JP2013089929A - Soft magnetic powder, powder magnetic core, and magnetic device - Google Patents

Soft magnetic powder, powder magnetic core, and magnetic device Download PDF

Info

Publication number
JP2013089929A
JP2013089929A JP2011232385A JP2011232385A JP2013089929A JP 2013089929 A JP2013089929 A JP 2013089929A JP 2011232385 A JP2011232385 A JP 2011232385A JP 2011232385 A JP2011232385 A JP 2011232385A JP 2013089929 A JP2013089929 A JP 2013089929A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnetic powder
reduced
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011232385A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shinkai
芳浩 新海
Shinji Koeda
真仁 小枝
Tomofumi Kuroda
朋史 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2011232385A priority Critical patent/JP2013089929A/en
Publication of JP2013089929A publication Critical patent/JP2013089929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic powder having a small core loss and low frequency dependence thereof, and capable of manufacturing a powder magnetic core having a small core loss even if it is driven with a high frequency of 1 MHz or higher, and to provide a powder magnetic core having a small core loss and low frequency dependence thereof, and a magnetic device.SOLUTION: The soft magnetic powder of Fe or an Fe-Ni-based alloy has a primary particle size of 0.01-5 μm, and an average value of the product of aspect ratio and area ratio of 1.0-4.0.

Description

本発明は、軟磁性粉末、圧粉磁芯、及び磁気デバイスに関する。   The present invention relates to a soft magnetic powder, a dust core, and a magnetic device.

従来、インダクタ等に備えられる磁芯として、圧粉磁芯が広く用いられている。圧粉磁芯に求められる性能は、電気抵抗が高く、コアロス(磁芯損失)が小さいことであり、そのような圧粉磁芯を実現するために、圧粉磁芯の材料として、アトマイズ法により製造されるFeSi系やFeNi系等の合金粉やカルボニル法により製造される純鉄粉(高純度鉄粉)等の金属磁性粉を用いる種々の試みが為されている。   Conventionally, a dust core has been widely used as a magnetic core provided in an inductor or the like. The performance required for the dust core is high electrical resistance and small core loss (magnetic core loss). In order to realize such a dust core, the atomizing method is used as a material for the dust core. Various attempts have been made to use metal magnetic powders such as FeSi-based and FeNi-based alloy powders manufactured by the above, and pure iron powders (high-purity iron powders) manufactured by the carbonyl method.

近年、電子機器の小型化及び高出力化が進み、各種部品の高集積化及び信号の高速処理化が進展している。これにともない、電力を供給する電源ラインの小型化及び大電流化が要求されている。例えば、電源等に使用されるパワーインダクタにおいては、直流電流重畳下でのインダクタンス低下が小さいものが求められ、これを実現するために、圧粉磁芯の材料として高飽和磁化を有する磁性材料、例えば、純鉄粉(高純度鉄粉)が広く用いられている。   In recent years, miniaturization and high output of electronic devices have progressed, and high integration of various parts and high-speed signal processing have progressed. Along with this, miniaturization of power supply lines for supplying power and an increase in current are required. For example, in a power inductor used for a power supply or the like, it is required to have a small inductance drop under DC current superposition, and in order to realize this, a magnetic material having high saturation magnetization as a material for a dust core, For example, pure iron powder (high purity iron powder) is widely used.

一方、電源回路を高周波で駆動することによりインダクタ等の小型化が図れることから、高周波で磁芯損失(コアロス)の小さな磁性材料の開発が求められている。コアロスにはヒステリシス損失と、渦電流損失とがあり、コアロスの小さな磁性材料の作製には、ヒステリシス損失と渦電流損失の低減が必須である。ヒステリシス損失の低減には、保磁力の小さな材料が必要となる。また、渦電流損失の低減には、粒子間の渦電流の低減(粒子間の絶縁性の向上)と、粒子内の渦電流の低減(粒子の微細化)が必要となる。とりわけ、渦電流損失は駆動周波数の2乗に比例して大きくなる傾向にあるため、高周波域で使用する圧粉磁芯においては、渦電流損失が小さいことが必要とされる。そのため、駆動周波数の高周波化、例えば、数MHzに対応するためには、磁性材料の微細化が有効であると考えられる。   On the other hand, since the inductor and the like can be miniaturized by driving the power supply circuit at a high frequency, development of a magnetic material with a high frequency and a small core loss is required. The core loss includes a hysteresis loss and an eddy current loss. To manufacture a magnetic material with a small core loss, it is essential to reduce the hysteresis loss and the eddy current loss. In order to reduce the hysteresis loss, a material having a small coercive force is required. In addition, reduction of eddy current loss requires reduction of eddy current between particles (improvement of insulation between particles) and reduction of eddy current in particles (fine particle). In particular, since the eddy current loss tends to increase in proportion to the square of the driving frequency, the eddy current loss is required to be small in the dust core used in the high frequency range. For this reason, it is considered that miniaturization of the magnetic material is effective in order to cope with a higher driving frequency, for example, several MHz.

磁性材料の微細化のために、粒子同士に発生したネッキング(連結)の解砕が必要になる場合が多く、その解砕技術としては、例えば、特許文献1や特許文献2に開示のものがあげられる。特許文献1には、V型又はWコーン型のミキサーもしくはボールミルを用いて、磁性粉に衝撃や振動を与えることによって解砕された磁性粉が得られることが記載されている(特許文献1参照)。また、特許文献2では、還元焼鈍工程における磁性粉の解砕を、回転式還元炉内に磁性粉とともにセラミックボールを装入することにより行うことで圧粉磁芯用磁性粉が得られることが記載されている(特許文献2参照)。 In many cases, it is necessary to crush necking (connection) generated between particles in order to make the magnetic material finer. As the crushing technique, for example, those disclosed in Patent Literature 1 and Patent Literature 2 are disclosed. can give. Patent Document 1 describes that a pulverized magnetic powder can be obtained by applying an impact or vibration to the magnetic powder using a V-type or W-cone mixer or ball mill (see Patent Document 1). ). Moreover, in patent document 2, the magnetic powder for powder magnetic cores can be obtained by performing the crushing of the magnetic powder in the reduction annealing step by inserting ceramic balls together with the magnetic powder in the rotary reduction furnace. (See Patent Document 2).

特許第03421944号Japanese Patent No. 0421944 特開2009−001868号公報JP 2009-001868 A

特許文献1及び特許文献2に記載の手法により、所謂、一次粒子径が数十μm以上の粗い粒子を得ることができる。特許文献1、2に記載の手法により得られる鉄粉を用いて圧粉磁芯を作製したところ、コアロスが大きく、特に、1MHz以上の高周波で駆動した際のコアロスが著しく大きいという問題があった。   By the methods described in Patent Document 1 and Patent Document 2, so-called coarse particles having a primary particle size of several tens of μm or more can be obtained. When a powder magnetic core was produced using the iron powder obtained by the methods described in Patent Documents 1 and 2, the core loss was large, and there was a problem that the core loss was particularly large when driven at a high frequency of 1 MHz or higher. .

かかる問題が発現する作用機構の詳細は、未だ明らかではないものの、例えば、以下のように推定される。本発明者らの知見によれば、還元粉など軟磁性粉末を製造する際に使用される原料粉は、粒子同士のネッキング(連結)を内包する二次粒子から構成される。この二次粒子を、上記従来技術によって解砕することで一次粒子となる。その解砕において、ビッカース硬さの低い軟らかい軟磁性粉末では、変形、及びそれに伴う粒子の粗大化が起き易い。一次粒子径が数十μm以上の軟磁性粉末では、粒子の重量が比較的大きく、粒子の落下エネルギーが比較的大きくなるため、Vミキサーなど、粒子の自重を利用した粒子同士の衝突では、変形の起き難い解砕が可能である。 The details of the mechanism of action in which such problems occur are not yet clear, but are estimated as follows, for example. According to the knowledge of the present inventors, the raw material powder used when producing a soft magnetic powder such as reduced powder is composed of secondary particles enclosing the necking (connection) between particles. The secondary particles are pulverized by the above-described conventional technique to become primary particles. In the crushing, the soft soft magnetic powder having a low Vickers hardness is likely to be deformed and the resulting coarse particles. Soft magnetic powders with a primary particle size of several tens of μm or more have a relatively large particle weight and a relatively large drop energy. Therefore, when a particle collides with each other using its own weight, such as a V mixer, deformation occurs. It is possible to disintegrate easily.

しかし、平均粒子径が数μm〜サブミクロンオーダーである一次粒子が凝集してできた二次粒子では、粒子の重量が比較的小さく、粒子の落下エネルギーが比較的小さくなるため、粒子の自重を利用した粒子同士の衝突での解砕は不十分である。また、メディアを使用するボールミルでは、メディアの衝突エネルギーが大きすぎるため、粒子の変形、及びそれに伴う粒子の粗大化は避けられない。
このため、従来技術の磁性材料の微細化方法では、不十分であるといえる。
However, secondary particles formed by agglomeration of primary particles having an average particle size of several μm to sub-micron order have a relatively small particle weight and a relatively small particle drop energy. Crushing at the collision of the used particles is insufficient. Further, in a ball mill using media, since the impact energy of the media is too large, particle deformation and accompanying particle coarsening are inevitable.
For this reason, it can be said that the conventional magnetic material miniaturization method is insufficient.

以上のように、高周波数帯でもコアロスの小さな圧粉磁芯を提供するには、粒子径の微細な磁性粉の作製が必要であるが、現状、この微細な磁性粉を提供するのに十分な解砕技術は見出されていない。   As described above, in order to provide a dust core with a small core loss even in a high frequency band, it is necessary to produce a magnetic powder with a fine particle diameter, but at present, it is sufficient to provide this fine magnetic powder. No cracking technology has been found.

