG. 1, it can be seen that even when flattening is performed using water as a medium, there is no significant difference between the case where an organic solvent is used as a medium and the amount of oxygen contained in the metal powder. The data in FIG. 2 shows that the D50 increases or flattened rapidly until the treatment time is 5 to 6 hours, then keeps a substantially constant value, and gradually decreases after about 10 hours. It shows that there is almost no difference between the case where the medium is water and the case where the medium is an organic solvent.

【0014】[実施例2〜4および比較例2,3]いず
れも溶湯の水噴霧により製造したFe−12Cr合金
(実施例2)、Fe−17Cr合金(実施例3)、Fe
−20Cr合金(実施例4)およびFe−9Si−5A
l合金(比較例2、センダスト合金)とカルボニル法で
製造したFe粉(比較例3)とを原料として用い、各粉
末を実施例1で使用した小型アトライターに入れ、水を
媒体として6時間の摩砕処理を行なった。実施例2に限
り、金属粉末の1重量%のステアリン酸亜鉛を滑剤とし
て添加した。各粉末について、処理前後の酸素量、平均
粒度D50、粉末の平均厚さおよびアスペクト比を測定
した。その結果を、下の表1に示す。
[Examples 2 to 4 and Comparative Examples 2 and 3] Fe-12Cr alloy (Example 2), Fe-17Cr alloy (Example 3), Fe-17Cr alloy produced by spraying molten metal
-20Cr alloy (Example 4) and Fe-9Si-5A
1 alloy (Comparative Example 2, Sendust alloy) and Fe powder (Comparative Example 3) produced by the carbonyl method were used as raw materials, and each powder was placed in the small attritor used in Example 1, and water was used as a medium for 6 hours. Was carried out. Only in Example 2, 1% by weight of metal powder zinc stearate was added as a lubricant. For each powder, the oxygen content before and after the treatment, the average particle size D50, the average thickness of the powder, and the aspect ratio were measured. The results are shown in Table 1 below.

【0015】得られた各粉末と実施例1の粉末(摩砕処
理6時間のもの)とを、塩素化ポリエチレンと混練し、
軟磁性金属粉末を65容量%含有する電磁波吸収シート
を製造した。このシートについて、50MHzにおける
交流透磁率μ’を測定した。その結果を、あわせて表1
に掲げる。
[0015] Each of the obtained powders and the powder of Example 1 (having a grinding treatment for 6 hours) are kneaded with chlorinated polyethylene,
An electromagnetic wave absorbing sheet containing 65% by volume of soft magnetic metal powder was manufactured. For this sheet, the AC magnetic permeability μ ′ at 50 MHz was measured. Table 1 shows the results.
Listed in

【0016】 表 1 実施例1 実施例2 実施例3 実施例4 比較例2 比較例3 軟磁性金属 Fe-12Cr Fe-12Cr Fe-17Cr Fe-20Cr Fe-9Si-5Al Fe 粉末の製法 水噴霧 水噴霧 水噴霧 水噴霧 水噴霧 カルボニル 潤滑剤 − 1% − − − − 酸素量(重量%) 原 粉 0.25 0.25 0.27 0.32 0.21 0.25 処理粉 0.71 0.69 0.75 0.80 3.1 2.9 平均粒径D50(μm) 原 粉 8 8 12 13 11 10 処理粉 14 18 20 22 12 16 平均厚さ(μm) 2.0 2.2 2.8 3.0 2.9 2.4 アスペクト比 7.0 8.2 7.1 7.3 4.1 6.7透磁率μ’ 20 21 21 20 11 13 平均厚さは粉末のミクロ写真から厚さを測り、平均して求めた。Table 1 Example 1 Example 2 Example 3 Example 4 Comparative Example 2 Comparative Example 3 Soft magnetic metal Fe-12Cr Fe-12Cr Fe-17Cr Fe-20Cr Fe-9Si-5Al Fe Powder manufacturing method Water spray Water Spray Water spray Water spray Water spray Carbonyl lubricant -1%----Oxygen content (% by weight) Raw powder 0.25 0.25 0.27 0.32 0.21 0.25 Treated powder 0.71 0. 69 0.75 0.80 3.1 2.9 Average particle size D50 (μm) Raw powder 8 8 12 13 11 10 Processed powder 14 18 20 22 12 16 Average thickness (μm) 2.0 2.2 2. 8 3.0 2.9 2.4 Aspect ratio 7.0 8.2 7.1 7.3 4.1 6.7 Permeability μ '20 21 21 20 11 13 The average thickness is from the microphotograph of the powder. It was measured and averaged.

【0017】アスペクト比は、平均粒径D50を上記の
平均厚さで除した値である。
The aspect ratio is a value obtained by dividing the average particle diameter D50 by the above average thickness.

