JP2018142618A - Soft magnetic flat powder with high magnetic permeability and high weather resistance and soft magnetic resin composition containing the same - Google Patents

Soft magnetic flat powder with high magnetic permeability and high weather resistance and soft magnetic resin composition containing the same Download PDF

Info

Publication number
JP2018142618A
JP2018142618A JP2017035634A JP2017035634A JP2018142618A JP 2018142618 A JP2018142618 A JP 2018142618A JP 2017035634 A JP2017035634 A JP 2017035634A JP 2017035634 A JP2017035634 A JP 2017035634A JP 2018142618 A JP2018142618 A JP 2018142618A
Authority
JP
Japan
Prior art keywords
soft magnetic
flat powder
powder
weather resistance
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017035634A
Other languages
Japanese (ja)
Other versions
JP6864498B2 (en
Inventor
澤田 俊之
Toshiyuki Sawada
俊之 澤田
滉大 三浦
Kodai Miura
滉大 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2017035634A priority Critical patent/JP6864498B2/en
Priority to CN201880012406.8A priority patent/CN110326063B/en
Priority to KR1020197021065A priority patent/KR102369150B1/en
Priority to PCT/JP2018/007256 priority patent/WO2018159610A1/en
Publication of JP2018142618A publication Critical patent/JP2018142618A/en
Application granted granted Critical
Publication of JP6864498B2 publication Critical patent/JP6864498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic flat powder having high magnetic permeability and high weather resistance to be used for various electronic devices or the like and a soft magnetic resin composition such as a magnetic sheet containing the same.SOLUTION: The present invention relates to a soft magnetic flat powder which consists of an Fe-Si-Al based alloy and of which the C quantity/BET value existing on a surface of the flat powder is 0.01 or more and 1.00 or less, and a soft magnetic resin composition containing the soft magnetic flat powder.SELECTED DRAWING: Figure 1

Description

本発明は、各種の電子デバイスなどに用いられる、高透磁率および高耐候性を有する軟磁性扁平粉末およびこれを含有する磁性シートなどの軟磁性樹脂組成物に関する。   The present invention relates to a soft magnetic flat powder having high magnetic permeability and high weather resistance used for various electronic devices and the like, and a soft magnetic resin composition such as a magnetic sheet containing the same.

従来、スマートフォン、携帯電話、ノート型パーソナルコンピューター、タブレット型パーソナルコンピューターなど、各種の電子機器が普及し、その小型化による電磁干渉が問題となったり、通信の高速化による高周波化が進むことによって、高周波で高い透磁率の実数部(以下、μ’と記す)を示す磁性シートなどの軟磁性樹脂組成物の要求が高まっている。これら電子機器の中で、磁性シートなどの軟磁性樹脂組成物は、電磁波吸収体、RFID(Radio Frequency Identification)用アンテナ、デジタイザ用シート、インダクタ用部材などに用いられ、Fe−Si−Al系合金などの軟磁性扁平粉末を、ゴムや樹脂と混練し、シート状にした軟磁性樹脂組成物が広く用いられている。   Conventionally, various electronic devices such as smartphones, mobile phones, notebook personal computers, tablet personal computers have become widespread, electromagnetic interference due to their miniaturization has become a problem, and higher frequencies due to higher communication speeds, There is an increasing demand for soft magnetic resin compositions such as a magnetic sheet exhibiting a real part (hereinafter referred to as μ ′) having a high magnetic permeability at a high frequency. Among these electronic devices, soft magnetic resin compositions such as magnetic sheets are used for electromagnetic wave absorbers, RFID (Radio Frequency Identification) antennas, digitizer sheets, inductor members, and the like, and Fe-Si-Al alloys. A soft magnetic resin composition obtained by kneading a soft magnetic flat powder such as the above with rubber or resin to form a sheet is widely used.

なお、ここで言う軟磁性樹脂組成物とは、軟磁性フィラーを含有するゴムや樹脂などであり、シート状、フィルム状、ブロック状に塗布や成形されて使用されることが可能である。ここで、いわゆる、Ollendorfの式に示されるように、高いμ’を有する磁性シートなどの軟磁性樹脂組成物を実現するためには、高いアスペクト比と、高い初透磁率を有する軟磁性フィラーを外部磁場方向に配向させて高充填することが有利であることが知られている。   The soft magnetic resin composition referred to here is rubber or resin containing a soft magnetic filler, and can be used by being applied or molded into a sheet shape, a film shape, or a block shape. In order to realize a soft magnetic resin composition such as a magnetic sheet having a high μ ′, as shown in the so-called Ollendorf equation, a soft magnetic filler having a high aspect ratio and a high initial permeability is used. It is known to be advantageous to have a high filling with orientation in the direction of the external magnetic field.

また、高いアスペクト比の粉末を得るために、鋳造粉砕法や各種のアトマイズ法により製造したFe−Si−Al系などの合金粉末を原料粉末とし、各種のボールミル法により扁平化させて用いることが知られている。さらに、ボールミル法による扁平化の際には、原料粉末とボール(粉砕メディア)を、各種有機溶媒中で強制撹拌することが多く提案されている。   Also, in order to obtain a high aspect ratio powder, an alloy powder such as Fe-Si-Al based produced by a casting pulverization method or various atomizing methods can be used as a raw material powder and flattened by various ball mill methods. Are known. Furthermore, for flattening by the ball mill method, many proposals have been made to forcibly stir the raw material powder and the balls (grinding media) in various organic solvents.

