JP2024085534A - Soft-magnetic flat powder - Google Patents

Soft-magnetic flat powder Download PDF

Info

Publication number
JP2024085534A
JP2024085534A JP2022200096A JP2022200096A JP2024085534A JP 2024085534 A JP2024085534 A JP 2024085534A JP 2022200096 A JP2022200096 A JP 2022200096A JP 2022200096 A JP2022200096 A JP 2022200096A JP 2024085534 A JP2024085534 A JP 2024085534A
Authority
JP
Japan
Prior art keywords
powder
magnetic
mass
flat
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022200096A
Other languages
Japanese (ja)
Other versions
JP7534378B2 (en
Inventor
凌平 細見
Ryohei HOSOMI
裕樹 池田
Hiroki Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2022200096A priority Critical patent/JP7534378B2/en
Priority to PCT/JP2023/044394 priority patent/WO2024128217A1/en
Publication of JP2024085534A publication Critical patent/JP2024085534A/en
Application granted granted Critical
Publication of JP7534378B2 publication Critical patent/JP7534378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft-magnetic flat powder allowing for obtaining a magnetic sheet 2 excellent in noise-suppressing performance.
SOLUTION: A magnetic sheet 2 comprises a matrix 4 and powder dispersed in the matrix 4. The matrix 4 is of a polymer composition, and the polymer composition has a base material of rubber or resin. The powder is an aggregate of a multiplicity of flat particles 6, and the flat particles 6 have a material of Fe-Si-Al alloy. The alloy contains C in the amount of 0.01 mass% or more and 0.05 mass% or less. The powder has a preferable median size D50 (volumetric basis) of 20.0 μm or greater and 90.0 μm or smaller. The powder has a preferable tap density TD of 1.25 g/cm3 or lower.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本明細書は、その粒子の形状が扁平であり、かつ軟磁性を有する粉末に関する。 This specification relates to a powder whose particles are flat and have soft magnetic properties.

パーソナルコンピュータ、携帯電話機等の電子機器は、回路を有している。この回路に装着される電子部品から放射される電波ノイズに起因して、電子部品と他の電子部品との間の電波干渉、及び電子回路と他の電子回路との間の電波干渉が生じる。電波干渉は、電子機器の誤動作を招来する。誤作動の抑制の目的で、電子機器に磁性シート(電磁波吸収シート)が挿入される。磁性シートは、電磁波を磁力に変換する。この磁性シートにより、ノイズが抑制されうる。 Electronic devices such as personal computers and mobile phones have circuits. Radio noise emitted from electronic components attached to these circuits causes radio interference between the electronic components and other electronic components, and between electronic circuits and other electronic circuits. Radio interference can cause electronic devices to malfunction. To prevent malfunctions, magnetic sheets (electromagnetic wave absorbing sheets) are inserted into electronic devices. Magnetic sheets convert electromagnetic waves into magnetic force. Noise can be suppressed by these magnetic sheets.

特開2017-118114公報に、軟磁性扁平粉末を含む磁性シートが開示されている。この粉末の材質は、Fe-Si-Al合金である。この粉末の平均アスペクト比は、大きい。この粉末は、磁性シートの高い電磁波吸収性能に寄与しうる。 JP 2017-118114 A discloses a magnetic sheet containing soft magnetic flat powder. The material of this powder is an Fe-Si-Al alloy. The average aspect ratio of this powder is large. This powder can contribute to the high electromagnetic wave absorption performance of the magnetic sheet.

特開2017-118114公報JP2017-118114A

電子機器の小型化及び高性能化が、進んでいる。電子機器内の回路部品にも、小型化及び高性能化の要求が高まっている。小型化及び高性能化された機器では、回路に装着される電子部品の密度が高い。従って、この電子部品から放射される電波ノイズに起因して、電子部品同士間の電波干渉、及び電子回路同士間の電波干渉が生じやすい。ノイズをより抑制しうる磁性部材が、求められている。 Electronic devices are becoming smaller and more powerful. There is also a growing demand for smaller and more powerful circuit components within electronic devices. In smaller, more powerful devices, the density of electronic components mounted on the circuits is high. As a result, radio noise emitted from these electronic components is likely to cause radio interference between electronic components and between electronic circuits. There is a demand for magnetic components that can better suppress noise.

本出願人の意図するところは、ノイズ抑制性能に優れた磁性部材が得られうる、軟磁性扁平粉末の提供にある。 The applicant's intention is to provide a soft magnetic flat powder that can produce magnetic components with excellent noise suppression performance.

本明細書が開示する軟磁性扁平粉末は、多数の扁平粒子を含む。これらの扁平粒子の材質は、0.010質量%以上0.050質量%以下のCを含むFe-Si-Al系合金である。 The soft magnetic flat powder disclosed in this specification contains a large number of flat particles. The material of these flat particles is an Fe-Si-Al alloy containing 0.010% by mass or more and 0.050% by mass or less of C.