【0018】比較例2のセンダスト合金は、処理による
酸素量の増大が著しく、かつアスペクト比が低いことか
ら、扁平化の効果が低い。比較例3の純Feは、柔らか
いため扁平化は行なわれるが、やはり酸素量が大きく増
大し、その結果として電磁波吸収シートの透磁率μ’が
低い値に止まっている。これに対し本発明の方法で製造
した軟磁性金属粉末は、いずれも低い酸素量と高いアス
ペクト比とを確保しており、電磁波吸収シートの透磁率
μ’が高い。
The sendust alloy of Comparative Example 2 has a low effect of flattening because the amount of oxygen is significantly increased by the treatment and the aspect ratio is low. Pure Fe of Comparative Example 3 is flattened because it is soft, but the amount of oxygen is also greatly increased, and as a result, the magnetic permeability μ ′ of the electromagnetic wave absorbing sheet remains at a low value. On the other hand, the soft magnetic metal powders manufactured by the method of the present invention all have a low oxygen content and a high aspect ratio, and the electromagnetic wave absorbing sheet has a high magnetic permeability μ ′.

【0019】[0019]

【発明の効果】本発明の方法により電磁波吸収体用の扁
平な軟磁性金属の粉末を製造すれば、有機溶剤に代えて
水を摩砕処理の媒体として使用するから、作業環境を良
好に保つことが容易であり、かつ廃棄物処理の問題もほ
とんどなく摩砕処理を進めることができる。扁平化され
た粉末は、酸素の含有量が有機溶剤を使用した場合と大
差なく、扁平化の進行とともに生じやすい微粉化を避け
ることができる。このようにして、高い電磁波吸収能を
もつ吸収体を与える扁平な軟磁性金属粉末を、コストと
環境への影響の面で好ましい条件を確保したまま、製造
することが可能になった。
When a flat soft magnetic metal powder for an electromagnetic wave absorber is produced by the method of the present invention, water is used as a grinding medium instead of an organic solvent, so that a good working environment is maintained. It is easy to carry out the grinding treatment without any problem of waste treatment. In the flattened powder, the content of oxygen is not much different from the case where an organic solvent is used, and it is possible to avoid the pulverization that is likely to occur as the flattening progresses. In this way, it has become possible to produce a flat soft magnetic metal powder providing an absorber having a high electromagnetic wave absorbing ability, while maintaining favorable conditions in terms of cost and environmental impact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1および比較例1のデータで
あって、摩砕処理の時間の経過に伴う金属粉末の酸素量
の増大傾向を示すグラフ。
FIG. 1 is a graph showing data of Example 1 and Comparative Example 1 of the present invention, showing a tendency of an increase in the oxygen content of a metal powder with the lapse of time of a grinding treatment.

【図2】 同じく本発明の実施例1および比較例1のデ
ータであって、摩砕処理の時間の経過に伴う平均粒径D
50の変化を示すグラフ。
FIG. 2 is also data of Example 1 and Comparative Example 1 of the present invention, showing the average particle diameter D with the lapse of time of the grinding treatment.
50 is a graph showing 50 changes.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性金属の粉末をゴムまたはプラスチ
ックのマトリクス中に分散させてなる電磁波吸収体に使
用する扁平な金属粉末を製造する方法であって、Crを
5〜25重量%含有し、残部が実質上FeからなるFe
−Cr合金の粉末を、水中で摩砕処理することを特徴と
する扁平金属粉末の製造方法。
1. A method for producing a flat metal powder used for an electromagnetic wave absorber obtained by dispersing a soft magnetic metal powder in a rubber or plastic matrix, comprising 5 to 25% by weight of Cr, Fe whose balance is substantially Fe
-A method for producing a flat metal powder, wherein a powder of a Cr alloy is ground in water.
【請求項2】 摩砕処理の手段としてアトライターを使
用する請求項1の製造方法。
2. The method according to claim 1, wherein an attritor is used as a means for the grinding treatment.
【請求項3】 アトライターによる摩砕処理にあたり、
高級脂肪酸またはその金属塩を滑剤として、原料金属粉
末の2重量%以下の量添加する請求項2の製造方法。
[3] In the attrition processing by the attritor,
3. The method according to claim 2, wherein the higher fatty acid or its metal salt is added as a lubricant in an amount of not more than 2% by weight of the raw metal powder.
JP33469099A 1999-11-25 1999-11-25 Method for producing flat metal powder for electromagnetic wave absorber Pending JP2001152211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33469099A JP2001152211A (en) 1999-11-25 1999-11-25 Method for producing flat metal powder for electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33469099A JP2001152211A (en) 1999-11-25 1999-11-25 Method for producing flat metal powder for electromagnetic wave absorber

Publications (1)