前述のように、高いアスペクト比を有する扁平粉末の製造には、各種のボールミル法による扁平化加工が適用され、この加工には各種の有機溶媒が用いられる。例えば、特開2016−72577号公報(特許文献1)には、扁平加工に有機溶媒を用いることが好ましいことが記載され、実施例では工業エタノールを使用している。また、特開2009−266960号公報(特許文献2)にも有機溶媒を用いることが好ましいことが記載され、実施例では、トルエン、2−プロパノール、エタノール、1−プロパノール、1−ブタノール、イソブタノールなどを使用している。さらに、特開2010−196123号公報(特許文献3)では、実施例においてナフテゾールを使用している。   As described above, flattening by various ball mill methods is applied to the production of flat powder having a high aspect ratio, and various organic solvents are used for this processing. For example, JP-A-2006-72577 (Patent Document 1) describes that it is preferable to use an organic solvent for flattening, and industrial ethanol is used in the examples. In addition, JP 2009-266960 A (Patent Document 2) describes that it is preferable to use an organic solvent. In Examples, toluene, 2-propanol, ethanol, 1-propanol, 1-butanol, and isobutanol are used. Etc. are used. Furthermore, in Japanese Unexamined Patent Application Publication No. 2010-196123 (Patent Document 3), naphthesol is used in the examples.

一方、これら特許文献1〜3には、扁平加工後に有機溶媒と扁平粉末の分離についての詳細な記述はない。一般に、扁平加工後に扁平粉末と有機溶媒を取り出し、各種の濾過機や分離機により、扁平粉末と有機溶媒を分離したのち、これを例えば、特許文献1の実施例のように、80℃で24時間のような条件で乾燥させて用いられる。ここで、有機溶媒の沸点は一般に200℃程度以下であること、および、本発明が対象とするような著しく高μ’を狙う扁平粉末の場合、ボールミルによる扁平加工により導入された歪みを高温(特許文献1〜3の実施例においては700℃以上)の熱処理により除去することが必須であることから、この高温熱処理工程で200℃程度の低沸点の有機溶媒は完全に蒸発してしまうと考えられてきた。   On the other hand, in these patent documents 1 to 3, there is no detailed description about separation of the organic solvent and the flat powder after the flat processing. In general, after flattening, the flat powder and the organic solvent are taken out and separated from the flat powder and the organic solvent by various filters and separators. It is used after being dried under conditions such as time. Here, the boiling point of the organic solvent is generally about 200 ° C. or less, and in the case of flat powder aiming at extremely high μ ′ as the object of the present invention, the strain introduced by the flat processing by the ball mill is increased to a high temperature ( In the examples of Patent Documents 1 to 3, it is essential to remove by a heat treatment of 700 ° C. or higher), and thus the low boiling point organic solvent of about 200 ° C. is completely evaporated in this high temperature heat treatment step. Has been.

特開2016−72577号公報JP-A-2006-72577 特開2009−266960号公報JP 2009-266960 A 特開2010−196123号公報JP 2010-196123 A

このような磁性シートなどの軟磁性樹脂組成物は、使用環境によっては発銹することが問題となり、高い耐候性が要求される場合もある。特に近年、磁性シートの高μ’化および薄肉化の要求が極めて強く、磁性シート中の軟磁性フィラー充填率を極限まで増加させたものが使用されるようになってきている。そのため、軟磁性フィラーの発銹を抑制するような添加剤を磁性シートに添加することは難しくなり、また逆に樹脂の体積率を減少せざるを得なくなり軟磁性フィラー全体が必ずしも樹脂で取り囲まれておらず、シート表面にむき出しになったり、樹脂と軟磁性フィラーの界面に隙間ができ、軟磁性フィラー表面が酸化雰囲気に晒されやすくなるなど、磁性シートに含有される軟磁性フィラーにとって、より発銹しやすい使用環境になってきつつある。   Such a soft magnetic resin composition, such as a magnetic sheet, has a problem that it may start up depending on the use environment, and high weather resistance may be required. In particular, in recent years, there is a strong demand for increasing the thickness and thickness of a magnetic sheet, and a magnetic sheet with a soft magnetic filler filling rate increased to the limit has come to be used. For this reason, it becomes difficult to add an additive that suppresses the occurrence of soft magnetic filler to the magnetic sheet, and conversely, the volume fraction of the resin must be reduced, and the entire soft magnetic filler is not necessarily surrounded by the resin. For the soft magnetic filler contained in the magnetic sheet, the sheet surface is exposed, a gap is formed at the interface between the resin and the soft magnetic filler, and the surface of the soft magnetic filler is easily exposed to an oxidizing atmosphere. It is becoming an easy-to-use environment.

従来、球状、扁平状を問わず金属粉末の耐候性を改善するための方法として、主に、金属粉末の合金組成として高い耐候性を有するものを用いる方法か、粉末表面にNiメッキをはじめとした高耐候性皮膜を形成する方法が採用されるのが一般である。しかしながら、本発明が対象とする極めて高いμ’を必要とする扁平粉末や軟磁性樹脂組成物においては、いわゆる電磁ステンレスのような高耐候性合金ではμ’が十分ではなく、一方、パーマロイなどの耐候性の高いFe−Ni系合金は原材料費が高価であるため適用が困難である。また高耐候性皮膜の形成のための従来のメッキ法は著しく高価であるとともに皮膜形成にともなう歪み導入の影響により著しくμ’が減少するため、やはり、本発明が対象とするような高μ’を示す扁平粉末および軟磁性樹脂組成物に適用することは困難である。   Conventionally, as a method for improving the weather resistance of metal powders regardless of spherical or flat shape, mainly using a metal powder having a high weather resistance as an alloy composition, or Ni plating on the powder surface In general, a method of forming a highly weather-resistant film is employed. However, in flat powders and soft magnetic resin compositions requiring extremely high μ ′ targeted by the present invention, μ ′ is not sufficient in a high weather resistance alloy such as so-called electromagnetic stainless steel, while permalloy or the like Fe-Ni alloys with high weather resistance are difficult to apply because of the high raw material costs. In addition, the conventional plating method for forming a highly weather-resistant film is remarkably expensive and significantly reduces μ ′ due to the effect of strain introduction accompanying the film formation. It is difficult to apply to flat powders and soft magnetic resin compositions.