好ましくは、この軟磁性扁平粉末の、体積基準のメジアン径D50は、20.0μm以上90.0μm以下である。 Preferably, the volume-based median diameter D50 of this soft magnetic flat powder is 20.0 μm or more and 90.0 μm or less.

好ましくは、この軟磁性扁平粉末のタップ密度TDは、1.25g/cm以下である。 Preferably, the soft magnetic flat powder has a tap density TD of 1.25 g/ cm3 or less.

好ましくは、この軟磁性扁平粉末の、粒子の長手方向に磁場が付加されたときの保磁力は、400A/m以下である。 Preferably, the coercive force of this soft magnetic flat powder is 400 A/m or less when a magnetic field is applied in the longitudinal direction of the particles.

本明細書が開示する磁性部材は、ポリマーが基材であるマトリックスと、このマトリックスに分散する軟磁性扁平粉末とを有する。この軟磁性扁平粉末は、多数の扁平粒子を含む。これらの扁平粒子の材質は、0.01質量%以上0.05質量%以下のCを含むFe-Si-Al系合金である。 The magnetic member disclosed in this specification has a matrix in which a polymer is used as the base material, and soft magnetic flat powder dispersed in the matrix. This soft magnetic flat powder contains a large number of flat particles. The material of these flat particles is an Fe-Si-Al alloy containing 0.01% by mass or more and 0.05% by mass or less of C.

この軟磁性扁平粉末の保磁力は、小さい。この粉末を含む磁性部材の透磁率は、大きい。この磁性部材は、ノイズ抑制性能に優れる。 The coercive force of this soft magnetic flat powder is small. The magnetic permeability of a magnetic member containing this powder is high. This magnetic member has excellent noise suppression performance.

図1は、一実施形態に係る磁性部材の一部が示された模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing a portion of a magnetic member according to an embodiment. 図2は、図1の磁性部材に含まれる扁平粒子が示された拡大図である。FIG. 2 is an enlarged view showing flat particles contained in the magnetic member of FIG.

以下、適宜図面が参照されつつ、好ましい実施形態が詳細に説明される。 A preferred embodiment will be described in detail below, with reference to the drawings as appropriate.

[磁性シート]
図1に、磁性シート2(磁性部材)が示されている。この磁性シート2は、マトリックス4と、このマトリックス4に分散する粉末とを有している。マトリックス4は、ポリマー組成物である。このポリマー組成物の典型的な基材は、ゴム又は樹脂である。粉末は、多数の粒子6の集合である。
[Magnetic sheet]
1 shows a magnetic sheet 2 (magnetic member). This magnetic sheet 2 has a matrix 4 and a powder dispersed in this matrix 4. The matrix 4 is a polymer composition. A typical base material for this polymer composition is rubber or resin. The powder is a collection of many particles 6.

この磁性シート2の製造では、粉末が基材ポリマーに各種薬品と共に混練されて、ポリマー組成物が得られる。混練には、既知の方法が採用されうる。例えば、密閉式混練機、オープンロール等により、混練がなされうる。薬品として、潤滑材及びバインダーのような加工助剤が例示される。 In the manufacture of the magnetic sheet 2, the powder is kneaded with various chemicals into the base polymer to obtain a polymer composition. A known method can be used for kneading. For example, kneading can be performed using an internal mixer, an open roll, or the like. Examples of chemicals include processing aids such as lubricants and binders.

次に、このポリマー組成物から、磁性シート2が成形される。成形には、既知の方法が採用されうる。圧縮成形法、射出成形法、押出成形法、圧延法等により、成形がなされうる。 Next, the magnetic sheet 2 is molded from this polymer composition. Known methods can be used for molding. Molding can be performed by compression molding, injection molding, extrusion molding, rolling, etc.

磁性部材の形状は、シート状には限られない。リング状、立方体状、直方体状、円筒状等の形状が、採用されうる。さらに複雑な形状を有する磁性部材にも、この粉末は適している。 The shape of the magnetic member is not limited to a sheet shape. Ring, cube, rectangular parallelepiped, cylindrical, and other shapes can be used. This powder is also suitable for magnetic members with more complex shapes.

[粒子形状]
図2に、1つの粒子6の断面が示されている。図1において、符号L1で示されているのは粒子6の長軸の長さであり、符号T1で示されているのは粒子6の厚さである。長さL1は、厚さT1よりも大きい。換言すれば、この粒子6の形状は扁平である。
[Particle shape]
Fig. 2 shows a cross section of one particle 6. In Fig. 1, the reference symbol L1 indicates the length of the major axis of the particle 6, and the reference symbol T1 indicates the thickness of the particle 6. The length L1 is greater than the thickness T1. In other words, the shape of this particle 6 is flat.