本発明は上記課題に鑑みて為されたものであり、その目的は、コアロス及びその周波数依存性が小さく、1MHz以上の高周波で駆動してもコアロスが小さい圧粉磁芯を作製し得る、軟磁性粉末、及びコアロス及びその周波数依存性が小さな圧粉磁芯、並びに、磁気デバイスを提供することにある。   The present invention has been made in view of the above problems, and its object is to provide a soft core that has a small core loss and its frequency dependency and can produce a dust core with a small core loss even when driven at a high frequency of 1 MHz or higher. An object of the present invention is to provide a magnetic powder, a dust core having a small core loss and its frequency dependency, and a magnetic device.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、FeまたはFe−Ni合金の軟磁性粉末において、一次粒子径のみならず、一次粒子の形状が、得られる圧粉磁芯のコアロス及びその周波数依存性と相関関係があることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted extensive research. As a result, in the soft magnetic powder of Fe or Fe—Ni alloy, not only the primary particle diameter but also the shape of the primary particles is obtained. It has been found that there is a correlation with the core loss of the magnetic core and its frequency dependence, and the present invention has been completed.

すなわち、本発明の軟磁性粉末は、FeまたはFe−Ni系合金の軟磁性粉末であって、該軟磁性粉末の一次粒子径が0.01〜5μmであり、一次粒子のアスペクト比と面積比の積の平均値が1.0〜4.0であることを特徴とする。   That is, the soft magnetic powder of the present invention is a soft magnetic powder of Fe or Fe—Ni alloy, and the primary particle diameter of the soft magnetic powder is 0.01 to 5 μm, and the aspect ratio and area ratio of the primary particles. The average value of the products is 1.0 to 4.0.

ここで、本明細書において、「一次粒子」とは、粉末に含まれる最小単位となる粒子を意味し、「一次粒子径」とは、無作為に選択した200個の粒子について算出した「粒子径」の平均値とする。「粒子径」とは、粒子断面のヘイウッド径を測定したものであり、例えば、粒子を樹脂埋めして研磨した粒子断面のSEM観察等により、測定可能である。   Here, in this specification, “primary particles” mean particles that are the smallest unit contained in powder, and “primary particle diameter” means “particles” calculated for 200 randomly selected particles. The average value of “diameter”. The “particle diameter” is a value obtained by measuring the Haywood diameter of the particle cross section, and can be measured, for example, by SEM observation of a particle cross section obtained by embedding particles in a resin and polishing.

一方、かかる一次粒子が分子間力等によって凝集、あるいは緩やかなネッキングによって連結して形成される粒子を「二次粒子」と表記する。なお、通常、還元粉は二次粒子の状態で存在するので、還元粉の粒度分布グラフは二次粒子の分布を示すものとなる。さらに、二次粒子径は、体積基準による累積分布でのメジアン径を意味し、例えば、レーザー回折式乾式粒度測定装置を用いて、測定することができる。 On the other hand, particles formed by agglomeration of such primary particles by intermolecular force or the like or connection by gentle necking are referred to as “secondary particles”. In general, since the reduced powder exists in the form of secondary particles, the particle size distribution graph of the reduced powder shows the distribution of secondary particles. Further, the secondary particle diameter means a median diameter in a cumulative distribution on a volume basis, and can be measured using, for example, a laser diffraction dry particle size measuring apparatus.

また、「一次粒子のアスペクト比と面積比の積の平均値」とは、無作為に選択した200個の粒子について算出した「一次粒子のアスペクト比と面積比の積」の平均値とする。「一次粒子のアスペクト比と面積比の積」とは、各粒子の「アスペクト比」に「面積比」を乗じた値とする。「アスペクト比」とは粒子断面の長軸長さと短軸長さを測定し、長軸長さを短軸長さで徐した値とする。「面積比」とは、粒子断面の面積値を200個の粒子の面積値の平均値で除した値とする。各粒子の長軸長さ、短軸長さおよび断面の面積は、例えば、粒子を樹脂埋めして研磨した粒子断面のSEM観察等により、測定可能である The “average value of the product of the primary particle aspect ratio and the area ratio” is the average value of the “product of the primary particle aspect ratio and the area ratio” calculated for 200 randomly selected particles. The “product of the primary particle aspect ratio and the area ratio” is a value obtained by multiplying the “aspect ratio” of each particle by the “area ratio”. The “aspect ratio” is a value obtained by measuring the major axis length and minor axis length of a particle cross section and gradually increasing the major axis length by the minor axis length. The “area ratio” is a value obtained by dividing the area value of the particle cross section by the average value of the area values of 200 particles. The major axis length, minor axis length, and cross-sectional area of each particle can be measured, for example, by SEM observation of a particle cross-section obtained by embedding the particles with a resin and polishing

本発明者らは、上記のように構成された軟磁性粉末を用いて作製した圧粉磁芯の特性を測定したところ、1MHz以上の高周波で駆動した際のコアロスが、従来に比して格別に小さくなることを見出した。かかる効果が奏される作用機構の詳細は、未だ明らかではないものの、例えば、以下のとおり推定される。   The inventors of the present invention have measured the characteristics of the dust core produced by using the soft magnetic powder configured as described above. As a result, the core loss when driven at a high frequency of 1 MHz or higher is exceptional as compared with the conventional case. I found it to be smaller. The details of the mechanism of action that produces this effect are not yet clear, but are estimated as follows, for example.

上記構成の軟磁性粉末は、従来技術と同程度の二次粒子径を有するものの、一次粒子のアスペクト比と面積比の積の平均値が1.0〜4.0の範囲であることを特徴とする。
これは、アスペクト比、及び面積が大きい(異常)一次粒子が少ないことを示している。すなわち、一次粒子の変形、及びそれに伴う一次粒子の粗大化が少なく、よって、歪みの小さく保磁力の小さい磁性粉となっている。そのため、これを用いて作製した圧粉磁芯は、渦電流損失とともにヒステリシス損失が十分に低減されたものとなり、その結果、低周波領域から高周波領域に亘ってコアロスが格別に低減されたものと考えられる。但し、作用はこれらに限定されない。
The soft magnetic powder having the above structure has a secondary particle size similar to that of the prior art, but the average product of the aspect ratio and area ratio of the primary particles is in the range of 1.0 to 4.0. And
This indicates that there are few primary particles with large (abnormal) aspect ratio and area. That is, the deformation of the primary particles and the accompanying coarsening of the primary particles are small, and thus the magnetic powder has a small distortion and a small coercive force. For this reason, the dust core produced using this has a sufficiently reduced hysteresis loss as well as an eddy current loss. As a result, the core loss is significantly reduced from the low frequency range to the high frequency range. Conceivable. However, the action is not limited to these.

一般的に、アスペクト比は、多数の粒子の値をもとにした全体の平均値として表されることが多い。アスペクト比の大きい粒子は、塑性変形及びそれにともなう粒子の粗大化が起こっていると考えられるが、この一般的な平均値としてのアスペクト比を用いると、粗大化粒子の寄与(存在)が薄められ、粗大化粒子の存在を検出し難い。しかし、この粗大化粒子の体積比(断面の面積比)は粗大化に伴い大きくなるので、軟磁性粉末の特性、及び、その軟磁性粉末を使用して圧粉磁芯としたときの特性に与える影響は大きくなる。一方、本件においては、「アスペクト比」は個々の粒子の値をそのまま用いている。さらに、個々の粒子の「面積比」を算出し、個々の粒子の「アスペクト比」と「面積比」との積をとり、この積の平均値、即ち「一次粒子のアスペクト比と面積比の積の平均値」を、粗大化粒子の存在を検出するパラメータとして定義している。このように定義することにより、一般のアスペクト比だけでは表現できなかった粗大化粒子の影響を表すことが可能となる。 In general, the aspect ratio is often expressed as an overall average value based on the values of a large number of particles. Particles with a large aspect ratio are thought to have undergone plastic deformation and accompanying particle coarsening, but using this general average aspect ratio reduces the contribution (presence) of coarse particles. It is difficult to detect the presence of coarse particles. However, since the volume ratio (area ratio of the cross section) of the coarsened particles increases with the coarsening, the characteristics of the soft magnetic powder and the characteristics when the soft magnetic powder is used as a dust core are obtained. The effect will be greater. On the other hand, in this case, the “aspect ratio” uses the value of each particle as it is. Further, the “area ratio” of the individual particles is calculated, and the product of the “aspect ratio” and the “area ratio” of each particle is calculated. The average value of the products, that is, the “aspect ratio of the primary particles and the area ratio” is calculated. The “average value of the product” is defined as a parameter for detecting the presence of coarse particles. By defining in this way, it becomes possible to represent the influence of coarse particles that could not be expressed only by a general aspect ratio.

本発明の軟磁性粉末は、好ましくは保磁力が25Oe(1989A/m)以下であり、より好ましくは5〜25Oe(398〜1989A/m)である。前記軟磁性粉末であれば、ヒステリシス損失が十分に低減されたものとなり、その結果、低周波領域から高周波領域に亘ってコアロスが格別に低減される。但し、作用はこれらに限定されない。 The soft magnetic powder of the present invention preferably has a coercive force of 25 Oe (1989 A / m) or less, more preferably 5 to 25 Oe (398 to 1989 A / m). With the soft magnetic powder, the hysteresis loss is sufficiently reduced, and as a result, the core loss is significantly reduced from the low frequency region to the high frequency region. However, the action is not limited to these.

また、本発明の軟磁性粉末は、還元法によって製造された還元粉であることが好ましい。例えば、水アトマイズ法によって製造された粉末の場合、数十μmの一次粒子をつくるのは比較的容易であるが、数μmの一次粒子をつくるのは難しく、分級が必要となり、製造が困難で且つ高コストとなる。一方、還元法であれば、原料の一次粒子径を調整することで、数μm以下の一次粒子を製造することが比較的容易である。かかる方法であれば、数μm〜サブミクロンオーダーである一次粒子が凝集してできた二次粒子を、再現性よく簡易且つ低コストで製造できる。 The soft magnetic powder of the present invention is preferably a reduced powder produced by a reduction method. For example, in the case of a powder produced by the water atomization method, it is relatively easy to produce primary particles of several tens of μm, but it is difficult to produce primary particles of several μm, classification is necessary, and production is difficult. In addition, the cost is high. On the other hand, in the reduction method, it is relatively easy to produce primary particles of several μm or less by adjusting the primary particle diameter of the raw material. With such a method, secondary particles formed by agglomerating primary particles on the order of several μm to sub-micron can be easily and inexpensively manufactured with good reproducibility.