このように、従来、問題とならなかった磁性シートの発銹を抑制することを目的とし、本発明では、高い初透磁率を示すFe−Si−Al系合金の扁平粉末に、極めて安価で、かつ、耐候性改善に有効な表面皮膜を形成し、高いμ’と耐候性を両立させた軟磁性扁平粉末およびこれを含有する軟磁性樹脂組成物を検討した。   Thus, for the purpose of suppressing the generation of magnetic sheets, which has not been a problem in the past, in the present invention, the flat powder of Fe-Si-Al alloy showing a high initial permeability is extremely inexpensive, In addition, a soft magnetic flat powder having a surface film effective for improving weather resistance and having both high μ ′ and weather resistance and a soft magnetic resin composition containing the same were studied.

このように、沸点より熱処理温度が著しく高く、熱処理後に有機溶媒の残渣が残るとは考えられておらず、有機溶媒中での扁平加工後の扁平粉末と有機溶媒の分離には、従来、大きな注意が払われておらず、分離後の乾燥時間短縮のため、十分な濾過や分離が行われるのが通常である。しかしながら、発明者らの鋭意検討において、扁平加工、濾過、乾燥した後の扁平粉末を、十分に高温で熱処理した後も、有機溶媒の主成分であるCが扁平粉末表面から検出されることを見出し、また、そのC量が、乾燥工程前の有機溶媒の残量とともに増加することを見出し、さらには、この扁平粉末表面から検出されるCが形成していると考えられる皮膜が、耐候性の改善に極めて有効であることまで見出し、本発明に至った。   As described above, the heat treatment temperature is significantly higher than the boiling point, and it is not considered that the residue of the organic solvent remains after the heat treatment. Conventionally, the separation of the flat powder and the organic solvent after flattening in the organic solvent is large. In general, sufficient filtration and separation are performed in order to reduce the drying time after separation without attention. However, in earnest studies by the inventors, it has been found that C, which is the main component of the organic solvent, is detected from the surface of the flat powder even after the flat powder after flat processing, filtration, and drying is sufficiently heat-treated. It is found that the amount of C increases with the remaining amount of the organic solvent before the drying step, and further, a film that is considered to be formed of C detected from the surface of the flat powder has a weather resistance. As a result, the present invention has been found.

従来、このような一連の知見は知られておらず、したがって、実際に扁平粉末と有機溶媒の濾過、分離工程後の有機溶媒の残量を検討された例や、さらにはその残量と扁平粉末および軟磁性樹脂組成物の耐候性との関係を検討された例は過去にない。また、本発明で問題視している磁性シートの発銹については、近年の磁性シートの著しい高μ’化、薄肉化の要求にともなうもので、従来は問題となっていなかった点であり、したがって、前述のように、扁平粉末の有機溶媒からの濾過、分離工程にも十分な注意を払われていなかったのが実状である。   Conventionally, such a series of knowledge has not been known, and therefore, an example in which the remaining amount of the organic solvent after the filtration and separation process of the flat powder and the organic solvent was actually examined, and further, the remaining amount and the flatness were examined. There have been no examples in which the relationship between the powder and the weather resistance of the soft magnetic resin composition has been studied. In addition, regarding the occurrence of the magnetic sheet that is considered as a problem in the present invention, it is due to the recent demand for a significantly high μ ′, thinning of the magnetic sheet, which has not been a problem in the past. Therefore, as described above, the fact is that sufficient attention was not paid to the filtration and separation processes of the flat powder from the organic solvent.

これに対し、本発明におけるもっとも重要なパラメータである、「扁平粉末の表面に存在するC量/BET値」をモニタリングすることは、実量産工程で製造される扁平粉末のロット毎の耐候性を把握するうえでも、極めて重要な手法とでき、安定した耐候性の扁平粉末の管理手法とすることもできる。   On the other hand, monitoring the “C amount / BET value existing on the surface of the flat powder”, which is the most important parameter in the present invention, is the weather resistance of each lot of the flat powder produced in the actual mass production process. In order to grasp it, it can be a very important method, and can also be used as a management method for stable weather-resistant flat powder.

その発明の要旨とするところは、
(1)Fe−Si−Al系合金からなり、扁平粉末の表面に存在するC量/BET値が、0.01以上、1.00以下であることを特徴とする軟磁性扁平粉末。
(2)前記(1)に記載する軟磁性扁平粉末を含有する軟磁性樹脂組成物にある。
The gist of the invention is that
(1) A soft magnetic flat powder comprising an Fe-Si-Al alloy and having a C amount / BET value existing on the surface of the flat powder of 0.01 or more and 1.00 or less.
(2) A soft magnetic resin composition containing the soft magnetic flat powder described in (1).

上述したように、本発明により、各種の電子デバイスなどに用いられる、高透磁率および高耐候性を有する軟磁性扁平粉末およびこれを含有する磁性シートなどの軟磁性樹脂組成物を提供できる。   As described above, according to the present invention, it is possible to provide a soft magnetic resin composition such as a soft magnetic flat powder having high magnetic permeability and high weather resistance and a magnetic sheet containing the same, which is used in various electronic devices.

本発明に係る特徴を示す概念的な説明図である。It is a conceptual explanatory drawing which shows the characteristic which concerns on this invention.

以下、本発明の規制した理由について説明する。
扁平粉末の表面に存在するC量/BET値が、0.01以上、1.00以下
本発明において、扁平粉末の表面に存在するC量/BET値は、扁平粉末の単位表面積当たりにおける、Cを含有する耐候性皮膜の量に影響する数値であり、0.01未満では耐候性改善の効果が十分ではなく、1.00を超えると高μ’を有するFe−Si−Al合金部の体積が減少することから扁平粉末のμ’を減少させてしまう。好ましくは、0.05を超え、0.75未満、より好ましくは、0.07を超え、0.50未満である。なお、扁平粉末の表面に存在するC量は、扁平粉末全体のC量から、有機溶媒による扁平加工前の原料粉末全体のC量を減じた値によって算出することが可能である。なお、C量は質量%、BET値は比表面積であり単位はm2 /gである。
Hereinafter, the reason for the restriction of the present invention will be described.
C amount / BET value present on the surface of the flat powder is 0.01 or more and 1.00 or less. In the present invention, the C amount / BET value existing on the surface of the flat powder is the C per unit surface area of the flat powder. Is a numerical value that affects the amount of the weather-resistant film containing, and if it is less than 0.01, the effect of improving the weather resistance is not sufficient, and if it exceeds 1.00, the volume of the Fe-Si-Al alloy part having high μ ′ Will decrease μ ′ of the flat powder. Preferably, it is more than 0.05 and less than 0.75, more preferably more than 0.07 and less than 0.50. The amount of C present on the surface of the flat powder can be calculated by subtracting the amount of C in the raw material powder before flattening with an organic solvent from the amount of C in the entire flat powder. The C amount is mass%, the BET value is a specific surface area, and the unit is m 2 / g.