扁平粒子6は、形状異方性を有する。この異方性は、磁性シート2の高い実部透磁率μ’に寄与しうる。しかも、厚さT1が小さな扁平粒子6を含む磁性シート2では、渦電流損失が抑制されるので、実部透磁率μ’の緩和が生じにくい。この扁平粒子6を含む磁性シート2は、ノイズを十分に遮蔽しうる。 The flat particles 6 have shape anisotropy. This anisotropy can contribute to the high real permeability μ' of the magnetic sheet 2. Furthermore, in a magnetic sheet 2 containing flat particles 6 with a small thickness T1, eddy current loss is suppressed, so relaxation of the real permeability μ' is unlikely to occur. The magnetic sheet 2 containing these flat particles 6 can adequately shield noise.

[粒子の材質]
扁平粒子6の材質は、Cを含むFe-Si-Al系合金である。Fe-Si-Al系合金は、D03構造の規則格子を有しうる。従ってFe-Si-Al系合金では、低い磁歪定数と低い結晶磁気異方性定数とが、両立されうる。Fe-Si-Al系合金からなる粉末は、高い実部透磁率μ’を達成しうる。以下、各元素の役割が詳説される。
[Particle material]
The material of the flat particles 6 is an Fe-Si-Al alloy containing C. The Fe-Si-Al alloy can have a regular lattice of the D03 structure. Therefore, the Fe-Si-Al alloy can have both a low magnetostriction constant and a low magnetocrystalline anisotropy constant. The powder made of the Fe-Si-Al alloy can achieve a high real permeability μ'. The role of each element will be described in detail below.

[C(炭素)]
Cは、本実施形態に係る粉末において最も重要な添加元素である。Cは、Fe-Si-Al系合金に、微量に添加される。Cは、粉末の大きなメジアン径D50に寄与し、従って扁平粒子6の大きなアスペクト比を達成しうる。アスペクト比が大きい粒子6を含む磁性シート2の透磁率は、大きい。Cが大きなメジアン径D50に寄与する理由は、Fe-Si-Al系合金のD03構造の一部が、Cによって他の構造へと変更されるためと推測される。
[C (carbon)]
C is the most important additive element in the powder according to this embodiment. A small amount of C is added to the Fe-Si-Al alloy. C contributes to a large median diameter D50 of the powder, and therefore a large aspect ratio of the flat particles 6 can be achieved. The magnetic sheet 2 containing particles 6 with a large aspect ratio has a large magnetic permeability. It is presumed that the reason why C contributes to a large median diameter D50 is that part of the D03 structure of the Fe-Si-Al alloy is changed to another structure by C.

Fe-Si-Al系合金を材質とする粉末では、Siの含有率又はAlの含有率の変更により、大きなメジアン径D50が達成されうる。しかし、Siの含有率の変更及びAlの含有率の変更は、磁歪定数及び結晶磁気異方性定数の増大をもたらしうる。本実施形態では、Cの微量添加により、大きなメジアン径D50が達成される。Cの微量添加は、Fe-Si-Al系合金の磁歪定数を、大幅には増大させない。Cの微量添加は、Fe-Si-Al系合金の結晶磁気異方性定数を、大幅には増大させない。換言すれば、Cの微量添加により、Fe-Si-Al系合金の電磁気特性がほとんど損なわれることなく、大きなメジアン径D50が達成されうる。 In powder made of Fe-Si-Al alloy, a large median diameter D50 can be achieved by changing the Si content or Al content. However, changing the Si content and changing the Al content can lead to an increase in the magnetostriction constant and the magnetocrystalline anisotropy constant. In this embodiment, a large median diameter D50 is achieved by adding a small amount of C. The addition of a small amount of C does not significantly increase the magnetostriction constant of the Fe-Si-Al alloy. The addition of a small amount of C does not significantly increase the magnetocrystalline anisotropy constant of the Fe-Si-Al alloy. In other words, the addition of a small amount of C can achieve a large median diameter D50 without substantially impairing the electromagnetic properties of the Fe-Si-Al alloy.

さらにCは、合金中の酸素を優先的に吸着する。Cを含む合金では、Fe酸化物、Si酸化物及びAl酸化物の生成が抑制される。この合金では、これらの酸化物によるピン止め効果が抑制される。換言すれば、Cは粉末の保磁力を抑制し、磁性シート2の高い透磁率に寄与しうる。 Furthermore, C preferentially adsorbs oxygen in the alloy. In an alloy containing C, the generation of Fe oxides, Si oxides, and Al oxides is suppressed. In this alloy, the pinning effect of these oxides is suppressed. In other words, C suppresses the coercive force of the powder and can contribute to the high magnetic permeability of the magnetic sheet 2.

高い透磁率の観点から、Cの含有率は0.010質量%以上が好ましく、0.015質量%以上がより好ましく、0.020質量%以上が特に好ましい。高い透磁率の観点から、Cの含有率は0.050質量%以下が好ましく、0.045質量%以下がより好ましく、0.040質量%以下が特に好ましい。 From the viewpoint of high magnetic permeability, the C content is preferably 0.010 mass% or more, more preferably 0.015 mass% or more, and particularly preferably 0.020 mass% or more. From the viewpoint of high magnetic permeability, the C content is preferably 0.050 mass% or less, more preferably 0.045 mass% or less, and particularly preferably 0.040 mass% or less.