本発明の軟磁性粉末は、湿式メディアレスの微粒化装置で解砕されることが好ましい。乾式であると、解砕時の発熱により軟磁性粉末が高温となり、焼結、変質及び特性劣化を引き起こしてしまう可能性がある。湿式であれば、解砕時に発熱しても溶媒による冷却が効率良くできるため、軟磁性粉末の焼結、変質及び特性劣化を抑えることができる。また、メディアを使用した場合、メディアの衝突エネルギーが大きくなりやすいため、粒子の変形及び歪による特性劣化が起き易い。さらに、メディアからのコンタミネーションの混入が避けられず、軟磁性粉末の特性劣化を引き起こす。一方、メディアレスであれば、一次粒子を変形させ、歪による特性の劣化をもたらすことなく、二次粒子の解砕(縮径化)が効果的に行なわれ、メディアからのコンタミネーションの混入をなくすことができる。したがって、かかる装置での解砕方法であれば、低周波領域から高周波領域に亘ってコアロスが十分に低減された圧粉磁芯を作製し得る軟磁性粉末を、簡易且つ低コストで製造可能となる。また、生産性及び経済性がより一層高められる。   The soft magnetic powder of the present invention is preferably crushed with a wet medialess atomizer. When it is dry, the soft magnetic powder becomes high temperature due to heat generated during crushing, which may cause sintering, alteration, and characteristic deterioration. If it is wet, since cooling with a solvent can be efficiently performed even if heat is generated during crushing, it is possible to suppress sintering, alteration and deterioration of characteristics of the soft magnetic powder. In addition, when the media is used, the collision energy of the media tends to increase, so that characteristic deterioration due to particle deformation and distortion is likely to occur. In addition, contamination from the media is unavoidable and causes deterioration of the properties of the soft magnetic powder. On the other hand, in the case of medialess, the primary particles are deformed and the secondary particles are effectively crushed (reduced in diameter) without causing deterioration of characteristics due to strain, and contamination from media is mixed. Can be eliminated. Therefore, if it is a crushing method with such an apparatus, it is possible to easily and inexpensively manufacture soft magnetic powder capable of producing a dust core having a sufficiently reduced core loss from a low frequency region to a high frequency region. Become. In addition, productivity and economy are further improved.

上記、軟磁性粉末は、その表面の少なくとも一部に絶縁層の被覆を含むよう表面処理された表面処理粉を含むことが好ましい。これにより、粒子間の絶縁性が高められるとともに、渦電流の流れる経路が遮断され、渦電流損失がより一層低減される。   The soft magnetic powder preferably includes surface-treated powder that has been surface-treated so as to include a coating of an insulating layer on at least a part of the surface thereof. As a result, the insulation between the particles is enhanced, the path through which the eddy current flows is blocked, and the eddy current loss is further reduced.

また、上記軟磁性粉末は、樹脂、及び/又は、潤滑剤とともに混合し、加圧成形して圧粉磁芯とすることができる。これにより、粒子間の絶縁性が高められるとともに、渦電流の流れる経路が遮断され、渦電流損失がより一層低減される。また、成形性が高められ、実用性に優れるものとなる。   The soft magnetic powder can be mixed with a resin and / or a lubricant and pressure-molded to obtain a dust core. As a result, the insulation between the particles is enhanced, the path through which the eddy current flows is blocked, and the eddy current loss is further reduced. Further, the moldability is improved and the utility is excellent.

本発明の軟磁性粉末は、インダクタ、ジェネレータ、リアクタ、モーター、各種トランス、アンテナ、EMI対策部品、磁気シールド材等の磁気デバイスにも用いる事ができる。   The soft magnetic powder of the present invention can also be used for magnetic devices such as inductors, generators, reactors, motors, various transformers, antennas, EMI countermeasure parts, magnetic shield materials and the like.

本発明によれば、低周波領域から高周波領域に亘ってコアロスが十分に低減され、1MHz以上の高周波にも対応可能な圧粉磁芯、およびこれを容易に作製し得る軟磁性粉末が提供される。また、駆動周波数の高周波化に対応可能なので、インダクタ等の小型化が図られる。   ADVANTAGE OF THE INVENTION According to this invention, a core loss is fully reduced from a low frequency area | region to a high frequency area | region, the dust core which can respond also to the high frequency of 1 MHz or more, and the soft magnetic powder which can produce this easily are provided. The In addition, since the drive frequency can be increased, the inductor and the like can be reduced in size.

本実施形態の表面処理還元鉄粉の二次粒子及び一次粒子の凝集状態を概念的に示す模式図である。It is a schematic diagram which shows notionally the aggregation state of the secondary particle and primary particle of the surface treatment reduction iron powder of this embodiment. 本実施形態の軟磁性粉末、又は表面処理粉の製造方法及び圧粉磁芯の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the soft magnetic powder of this embodiment, or surface treatment powder, and the manufacturing method of a powder magnetic core.

以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されるものではない。なお、図面中、同一要素には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。   Embodiments of the present invention will be described below. In addition, the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

図1は、本実施形態の軟磁性粉末の二次粒子及び一次粒子の凝集状態を概念的に示す模式図である。
軟磁性粉末100は、Fe粉、又はFe−Ni系合金であって、一次粒子径が0.01〜5μm、好ましくは0.01〜3μm、より好ましくは0.01〜2μmの一次粒子11が凝集又は連結することにより形成された平均粒子径が1〜15μm、好ましくは1〜10μm、より好ましくは1〜5μmの二次粒子12を有する。また、軟磁性粉末100は、湿式メディアレスの微粒化装置で解砕して得られることが好ましい。さらに、軟磁性粉末100は、還元法により製造された還元粉であることが好ましい。一次粒子11は、その表面の少なくとも一部が絶縁層13により被覆されていることが好ましい。二次粒子12は、図示の如く、複数の一次粒子11が凝集又は連結することにより、海綿状の構造を有するものとなっている。以下、本実施形態の軟磁性粉末100の製造方法及び圧粉磁芯の製造方法を挙げて、本実施形態の軟磁性粉末100につき、詳述する。
FIG. 1 is a schematic view conceptually showing the aggregation state of secondary particles and primary particles of the soft magnetic powder of this embodiment.
The soft magnetic powder 100 is Fe powder or Fe—Ni alloy powder , and has a primary particle diameter of 0.01 to 5 μm, preferably 0.01 to 3 μm, more preferably 0.01 to 2 μm. Have secondary particles 12 having an average particle diameter of 1 to 15 μm, preferably 1 to 10 μm, more preferably 1 to 5 μm. The soft magnetic powder 100 is preferably obtained by crushing with a wet medialess atomizer. Further, the soft magnetic powder 100 is preferably a reduced powder produced by a reduction method. It is preferable that at least a part of the surface of the primary particle 11 is covered with the insulating layer 13. As shown in the figure, the secondary particles 12 have a spongy structure by aggregating or connecting a plurality of primary particles 11. Hereinafter, the manufacturing method of the soft magnetic powder 100 of this embodiment and the manufacturing method of the dust core will be described, and the soft magnetic powder 100 of this embodiment will be described in detail.

図2は、本実施形態の軟磁性粉末、及び圧粉磁芯の製造方法を示すフローチャートである。
本実施形態の軟磁性粉末は、一次粒子が凝集してできた二次粒子粉末を作製する工程(S1)と、その二次粒子粉末を解砕処理する工程(S2)と、を経て、製造することができる。本実施形態の軟磁性粉末は、必要に応じて、軟磁性粉末の表面の少なくとも一部が絶縁層により被覆された表面処理粉を含んでもよい。さらに、絶縁性樹脂、及び/又は潤滑剤を含んでいてもよい。かかる場合は、上記S1及びS2の工程に引き続き、表面処理をする工程(S3a)と、及び/又は、絶縁性樹脂を添加する工程、及び/又は潤滑剤を添加する工程(S3b)と、を経て、製造することができる。
また、本実施形態の圧粉磁芯は、上記のようにして得られた表面処理粉(軟磁性粉末S3)を加圧成形した後、熱処理する工程を経ることにより製造できる(S4−S5)。
FIG. 2 is a flowchart showing a method of manufacturing the soft magnetic powder and the dust core of the present embodiment.
The soft magnetic powder of this embodiment is manufactured through a step (S1) of producing a secondary particle powder formed by agglomerating primary particles and a step (S2) of crushing the secondary particle powder. can do. The soft magnetic powder of the present embodiment may include surface-treated powder in which at least a part of the surface of the soft magnetic powder is covered with an insulating layer as necessary. Furthermore, an insulating resin and / or a lubricant may be included. In such a case, following the steps of S1 and S2, the step of surface treatment (S3a) and / or the step of adding an insulating resin and / or the step of adding a lubricant (S3b) are performed. After that, it can be manufactured.
Moreover, the powder magnetic core of the present embodiment can be manufactured by subjecting the surface-treated powder (soft magnetic powder S3) obtained as described above to a pressure treatment and then a heat treatment process (S4-S5). .

一次粒子が凝集してできた二次粒子粉末を作製する工程(S1)では、平均粒子径が0.01〜5μmの一次粒子を含む二次粒子粉末を作製する。平均粒子径が0.01〜5μmの一次粒子を含むFe粉、又はFe−Ni合金粉は、本実施形態では、低周波領域から高周波領域に亘ってコアロスが十分に低減された圧粉磁芯を得るために、還元法により製造されたものであることが好ましい。   In the step (S1) of producing secondary particle powder formed by agglomerating primary particles, secondary particle powder containing primary particles having an average particle diameter of 0.01 to 5 μm is produced. In this embodiment, the Fe powder containing primary particles having an average particle diameter of 0.01 to 5 μm or the Fe—Ni alloy powder is a dust core in which the core loss is sufficiently reduced from the low frequency region to the high frequency region. In order to obtain, it is preferable that it was manufactured by the reduction method.