ここで、本発明において、図1に示すように、Fe−Si−Al系合金扁平粉末1の表面に、C濃縮皮膜2を形成することができる。このように有機溶媒の沸点よりも十分に高い温度での熱処理の後も、扁平粉末の表面にCが残留する原因についての詳細は不明であるが、以下のことが推測される。ボールミルによる扁平加工により、原料粉末は著しく大きな加工を受ける。この時、粉末表面に存在する有機溶媒の一部は、粉末表面と反応を起こしたり、粉末の結晶粒界に侵入し、変質している可能性が考えられる。さらに、乾燥時には、その変質物の層が、残留している有機溶媒と接触しながら温度が上昇することにより、さらなる変質層の増加を促進している可能性が考えられる。   Here, in the present invention, as shown in FIG. 1, the C concentrated film 2 can be formed on the surface of the Fe—Si—Al alloy flat powder 1. Thus, even after the heat treatment at a temperature sufficiently higher than the boiling point of the organic solvent, details about the cause of C remaining on the surface of the flat powder are unknown, but the following is presumed. Due to the flat processing by the ball mill, the raw material powder undergoes remarkably large processing. At this time, a part of the organic solvent present on the powder surface may react with the powder surface or may enter the crystal grain boundary of the powder and change in quality. Furthermore, at the time of drying, there is a possibility that the layer of the deteriorated product is promoted to increase in the further deteriorated layer by increasing the temperature while being in contact with the remaining organic solvent.

なお、後述する実施例における高温熱処理後の扁平粉末をオージェ分析した際に検出されるC濃縮層厚さは、0.1nmを超え、5nm未満の範囲であった。詳細な構造や成分は不明であるが、このC濃縮層がFe−Si−Al系合金扁平粉末と外気や腐食性液との接触を抑制し、耐候性改善に寄与していると考えられる。   In addition, the C concentration layer thickness detected when Auger analysis of the flat powder after the high-temperature heat treatment in Examples described later was in the range of more than 0.1 nm and less than 5 nm. Although the detailed structure and components are unknown, it is considered that this C concentrated layer suppresses the contact between the Fe—Si—Al alloy flat powder and the outside air or corrosive liquid, thereby contributing to improvement in weather resistance.

本発明は、従来より提案されている高μ’を有するFe−Si−Al系合金扁平粉末において、その高μ’を維持したまま耐候性を改善できるため、扁平粉末の表面の物性である「扁平粉末の表面に存在するC量/BET値」以外の、扁平粉末そのものに関する物性値については、従来例のものを適用することが可能であるが、高μ’を得るために好ましい各物性の範囲は以下のとおりである。   Since the present invention can improve the weather resistance while maintaining the high μ ′ in the conventionally proposed Fe—Si—Al-based alloy flat powder having a high μ ′, the physical properties of the surface of the flat powder are “ As for the physical property values related to the flat powder itself other than the “C amount / BET value present on the surface of the flat powder”, those of the conventional example can be applied, but each physical property preferable for obtaining high μ ′ The range is as follows.

Fe−Si−Al系合金の組成において、Siは6.5%を超え11%未満、より好ましくは7%を超え9.5%未満、さらに好ましくは7.5%を超え8%未満であり、Alは4%を超え10%未満、より好ましくは5.5%を超え9.5%未満、さらに好ましくは7%を超え9%未満である。   In the composition of the Fe-Si-Al based alloy, Si is more than 6.5% and less than 11%, more preferably more than 7% and less than 9.5%, still more preferably more than 7.5% and less than 8%. Al is more than 4% and less than 10%, more preferably more than 5.5% and less than 9.5%, still more preferably more than 7% and less than 9%.

また、平均粒径は20〜100μm、より好ましくは35〜80μm、さらに好ましくは50〜70μmである。タップ密度は0.50〜1.50Mg/m3、より好ましくは0.55〜1.00Mg/m3、さらに好ましくは0.60〜0.80Mg/m3である。長手方向に印加して測定した保磁力は24〜800A/m、より好ましくは32〜240A/m、さらに好ましくは40〜120A/mである。 Moreover, an average particle diameter is 20-100 micrometers, More preferably, it is 35-80 micrometers, More preferably, it is 50-70 micrometers. The tap density is 0.50 to 1.50 Mg / m 3 , more preferably 0.55 to 1.00 Mg / m 3 , and still more preferably 0.60 to 0.80 Mg / m 3 . The coercive force measured by applying in the longitudinal direction is 24 to 800 A / m, more preferably 32 to 240 A / m, and still more preferably 40 to 120 A / m.

厚さ方向に印加して測定した保磁力は48〜2000A/m、より好ましくは64〜1000A/m、さらに好ましくは80〜320A/mである。厚さ方向に印加して測定した保磁力/長手方向に印加して測定した保磁力は1.5〜4.0、より好ましくは2.0〜3.5、さらに好ましくは2.3〜3.3である。酸素量は1.5%以下、より好ましくは1.0%以下、さらに好ましくは0.7%以下である。窒素量は0.50%以下、より好ましくは0.10%以下、さらに好ましくは0.03%以下である。   The coercive force measured by applying in the thickness direction is 48 to 2000 A / m, more preferably 64 to 1000 A / m, and still more preferably 80 to 320 A / m. Coercivity measured by applying in the thickness direction / coercivity measured by applying in the longitudinal direction is 1.5 to 4.0, more preferably 2.0 to 3.5, and even more preferably 2.3 to 3. .3. The amount of oxygen is 1.5% or less, more preferably 1.0% or less, and still more preferably 0.7% or less. The amount of nitrogen is 0.50% or less, more preferably 0.10% or less, and still more preferably 0.03% or less.