[ケイ素(Si)]
Siは、大きな比抵抗に寄与し、渦電流損失を低減しうる。Siはさらに、高い透磁率に寄与する。Siは、ノイズの抑制に寄与する。この観点から、Siの含有率は3.0質量%以上が好ましく、4.0質量%以上がより好ましく、5.0質量%以上が特に好ましい。過剰のSiは、飽和磁束密度の低下に起因する透磁率の低下を招来する。高い透磁率の観点から、Siの含有率は12.0質量%以下が好ましく、11.0質量%以下がより好ましく、10.0質量%以上が特に好ましい。
[Silicon (Si)]
Si contributes to a large resistivity and can reduce eddy current loss. Si also contributes to a high magnetic permeability. Si contributes to noise suppression. From this viewpoint, the Si content is preferably 3.0 mass% or more, more preferably 4.0 mass% or more, and particularly preferably 5.0 mass% or more. Excessive Si leads to a decrease in magnetic permeability due to a decrease in saturation magnetic flux density. From the viewpoint of high magnetic permeability, the Si content is preferably 12.0 mass% or less, more preferably 11.0 mass% or less, and particularly preferably 10.0 mass% or more.

[アルミニウム(Al)]
Alは、大きな比抵抗に寄与し、渦電流損失を低減しうる。Alはさらに、高い透磁率に寄与する。この観点から、Alの含有率は2.0質量%以上が好ましく、2.5質量%以上がより好ましく、3.0質量%以上が特に好ましい。過剰のAlは、飽和磁束密度の低下に起因する透磁率の低下を招来する。高い透磁率の観点から、Alの含有率は10.0質量%以下が好ましく、9.0質量%以下がより好ましく、8.0質量%以上が特に好ましい。
[Aluminum (Al)]
Al contributes to a large resistivity and can reduce eddy current loss. Al also contributes to a high magnetic permeability. From this viewpoint, the content of Al is preferably 2.0 mass% or more, more preferably 2.5 mass% or more, and particularly preferably 3.0 mass% or more. Excessive Al leads to a decrease in magnetic permeability due to a decrease in saturation magnetic flux density. From the viewpoint of high magnetic permeability, the content of Al is preferably 10.0 mass% or less, more preferably 9.0 mass% or less, and particularly preferably 8.0 mass% or more.

[鉄(Fe)]
Feは、合金の基材である。Feは、強磁性を有する。Feは、粉末の磁気特性に寄与する。
[Iron (Fe)]
Fe is the base material of the alloy. Fe has ferromagnetic properties. Fe contributes to the magnetic properties of the powder.

[好ましい組成]
磁性シート2に特に適したFe-Si-Al系合金は、
Si:3.0質量%以上12.0質量%以下
Al:2.0質量%以上10.0質量%以下
及び
C:0.01質量%以上0.05質量%以下
を含む。残部は、Fe及び不可避的不純物である。Si、Al及びCのそれぞれの含有率にかかわらず、残部がFe及び不可避的不純物であることが好ましい。
[Preferred Composition]
The Fe-Si-Al alloy particularly suitable for the magnetic sheet 2 is
The alloy contains: Si: 3.0% by mass or more and 12.0% by mass or less; Al: 2.0% by mass or more and 10.0% by mass or less; and C: 0.01% by mass or more and 0.05% by mass or less. The balance is Fe and unavoidable impurities. Regardless of the respective contents of Si, Al, and C, it is preferable that the balance is Fe and unavoidable impurities.

[メジアン径D50]
メジアン径D50が大きい粒子の長さL1(図2参照)は、この粒子の厚さT1と同等の厚さT1を有しかつメジアン径D50が小さい粒子の長さL1よりも、大きい。換言すれば、所定の厚さT1が得られる扁平加工において、メジアン径D50が大きい粒子は、大きなアスペクト比に寄与する。大きなアスペクト比が達成されるとの観点から、粉末のメジアン径D50は20.0μm以上が好ましく、30.0μm以上がより好ましく、40.0μm以上が特に好ましい。磁性シート2の表面の平滑の観点から、このメジアン径D50は90.0μm以下が好ましく、80.0μm以下がより好ましく、70.0μm以下が特に好ましい。
[Median diameter D50]
The length L1 (see FIG. 2) of a particle with a large median diameter D50 is greater than the length L1 of a particle with a thickness T1 equal to that of the particle and a small median diameter D50. In other words, in a flattening process that obtains a predetermined thickness T1, a particle with a large median diameter D50 contributes to a large aspect ratio. From the viewpoint of achieving a large aspect ratio, the median diameter D50 of the powder is preferably 20.0 μm or more, more preferably 30.0 μm or more, and particularly preferably 40.0 μm or more. From the viewpoint of the smoothness of the surface of the magnetic sheet 2, the median diameter D50 is preferably 90.0 μm or less, more preferably 80.0 μm or less, and particularly preferably 70.0 μm or less.