Publication Number Publication Date
JP2001152211A true JP2001152211A (en) 2001-06-05

Family

ID=18280145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33469099A Pending JP2001152211A (en) 1999-11-25 1999-11-25 Method for producing flat metal powder for electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP2001152211A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123531A (en) * 2003-10-20 2005-05-12 Sanyo Special Steel Co Ltd Powder for electromagnetic wave absorber
WO2010117110A1 (en) * 2009-04-07 2010-10-14 한양대학교 산학협력단 Flaky powder for an electromagnetic wave absorber, and method for producing same
JP2014005524A (en) * 2012-06-27 2014-01-16 Daido Steel Co Ltd Method for manufacturing flat metal powder for electromagnetic wave absorbing sheet
CN105234387A (en) * 2015-09-02 2016-01-13 中国科学院电工研究所 Method for improving electromagnetic wave absorption performance of micron-grade cobalt particles
WO2018159610A1 (en) * 2017-02-28 2018-09-07 山陽特殊製鋼株式会社 Soft magnetic flat powder having high magnetic permeability and high weather resistance, and soft magnetic resin composition containing soft magnetic flat powder
CN112510379A (en) * 2020-12-08 2021-03-16 四川大学 Water load capable of efficiently absorbing microwave energy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123531A (en) * 2003-10-20 2005-05-12 Sanyo Special Steel Co Ltd Powder for electromagnetic wave absorber
WO2010117110A1 (en) * 2009-04-07 2010-10-14 한양대학교 산학협력단 Flaky powder for an electromagnetic wave absorber, and method for producing same
JP2014005524A (en) * 2012-06-27 2014-01-16 Daido Steel Co Ltd Method for manufacturing flat metal powder for electromagnetic wave absorbing sheet
CN105234387A (en) * 2015-09-02 2016-01-13 中国科学院电工研究所 Method for improving electromagnetic wave absorption performance of micron-grade cobalt particles
CN105234387B (en) * 2015-09-02 2017-09-26 中国科学院电工研究所 A kind of method for improving micron order cobalt granule electromagnetic wave absorption performance
WO2018159610A1 (en) * 2017-02-28 2018-09-07 山陽特殊製鋼株式会社 Soft magnetic flat powder having high magnetic permeability and high weather resistance, and soft magnetic resin composition containing soft magnetic flat powder
JP2018142618A (en) * 2017-02-28 2018-09-13 山陽特殊製鋼株式会社 Soft magnetic flat powder with high magnetic permeability and high weather resistance and soft magnetic resin composition containing the same
CN112510379A (en) * 2020-12-08 2021-03-16 四川大学 Water load capable of efficiently absorbing microwave energy
CN112510379B (en) * 2020-12-08 2021-08-10 四川大学 Water load capable of efficiently absorbing microwave energy

Similar Documents

Publication Publication Date Title
JP6864498B2 (en) A soft magnetic flat powder having high magnetic permeability and high weather resistance and a soft magnetic resin composition containing the same.
WO2007036087A1 (en) Methods for spherically granulating and agglomerating metal particles and the metal particles prepared thereby, anodes made from the metal particles
TW201007781A (en) Flat soft magnetic material and process for its production
KR102369149B1 (en) Magnetic flat powder and magnetic sheet containing same
JP2011094204A (en) Surface-treated reduced iron powder, method for producing the same, and powder magnetic core
JP2003221631A (en) Process for manufacturing tungsten carbide-based hard metal and slurry used for this
JP2001152211A (en) Method for producing flat metal powder for electromagnetic wave absorber
KR100300938B1 (en) Iron-based powder composition and its manufacturing method
JP2018031041A (en) Soft magnetic metal powder body and composite magnetic sheet body containing the same
KR102393236B1 (en) soft magnetic flat powder
JP2003332113A (en) Flat soft magnetic powder and composite magnetic sheet using the same
JPH11354973A (en) Electromagnetic wave absorber
JP2916611B2 (en) Powder particle crushing method and particle modification method
JP2005076058A (en) Method for manufacturing flaky metal powder
JPS61124506A (en) Production of zinc flake
JPH0559562B2 (en)
JPH07310101A (en) Reduced iron powder for sintered oilless bearing and its production
JPS6156281B2 (en)
JPH07166201A (en) Method for heat treatment of flaky soft magnetic powder
JP2005123531A (en) Powder for electromagnetic wave absorber
JPH01176013A (en) Manufacture of scaly metal powder
JP2002266005A (en) Method for manufacturing flat metal powder, and powder obtained by the same
JP7257150B2 (en) Flame-retardant powder for magnetic components
JP2002134309A (en) Method for manufacturing electromagnetic wave absorbent powder
JPS58199721A (en) Ferromagnetic oxide and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310