平均アスペクト比は5以上、より好ましくは15以上、さらに好ましく30以上である。BET値は0.5〜1.5m2/g、より好ましくは0.6〜1.3m2/g、さらに好ましくは0.8〜1.2m2/gである。添加元素については高い初透磁率を示すFe−Si−Al系合金に大きな影響を与えない範囲の元素添加が可能であり、例えば、Mn、Cr、Ni、Cuのいずれか1種または2種以上が合計で5%以下が好ましく、3%以下がより好ましく、無添加がさらに好ましい。ただし、これらの各種物性値の範囲により、本発明の範囲が限定的に解釈されるべきではない。 The average aspect ratio is 5 or more, more preferably 15 or more, and further preferably 30 or more. The BET value is 0.5 to 1.5 m 2 / g, more preferably 0.6 to 1.3 m 2 / g, and still more preferably 0.8 to 1.2 m 2 / g. As for the additive element, it is possible to add an element in a range that does not greatly affect the Fe—Si—Al alloy showing high initial permeability. For example, any one or more of Mn, Cr, Ni, and Cu Is preferably 5% or less, more preferably 3% or less, and even more preferably no addition. However, the scope of the present invention should not be construed as being limited by the range of these various physical property values.

以下、本発明について実施例によって具体的に説明する。
以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
Hereinafter, the present invention will be specifically described with reference to examples.
Hereinafter, the effects of the present invention will be clarified by examples. However, the present invention should not be construed in a limited manner based on the description of the examples.

(扁平粉末の作製)
水アトマイズ法、ガスアトマイズ法、ディスクアトマイズ法または溶融による合金化後の粉砕法(鋳造粉砕法)のいずれかにより所定の成分の粉末を作製し150μm以下に分級した。各種アトマイズは従来提案されている一般的な方法で可能であり、アルミナ製坩堝を溶解に用い、坩堝下の直径2mmのノズルから合金溶湯を出湯し、これに高圧水を噴霧し溶湯を分断、高圧ガス(アルゴンまたは窒素)を噴霧し溶湯を分断、または回転ディスクにより遠心力で溶湯を分断することで実施した。これら粉末の一部には、次に続く扁平加工の前に熱処理を施した。これらを原料粉末として、扁平加工を実施した。扁平加工は従来提案されている一般的な方法で可能であり、アトライタ加工を用い、SUJ2製の直径4.8mmのボールを使用し、原料粉末100gと各種有機溶媒とともに攪拌容器に投入し、羽根の回転数を300rpmとして実施した。
(Production of flat powder)
Powders of predetermined components were prepared and classified to 150 μm or less by any of the water atomizing method, gas atomizing method, disk atomizing method, or pulverization method after alloying by casting (casting pulverization method). Various atomizations can be performed by a conventionally proposed general method. An alumina crucible is used for melting, a molten alloy is discharged from a nozzle having a diameter of 2 mm under the crucible, and high pressure water is sprayed on the molten metal to divide the molten metal. It was carried out by spraying high-pressure gas (argon or nitrogen) and dividing the molten metal, or by dividing the molten metal by centrifugal force using a rotating disk. Some of these powders were heat-treated before the subsequent flattening. The flattening process was carried out using these as raw material powders. Flattening can be performed by a conventionally proposed general method, using attritor processing, using a ball of 4.8 mm in diameter made by SUJ2, and putting it into a stirring container together with 100 g of raw material powder and various organic solvents, The number of rotations was 300 rpm.

有機溶媒の添加量は、原料粉末100質量部に対し、100質量部とした。扁平化加工時間とともにタップ密度は低下していくが、扁平化加工中に少量の粉末をサンプリングし、所定のタップ密度が得られた時点で扁平加工を完了とした。扁平加工後に、扁平粉末と有機溶媒をビーカーに取り出し、上澄み液を捨てた後、目開き1000μmの分級網の上に敷いた紙ウエスの上に取り出し、常温常圧で所定の時間放置し、有機溶媒を濾過した(最大1時間濾過)。一部の粉末(1時間濾過し余剰の有機溶媒が十分に除去されたもの)においては、濾過後に所定の重量の有機溶媒を再度滴下し、含ませたものも作製した。
以上のように有機溶媒が残留している状態で、これらをステンレス製の皿に移し、80℃で24時間乾燥させた。さらに、このようにして得られた扁平粉末を真空中、アルゴン中または窒素中で熱処理し、各種の評価に用いた。
The addition amount of the organic solvent was 100 parts by mass with respect to 100 parts by mass of the raw material powder. Although the tap density decreases with the flattening time, a small amount of powder was sampled during the flattening process, and the flattening process was completed when a predetermined tap density was obtained. After flattening, the flat powder and the organic solvent are taken out into a beaker, the supernatant liquid is discarded, and then taken out on a paper cloth laid on a classification mesh with an opening of 1000 μm and left at room temperature and normal pressure for a predetermined time. The solvent was filtered (up to 1 hour filtration). In some powders (filtered for 1 hour and the excess organic solvent was sufficiently removed), a predetermined weight of the organic solvent was added again after filtration, and the powder was also included.
With the organic solvent remaining as described above, these were transferred to a stainless steel dish and dried at 80 ° C. for 24 hours. Further, the flat powder thus obtained was heat-treated in vacuum, argon or nitrogen and used for various evaluations.