メジアン径D50は、体積基準によって算出される。メジアン径D50は、粉末の全体積が100%とされて累積カーブが画かれたとき、この累積が50%となるカーブ上の点の、粒子6の直径である。メジアン径D50は、例えば、日機装社のレーザー回折・散乱式粒子径分布測定装置「マイクロトラックMT3000」によって測定されうる。この装置のセル内に、粉末が純水と共に流し込まれ、粉末をなす各粒子6の光散乱情報に基づいて、メジアン径D50が検出される。 The median diameter D50 is calculated on a volume basis. When the total volume of the powder is taken as 100% and a cumulative curve is drawn, the median diameter D50 is the diameter of the particle 6 at the point on the curve where the cumulative amount is 50%. The median diameter D50 can be measured, for example, by Nikkiso's laser diffraction/scattering particle size distribution measuring device "Microtrac MT3000". The powder is poured into the cell of this device together with pure water, and the median diameter D50 is detected based on the light scattering information of each particle 6 that constitutes the powder.

[アスペクト比]
前述の通り、粒子6の形状は扁平である。この粒子6は、形状異方性を有する。この異方性は、磁性部材の実部透磁率μ’を高める。高い透磁率の観点から、粉末の平均アスペクト比は、1.5以上が好ましく、5.0以上がより好ましく、8.0以上が特に好ましい。好ましくは、平均アスペクト比は、100以下である。
[aspect ratio]
As described above, the shape of the particles 6 is flat. The particles 6 have shape anisotropy. This anisotropy increases the real permeability μ′ of the magnetic member. From the viewpoint of high permeability, the average aspect ratio of the powder is preferably 1.5 or more, more preferably 5.0 or more, and particularly preferably 8.0 or more. Preferably, the average aspect ratio is 100 or less.

アスペクト比の測定には、粒子6の厚さが観察されうる試料が用いられる。この試料では、樹脂中に複数の粒子6が埋まっている。この試料が研磨され、研磨面が走査型電子顕微鏡(SEM)によって観察される。観察時の画像の倍率は、1000倍である。この画像の解析では、粒子6の画像データが二値化される。この二値化画像が楕円に近似されたとき、この楕円の短軸の長さに対する長軸の長さの比が、当該粒子6のアスペクト比である。4つの視野で得られる全ての粒子6のアスペクト比が相加平均されて、粉末の平均アスペクト比が算出される。 To measure the aspect ratio, a sample is used in which the thickness of the particles 6 can be observed. In this sample, multiple particles 6 are embedded in resin. The sample is polished, and the polished surface is observed with a scanning electron microscope (SEM). The magnification of the image during observation is 1000 times. In analyzing this image, the image data of the particles 6 is binarized. When this binarized image is approximated to an ellipse, the ratio of the length of the major axis to the length of the minor axis of this ellipse is the aspect ratio of the particle 6. The aspect ratios of all particles 6 obtained in the four fields of view are arithmetically averaged to calculate the average aspect ratio of the powder.

[タップ密度TD]
粉末のタップ密度TDは、1.25g/cm以下が好ましい。タップ密度TDがこの範囲である粉末から、表面が平滑な磁性シート2が得られうる。この簡単から、タップ密度TDは、1.00g/cm以下がより好ましく、0.90g/cm以下が特に好ましい。タップ密度TDの下限値は、0.3g/cm以上が好ましい。
[Tap density TD]
The tap density TD of the powder is preferably 1.25 g/ cm3 or less. A magnetic sheet 2 having a smooth surface can be obtained from a powder having a tap density TD in this range. For this reason, the tap density TD is more preferably 1.00 g/ cm3 or less, and particularly preferably 0.90 g/ cm3 or less. The lower limit of the tap density TD is preferably 0.3 g/ cm3 or more.

タップ密度TDの測定では、約20gの粉末が、容積が100cmであるシリンダーに充填される。測定条件は、以下の通りである。
落下高さ:10mm
タップ回数:200
In measuring the tap density TD, about 20 g of powder is filled into a cylinder with a volume of 100 cm3. The measurement conditions are as follows:
Drop height: 10mm
Number of taps: 200

[保磁力Hc]
保磁力Hcは、磁化された磁性体を磁化されていない状態に戻すために必要な外部磁場の強さである。粒子6の長手方向に磁場が付加されたときの、粉末の保磁力Hcは、400A/m以下が好ましい。保磁力Hcがこの範囲である粉末は、高い実部透磁率μ’を達成しうる。この観点から、保磁力Hcは300A/m以下がより好ましく、200A/m以下が特に好ましい。
[Coercive force Hc]
Coercive force Hc is the strength of an external magnetic field required to return a magnetized magnetic material to an unmagnetized state. When a magnetic field is applied in the longitudinal direction of the particles 6, the coercive force Hc of the powder is preferably 400 A/m or less. A powder having a coercive force Hc in this range can achieve a high real permeability μ'. From this viewpoint, the coercive force Hc is more preferably 300 A/m or less, and particularly preferably 200 A/m or less.