還元鉄Fe粉の原料となる酸化鉄としては、公知のものを用いることができる。その具体例としては、例えば、ヘマタイト、マグヘマタイト、マグネタイト、ウースタイト、ベルトライト、ゲーサイト、アカガナイト及びレピドクロサイト等の鉄酸化物(鉄含水酸化物を含む)が挙げられるが、これらに特に限定されない。これらは、各々単独で使用することができ、また、2種以上を組み合わせて使用することができる。これらのなかでも、鋼板の圧延工程の前処理で酸洗処理に使用された酸から回収処理して製造されたヘマタイトは、安価で容易に入手できるため、還元鉄Fe粉の原料となる酸化鉄として好ましい。   A well-known thing can be used as iron oxide used as the raw material of reduced iron Fe powder. Specific examples thereof include iron oxides (including iron hydrated oxides) such as hematite, maghematite, magnetite, wustite, beltlite, goethite, akaganite and lepidocrotite, but are not particularly limited to these. Not. Each of these can be used alone or in combination of two or more. Among these, since hematite produced by recovering from the acid used for the pickling treatment in the pretreatment of the rolling process of the steel sheet can be easily obtained at a low cost, iron oxide as a raw material for reduced iron Fe powder As preferred.

還元Fe−Ni合金粉の原料となる酸化鉄としては、還元Fe粉と同様のものである。酸化ニッケルとしては、公知のものを用いることができる。その具体例としては、例えば、酸化ニッケル(II)、酸化ニッケル(III)などが挙げられる。なかでも、還元Fe−Ni合金粉の原料となる酸化ニッケルとしては、酸化ニッケル(II)が好ましい。   The iron oxide used as a raw material for the reduced Fe—Ni alloy powder is the same as that for the reduced Fe powder. Known nickel oxide can be used. Specific examples thereof include nickel (II) oxide and nickel (III) oxide. Among these, nickel (II) oxide is preferable as the nickel oxide that is a raw material for the reduced Fe—Ni alloy powder.

還元Fe粉、又は、還元Fe−Ni合金粉の原料となる酸化鉄、及び酸化ニッケルは、粉体の形状のものが用いられる。その一次粒子の粒子径は、所望の表面処理還元粉の一次粒子の粒子径よりも小さいことが好ましい。還元法による還元Fe粉、又は還元Fe−Ni合金粉の製造においては、還元条件を適宜設定することにより一次粒子の粒子径を大きく成長させることはできるが、粒子径の大きな酸化鉄粉、又は酸化鉄と酸化ニッケルの混合物から粒子径の小さな還元粉を得るのは困難な傾向にある。   Powdered iron oxide and nickel oxide used as raw materials for reduced Fe powder or reduced Fe—Ni alloy powder are used. The particle size of the primary particles is preferably smaller than the particle size of the primary particles of the desired surface-treated reduced powder. In the production of reduced Fe powder or reduced Fe-Ni alloy powder by the reduction method, the primary particle size can be increased by appropriately setting the reduction conditions, but the iron oxide powder having a large particle size, or It tends to be difficult to obtain a reduced powder having a small particle diameter from a mixture of iron oxide and nickel oxide.

酸化鉄、又は酸化鉄と酸化ニッケルの混合物を還元する工程(S1a)は、還元法において公知の条件に基づいて行えばよく、特に限定されない。使用する炉の性能、流下式、流動層式、回転式或いは固定床式等の反応方式、酸化鉄の処理量等に応じて、適宜設定することができる。一般的には、固定式或いは回転式の炉内において、20〜100g程度の酸化鉄に対し、低酸素濃度の還元性ガス雰囲気下、200〜650℃程度の還元温度で1〜6時間程度の処理を行う。通常、酸素分圧が10%を超えると、酸化が急激に進行して粒子内部まで酸化されてしまい、還元が十分に進まない傾向にある。また、還元温度が200℃未満であると処理時間が長くなり、還元が十分に進まなくなる傾向にあり、一方、700℃を越えると焼結が生じ易くなり粒径が大きくなる傾向にある。したがって、好ましい還元温度は、400〜650℃である。還元性ガスとしては、例えば、CO,HS、SO、H等が挙げられるが、これらの中でも、好ましくはHである。 The step of reducing iron oxide or a mixture of iron oxide and nickel oxide (S1a) may be performed based on known conditions in the reduction method, and is not particularly limited. It can be appropriately set according to the performance of the furnace to be used, a reaction method such as a falling type, a fluidized bed type, a rotary type or a fixed bed type, a processing amount of iron oxide and the like. Generally, in a fixed or rotary furnace, about 20 to 100 g of iron oxide is reduced at a reducing temperature of about 200 to 650 ° C. for about 1 to 6 hours in a reducing gas atmosphere having a low oxygen concentration. Process. Usually, when the oxygen partial pressure exceeds 10%, the oxidation proceeds rapidly and is oxidized to the inside of the particles, and the reduction does not tend to proceed sufficiently. On the other hand, if the reduction temperature is less than 200 ° C., the treatment time becomes long and the reduction does not proceed sufficiently. On the other hand, if the reduction temperature exceeds 700 ° C., sintering tends to occur and the particle size tends to increase. Therefore, a preferable reduction temperature is 400 to 650 ° C. Examples of the reducing gas include CO, H 2 S, SO 2 , and H 2. Among these, H 2 is preferable.

還元処理によって得られるFe粉の表面を緩やかに徐酸化する工程も、還元法において公知の条件に基づいて行えばよく、Fe粉内部まで酸化が進行しない程度に穏やかな表面酸化を行うものである限り、特に限定されない。酸化鉄の処理量等に応じて、処理温度、処理時間及び酸素濃度等を適宜設定することができる。一般的には、炉内において、20〜100g程度の酸化鉄に対し、酸素分圧が1〜5%程度の酸素含有雰囲気下、20〜100℃程度の温度で5分〜1時間程度の処理を行う。   The step of slowly and slowly oxidizing the surface of the Fe powder obtained by the reduction treatment may be performed based on known conditions in the reduction method, and performs mild surface oxidation to such an extent that the oxidation does not proceed to the inside of the Fe powder. As long as it is not particularly limited. The treatment temperature, treatment time, oxygen concentration, etc. can be appropriately set according to the treatment amount of iron oxide and the like. Generally, in a furnace, about 20 to 100 g of iron oxide is treated in an oxygen-containing atmosphere with an oxygen partial pressure of about 1 to 5% at a temperature of about 20 to 100 ° C. for about 5 minutes to 1 hour. I do.

本実施形態において好ましい処理条件の一例としては、原料となる酸化鉄粉を固定式又は回転式の炉に仕込み、乾燥した水素ガスを導入しながら500〜600℃程度の温度で3〜5時間程度の還元処理を行い、常温程度まで冷却した後、酸素分圧が1〜3%程度の不活性ガス雰囲気下、30〜80℃程度の温度で5〜30分間程度保持して徐酸化処理を行う方法が挙げられる。   As an example of preferable processing conditions in the present embodiment, iron oxide powder as a raw material is charged into a fixed or rotary furnace, and dried hydrogen gas is introduced at a temperature of about 500 to 600 ° C. for about 3 to 5 hours. After reducing to room temperature, the temperature is kept at about 30 to 80 ° C. for about 5 to 30 minutes in an inert gas atmosphere with an oxygen partial pressure of about 1 to 3%, and then a gradual oxidation treatment is performed. A method is mentioned.

次に、かくして得られる還元法により製造された平均粒子径が0.01〜5μmの一次粒子を含む還元粉を、解砕処理する(S2)。これにより、本実施形態の軟磁性粉末を得ることができる(S3)。   Next, the reduced powder containing primary particles having an average particle diameter of 0.01 to 5 μm manufactured by the reduction method thus obtained is crushed (S2). Thereby, the soft magnetic powder of this embodiment can be obtained (S3).

解砕処理は、還元粉に溶媒を添加した湿式メディアレスの微粒化装置で行うことが好ましい。添加した溶媒により一次粒子が被覆されるので一次粒子の再凝集による二次粒子の再形成を抑制できるので、解砕が高効率で行えるとともに、大気によって還元粉が酸化することを防止することができる。使用可能な溶媒としては、例えば、酸やアルカリ等の水溶液、鉱物油、合成油、植物油等の油、アセトン、アルコールといった有機溶媒等が挙げられるが、これらに特に限定されない。これらは1種を単独で使用することができ、また、2種以上を組み合わせて用いることができる。
また、解砕処理は、メディアレスの微粒化装置で行うことが好ましい。メディアレスにすることで粒子の塑性変形や、それに伴う粒子の粗大化を防ぐことができる。さらに、メディアからのコンタミネーションの混入を防ぐことができる。
使用可能な湿式メディアレスの微粒化装置として、超音波ホモジナイザー、高圧ホモジナイザー(湿式キャビテーションミル)、コロイドミル、湿式ジェットミル、高圧を使用した湿式微粒化装置、音速エアジェットを使用した湿式微粒化装置等が挙げられるが、これらに特に限定されない。上記の手法により、一次粒子の凝集が解かれ、その結果、二次粒子の平均粒子径が1〜15μm以下まで低減された還元粉を得ることができる。
The pulverization treatment is preferably performed with a wet medialess atomization apparatus in which a solvent is added to the reduced powder. Since the primary particles are coated with the added solvent, the secondary particles can be prevented from re-forming due to the re-aggregation of the primary particles, so that the crushing can be performed with high efficiency and the reduction powder can be prevented from being oxidized by the atmosphere. it can. Examples of the solvent that can be used include aqueous solutions such as acids and alkalis, mineral oils, synthetic oils, vegetable oils, and other organic solvents, and organic solvents such as acetone and alcohols, but are not particularly limited thereto. These can be used individually by 1 type and can be used in combination of 2 or more type.
The crushing process is preferably performed with a medialess atomizer. By making it medialess, plastic deformation of particles and accompanying particle coarsening can be prevented. Furthermore, contamination from media can be prevented.
Available wet medialess atomizers include ultrasonic homogenizer, high pressure homogenizer (wet cavitation mill), colloid mill, wet jet mill, wet atomizer using high pressure, wet atomizer using sonic air jet. However, it is not particularly limited to these. By the above method, the aggregation of the primary particles is released, and as a result, a reduced powder in which the average particle diameter of the secondary particles is reduced to 1 to 15 μm or less can be obtained.

解砕処理は、大気によって還元粉が酸化することを防止するために、酸素濃度が500ppm以下の窒素等の不活性ガス雰囲気で行うことが好ましい。   The pulverization treatment is preferably performed in an inert gas atmosphere such as nitrogen having an oxygen concentration of 500 ppm or less in order to prevent the reduced powder from being oxidized by the atmosphere.