(扁平粉末の評価)
得られた熱処理後の扁平粉末の平均粒径、タップ密度、保磁力(長手方向および厚さ方向)、酸素値、窒素値、BET値、オージェ分析によるC濃縮層厚さをそれぞれ測定した。平均粒径はレーザー回折法、タップ密度は、約20gの扁平粉末を、容積100cm3のシリンダーに充填し、落下高さ10mmタップ回数200回の時の充填密度、保磁力は市販の保磁力メータで評価した。また、得られた熱処理後の扁平粉末と扁平加工前の原料粉末のC量も評価し、その差分を算出し、扁平粉末の表面に存在するC量とした。
(Evaluation of flat powder)
The average particle diameter, tap density, coercive force (longitudinal direction and thickness direction), oxygen value, nitrogen value, BET value, and C concentrated layer thickness by Auger analysis were measured for the obtained flat powder after heat treatment. Average particle size is laser diffraction method, tap density is about 20g of flat powder packed in a cylinder of 100cm 3 capacity, drop height is 10mm, packing density when the number of taps is 200 times, coercive force is a commercially available coercive force meter. It was evaluated with. In addition, the C amount of the obtained flat powder after heat treatment and the raw material powder before flat processing was also evaluated, and the difference was calculated as the C amount existing on the surface of the flat powder.

(磁性シートの作製および平均アスペクト比とμ’の評価)
扁平粉末以外の磁性シートの構成としては、従来提案されている一般的な構成が適用可能であり、磁性シート作製も従来提案されている一般的な方法で可能である。トルエンに塩素化ポリエチレンを溶解し、これに得られた扁平粉末を混合、分散した。この分散液をポリエステル樹脂に厚さ100μm程度に塗布し、常温常湿で乾燥させた。その後、130℃、15MPaの圧力でプレス加工し、磁性シートを得た。磁性シートのサイズは150mm×150mmで厚さは50μmである。なお、磁性シート中の扁平粉末の体積充填率はいずれも約50%であった。
(Production of magnetic sheet and evaluation of average aspect ratio and μ ')
As a configuration of the magnetic sheet other than the flat powder, a conventionally proposed general configuration can be applied, and a magnetic sheet can be manufactured by a conventionally proposed general method. Chlorinated polyethylene was dissolved in toluene, and the resulting flat powder was mixed and dispersed. This dispersion was applied to a polyester resin to a thickness of about 100 μm and dried at normal temperature and humidity. Then, it pressed at 130 degreeC and the pressure of 15 Mpa, and obtained the magnetic sheet. The size of the magnetic sheet is 150 mm × 150 mm and the thickness is 50 μm. The volume filling rate of the flat powder in the magnetic sheet was about 50%.

次に、この磁性シートを、外径7mm、内径3mmのドーナツ状に切り出し、インピーダンス測定器により、室温でインピーダンス特性の周波数特性を測定し、その結果からμ’を算出した。ここで、μ’の評価として1〜5MHzの平均値を用いた。さらに、得られた磁性シートの厚さ方向が観察できる樹脂埋め研磨試料を作製し、SEM観察により無作為に選んだ50粉末について、画像解析から平均厚さと平均アスペクト比を算出した。なお、アスペクト比は、「扁平粉末の長手方向長さ/扁平粉末の厚さ」である。   Next, this magnetic sheet was cut into a donut shape having an outer diameter of 7 mm and an inner diameter of 3 mm, and the frequency characteristic of the impedance characteristic was measured at room temperature with an impedance measuring instrument, and μ ′ was calculated from the result. Here, an average value of 1 to 5 MHz was used for evaluating μ ′. Further, a resin-embedded polished sample in which the thickness direction of the obtained magnetic sheet can be observed was prepared, and the average thickness and average aspect ratio were calculated from image analysis for 50 powders randomly selected by SEM observation. The aspect ratio is “the length of the flat powder in the longitudinal direction / the thickness of the flat powder”.

(磁性シートの耐候性評価)
得られた磁性シート20×20mmに切り抜き、20%NaCl水溶液に、60℃で100時間浸漬し、その後の発銹状態を観察した。磁性シートに発銹が全く見られないものをA、一部に点状の茶褐色の変色が見られたものをB、全面が茶褐色に変色したものをCとして評価した。
(Evaluation of weather resistance of magnetic sheet)
The obtained magnetic sheet was cut out to 20 × 20 mm, immersed in a 20% NaCl aqueous solution at 60 ° C. for 100 hours, and the subsequent wrinkling state was observed. The magnetic sheet was evaluated as A where no wrinkles were observed, B as partly spot-like brownish brown discoloration, and C as the whole surface discolored brownish.

表1〜20に示すように、表1、3、5、7、9、11、13、15、17、19は、各原料粉末合金組成についての製造条件である。また、表2、4、6、8、10、12、14、16、18、20は、前記製造条件に基づく扁平粉末の特性および性能等を示す。 As shown in Tables 1 to 20, Tables 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19 are production conditions for each raw material powder alloy composition. Tables 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 show characteristics and performance of the flat powder based on the manufacturing conditions.

表2に示す比較例No.1は、表面C量/BET値が高く、μ´の値が本発明の目的とする値に欠けている。また、比較例No.6は、表面C量/BET値が0のために耐候性が悪い。同様に、表4、表6、表8、表10、表12、表14に示す比較例No.7、13、19、25、31、37は、表面C量/BET値が高く、μ´の値が本発明の目的とする値に欠けている。また、比較例No.12、18、24、30、36、42は、表面C量/BET値が0のために耐候性が悪い。   Comparative Example No. 2 shown in Table 2 No. 1 has a high surface C amount / BET value, and the value of μ ′ lacks the target value of the present invention. Comparative Example No. No. 6 has poor weather resistance because the surface C amount / BET value is 0. Similarly, the comparative example Nos. Shown in Table 4, Table 6, Table 8, Table 10, Table 12, and Table 14 were used. 7, 13, 19, 25, 31, 37 have a high surface C amount / BET value, and the value of μ ′ is lacking the target value of the present invention. Comparative Example No. Nos. 12, 18, 24, 30, 36, and 42 have poor weather resistance because the surface C amount / BET value is 0.