保磁力Hcの測定には、例えば、電子磁器気工業の保磁力計「HC―1031」が用いられうる。測定では、樹脂製容器に扁平粉末が充填され、この容器の直径方向に磁化される。最大印加磁場は、239kA/mである。 To measure the coercive force Hc, for example, a coercive force meter "HC-1031" made by Denshijikiki Kogyo can be used. In the measurement, the flat powder is filled into a resin container and magnetized in the diametric direction of the container. The maximum applied magnetic field is 239 kA/m.

[粉末の製造方法]
本実施形態に係る粉末は、原料粉末に扁平加工が施されることで得られる。原料粉末は、ガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法、粉砕法等によって得られうる。ガスアトマイズ法及びディスクアトマイズ法が、好ましい。
[Method of producing powder]
The powder according to the present embodiment is obtained by subjecting a raw material powder to a flattening process. The raw material powder can be obtained by a gas atomizing method, a water atomizing method, a disk atomizing method, a pulverizing method, or the like. The gas atomizing method and the disk atomizing method are preferred.

ガスアトマイズ法では、原料金属が加熱されて溶解し、溶湯が得られる。この溶湯が、ノズルから流れ出る。この溶湯に、ガス(アルゴンガス、窒素ガス等)が吹き付けられる。このガスのエネルギーにより、溶湯は粉化して液滴となり、落下されつつ冷却される。この液滴が凝固し、粒子が形成される。このガスアトマイズ法では、溶湯が瞬間的に液滴化し、これと同時に冷却されるので、均一な微細組織が得られる。しかも、連続的に液滴が形成されるので、粒子間の組成差がきわめて小さい。 In the gas atomization method, the raw metal is heated and melted to obtain molten metal. This molten metal flows out of a nozzle. Gas (argon gas, nitrogen gas, etc.) is sprayed onto the molten metal. The energy of this gas breaks the molten metal into droplets, which cool as they fall. The droplets solidify to form particles. In the gas atomization method, the molten metal instantly turns into droplets and is cooled at the same time, resulting in a uniform, fine structure. Moreover, because the droplets are formed continuously, the compositional difference between particles is extremely small.

ディスクアトマイズ法では、原料金属が加熱されて溶解し、溶湯が得られる。この溶湯が、ノズルから流れ出る。この溶湯が、高速で回転するディスクの上に落とされる。溶湯は急冷されて凝固し、粉末が得られる。 In disk atomization, the raw metal is heated and melted to obtain a molten metal. This molten metal flows out of a nozzle. This molten metal is then dropped onto a disk that rotates at high speed. The molten metal is then rapidly cooled and solidifies to obtain a powder.

典型的な扁平加工は、アトライタによってなされる。扁平加工は、乾式でなされてもよく、湿式でなされてもよい。湿式での扁平加工では、適量の有機溶媒が用いられる。種々の有機溶媒が、この湿式加工に用いられうる。粒子の酸化を抑制しうる有機溶媒が、好ましい。 A typical flattening process is performed by an attritor. Flattening can be performed in a dry or wet manner. In wet flattening, an appropriate amount of organic solvent is used. Various organic solvents can be used in this wet process. Organic solvents that can suppress oxidation of the particles are preferred.

扁平加工後の粉末に、必要に応じ、熱処理が施される。高い透磁率の観点から、好ましい熱処理温度は500℃以上900℃以下である。粉末の処理量、生産性等に応じ、熱処理時間が適宜調整される。真空中又は不活性ガス中での熱処理が、好ましい。扁平加工前の原料粉末に、必要に応じて、熱処理が施されてもよい。 The powder after the flattening process is heat-treated as necessary. From the viewpoint of high magnetic permeability, the preferred heat treatment temperature is 500°C or higher and 900°C or lower. The heat treatment time is adjusted appropriately depending on the amount of powder to be processed, productivity, etc. Heat treatment in a vacuum or in an inert gas is preferred. The raw powder before the flattening process may be heat-treated as necessary.

粉末に、分級が施されてもよい。分級は、扁平加工前の粉末に施されてもよく、扁平加工後の粉末に施されてもよく、熱処理後の粉末に施されてもよい。 The powder may be classified. Classification may be performed on the powder before flattening, on the powder after flattening, or on the powder after heat treatment.

以下、実施例に係る軟磁性扁平粉末の効果が明らかにされるが、この実施例の記載に基づいて本明細書で開示された範囲が限定的に解釈されるべきではない。 The effects of the soft magnetic flat powder according to the examples will be explained below, but the scope of the present specification should not be interpreted as being limited based on the description of these examples.