表面処理としては、軟磁性粉末の表面に絶縁性を付与する絶縁層であれば特に限定されない。絶縁層の具体例としては、例えば、リン酸鉄、ホウ酸鉄、硫酸鉄、硝酸鉄、酢酸鉄、炭酸鉄、シリカ、チタニア、ジルコニア、マグネシア、アルミナ、酸化クロム、酸化亜鉛等の無機化合物が挙げられる。これらは、1種のみを単独で、或いは2種以上を組み合わせて、用いることができる。耐熱性の観点から、好ましい絶縁層としては、リン酸鉄、シリカ、チタニア、ジルコニア、マグネシア、アルミナ、酸化クロム、酸化亜鉛等であり、より好ましくはリン酸鉄である。リン酸処理などにより形成されるリン酸鉄は、強磁性を有しないため磁気的な悪影響が小さく、また化合物として安定であることから防錆効果も期待ができる。   The surface treatment is not particularly limited as long as it is an insulating layer that imparts insulation to the surface of the soft magnetic powder. Specific examples of the insulating layer include inorganic compounds such as iron phosphate, iron borate, iron sulfate, iron nitrate, iron acetate, iron carbonate, silica, titania, zirconia, magnesia, alumina, chromium oxide, and zinc oxide. Can be mentioned. These can be used alone or in combination of two or more. From the viewpoint of heat resistance, preferable insulating layers are iron phosphate, silica, titania, zirconia, magnesia, alumina, chromium oxide, zinc oxide, and the like, and more preferably iron phosphate. Iron phosphate formed by phosphoric acid treatment or the like does not have ferromagnetism, and thus has a small magnetic adverse effect. Further, since it is stable as a compound, it can be expected to have an antirust effect.

本実施形態の軟磁性粉末は、絶縁性樹脂を含有していてもよい。軟磁性粉末の表面の一部又は全部を絶縁性樹脂によりコーティングすることにより、粒子間の絶縁性を高め得るとともに、圧粉磁芯の成形時の成形性を高め得る。絶縁性樹脂は、必要とされる特性に応じて適宜選択される。その具体例としては、例えば、シリコーン樹脂、フェノール樹脂、アクリル樹脂及びエポキシ樹脂等の各種有機高分子樹脂が挙げられるが、これらに特に限定されない。これらは1種を単独で使用することができ、また、2種以上を組み合わせて用いることができる。また、必要に応じて、公知の硬化剤や架橋剤を含有していてもよい。   The soft magnetic powder of this embodiment may contain an insulating resin. By coating part or all of the surface of the soft magnetic powder with an insulating resin, it is possible to improve the insulation between the particles and to improve the moldability at the time of molding the dust core. The insulating resin is appropriately selected according to the required characteristics. Specific examples thereof include various organic polymer resins such as silicone resin, phenol resin, acrylic resin, and epoxy resin, but are not particularly limited thereto. These can be used individually by 1 type and can be used in combination of 2 or more type. Moreover, you may contain a well-known hardening | curing agent and a crosslinking agent as needed.

軟磁性粉末と絶縁性樹脂等との混合は、加圧ニーダやボールミル等の攪拌機・混合機を用いて行なうことが好ましい。好ましくは室温で20〜60分間混合することにより絶縁性樹脂により被覆表面処理粉が得られ易い。特に、濡れ性を高める目的で、上述した有機溶媒の存在下で混合を行うことが好ましい。具体的には、好ましくは室温で20〜60分間混合し、得られた混合物を、好ましくは50〜100℃程度で10分間〜10時間乾燥し、その後に有機溶媒を揮発或いは除去することにより、絶縁性樹脂により被覆された軟磁性粉末が得られる。   The mixing of the soft magnetic powder with the insulating resin or the like is preferably performed using a stirrer / mixer such as a pressure kneader or a ball mill. Preferably, the coated surface-treated powder is easily obtained from the insulating resin by mixing at room temperature for 20 to 60 minutes. In particular, for the purpose of improving wettability, it is preferable to perform mixing in the presence of the organic solvent described above. Specifically, preferably by mixing at room temperature for 20 to 60 minutes, the resulting mixture is preferably dried at about 50 to 100 ° C. for 10 minutes to 10 hours, and then the organic solvent is volatilized or removed, A soft magnetic powder coated with an insulating resin is obtained.

絶縁性樹脂の配合量は、特に限定されないが、非磁性成分である絶縁性樹脂の増加は、圧粉磁芯としたときのインダクタンスの低下を引き起こすので、かかる観点から、使用する還元粉に対して0.1〜5質量%であることが好ましい。   The blending amount of the insulating resin is not particularly limited, but an increase in the insulating resin, which is a non-magnetic component, causes a decrease in inductance when used as a dust core. It is preferable that it is 0.1-5 mass%.

本実施形態の軟磁性粉末は、潤滑剤を含有していてもよい。軟磁性粉末の表面の一部又は全部に付着することにより、粒子間、及び金型−粒子間の潤滑性を高め、圧粉磁芯の成形時の成形性を高める。潤滑剤は、必要に応じて適宜選択される。その具体例としては、例えば、ステアリン酸リチウム、ステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸銅、オレイン酸亜鉛等の金属石鹸が挙げられるが、これらに特に限定されない。これらは1種を単独で使用することができ、また、2種以上を組み合わせて用いることができる。   The soft magnetic powder of this embodiment may contain a lubricant. By adhering to a part or all of the surface of the soft magnetic powder, the lubricity between the particles and between the mold and the particles is improved, and the moldability during molding of the dust core is improved. The lubricant is appropriately selected as necessary. Specific examples thereof include, but are not particularly limited to, metal soaps such as lithium stearate, zinc stearate, aluminum stearate, calcium stearate, copper stearate, and zinc oleate. These can be used individually by 1 type and can be used in combination of 2 or more type.

軟磁性粉末と潤滑剤との混合は、添加した潤滑剤を原料粉に均一に行き渡らせるために、かかる混合物を混練することが好ましい。混練は、公知の方法により行えばよく、特に限定されないが、混合機(例えば、アタライタ、振動ミル、ボールミル、Vミキサー等)や造粒機(例えば、流動造粒機、転動造粒機等)等を用いて行うことが好ましい。 In mixing the soft magnetic powder and the lubricant, it is preferable to knead the mixture in order to distribute the added lubricant uniformly to the raw material powder. The kneading may be performed by a known method, and is not particularly limited. However, a mixer (for example, an attawriter, a vibration mill, a ball mill, a V mixer, etc.) or a granulator (for example, a fluid granulator, a rolling granulator, etc. Etc.) is preferable.

潤滑剤の配合量は、特に限定されないが、非磁性成分である潤滑剤の増加は、圧粉磁芯としたときのインダクタンスの低下を引き起こし得るので、かかる観点から、使用する還元粉に対して0.02〜1質量%であることが好ましい。   The blending amount of the lubricant is not particularly limited, but an increase in the lubricant that is a non-magnetic component can cause a decrease in inductance when used as a dust core. It is preferable that it is 0.02-1 mass%.

本実施形態の表面処理粉は、必要に応じて、SiOやAl等の無機材料、潤滑剤、成形助剤等、公知の添加剤を含んでいてもよい。 The surface-treated powder of the present embodiment may contain known additives such as inorganic materials such as SiO 2 and Al 2 O 3 , lubricants, molding aids, and the like as necessary.

本実施形態の圧粉磁芯は、本実施形態の軟磁性粉末を、加圧成形した後、熱処理することにより製造することができる(S4−S5)。本実施形態の圧粉磁芯は、コア材料として本実施形態の軟磁性粉末を用いることにより公知の製造方法によって製造することができる。   The powder magnetic core of the present embodiment can be manufactured by subjecting the soft magnetic powder of the present embodiment to pressure forming and then heat treatment (S4-S5). The dust core of the present embodiment can be manufactured by a known manufacturing method by using the soft magnetic powder of the present embodiment as the core material.

加圧成形工程では、プレス機械の成形金型内に上記表面処理粉を充填し、その後、表面処理粉を加圧して圧縮成形を施すことにより、成形体を得る。この圧縮成形における成形条件は特に限定されず、表面処理粉の嵩密度や粘性、所望する圧粉磁芯の形状、寸法及び密度などに応じて適宜設定される。例えば、通常、成形圧力は392〜1177MPa程度、好ましくは588〜785MPa程度であり、最大圧力に保持する時間は0.1秒間〜1分間程度である。   In the pressure molding step, the surface-treated powder is filled in a molding die of a press machine, and then the surface-treated powder is pressurized and subjected to compression molding to obtain a molded body. The molding conditions in this compression molding are not particularly limited, and are appropriately set according to the bulk density and viscosity of the surface-treated powder, the desired shape, size and density of the dust core. For example, the molding pressure is usually about 392 to 1177 MPa, preferably about 588 to 785 MPa, and the time for maintaining the maximum pressure is about 0.1 second to 1 minute.

熱処理工程では、上述のようにして得られた成形体を、例えば150〜300℃の温度で15〜120分間程度保持する。これにより、成形体中の絶縁体としての樹脂が硬化し、圧粉磁芯(圧粉体)が得られる。   In the heat treatment step, the molded body obtained as described above is held, for example, at a temperature of 150 to 300 ° C. for about 15 to 120 minutes. Thereby, the resin as the insulator in the molded body is cured, and a dust core (powder) is obtained.

なお、必要に応じて、熱処理工程の後に、圧粉磁芯に防錆処理を施す防錆処理工程を経てもよい。防錆処理は、公知の手法にしたがって行えばよく、例えば、エポキシ樹脂等をスプレーコートする等して行う。スプレーコートによる膜厚は、通常、数十μm程度である。防錆処理を施した後、熱処理を行うことが望ましい。   In addition, you may pass through the rust prevention process process which performs a rust prevention process to a dust core after a heat treatment process as needed. The rust prevention treatment may be performed according to a known method, for example, by spray coating an epoxy resin or the like. The film thickness by spray coating is usually about several tens of μm. It is desirable to perform heat treatment after the rust prevention treatment.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the gist thereof.