また、表16、表18、表20に示す比較例No.43、49、55は、表面C量/BET値が0であるために耐候性が悪い。比較例No.48、54、60は、表面C量/BET値が高く、μ´の値が本発明の目的とする値に欠けている。これに対し、本発明例No.2〜5、8〜11、14〜17、20〜23、26〜29、32〜35、38〜41、44〜47、50〜53、56〜59は、いづれも本発明の条件を満足していることで、高μ´と高耐候性の優れていることが分かる。   In addition, Comparative Example Nos. Shown in Table 16, Table 18, and Table 20 were used. Nos. 43, 49 and 55 have poor weather resistance since the surface C amount / BET value is 0. Comparative Example No. Nos. 48, 54 and 60 have a high surface C amount / BET value, and the value of μ ′ is lacking the target value of the present invention. On the other hand, the present invention example No. 2-5, 8-11, 14-17, 20-23, 26-29, 32-35, 38-41, 44-47, 50-53, 56-59 all satisfy the conditions of the present invention. Thus, it can be seen that the high μ ′ and the high weather resistance are excellent.

以上述べたように、Fe−Si−Al系合金からなり、有機溶媒中での扁平化処理およびその後の有機溶媒の濾過工程で適量の有機溶媒を残存させたまま乾燥させることにより、扁平粉末表面にC濃縮層を生成することができ、これにより、このFe−Si−Al系合金粉末本来の持つ透磁率(μ´)を維持しつつ、安価に耐候性の改善を実現可能とした極めて優れた効果を奏するものである。   As described above, the surface of the flat powder is made of an Fe-Si-Al-based alloy, and is dried with an appropriate amount of the organic solvent remaining in the flattening treatment in the organic solvent and the subsequent filtering step of the organic solvent. C-enriched layer can be produced in this way, and this makes it possible to improve the weather resistance at low cost while maintaining the magnetic permeability (μ ′) inherent to this Fe—Si—Al alloy powder. It is effective.

1 Fe−Si−Al系合金扁平粉末
2 C濃縮皮膜


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
1 Fe-Si-Al alloy flat powder 2 C concentrated film


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (2)

Fe−Si−Al系合金からなり、扁平粉末の表面に存在するC量/BET値が、0.01以上、1.00以下であることを特徴とする軟磁性扁平粉末。 A soft magnetic flat powder comprising an Fe-Si-Al alloy and having a C amount / BET value present on the surface of the flat powder of 0.01 or more and 1.00 or less. 請求項1に記載する軟磁性扁平粉末を含有する軟磁性樹脂組成物。 A soft magnetic resin composition comprising the soft magnetic flat powder according to claim 1.
JP2017035634A 2017-02-28 2017-02-28 A soft magnetic flat powder having high magnetic permeability and high weather resistance and a soft magnetic resin composition containing the same. Active JP6864498B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017035634A JP6864498B2 (en) 2017-02-28 2017-02-28 A soft magnetic flat powder having high magnetic permeability and high weather resistance and a soft magnetic resin composition containing the same.
CN201880012406.8A CN110326063B (en) 2017-02-28 2018-02-27 Soft magnetic flat powder and soft magnetic resin composition containing same
KR1020197021065A KR102369150B1 (en) 2017-02-28 2018-02-27 Soft magnetic flat powder having high magnetic permeability and high weather resistance, and soft magnetic resin composition containing the same
PCT/JP2018/007256 WO2018159610A1 (en) 2017-02-28 2018-02-27 Soft magnetic flat powder having high magnetic permeability and high weather resistance, and soft magnetic resin composition containing soft magnetic flat powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017035634A JP6864498B2 (en) 2017-02-28 2017-02-28 A soft magnetic flat powder having high magnetic permeability and high weather resistance and a soft magnetic resin composition containing the same.

Publications (2)

Publication Number Publication Date
JP2018142618A true JP2018142618A (en) 2018-09-13
JP6864498B2 JP6864498B2 (en) 2021-04-28

Family

ID=63370132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017035634A Active JP6864498B2 (en) 2017-02-28 2017-02-28 A soft magnetic flat powder having high magnetic permeability and high weather resistance and a soft magnetic resin composition containing the same.

Country Status (4)