[実施例1]
ガスアトマイズ及び分級により、原料粉末を得た。ICP(Inductive Coupled Plasma)発光分光分析装置によって分析された原料粉末の材質は、0.011質量%のCを含むFe-9Si-6Al合金であった。500gの原料粉末を、ナフテン系溶媒と共に、アトライタに投入した。メディアの材質は、高炭素クロム軸受鋼(SUJ2)であった。このメディアの直径は、4.8mmであった。このアトライタによって、原料粉末に扁平加工を施した。この粉末に熱処理を施して、実施例1の軟磁性扁平粉末を得た。熱処理の条件は、以下の通りであった。
温度:800℃
保持時間:1時間
冷却方法:徐冷
この軟磁性扁平粉末の、メジアン径D50は52.6μmであり、タップ密度TDは0.77g/cmであり、保磁力Hcは133A/mであった。
[Example 1]
A raw powder was obtained by gas atomization and classification. The material of the raw powder analyzed by an ICP (Inductive Coupled Plasma) emission spectrometer was an Fe-9Si-6Al alloy containing 0.011 mass% C. 500 g of the raw powder was put into an attritor together with a naphthenic solvent. The material of the media was high carbon chromium bearing steel (SUJ2). The diameter of the media was 4.8 mm. The raw powder was flattened by the attritor. The powder was heat-treated to obtain the soft magnetic flat powder of Example 1. The heat treatment conditions were as follows.
Temperature: 800°C
Holding time: 1 hour Cooling method: slow cooling This soft magnetic flat powder had a median diameter D50 of 52.6 μm, a tap density TD of 0.77 g/cm 3 , and a coercive force Hc of 133 A/m.

[実施例2-4並びに比較例1及び2]
原料粉末のCの含有率を下記の表1及び2に示された通りとした他は実施例1と同様にして、実施例2-4並びに比較例1及び2の粉末を得た。
[Examples 2 to 4 and Comparative Examples 1 and 2]
Powders of Examples 2-4 and Comparative Examples 1 and 2 were obtained in the same manner as in Example 1, except that the C content of the raw material powder was set as shown in Tables 1 and 2 below.

[比較例3及び4]
原料粉末の組成を下記の表2に示された通りとした他は実施例1と同様にして、比較例3及び4の粉末を得た。
[Comparative Examples 3 and 4]
Powders of Comparative Examples 3 and 4 were obtained in the same manner as in Example 1, except that the composition of the raw material powder was as shown in Table 2 below.

[透磁率の測定]
扁平粉末とアクリル樹脂とを混練し、スラリーを得た。このスラリーをドクターブレード法に供し、シートを得た。このシートに、温度が60℃であって圧力が50MPaである条件でプレス加工を施し、磁性シートを得た。この磁性シート中の扁平粉末の体積充填率は、約35%であった。この磁性シートの複素透磁率を、インピーダンスアナライザ(Keysight Technology社の製品名「E4991B」)を用いて測定した。測定は、1MHz以上1GHz以下の範囲で行い、2MHz以上5MHzの範囲の実部透磁率μ’の平均値を求めた。この結果が、下記の表1及び2に示されている。
[Measurement of magnetic permeability]
The flat powder and the acrylic resin were kneaded to obtain a slurry. The slurry was subjected to a doctor blade method to obtain a sheet. The sheet was pressed under conditions of a temperature of 60° C. and a pressure of 50 MPa to obtain a magnetic sheet. The volume filling rate of the flat powder in the magnetic sheet was about 35%. The complex permeability of the magnetic sheet was measured using an impedance analyzer (Keysight Technology's product name "E4991B"). The measurement was performed in the range of 1 MHz to 1 GHz, and the average value of the real permeability μ' in the range of 2 MHz to 5 MHz was obtained. The results are shown in Tables 1 and 2 below.

Figure 2024085534000002
Figure 2024085534000002

Figure 2024085534000003
Figure 2024085534000003

表1及び2から明らかな通り、各実施例の軟磁性扁平粉末は、磁性部材の大きな実部透磁率μ’に寄与しうる。この評価結果から、この粉末の優位性は明らかである。 As is clear from Tables 1 and 2, the soft magnetic flat powder of each embodiment can contribute to a large real permeability μ' of the magnetic component. The superiority of this powder is clear from these evaluation results.

以上説明された扁平粉末は、種々の磁性部材に適している。 The flat powder described above is suitable for a variety of magnetic components.