以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

なお、実施例及び比較例における各種性能の測定方法は、以下の通りである。
<ビッカース硬さ>
JISZ2244の方法に従って、微小硬度計(島津製作所製)で測定した。
In addition, the measuring method of the various performance in an Example and a comparative example is as follows.
<Vickers hardness>
According to the method of JISZ2244, it was measured with a micro hardness meter (manufactured by Shimadzu Corporation).

<アスペクト比と面積比>
走査型電子顕微鏡(SEM)を用いて、樹脂埋めした軟磁性粉末の断面を観察し、無作為に選択した200点の粒子についてアスペクト比、面積比を測定した。
<Aspect ratio and area ratio>
Using a scanning electron microscope (SEM), the cross section of the soft magnetic powder embedded in the resin was observed, and the aspect ratio and area ratio of 200 randomly selected particles were measured.

<一次粒子径>
走査型電子顕微鏡(SEM)を用いて、樹脂埋めした軟磁性粉末の断面を観察し、無作為に選択した200点の粒子についてヘイウッド径を測定し、その個数平均粒子径を一次粒子径とした。
<Primary particle size>
Using a scanning electron microscope (SEM), the cross-section of the soft magnetic powder embedded in the resin was observed, the Haywood diameter was measured for 200 randomly selected particles, and the number average particle diameter was defined as the primary particle diameter. .

<二次粒子径>
レーザー回折式乾式粒度測定装置(HELOSシステム、Sympatec社製)を用いて、軟磁性粉末の二次粒子径(D50%粒子径)を測定した。
<Secondary particle size>
The secondary particle size (D50% particle size) of the soft magnetic powder was measured using a laser diffraction dry particle size measuring device (HELOS system, manufactured by Sympatec).

<保磁力>
20mgの軟磁性粉末を非磁性ケースに入れてパラフィンで固め、Hcメーター(K−HC1000、東北特殊鋼製)を用いて、軟磁性粉末に1850Oe(147.2kA/m)の磁界を印加し、保磁力を測定した。
<Coercivity>
20 mg of soft magnetic powder was put in a non-magnetic case and hardened with paraffin, and a magnetic field of 1850 Oe (147.2 kA / m) was applied to the soft magnetic powder using an Hc meter (K-HC1000, manufactured by Tohoku Special Steel) The coercivity was measured.

<圧粉磁芯のコアロス>
BHアナライザ(SY−8218、岩通製)を用いて、測定条件:印加磁界Bm=10mT、f=1MHz、及びf=3MHzにて圧粉磁芯のコアロス(磁芯損失:Pcv)を測定した。
<Core loss of dust core>
The core loss (magnetic core loss: Pcv) of the dust core was measured under the measurement conditions: applied magnetic field Bm = 10 mT, f = 1 MHz, and f = 3 MHz using a BH analyzer (SY-8218, manufactured by Iwatori). .

<1MHzのコアロスと3MHzのコアロスとの比(コアロスの周波数依存性)>
3MHzのコアロスを1MHzのコアロスで除して算出した。このコアロスの周波数依存性の評価は、周波数上昇に対するコアロスの増大の度合いを示すものであり、この値が大きいほど、高周波でのコアロスが大きくなるため、高周波用途での使用に適さないことを意味する。
<Ratio of 1 MHz core loss to 3 MHz core loss (frequency dependence of core loss)>
The calculation was performed by dividing the 3 MHz core loss by the 1 MHz core loss. This evaluation of the frequency dependence of the core loss indicates the degree of increase in the core loss with respect to the frequency rise, and the larger the value, the larger the core loss at high frequency, meaning that it is not suitable for use in high frequency applications. To do.

(比較例1)
まず、原料粉としてヘマタイト(CSR−900、ケミライト社製)を使用し、これをステンレス容器内に充填した後、ステンレス容器を箱型バッチ炉中に装入した。次に、系内の空気を真空ポンプにて排出した後、1L/分の流量で水素ガスを導入して炉内を正圧(1atm以上)の水素雰囲気に置換し、500℃の温度で5時間の熱処理を行った。冷却後、100℃以下で炉内の水素ガスを排気し、次にアルゴンガスと空気とを導入して、炉内を酸素分圧が2%の雰囲気に置換した状態で、60〜80℃の温度で15分間保持し、穏やかな表面酸化を行った。その後、炉内のステンレス容器を取り出し、還元鉄Fe粉を得た。
この還元Fe粉5gを250mlのポリビン(ポリプロピレン製ビン)に投入し、鋼球(Φ3.2mm、0.16g/pc)50gと有機溶剤20gとを加えた後、Air雰囲気下にて一軸ボールミルにて6時間の解砕処理を行った。その後、解砕処理後の還元Fe粉を取り出し、目開き2mmの篩にて鋼球を分離し、さらに加熱して有機溶剤を気化し乾燥させて、比較例1の還元Fe粉(解砕処理済み)を得た。
(Comparative Example 1)
First, hematite (CSR-900, manufactured by Chemilite Co., Ltd.) was used as a raw material powder, and after filling this into a stainless steel container, the stainless steel container was charged into a box-type batch furnace. Next, after exhausting the air in the system with a vacuum pump, hydrogen gas was introduced at a flow rate of 1 L / min to replace the inside of the furnace with a hydrogen atmosphere of positive pressure (1 atm or more), and a temperature of 500 ° C. Heat treatment for hours was performed. After cooling, the hydrogen gas in the furnace was exhausted at 100 ° C. or lower, and then argon gas and air were introduced, and the atmosphere in the furnace was replaced with an atmosphere having an oxygen partial pressure of 2%. Hold for 15 minutes at temperature to effect gentle surface oxidation. Thereafter, the stainless steel container in the furnace was taken out to obtain reduced iron Fe powder.
5 g of this reduced Fe powder is put into a 250 ml polybin (polypropylene bottle), 50 g of steel balls (Φ3.2 mm, 0.16 g / pc) and 20 g of an organic solvent are added, and then placed in a uniaxial ball mill under an Air atmosphere. For 6 hours. Thereafter, the reduced Fe powder after the pulverization treatment is taken out, the steel balls are separated with a sieve having a mesh opening of 2 mm, and further heated to vaporize the organic solvent and dried. Finished).

(比較例2)
600℃の温度で5時間の熱処理をすること以外は、比較例1と同様の還元処理を行い、還元Fe粉を得た。その還元Fe粉に比較例1と同様の解砕処理を行い、比較例2の還元Fe粉(解砕処理済み)を得た。
(Comparative Example 2)
A reduced Fe powder was obtained by performing the same reduction treatment as in Comparative Example 1 except that the heat treatment was performed at a temperature of 600 ° C. for 5 hours. The reduced Fe powder was subjected to the same pulverization treatment as in Comparative Example 1 to obtain the reduced Fe powder of Comparative Example 2 (after the pulverization treatment).

(比較例3)
酸化鉄と酸化ニッケルを質量比100:74で混合した原料粉を用いること以外は、比較例1と同様の還元処理を行い、還元Fe−Ni合金粉を得た。その還元Fe−Ni合金粉に比較例1と同様の解砕処理を行い、比較例3の還元Fe−Ni合金粉(解砕処理済み)を得た。
(Comparative Example 3)
A reduced Fe—Ni alloy powder was obtained by carrying out the same reduction treatment as in Comparative Example 1 except that raw material powder in which iron oxide and nickel oxide were mixed at a mass ratio of 100: 74 was used. The reduced Fe—Ni alloy powder was crushed in the same manner as in Comparative Example 1 to obtain a reduced Fe—Ni alloy powder (compared with pulverized treatment) in Comparative Example 3.

(比較例4)
酸化鉄と酸化ニッケルを質量比100:74で混合した原料粉を用いること以外は、比較例2と同様の還元処理を行い、還元Fe−Ni合金粉を得た。その還元Fe−Ni合金粉に比較例1と同様の解砕処理を行い、比較例4の還元Fe−Ni合金粉(解砕処理済み)を得た。
(Comparative Example 4)
A reduced Fe—Ni alloy powder was obtained by performing the same reduction treatment as in Comparative Example 2 except that raw material powder in which iron oxide and nickel oxide were mixed at a mass ratio of 100: 74 was used. The reduced Fe—Ni alloy powder was subjected to the same pulverization treatment as in Comparative Example 1 to obtain the reduced Fe—Ni alloy powder (compared with pulverization treatment) of Comparative Example 4.

(比較例5)
純鉄よりなる溶湯を溶製したのち、ノズルよりこの溶湯を流下させると共に、この溶湯流に向けて水を噴射することによって水アトマイズ粉末よりなる軟磁性粉末を製造し、分級により粒度調整することで水アトマイズFe粉を得た。この水アトマイズFe粉に比較例1と同様の解砕処理を行い、比較例5の水アトマイズFe粉(解砕処理済み)を得た。
(Comparative Example 5)
After melting the molten metal made of pure iron, the molten metal is made to flow down from the nozzle, and the soft magnetic powder made of water atomized powder is manufactured by spraying water toward the molten metal flow, and the particle size is adjusted by classification. The water atomized Fe powder was obtained. This water atomized Fe powder was subjected to the same crushing treatment as in Comparative Example 1 to obtain a water atomized Fe powder (compared with crushing treatment) of Comparative Example 5.

(実施例1)
比較例1と同様の還元処理を行い、還元Fe粉を得た。この還元Fe粉に有機溶剤を加えてスラリーを作製し、公知の方法を用いて高圧ホモジナイザーで解砕処理を行った。その後、得られたスラリーを窒素雰囲気で加熱し、有機溶剤を蒸発、乾燥させることで、実施例1の還元Fe粉(解砕処理済み)を得た。
Example 1
The same reduction treatment as in Comparative Example 1 was performed to obtain reduced Fe powder. A slurry was prepared by adding an organic solvent to the reduced Fe powder, and pulverized with a high-pressure homogenizer using a known method. Thereafter, the obtained slurry was heated in a nitrogen atmosphere, and the organic solvent was evaporated and dried to obtain reduced Fe powder of Example 1 (disintegrated).