Country Link
JP (1) JP6864498B2 (en)
KR (1) KR102369150B1 (en)
CN (1) CN110326063B (en)
WO (1) WO2018159610A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136665A (en) * 2019-02-21 2020-08-31 Tdk株式会社 Composite magnetic material, magnetic core, and electronic component
JP2021111766A (en) * 2020-01-11 2021-08-02 株式会社メイト Soft magnetic metal flat powder, resin composite sheet using the same, and resin composite compound for molding processing
JP7436194B2 (en) 2019-12-06 2024-02-21 キヤノン電子株式会社 Satellite tracking system, satellite tracking method, and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718347B (en) * 2019-10-28 2021-03-26 横店集团东磁股份有限公司 Preparation method of high-permeability scaly iron-silicon-aluminum magnetic powder
CN110993238A (en) * 2019-12-20 2020-04-10 武汉理工大学 Soft magnetic nanocrystalline metal or alloy flake particles having internal grain orientation and microwave absorbing material
CN113410021A (en) * 2021-05-20 2021-09-17 华南理工大学 Coated magnetic powder core of thermoplastic resin and epoxy resin composite adhesive and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043486A (en) * 1983-08-16 1985-03-08 Toshiba Corp Wear-resistant "sendust(r)" alloy and its production
JP2001152211A (en) * 1999-11-25 2001-06-05 Daido Steel Co Ltd Method for producing flat metal powder for electromagnetic wave absorber
JP2004263231A (en) * 2003-02-28 2004-09-24 Ishizuka Glass Co Ltd Rust-preventive method for metal powder and rust-preventive agent used therefor
JP2009249739A (en) * 2008-04-11 2009-10-29 Hitachi Metals Ltd Metal magnetic particulate, method for producing the same and powder magnetic core
JP2012077316A (en) * 2010-09-30 2012-04-19 Sumitomo Osaka Cement Co Ltd Method for producing magnetic metallic particle and method for producing composite magnetic material
WO2015145520A1 (en) * 2014-03-24 2015-10-01 株式会社 東芝 Magnetic material and electromagnetic wave absorber
JP2016072577A (en) * 2014-10-02 2016-05-09 山陽特殊製鋼株式会社 Soft magnetic flat powder and method for manufacturing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048191B2 (en) * 2005-12-28 2011-11-01 Advanced Technology & Material Co., Ltd. Compound magnetic powder and magnetic powder cores, and methods for making them thereof
JP4775593B2 (en) * 2006-10-31 2011-09-21 ソニーケミカル&インフォメーションデバイス株式会社 Method for producing laminated soft magnetic sheet
CN100500783C (en) * 2007-05-17 2009-06-17 钢铁研究总院 Inorganic insulating adhesive for soft magnet metal powder core and its preparation process
JP4636113B2 (en) 2008-04-23 2011-02-23 Tdk株式会社 Flat soft magnetic material and method for producing the same
JP5617173B2 (en) 2009-02-26 2014-11-05 大同特殊鋼株式会社 Method for producing flat soft magnetic powder and electromagnetic wave absorber
CN101745637B (en) * 2010-02-11 2016-03-09 昆山磁通新材料科技有限公司 A kind of insulating coating method and the metal-powder-core prepared according to the method
JP5374537B2 (en) * 2010-05-28 2013-12-25 住友電気工業株式会社 Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for manufacturing dust core
JP6189633B2 (en) * 2013-05-16 2017-08-30 山陽特殊製鋼株式会社 Soft magnetic flat powder for magnetic sheets having excellent sheet surface smoothness and high permeability, magnetic sheet using the same, and method for producing soft magnetic flat powder
CN104008844B (en) * 2014-01-20 2017-05-10 横店集团东磁股份有限公司 Fabrication method of soft magnetic alloy materials
CN106373690A (en) * 2016-10-10 2017-02-01 大连理工大学 Nanocrystal magnetically soft alloy with high processing property and high saturation magnetic induction strength, and preparation method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043486A (en) * 1983-08-16 1985-03-08 Toshiba Corp Wear-resistant "sendust(r)" alloy and its production
JP2001152211A (en) * 1999-11-25 2001-06-05 Daido Steel Co Ltd Method for producing flat metal powder for electromagnetic wave absorber
JP2004263231A (en) * 2003-02-28 2004-09-24 Ishizuka Glass Co Ltd Rust-preventive method for metal powder and rust-preventive agent used therefor
JP2009249739A (en) * 2008-04-11 2009-10-29 Hitachi Metals Ltd Metal magnetic particulate, method for producing the same and powder magnetic core
JP2012077316A (en) * 2010-09-30 2012-04-19 Sumitomo Osaka Cement Co Ltd Method for producing magnetic metallic particle and method for producing composite magnetic material
WO2015145520A1 (en) * 2014-03-24 2015-10-01 株式会社 東芝 Magnetic material and electromagnetic wave absorber
JP2016072577A (en) * 2014-10-02 2016-05-09 山陽特殊製鋼株式会社 Soft magnetic flat powder and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136665A (en) * 2019-02-21 2020-08-31 Tdk株式会社 Composite magnetic material, magnetic core, and electronic component
JP7251468B2 (en) 2019-02-21 2023-04-04 Tdk株式会社 Composite magnetic materials, magnetic cores and electronic components
JP7436194B2 (en) 2019-12-06 2024-02-21 キヤノン電子株式会社 Satellite tracking system, satellite tracking method, and program
JP2021111766A (en) * 2020-01-11 2021-08-02 株式会社メイト Soft magnetic metal flat powder, resin composite sheet using the same, and resin composite compound for molding processing
JP7041819B2 (en) 2020-01-11 2022-03-25 株式会社メイト Soft magnetic metal flat powder, resin composite sheet using it, and resin composite compound for molding processing

Also Published As

Publication number Publication date
CN110326063B (en) 2021-01-22
CN110326063A (en) 2019-10-11
JP6864498B2 (en) 2021-04-28
KR102369150B1 (en) 2022-02-28
WO2018159610A1 (en) 2018-09-07
KR20190117491A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP2018142618A (en) Soft magnetic flat powder with high magnetic permeability and high weather resistance and soft magnetic resin composition containing the same
JP6757117B2 (en) Soft magnetic flat powder and its manufacturing method
JP6442236B2 (en) Soft magnetic flat powder and method for producing the same
JP6738160B2 (en) Soft magnetic flat powder and method for producing the same
CN107004481B (en) Flat soft magnetic powder and method for producing same
WO2014185443A1 (en) Soft-magnetic flat powder for magnetic sheet, magnetic sheet using same, and production method for soft-magnetic flat powder
EP2980811A1 (en) Noise-suppressing composite magnetic powder
JP6396630B1 (en) Soft magnetic flat powder
WO2018143427A1 (en) Magnetic flat powder and magnetic sheet containing same
JP2014204051A (en) Soft magnetic flat-particle powder, and magnetic sheet arranged by use thereof
JP2018170330A (en) Soft magnetic metal powder
KR102393236B1 (en) soft magnetic flat powder
CN109414760B (en) Flat powder and magnetic sheet for use at high frequencies
JP6882905B2 (en) Soft magnetic flat powder
JP2017118114A (en) Soft magnetic flat-particle powder, and magnetic sheet using the same
JP7257150B2 (en) Flame-retardant powder for magnetic components
JP6738502B2 (en) Method for producing soft magnetic flat powder
JP7133666B2 (en) Soft magnetic flat powder
WO2024128217A1 (en) Soft magnetic flat powder and magnetic member
JP2024085534A (en) Soft magnetic flat powder
JP2020057817A (en) Manufacturing method of soft magnetic flat powder

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6864498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250