2・・・磁性シート
4・・・マトリックス
6・・・粒子
2: Magnetic sheet 4: Matrix 6: Particles

Claims (5)

多数の扁平粒子を備えており、
これらの扁平粒子の材質が、0.010質量%以上0.050質量%以下のCを含むFe-Si-Al系合金である、軟磁性扁平粉末。
It has many flat particles,
The material of these flat particles is an Fe-Si-Al alloy containing 0.010 mass % or more and 0.050 mass % or less of C.
体積基準のメジアン径D50が20.0μm以上90.0μm以下である、請求項1に記載の軟磁性扁平粉末。 The soft magnetic flat powder according to claim 1, having a volume-based median diameter D50 of 20.0 μm or more and 90.0 μm or less. タップ密度TDが1.25g/cm以下である、請求項1又は2に記載の軟磁性扁平粉末。 The soft magnetic flat powder according to claim 1 or 2, having a tap density TD of 1.25 g/ cm3 or less. 上記扁平粒子の長手方向に磁場が付加されたときの、上記粉末の保磁力が、400A/m以下である、請求項1又は2に記載の軟磁性扁平粉末。 The soft magnetic flat powder according to claim 1 or 2, wherein the coercive force of the powder is 400 A/m or less when a magnetic field is applied in the longitudinal direction of the flat particles. ポリマーが基材であるマトリックスと、このマトリックスに分散する軟磁性扁平粉末とを備えており、
上記軟磁性扁平粉末が、多数の扁平粒子を含んでおり、
これらの扁平粒子の材質が、0.01質量%以上0.05質量%以下のCを含むFe-Si-Al系合金である、磁性部材。
The magnetic material has a matrix made of a polymer as a base material and soft magnetic flat powder dispersed in the matrix.
The soft magnetic flat powder contains a large number of flat particles,
The material of the flat particles is an Fe-Si-Al alloy containing 0.01% by mass or more and 0.05% by mass or less of C.
JP2022200096A 2022-12-15 2022-12-15 Soft magnetic flat powder Active JP7534378B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022200096A JP7534378B2 (en) 2022-12-15 2022-12-15 Soft magnetic flat powder
PCT/JP2023/044394 WO2024128217A1 (en) 2022-12-15 2023-12-12 Soft magnetic flat powder and magnetic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022200096A JP7534378B2 (en) 2022-12-15 2022-12-15 Soft magnetic flat powder

Publications (2)

Publication Number Publication Date
JP2024085534A true JP2024085534A (en) 2024-06-27
JP7534378B2 JP7534378B2 (en) 2024-08-14

Family

ID=91485800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022200096A Active JP7534378B2 (en) 2022-12-15 2022-12-15 Soft magnetic flat powder

Country Status (2)

Country Link
JP (1) JP7534378B2 (en)
WO (1) WO2024128217A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260616A (en) * 1998-01-12 1999-09-24 Daido Steel Co Ltd Manufacture of soft magnetic material foil
JP6722403B2 (en) 2016-08-23 2020-07-15 大同特殊鋼株式会社 Soft magnetic metal powder and composite magnetic sheet body containing the same
JP7133666B2 (en) 2021-02-10 2022-09-08 山陽特殊製鋼株式会社 Soft magnetic flat powder

Also Published As

Publication number Publication date
WO2024128217A1 (en) 2024-06-20
JP7534378B2 (en) 2024-08-14

Similar Documents

Publication Publication Date Title
TW201007781A (en) Flat soft magnetic material and process for its production
JP6788328B2 (en) Flat soft magnetic powder and its manufacturing method
JP6738160B2 (en) Soft magnetic flat powder and method for producing the same
JP6757117B2 (en) Soft magnetic flat powder and its manufacturing method
WO2020195968A1 (en) Alloy powder for magnetic member
JP2018073947A (en) Soft magnetic alloy, soft magnetic alloy powder and magnetic part
WO2022172543A1 (en) Soft-magnetic flat powder
JP2019173126A (en) Soft magnetic powder and manufacturing method of sintered body
JP7534378B2 (en) Soft magnetic flat powder
KR102393236B1 (en) soft magnetic flat powder
JP2013089929A (en) Soft magnetic powder, powder magnetic core, and magnetic device
WO2018079498A1 (en) Flat powder for high frequency applications and magnetic sheet
JP2018131640A (en) Soft magnetic flat powder
JP7257150B2 (en) Flame-retardant powder for magnetic components
JP2022105907A (en) Hard magnetic powder
US20240278316A1 (en) Amorphous Alloy Soft Magnetic Powder, Dust Core, Magnetic Element, And Electronic Device
CN111599567B (en) Composite magnetic material, magnetic core, and electronic component
JP6738502B2 (en) Method for producing soft magnetic flat powder
JP7165690B2 (en) Method for producing flat soft magnetic powder
JP2022141577A (en) Rare earth magnet powder, bonded magnet, compound for bonded magnet, sintered magnet, manufacturing method of rare earth magnet powder, and manufacturing method of rare earth permanent magnet
CN115083712A (en) Rare earth magnet powder, bonded magnet, sintered magnet, and method for producing these
CN116798721A (en) Iron-based nanocrystalline magnetically soft alloy powder, magnetically soft composite material and preparation method of magnetically soft composite material
KR20240010503A (en) Iron soft magnetic powder, magnetic parts and dust cores using it

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240513

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240801

R150 Certificate of patent or registration of utility model

Ref document number: 7534378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150