(実施例2)
比較例2と同様の還元処理を行い、還元Fe粉を得た。この還元Fe粉に実施例1と同様の解砕処理を行い、実施例2の還元Fe粉(解砕処理済み)を得た。
(Example 2)
The same reduction treatment as in Comparative Example 2 was performed to obtain reduced Fe powder. This reduced Fe powder was crushed in the same manner as in Example 1 to obtain reduced Fe powder in Example 2 (crushed).

(実施例3)
比較例3と同様の還元処理を行い、還元Fe−Ni合金粉を得た。この還元Fe−Ni合金粉に実施例1と同様の解砕処理を行い、実施例3の還元Fe−Ni合金粉(解砕処理済み)を得た。
(Example 3)
The reduction process similar to the comparative example 3 was performed, and the reduced Fe-Ni alloy powder was obtained. This reduced Fe—Ni alloy powder was crushed in the same manner as in Example 1 to obtain reduced Fe—Ni alloy powder in Example 3 (having been crushed).

(実施例4)
比較例4と同様の還元処理を行い、還元Fe−Ni合金粉を得た。この還元Fe−Ni合金粉に実施例1と同様の解砕処理を行い、実施例4の還元Fe−Ni合金粉(解砕処理済み)を得た。
Example 4
The reduction process similar to the comparative example 4 was performed, and the reduced Fe-Ni alloy powder was obtained. This reduced Fe—Ni alloy powder was crushed in the same manner as in Example 1 to obtain reduced Fe—Ni alloy powder in Example 4 (pulverized).

(実施例5)
比較例5と同様の水アトマイズ処理を行い、水アトマイズFe粉を得た。この水アトマイズ鉄Fe粉に実施例1と同様の解砕処理を行い、実施例5の水アトマイズ鉄Fe粉(解砕処理済み)を得た。
(Example 5)
The water atomization process similar to the comparative example 5 was performed, and water atomized Fe powder was obtained. This water atomized iron Fe powder was crushed in the same manner as in Example 1 to obtain the water atomized iron Fe powder of Example 5 (disintegrated).

表1に、実施例1〜5並びに比較例1〜5の軟磁性粉末の粉体評価及び磁気特性を示す。
Table 1 shows the powder evaluation and magnetic properties of the soft magnetic powders of Examples 1 to 5 and Comparative Examples 1 to 5.

表1から明らかなように、比較例1〜5の軟磁性粉末では、保磁力が大きくなっていることが確認された。これは、アスペクト比と面積比の積が大きくなっており、塑性変形による歪みが原因で保磁力が増加しているといえる。一方、実施例1〜5の軟磁性粉末では、アスペクト比と面積比の積が小さく、粒子の塑性変形が小さいため、保磁力が25Oe(1989A/m)以下と小さくなっていることが確認された。この軟磁性粉末を用いて作製した圧粉磁芯は、MHz帯域の高周波駆動に対し適性を有するものであることが確認され、本発明の目的を達成できることが確認された。 As is apparent from Table 1, it was confirmed that the soft magnetic powders of Comparative Examples 1 to 5 had a large coercive force. This is because the product of the aspect ratio and the area ratio is large, and it can be said that the coercive force is increased due to distortion caused by plastic deformation. On the other hand, in the soft magnetic powders of Examples 1 to 5, since the product of the aspect ratio and the area ratio is small and the plastic deformation of the particles is small, it is confirmed that the coercive force is as small as 25 Oe (1989 A / m) or less. It was. The dust core produced using this soft magnetic powder was confirmed to be suitable for high-frequency driving in the MHz band, and it was confirmed that the object of the present invention could be achieved.

(比較例6)
比較例1の還元Fe粉に、有機溶剤と、還元鉄Fe粉に対して1.00質量%のリン酸を混合した後、乾燥させて還元Fe粉(表面処理済)を得た。
エポキシ樹脂(N−695、大日本インキ社製)と硬化剤とを混合し、混合物を有機溶剤に溶解して、液状組成物を調製した。次に、還元Fe粉(表面処理済)、及び、還元Fe粉(表面処理済)に対して3.0質量%となるように秤量した前記液状組成物を、共にポリビン中に投入し、ボールミル架台にて回転させながら十分に攪拌混合した。その後、この攪拌混合物をビーカーに取り出し、加熱して有機溶剤を気化し乾燥させて、顆粒状の還元Fe粉を得た。
得られた顆粒状の還元Fe粉に、潤滑剤として0.3質量%のステアリン酸亜鉛を添加し、その混合物を混合機(筒井理化学器機製、Vミキサー)に入れ、回転数12rpmで10分間混練した。
得られた混合物(混練物)を、外径11.0mm、内径6.5mm、厚さ3.0mmのトロイダル形状の成形金型に充填し、588MPaの成形圧力にて加圧成形して、トロイダル成形体を得た。その後、得られたトロイダル成形体を、恒温槽中で、180℃で1時間保持して、比較例6の圧粉磁芯を得た。
(Comparative Example 6)
The reduced Fe powder of Comparative Example 1 was mixed with an organic solvent and 1.00% by mass of phosphoric acid with respect to the reduced iron Fe powder, and then dried to obtain reduced Fe powder (surface treated).
An epoxy resin (N-695, manufactured by Dainippon Ink Co., Ltd.) and a curing agent were mixed, and the mixture was dissolved in an organic solvent to prepare a liquid composition. Next, both the reduced Fe powder (surface-treated) and the liquid composition weighed to be 3.0% by mass with respect to the reduced Fe powder (surface-treated) are put into a polybin, The mixture was thoroughly stirred and mixed while rotating on a gantry. Thereafter, the stirred mixture was taken out into a beaker and heated to evaporate the organic solvent and dry to obtain granular reduced Fe powder.
To the obtained granular reduced Fe powder, 0.3% by mass of zinc stearate is added as a lubricant, and the mixture is put into a mixer (V mixer, manufactured by Tsutsui Rika Kikai Co., Ltd.) for 10 minutes at a rotational speed of 12 rpm. Kneaded.
The obtained mixture (kneaded material) was filled into a toroidal mold having an outer diameter of 11.0 mm, an inner diameter of 6.5 mm, and a thickness of 3.0 mm, and pressure-molded at a molding pressure of 588 MPa, A molded body was obtained. Then, the obtained toroidal molded object was hold | maintained at 180 degreeC for 1 hour in the thermostat, and the dust core of the comparative example 6 was obtained.

(比較例7〜10)
比較例2〜5で得られた還元Fe粉、還元Fe−Ni合金粉および水アトマイズFe粉を用いること以外は、比較例6と同様に操作して、
比較例7〜10の圧粉磁芯を得た。
(Comparative Examples 7 to 10)
Except for using the reduced Fe powder, reduced Fe—Ni alloy powder and water atomized Fe powder obtained in Comparative Examples 2 to 5, the same operation as in Comparative Example 6 was performed.
The dust cores of Comparative Examples 7 to 10 were obtained.

(実施例6〜10)
実施例1〜5で得られた還元鉄Fe粉、還元Fe−Ni合金粉および水アトマイズFe粉を用いること以外は、比較例6と同様に操作して、実施例6〜10の圧粉磁芯を得た。
(Examples 6 to 10)
Except using the reduced iron Fe powder, reduced Fe-Ni alloy powder, and water atomized Fe powder obtained in Examples 1 to 5, the same operation as in Comparative Example 6 was performed, and the dust magnets of Examples 6 to 10 were used. I got a wick.

表2に、実施例6〜10並びに比較例6〜10の圧粉磁芯の性能評価を示す。
Table 2 shows the performance evaluation of the dust cores of Examples 6 to 10 and Comparative Examples 6 to 10.

表2から明らかなように、比較例6〜10の圧粉磁芯は、駆動周波数1MHzおよび3MHzでのコアロスが非常に大きく、実用に耐えないものであることが確認された。一方、実施例6〜10の圧粉磁芯は、1MHzでのコアロスが170kW/m以下、3MHzでのコアロスが700kW/m以下であり、MHz帯域での高周波駆動に対し適性を有するものであることが確認され、コアロス及びその周波数依存性に優れることが確認された。 As is clear from Table 2, it was confirmed that the dust cores of Comparative Examples 6 to 10 had a very large core loss at driving frequencies of 1 MHz and 3 MHz and were not practically usable. On the other hand, the dust cores of Examples 6 to 10 have a core loss at 1 MHz of 170 kW / m 3 or less and a core loss at 3 MHz of 700 kW / m 3 or less, and are suitable for high-frequency driving in the MHz band. It was confirmed that the core loss and its frequency dependence were excellent.

以上説明した通り、本発明の軟磁性粉末、及び、圧粉磁芯、並びに、磁気デバイスは、低周波領域から高周波領域に亘ってコアロスを格別に低減して1MHz以上の高周波にも対応可能であり、磁気デバイスの小型化を実現できるので、インダクタ、ジェネレータ、リアクタ、モーター、各種トランス、アンテナ、EMI対策部品、磁気シールド材等の磁気デバイス、及びそれらを備える各種機器、設備、システム等に広く且つ有効に利用可能である。   As described above, the soft magnetic powder, the dust core, and the magnetic device of the present invention can cope with a high frequency of 1 MHz or more by significantly reducing the core loss from the low frequency region to the high frequency region. It is possible to reduce the size of magnetic devices, so it is widely used in inductors, generators, reactors, motors, various transformers, antennas, EMI countermeasure parts, magnetic devices such as magnetic shielding materials, and various equipment, facilities, and systems equipped with them. And can be used effectively.

11…一次粒子、12…二次粒子、13…絶縁層、100…軟磁性粉末。   11 ... primary particles, 12 ... secondary particles, 13 ... insulating layer, 100 ... soft magnetic powder.

Claims (7)

FeまたはFe−Ni系合金の軟磁性粉末であって、
該軟磁性粉末の一次粒子径が0.01〜5μmであり、一次粒子のアスペクト比と面積比の積の平均値が1.0〜4.0であることを特徴とする軟磁性粉末。
A soft magnetic powder of Fe or Fe-Ni alloy,
A soft magnetic powder having a primary particle diameter of 0.01 to 5 µm and an average product of an aspect ratio and an area ratio of the primary particles of 1.0 to 4.0.
前記軟磁性粉末は、保磁力が25Oe以下であることを特徴とする請求項1記載の軟磁性粉末。 The soft magnetic powder according to claim 1, wherein the soft magnetic powder has a coercive force of 25 Oe or less. 前記軟磁性粉末は、還元法によって製造された還元粉である、請求項1及び2記載の軟磁性粉末。 The soft magnetic powder according to claim 1 or 2, wherein the soft magnetic powder is a reduced powder produced by a reduction method. 前記軟磁性粉末は、湿式メディアレスの微粒化装置で解砕して得られる、請求項1〜3いずれか記載の軟磁性粉末。 The soft magnetic powder according to any one of claims 1 to 3, wherein the soft magnetic powder is obtained by pulverization with a wet medialess atomizer. 請求項1〜4いずれか記載の軟磁性粉末であって、表面の少なくとも一部が絶縁層により被覆される、軟磁性粉末。 The soft magnetic powder according to claim 1, wherein at least a part of the surface is covered with an insulating layer. 請求項1〜5いずれか記載の軟磁性粉末と、樹脂、及び/又は、潤滑剤を混合し、加圧成形して得られる、圧粉磁芯。 A powder magnetic core obtained by mixing the soft magnetic powder according to any one of claims 1 to 5 with a resin and / or a lubricant and press-molding the mixture. 請求項1〜5いずれか記載の軟磁性粉末を用いて得られる、磁気デバイス。 A magnetic device obtained by using the soft magnetic powder according to claim 1.
JP2011232385A 2011-10-24 2011-10-24 Soft magnetic powder, powder magnetic core, and magnetic device Pending JP2013089929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011232385A JP2013089929A (en) 2011-10-24 2011-10-24 Soft magnetic powder, powder magnetic core, and magnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011232385A JP2013089929A (en) 2011-10-24 2011-10-24 Soft magnetic powder, powder magnetic core, and magnetic device

Publications (1)

Publication Number Publication Date
JP2013089929A true JP2013089929A (en) 2013-05-13

Family

ID=48533508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011232385A Pending JP2013089929A (en) 2011-10-24 2011-10-24 Soft magnetic powder, powder magnetic core, and magnetic device

Country Status (1)

Country Link
JP (1) JP2013089929A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158593A1 (en) * 2019-01-28 2020-08-06 三井金属鉱業株式会社 Metal particles, and magnetic body paste, powder magnetic core and inductor each using same, and method for producing metal particles
CN114823116A (en) * 2022-05-23 2022-07-29 深圳顺络电子股份有限公司 Gapless transformer, preparation method thereof and preparation method of high-insulation and voltage-resistant alloy powder
CN116206840A (en) * 2022-12-30 2023-06-02 深圳信义磁性材料有限公司 Low-loss iron-nickel-molybdenum magnetic powder core and preparation method thereof
CN116864294A (en) * 2023-08-04 2023-10-10 广东泛瑞新材料有限公司 Iron-nickel magnetic core and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223901A (en) * 1985-07-23 1987-01-31 Showa Denko Kk High-purity metal powder
JPH01108524A (en) * 1987-10-22 1989-04-25 Seiko Instr & Electron Ltd Parallel a/d converter for liquid crystal light
JPH0372008A (en) * 1989-08-09 1991-03-27 Yoshikawa Kogyo Co Ltd Manufacture of powder
JP2004091928A (en) * 2003-09-10 2004-03-25 Tdk Corp Magnetic metal powder
JP2004128001A (en) * 2002-09-30 2004-04-22 Sumitomo Electric Ind Ltd Electromagnetic wave absorber
EP1568427A1 (en) * 2004-02-18 2005-08-31 Hitachi Metals, Ltd. Fine composite metal particles and their production method, and magnetic beads
JP2005273011A (en) * 2004-02-27 2005-10-06 Hitachi Metals Ltd Iron based nanosize particle and production method therefor
JP2008147404A (en) * 2006-12-08 2008-06-26 Sumitomo Electric Ind Ltd Soft magnetic composite material
JP2008261003A (en) * 2007-04-11 2008-10-30 Toda Kogyo Corp Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER, ITS PRODUCTION METHOD, RESIN COMPOSITION FOR BOND MAGNET CONTAINING THE Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER, AND BOND MAGNET
CN102049516A (en) * 2009-10-30 2011-05-11 Tdk株式会社 Surface-treated reduced iron powder and method for manufacturing the same, and powder magnetic core
JP2011246820A (en) * 2004-02-27 2011-12-08 Hitachi Metals Ltd Iron-based nanosize particle and method for producing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223901A (en) * 1985-07-23 1987-01-31 Showa Denko Kk High-purity metal powder
JPH01108524A (en) * 1987-10-22 1989-04-25 Seiko Instr & Electron Ltd Parallel a/d converter for liquid crystal light
JPH0372008A (en) * 1989-08-09 1991-03-27 Yoshikawa Kogyo Co Ltd Manufacture of powder
JP2004128001A (en) * 2002-09-30 2004-04-22 Sumitomo Electric Ind Ltd Electromagnetic wave absorber
JP2004091928A (en) * 2003-09-10 2004-03-25 Tdk Corp Magnetic metal powder
EP1800774A2 (en) * 2004-02-18 2007-06-27 Hitachi Metals, Ltd. Fine composite metal particles and magnetic beads
EP1568427A1 (en) * 2004-02-18 2005-08-31 Hitachi Metals, Ltd. Fine composite metal particles and their production method, and magnetic beads
JP2005273011A (en) * 2004-02-27 2005-10-06 Hitachi Metals Ltd Iron based nanosize particle and production method therefor
JP2011246820A (en) * 2004-02-27 2011-12-08 Hitachi Metals Ltd Iron-based nanosize particle and method for producing the same
JP2008147404A (en) * 2006-12-08 2008-06-26 Sumitomo Electric Ind Ltd Soft magnetic composite material
JP2008261003A (en) * 2007-04-11 2008-10-30 Toda Kogyo Corp Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER, ITS PRODUCTION METHOD, RESIN COMPOSITION FOR BOND MAGNET CONTAINING THE Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER, AND BOND MAGNET
CN102049516A (en) * 2009-10-30 2011-05-11 Tdk株式会社 Surface-treated reduced iron powder and method for manufacturing the same, and powder magnetic core
JP2011094204A (en) * 2009-10-30 2011-05-12 Tdk Corp Surface-treated reduced iron powder, method for producing the same, and powder magnetic core

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158593A1 (en) * 2019-01-28 2020-08-06 三井金属鉱業株式会社 Metal particles, and magnetic body paste, powder magnetic core and inductor each using same, and method for producing metal particles
CN113165067A (en) * 2019-01-28 2021-07-23 三井金属矿业株式会社 Metal particle, magnetic paste using same, dust core and inductor, and method for producing metal particle
JPWO2020158593A1 (en) * 2019-01-28 2021-12-02 三井金属鉱業株式会社 Metal particles, magnetic paste using them, dust cores and inductors, and methods for manufacturing metal particles.
CN113165067B (en) * 2019-01-28 2023-03-14 三井金属矿业株式会社 Metal particle, magnetic paste using same, dust core and inductor, and method for producing metal particle
JP7374932B2 (en) 2019-01-28 2023-11-07 三井金属鉱業株式会社 Metal particles, magnetic paste using the same, powder magnetic core and inductor, and method for producing metal particles
CN114823116A (en) * 2022-05-23 2022-07-29 深圳顺络电子股份有限公司 Gapless transformer, preparation method thereof and preparation method of high-insulation and voltage-resistant alloy powder
CN114823116B (en) * 2022-05-23 2023-12-12 深圳顺络电子股份有限公司 Gapless transformer and preparation method thereof, and preparation method of high-insulation voltage-resistant alloy powder
CN116206840A (en) * 2022-12-30 2023-06-02 深圳信义磁性材料有限公司 Low-loss iron-nickel-molybdenum magnetic powder core and preparation method thereof
CN116206840B (en) * 2022-12-30 2024-01-30 深圳信义磁性材料有限公司 Low-loss iron-nickel-molybdenum magnetic powder core and preparation method thereof
CN116864294A (en) * 2023-08-04 2023-10-10 广东泛瑞新材料有限公司 Iron-nickel magnetic core and preparation method and application thereof
CN116864294B (en) * 2023-08-04 2023-12-12 广东泛瑞新材料有限公司 Iron-nickel magnetic core and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4274897B2 (en) Method for producing Fe-based amorphous metal powder and method for producing soft magnetic core using the same
CN104067358B (en) The manufacture method of compressed-core, coil component and compressed-core
JP6511832B2 (en) Soft magnetic metal powder and soft magnetic metal powder core using the powder
JP2011094204A (en) Surface-treated reduced iron powder, method for producing the same, and powder magnetic core
CN107924743B (en) Soft magnetic powder
KR20080039312A (en) Soft magnetic alloy powder, powder compact and inductance device
JP6511831B2 (en) Soft magnetic metal powder and soft magnetic metal powder core using the powder
JP2015233119A (en) Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
JP2010251696A (en) Soft magnetic powder core and method of manufacturing the same
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
JP2011216839A (en) Powder magnetic core and method for manufacturing the same
KR102369149B1 (en) Magnetic flat powder and magnetic sheet containing same
JP2016072577A (en) Soft magnetic flat powder and method for manufacturing the same
JP2005286145A (en) Method for manufacturing soft magnetic material, soft magnetic powder and dust core
JP2013089929A (en) Soft magnetic powder, powder magnetic core, and magnetic device
WO2005095030A1 (en) Method for producing soft magnetic material, soft magnetic powder and dust core
JP2009212466A (en) Soft magnetic film, and method of manufacturing the same
JP2016157753A (en) Powder magnetic core and manufacturing method thereof
CN105121069A (en) Iron powder for dust core and insulation-coated iron powder for dust core
JP2012151179A (en) Dust core
JP2018073947A (en) Soft magnetic alloy, soft magnetic alloy powder and magnetic part
KR20170071333A (en) Apparatus for amorphous alloy powder with a flake shape particles and this method
CN113871128B (en) Soft magnetic alloy composite material and preparation method thereof
JP2005248274A (en) Soft magnetic material and method for producing green compact
US11491545B2 (en) Method of preparing magnetic powder, and magnetic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818